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Hecke algebras with a finite number of
indecomposable modules

Susumu Ariki and Andrew Mathas

Abstract.
Recently, there has been progress in determining the representa-

tion type of the Hecke algebras of finite Weyl groups. We report on
these results.

§81. Introduction

Recall that an Artin algebra A has finite representation type if A
has finitely many isomorphism classes of indecomposable modules; oth-
erwise, A has infinite representation type. In this short article, we report
on a criterion for when the Hecke algebra of a finite Weyl group has finite
representation type.

Let W be a finite Weyl group, K be an algebraically closed field and
let ¢ be a non-zero element of K. The K-algebra Hw(q) is the Hecke
algebra associated with W.

First assume that ¢ = 1. Then Hw (g) is the group algebra KW.
Let [ be the characteristic of K. It is well-known that if G is a finite
group then the group algebra K G has finite representation type if and
only if Sylow l-subgroups of G are cyclic; see [13] and [7]. In the case
where W is a Weyl group, this implies the following.

Theorem 1. [4, Theorem 2] Let W be a finite Weyl group. Then
KW has finite representation type if and only if 12 does not divide the
order of W.

Thus, we may assume that g # 1 in the rest of the paper. A criterion
for Hw (g) to have finite representation type was conjectured by Uno [16].
To explain this, we recall the Poincaré polynomial of W.
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Definition 2. Let W be as above and let z be an indeterminate
over K. Then the Poincaré polynomial Py (z) of W is the polynomial

Py (z) = Z ') ¢ Klz],
wew

where [(w) is the length of w € W.
The following is the conjecture of Uno’s.

Conjecture 3. (Conjecture—Theorem) Let ¢ # 1 and Hw (q) be as
above. Then Hw(q) has finite representation type if and only if (z — q)?
does not divide Py (z).

Uno’s conjecture is now a theorem when W does not have a com-
ponent of exceptional type. If W does have a component of exceptional
type then the conjecture is known to be true under a mild assumption
on the field K.

Let us explain the strategy used to prove the conjecture. Using the
notion of complexity, we can reduce to the case where W is an irreducible
Weyl group; see [4, Proposition 8]. We now proceed with a case-by-case
analysis. When W is of type A the conjecture was already confirmed by
Uno [16]. Uno also proved his conjecture for Hw (g) whenever W is a
finite Coxeter group of rank two. For exceptional types, the conjecture
has been proved by Miyachi [15] under the assumption that the charac-
teristic of K is not too small; this uses computational results which had
been obtained by Geck, Lux et al.

We now consider the cases where W is of type B or type D. Then,
as is explained in [4], the conjecture is a corollary of [6, Theorem 1.4]
(Theorem 4 below); see [4] and [6] for the details. Note that we excluded
the case ¢ = —1 in [6]. However, as we show below, a similar argument
works in this case also and the main theorem [6, Theorem 1.4] is true
when ¢ = —1. In the next section, we explain the proof of this main
theorem taking the case ¢ = —1 as an example.

§2. Theorem 1.4 of [6] and the case ¢ = —1

Recall that we are assuming that ¢ # 1. Let W,, be the Weyl group
of type B,,. Fix a non-negative integer f and let H,, = Hw, (g, —¢*) be
the K-algebra with generators Ty, T1,...,T,—1 and relations

(To-1)(To—-¢f)=0, (T+1)(T;—q) =0, for1<i<n-1,
TohToTy = Yo To, TiaTiTip: =TT Ti for1<i<n-—2,
T, =T;T;, for 0<i<j—1<n-2.
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We are really considering the two parameter Hecke algebra of type B
here; by a Morita equivalence argument the general two parameter case
for type B reduces to considering the algebras above.

By renormalizing Tp if necessary (see [6]) we may assume that g is a
primitive et* root of unity, where e > 2, and that 0 < f < 2. The main
result of [6] asserts that the following is true.

Theorem 4 ([6, Theorem 1.4]).  Suppose that K is an algebraically
closed field, e > 2 and that 0 < f < . Then M, is of finite representa-
tion type if and only if n < min(e, 2f + 4).

In fact, in [6] Theorem 4 is proved only for the cases with e > 3; or,
equivalently, when g # £1. We first discuss the main ideas behind the
proof of [6, Theorem 1.4]. We then illustrate how we use them in the
argument by giving a proof of Theorem 4 in the case ¢ = —1.

To prove that H, has finite representation type if n < min(e, 2f +4)
we used the combinatorics of path sequences together with the Jantzen-
Schaper sum formula [14] for H,,. Note that the case ¢ = —1 (which was
not considered in [6]), corresponds to e = 2; therefore, if ¢ = —1 then
n < min(e, 2f +4) only if n = 1. Thus, when e = 2 it is automatic that
‘H.. has finite representation type if n < min(e, 2f + 4).

We now consider the converse. To prove that H,, has infinite repre-
sentation type when n > min(e,2f + 4) we rely on two theories. One is
the Specht module theory developed by Dipper, James and Murphy [9].
The other is the description of the decomposition numbers of H,, as
the coeflicients of the canonical basis elements of a certain level 2 Fock
space [1, 5]; we call this Fock space theory.

The Specht module theory provides us with a set of H,—modules,
called Specht modules, indexed by bipartitions. Let A = (A(),A(?)) be a
bipartition of n and let S* be the corresponding Specht module. Then
each S is equipped with an invariant bilinear form. Let rad(S*) be the
radical of the bilinear form and set D* = S*/rad(S*). Then the non-
zero D* form a complete set of pairwise non—isomorphic H,-modules.
Define P* to be the projective cover of D* # 0.

Let > be the dominance ordering on the set of bipartitions of n.

Proposition 5. [6, 3.12,3.13]

1. If D* # 0 then S* is an indecomposable H,-module and D> is
the unique head of S*.

2. Each projective H,,—module P has a Specht filtration; thus, there
exist bipartitions v, ...,vx and a filtration

P=Pr>pkls...5pl5pPl=0
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such that P*/Pi~! = S% for1 < i <k, and i < j whenever
v b vj.

3. Suppose that P = P* for some bipartition p with D* # 0. Then
the Specht filtration of (2) can be chosen so that

dry=#{1<i<k|v=2A}

In particular, if A is mazimal in the dominance ordering such
that dy, # 0 then P* has a submodule isomorphic to SA.

The non—zero D* were classified by the first author in [2].

Now we turn to the Fock space theory. We begin by recalling the
following theorem; see [3, Theorem 12.5] or [1], [5]. For the statement, let
Ao, ..., Ae_1 be the fundamental weights for the Kac-Moody Lie algebra
U(.;le) and, for a dominant weight A, let L(A) be the corresponding
integrable highest weight module.

Theorem 6. Fori=0,1,...,e— 1 there ezist exact functors
e;, fi : Hp—mod — H,; mod

such that the operators induced by these, and suitably defined operators
d and h;, fori =0,1,...,e — 1, give Kg = @,,>0 Ko(Hn-Proj) ®z Q
the structure of a U(sl,)-module. Moreover, Ko = L(Ao + Af) as a
U (;le) -module and if K is a field of characteristic zero then the princi-
pal indecomposable H,,—modules correspond to elements of the Lusztig—
Kashiwara canonical basis of L(Ag + Ay) under this isomorphism.

As a consequence of this result, when K is a field of characteristic
zero the decomposition numbers of H,, can be computed using the canon-
ical basis of a certain v—deformed Fock space F, = F,(Ag + Ay); see [3]
for details. In our case, the set of bipartitions form a basis of F,. Let
U,(sl.) be the quantum group of U(sl.); then F, is a U, (sl.)-module.
Let L,(Ao + Af) be the integrable highest weight module for U, (;le)
of highest weight Ag + Af. Then, by definition, the canonical basis of
L(Ao + Ay) is the canonical basis of L,(Aq + Ay) specialized at v = 1.

The action of U (.;L_) on the Fock space is the specialization at v = 1
of the action of U,(sl,) on F,. In order to describe this let « and y
be nodes of a bipartition A = (A(), \(?)). We say that z is above y if
either (i) z € A() and y € A®| or (ii) = and y are both in the same
component of A (i.e. in A(!) or in A®)), and z is above y. (We follow the
English convention for describing partitions as Young diagrams.) For

each i € Z/eZ, write A = p if p can be obtained by adding a single
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i-node to A; see [6]. Then the action of the Chevalley generator f;
of U,(sl.) on F, is given by

fid = Z NP W

pA—p

where N?(11/)) is the number of addable i-nodes below the node u/\
minus the number of removable i-nodes below the node p/X. (The action
of f,elU (.;le) on the Fock space is given by setting v = 1.)

The submodule of F, generated by the empty bipartition is iso-
morphic to L,(A¢ + Af) — the corresponding integrable highest weight
module of U,(sl.); this module becomes L(Aq + Ay) when we spe-
cialize v to 1. Denote the empty bipartition in F, by vp,4a,; then

Ly (Ao + Ag) = Uy(sle)vao+a,-

Corollary 7. [6, Corollary 3.16] Suppose that D* # 0 and that,

in characteristic zero, [P*] corresponds to an element of the canonical
basis which has the form fi(lml) .. fi(‘m‘)vAo.‘.A ; under the isomorphism

of Theorem 6. Then P* has the same Specht filtration in positive char-
acteristic as in characteristic zero.

This corollary, together with the characterization of the canonical
basis, implies that if

fi(lml) ... i(lml)UA0+A, €EX+ ZvZ[v],u,
m

in the Fock space F, then the column of the decomposition matrix of
‘H,, corresponding to A does not depend on the characteristic of the base
field K. Thus, the corollary gives us a way of applying Theorem 6 to
compute decomposition numbers of H,, when K is a field of positive
characteristic.

Using this, and the properties of the Specht modules listed above, we
can prove that if n > min(e,2f + 4) then H,, has infinite representation
type. The reader can experience the flavour of the arguments of [6] from
the following two lemmas which extend Theorem 4 to the case ¢ = —1.
Note that we only have to consider the cases f = 0,1 since 0 < f < 2.

Lemma 8. Assume thatq= -1, f =1 and n > 2. Then H,, has
infinite representation type.

Proof. By [6, Lemma 2.5] we may assume that n = 2. The defining

relations of Hg are

T3 -1=0, (1 +1)*=0, (ToTy)* = (T Tp)>.
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Let A; = ((0),(12)) and Az = ((1),(1)). The Fock space has highest
weight Ag + A; and the decomposition matrix is as follows.

A A
(0,a*) |1 o0
((0,(2)) |1 0
(@) |1 1
(@@, o 1
(2,0) |0 1

If M is a finite dimensional H,,—module let [M] denote the cor-
responding equivalence class in the Grothendieck group of H,, and let
Rad(M) denote the radical of M. By the decomposition matrix above,
we have [P*1] = 3[D*1] + [D*?] and [P*2] = [D*] + 3[D*2]. Observe
that S*2 is indecomposable with head D*2 and socle D*:. Since its dual
module is indecomposable with head D** and socle D*?, so that D>
must appear in Rad(P*:)/ Rad®(P*). On the other hand, Rad(P>!)
has a Specht filtration whose successive quotients are $(®:(2) = DM
and $*2. Thus D** must appear in Rad(P*')/Rad?(P™).

Using a similar argument we can prove that D*' and D*? must
appear in Rad(P*?)/ Rad?(P*?).

Considering the separation diagram, we conclude that the Hs has
infinite representation type; see [6, Theorem 2.7]. a

Lemma 9. Assume that q=—1, f =0 andn > 2. Then H,, has
infinite representation type.

Proof. As before we may assume that n = 2. This time the defining
relations of Hy are

(To—1)2=0, (T3 +1)*=0, (ToTh)? = (T1Tp)%

Let A = ((0), (12)). The element of the canonical basis corresponding
to A is given by :

((0), (1%)) +v((0), (2)) + v((1%),(0)) + v*((2), (0)).

The other element of the canonical basis corresponding to ((1), (1)) is
(1), @) = ££2((0), (0)). Thus, [P*] = 4[D*]. Looking at the defining
relations, we can define a representation of Hy by

1 0 a -1 0 c
To=10 1 b}, =10 -1 d]|.
0 0 1 0 0 -1
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We choose a,b,c,d € K so that ad — bc # 0. Then this representa-
tion gives an indecomposable module with head D* and socle D* @ D*.
Therefore, Endy, (P*) # K[z]/(z™) for any m > 0 (it has two indepen-
dent generators); so we conclude that the Hz has infinite representation
type by [6, Lemma 2.6]. ]

83. A result of Erdmann and Nakano

In this section, we assume that W has type A,_;. Let e be the
multiplicative order of ¢ as before. Recall that an e—core is a partition
which does not contain a removable e-hook. Then the blocks of Hy(q)
are labelled by e—cores such that n — |«| is divisible by e. We denote
by By the block labelled by an e—core k.

Artin algebras fall into three categories; finite, tame and wild. Erd-
mann and Nakano [10] have determined the representation type of the
block algebras Bi.

Recall that if k is an e—core then the e-weight of & is

n— |x|

w(k) = P

Theorem 10. [10, Theorem 1.2] Maintain the notation above.

(1) By is semisimple if and only if w(k) = 0.

(2) Bk has finite representation type (and is not semisimple) if and
only if w(k) = 1.

(3) By has tame representation type if and only if e = 2 and w(k) =
2.

(4) By has wild representation type if and only if either e > 3 and

w(k) > 2, ore =2 and w(k) > 3.

Generalization of this theorem to other types remains open.

84. Appendix

The aim of the paper [6] was to determine when the two parameter
Hecke algebra H, (g, @) of type B, which is defined by

To-1)(To+Q) =0, (T +1)(T:—q) =0, for1<i<n-1,
TohIyTy = ThToTh'To, TipaTiTiyy =TT T;, for1<i<n-2
TT; =TT for0<i<j—1<n—-2

has finite representation type. The Morita equivalence theorem of Dip-
per and James [8] implies that it is enough to consider the algebras
Hn = Hn(g, —q’) of section 2, where f € Z. Recall that we assumed
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q # 1 in section 2; however, as we now show, it is easy to determine
when H,,(1, @) has finite representation type.

Assume that ¢ = 1. Then, as an algebra, H,(1,Q) is isomorphic
to the semidirect product of the commutative algebra L£,, and the group
algebra of the symmetric group K S,,, where

L, = (K[L)/(L* - (Q - 1)L - Q))®"

and S, acts on £,, by conjugation in the natural way.

If Q=—1andn = 2then £, = (K[L]/(L+ 1)2)®2 is the Kronecker
algebra and Hy(1,Q) = Lo & L2T1Ly. Thus, H,(1,—1) has infinite
representation type when n > 2. Hence, we have proved the following.

Proposition 11. Suppose that K is a field. Then H,(1,—1) has
finite representation type if and only if n = 1.

If @ # —1 then the Dipper—James Morita equivalence theorem com-
bined with Uno’s proof of Conjecture 3 for type A gives the following.

Proposition 12. Suppose that K is a field. Then H,(1,Q) with
Q # —1 has finite representation type if and only if n < 2l where [ is
the characteristic of the base field.

Remark 13. We can prove this statement without appealing to the
Dipper—James Morita equivalence theorem. If [ # 2 then

KIL)/(I* - (Q-1)L-Q)~K&K ~KC,

and thus H,(1,Q) ~ KW, where W, is the Weyl group of type B,,.
Therefore, by Theorem 1, H,,(1, Q) has finite representation type if and
only if n < 2.

Next assume that [ = 2. Since K'S,, is a factor algebra of H,(1,Q),
Theorem 1 again implies that H, (1, Q) has infinite representation type
when n > 4. Let G, = C316,. To prove that H,(1,Q) has finite
representation type when n < 4 it is enough to observe that there is a
surjective homomorphism

KG,=(K®KaoK)®'KS, — (K ® K)®*"KS, = H.(1,Q).

By the remarks before Theorem 1, KG,, has finite representation type
if n < 4; hence, H,(1, @) has finite representation type when n < 4.
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