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Heeke algebras with a finite number of 
indecomposable modules 

Susumu Ariki and Andrew Mathas 

Abstract. 

Recently, there has been progress in determining the representa­
tion type of the Heeke algebras of finite Weyl groups. We report on 
these results. 

§1. Introduction 

Recall that an Artin algebra A has finite representation type if A 
has finitely many isomorphism classes of indecomposable modules; oth­
erwise, A has infinite representation type. In this short article, we report 
on a criterion for when the Heeke algebra of a finite Weyl group has finite 
representation type. 

Let W be a finite Weyl group, K be an algebraically closed field and 
let q be a non-zero element of K. The K-algebra 1-lw(q) is the Heeke 
algebra associated with W. 

First assume that q = 1. Then 1-lw(q) is the group algebra KW. 
Let l be the characteristic of K. It is well-known that if G is a finite 
group then the group algebra KG has finite representation type if and 
only if Sylow l-subgroups of G are cyclic; see [13] and [7]. In the case 
where W is a Weyl group, this implies the following. 

Theorem 1. [4, Theorem 2] Let W be a finite Weyl group. Then 
KW has finite representation type if and only if l 2 does not divide the 
order ofW. 

Thus, we may assume that q =f:. 1 in the rest of the paper. A criterion 
for 1-lw(q) to have finite representation type was conjectured by Uno [16]. 
To explain this, we recall the Poincare polynomial of W. 
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Definition 2. Let W be as above and let x be an indeterminate 
over K. Then the Poincare polynomial Pw(x) of W is the polynomial 

Pw(x) = L xl(w) E K[x], 
wEW 

where l(w) is the length of wE W. 

The following is the conjecture of Uno's. 

Conjecture 3. (Conjecture-Theorem) Letq =f. 1 and1iw(q) be as 
above. Then 1iw(q) has finite representation type if and only if (x- q) 2 

does not divide Pw(x). 

Uno's conjecture is now a theorem when W does not have a com­
ponent of exceptional type. If W does have a component of exceptional 
type then the conjecture is known to be true under a mild assumption 
on the field K. 

Let us explain the strategy used to prove the conjecture. Using the 
notion of complexity, we can reduce to the case where W is an irreducible 
Weyl group; see [4, Proposition 8]. We now proceed with a case-by-case 
analysis. When W is of type A the conjecture was already confirmed by 
Uno [16]. Uno also proved his conjecture for 1iw(q) whenever W is a 
finite Coxeter group of rank two. For exceptional types, the conjecture 
has been proved by Miyachi [15] under the assumption that the charac­
teristic of K is not too small; this uses computational results which had 
been obtained by Geck, Lux et al. 

We now consider the cases where W is of type B or type D. Then, 
as is explained in [4], the conjecture is a corollary of [6, Theorem 1.4] 
(Theorem 4 below); see [4] and [6] for the details. Note that we excluded 
the case q = -1 in [6]. However, as we show below, a similar argument 
works in this case also and the main theorem [6, Theorem 1.4] is true 
when q = -1. In the next section, we explain the proof of this main 
theorem taking the case q = -1 as an example. 

§2. Theorem 1.4 of [6] and the case q = -1 

Recall that we are assuming that q =f. 1. Let Wn be the Weyl group 
of type Bn- Fix a non-negative integer f and let 1in = 1iwn (q, -qf) be 
the K -algebra with generators T0 , T1 , ... , Tn-l and relations 

(To- 1)(T0 - qf) = 0, (Ti + 1)(Ti - q) = 0, for 1 :::; i :::; n- 1, 
ToT1ToT1 = T1ToT1To, TiHTiTi+l = TiTi+1n for 1 :::; i :::; n- 2, 

TiTj = TjTi, for 0 :::; i < j - 1 :::; n- 2. 
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We are really considering the two parameter Heeke algebra of type B 
here; by a Morita equivalence argument the general two parameter case 
for type B reduces to considering the algebras above. 

By renormalizing To if necessary (see [6]) we may assume that q is a 
primitive eth root of unity, where e ~ 2, and that 0 ~ f ~ ~· The main 
result of [6] asserts that the following is true. 

Theorem 4 ([6, Theorem 1.4]). Suppose that K is an algebraically 
closed field, e ~ 2 and that 0 ~ f ~ ~. Then 'Hn is of finite representa­
tion type if and only if n < min( e, 2f + 4). 

In fact, in [6] Theorem 4 is proved only for the cases withe~ 3; or, 
equivalently, when q =!= ±1. We first discuss the main ideas behind the 
proof of [6, Theorem 1.4]. We then illustrate how we use them in the 
argument by giving a proof of Theorem 4 in the case q = -1. 

To prove that 'Hn has finite representation type if n < min(e, 2f +4) 
we used the combinatorics of path sequences together with the Jantzen­
Schaper sum formula [14] for 1-ln. Note that the case q = -1 (which was 
not considered in [6]), corresponds toe = 2; therefore, if q = -1 then 
n < min(e, 2f + 4) only if n = 1. Thus, when e = 2 it is automatic that 
'Hn has finite representation type if n < min(e, 2f + 4). 

We now consider the converse. To prove that 'Hn has infinite repre­
sentation type when n ~ min(e, 2f + 4) we rely on two theories. One is 
the Specht module theory developed by Dipper, James and Murphy [9]. 
The other is the description of the decomposition numbers of 'Hn as 
the coefficients of the canonical basis elements of a certain level 2 Fock 
space [1, 5]; we call this Fock space theory. 

The Specht module theory provides us with a set of 'Hn-modules, 
called Specht modules, indexed by bipartitions. Let A= (.X(l), .x<2>) be a 
bipartition of n and let s>. be the corresponding Specht module. Then 
each s>. is equipped with an invariant bilinear form. Let rad(S>.) be the 
radical of the bilinear form and set D>. = s>. frad(S>. ). Then the non­
zero D>. form a complete set of pairwise non-isomorphic 'Hn-modules. 
Define p>. to be the projective cover of D>. =!= 0. 

Let [> be the dominance ordering on the set of bipartitions of n. 

Proposition 5. [6, 3.12,3.13] 

1. If D>. =/= 0 then s>. is an indecomposable 'Hn -module and D>. is 
the unique head of s>.. 

2. Each projective 'Hn -module P has a Specht filtration; thus, there 
exist bipartitions v1 , ... , Vk and a filtration 

p = pk > pk-1 > ... > pl > pO = 0 
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such that pi/ pi-l ~ 8"•, for 1 < i :5: k, and i < j whenever 
Vi I> Vj· 

3. Suppose that P = P~-' for some bipartition JJ with D~-' =F 0. Then 
the Specht filtration of (2) can be chosen so that 

In particular, if A is maximal in the dom1inance ordering such 
that d>.~-' =/:- 0 then P~-' has a submodule isomorphic to s>.. 

The non-zero D>. were classified by the first author in [2]. 
Now we turn to the Fock space theory. We begin by recalling the 

following theorem; see [3, Theorem 12.5] or [1], [5]. For the statement, let 
A0 , ..• , Ae-l be the fundamental weights for the Ka.c-Moody Lie algebra 
U(;Ie) and, for a dominant weight A, let L(A) be the corresponding 
integrable highest weight module. 

Theorem 6. Fori= 0, 1, ... , e- 1 there ex1ist exact functors 

such that the operators induced by these, and suitG~bly defined operators 
d and hi, fori = 0, 1, ... , e- 1, give !Co = ffin>O ICo(1in-proj) ®z Q 

the structure of a U(;Ie)-module. Moreover, IC~ ~ L(Ao + AJ) as a 
U(;Ie)--module and if K is a field of characteristic zero then the princi­
pal indecomposable 1in -modules correspond to elements of the Lusztig­
Kashiwara canonical basis of L(Ao + A1) under this isomorphism. 

As a consequence of this result, when K is a field of characteristic 
zero the decomposition numbers of 1in can be computed using the canon­
ical basis of a certain v-deformed Fock space :Fv = :Fv(Ao + A1 ); see [3] 
for details. In our case, the set of bipartitions form a basis of :Fv. Let 
Uv(;Ie) be the quantum group of U(;Ie); then :Fv is a Uv(;Le)-module. 
Let Lv(Ao +A,) be the integrable highest weight module for Uv(;Ie) 
of highest weight Ao + A 1. Then, by definition, the canonical basis of 
L(A0 + A1) is the canonical basis of Lv(Ao + A1) :>pecialized at v = 1. 

The action of U(;Ie) on the Fock space is the specialization at v = 1 
of the action of Uv(;Ie) on :Fv. In order to describe this let x and y 
be nodes of a bipartition A= (A<1>,A<2>). We say that xis above y if 
either (i) x E A(l) and y E A(2), or (ii) x and y a.re both in the same 
component of A (i.e. in A(l) or in A<2>), and xis above y. (We follow the 
English convention for describing partitions as Young diagrams.) For 

each i E 'll.je'll., write A ~ J.L if J.L can be obtained by adding a single 
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i-node to >.; see [6). Then the action of the Chevalley generator fi 
of Uv(;te) on :Fv is given by 

fi>. = L VN:(p./ >.) J-t, 

,_.,>.,_2__.,_. 

where Nf(J-t/>.) is the number of addable i-nodes below the node J-t/A 
minus the number of removable i-nodes below the node J-t/ >.. (The action 
of fiE U(;te) on the Fock space is given by setting v = 1.) 

The submodule of :Fv generated by the empty bipartition is iso­
morphic to Lv ( A0 + A f) - the corresponding integrable highest weight 
module of Uv(;te); this module becomes L(Ao + Af) when we spe­
cialize v to 1. Denote the empty bipartition in :Fv by VAo+AJ; then 

Lv(Ao + AJ) ~ Uv(;te)VA0+Ar 

Corollary 7. [6, Corollary 3.16) Suppose that D~-' =f. 0 and that, 
in characteristic zero, [P~'] corresponds to an element of the canonical 
basis which has the form fi~'"'.) ... fi~m,)VAo+AJ under the isomorphism 
of Theorem 6. Then P~-' has the same Specht filtration in positive char­
acteristic as in characteristic zero. 

This corollary, together with the characterization of the canonical 
basis, implies that if 

fi~'"'.) · · · fi~'"'!)VA0+A1 E >. + L vZ[v]J-t 
,.. 

in the Fock space :Fv then the column of the decomposition matrix of 
1-ln corresponding to >. does not depend on the characteristic of the base 
field K. Thus, the corollary gives us a way of applying Theorem 6 to 
compute decomposition numbers of 1-ln when K is a field of positive 
characteristic. 

Using this, and the properties of the Specht modules listed above, we 
can prove that if n ~ min(e, 2f + 4) then 1-ln has infinite representation 
type. The reader can experience the flavour of the arguments of [6) from 
the following two lemmas which extend Theorem 4 to the case q = -1. 
Note that we only have to consider the cases f = 0,1 since 0 :$ f :$ ~-

Lemma 8. Assume that q = -1, f = 1 and n ~ 2. Then 1-ln has 
infinite representation type. 

Proof. By [6, Lemma 2.5) we may assume that n = 2. The defining 
relations of 11.2 are 
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Let A1 = ((0), (1 2 )) and A2 = ((1), (1)). The Fock space has highest 
weight A0 + A1 and the decomposition matrix is as follows. 

A1 A2 

((0), (1 )) 1 0 
((0), (2)) 1 0 
((1), (1)) 1 1 
( (12 ), (0)) 0 1 
( (2), (0)) 0 1 

If M is a finite dimensional Hn-module let [M] denote the cor­
responding equivalence class in the Grothendieck group of 1in and let 
Rad(M) denote the radical of M. By the decomposition matrix above, 
we have [P>-1 ] = 3[D>-1 ] + [D>-2 ] and [P>-2 ] = [D>-1 ] + 3[D>.2 ]. Observe 
that s>-2 is indecomposable with head n>-2 and socle n>- 1 • Since its dual 
module is indecomposable with head DA1 and socle n>-2 ' so that n>-2 

must appear in Rad(P>.1 )/ Rad2 (P>.1 ). On the other hand, Rad(P>. 1 ) 

has a Specht filtration whose successive quotients are S((o),(2)) = D>-1 

and s>-2 • Thus D>.1 must appear in Rad(P>.1 )/Rad2 (P>-1 ). 

Using a similar argument we can prove that n>- 1 and n>-2 must 
appear in Rad(P>.2 )/Rad2 (P>-2). 

Considering the separation diagram, we conclude that the 1{2 has 
infinite representation type; see [6, Theorem 2.7]. 0 

Lemma 9. Assume that q = -1, f = 0 and n;::::: 2. Then 1in has 
infinite representation type. 

Proof. As before we may assume that n = 2. This time the defining 
relations of 1i2 are 

Let A = ( ( 0), ( 12 )). The element of the canonical basis corresponding 
to A is given by 

( ( 0), ( 12 )) + v ( ( 0), ( 2)) + v ( ( 12 ), ( 0)) + v2 ( ( 2), ( 0)). 

The other element of the canonical basis corresponding to ( ( 1), ( 1)) is 

((1), (1)) = /~2)((0), (0)). Thus, [P>.] = 4[D>-]. Looking at the defining 
relations, we can define a representation of 1{2 by 

(
1 0 a) 

To= 0 1 b, 
0 0 1 

~)-
-1 
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We choose a, b, c, d E K so that ad - be =/:. 0. Then this representa­
tion gives an indecomposable module with head D>. and socle D>. E9 D>.. 
Therefore, End?-£2 (P>.) 7:- K[x]j(xm) for any m 2: 0 (it has two indepen­
dent generators); so we conclude that the 1i2 has infinite representation 
type by [6, Lemma 2.6]. D 

§3. A result of Erdmann and Nakano 

In this section, we assume that W has type An-I· Let e be the 
multiplicative order of q as before. Recall that an e-core is a partition 
which does not contain a removable e-hook. Then the blocks of 1iw(q) 
are labelled by e-cores such that n- IKI is divisible by e. We denote 
by B,. the block labelled by an e-core K. 

Artin algebras fall into three categories; finite, tame and wild. Erd­
mann and Nakano [10] have determined the representation type of the 
block algebras B,.. 

Recall that if K is an e-core then the e-weight of K is 

Theorem 10. [10, Theorem 1.2] Maintain the notation above. 

(1) B,. is semisimple if and only if w(K) = 0. 
(2) B,. has finite representation type (and is not semisimple) if and 

only if w(K) = 1. 
(3) B,. has tame representation type if and only if e = 2 and w(K) = 

2 . 
. (4) B,. has wild representation type if and only if either e 2: 3 and 

w(K) 2: 2, ore= 2 and w(K) 2: 3. 

Generalization of this theorem to other types remains open. 

§4. Appendix 

The aim of the paper [6] was to determine when the two parameter 
Heeke algebra 1in(q, Q) of type B, which is defined by 

(To- 1)(To + Q) = 0, (Ti + 1)(Ti- q) = 0, for 1 ~ i ~ n- 1, 
T0T1T0T1 = T1ToT1To, Ti+ 1TiTi+l = Ti1iHTi, for 1 ~ i ~ n- 2, 

TiTj = TjTi for 0 ~ i < j - 1 ~ n- 2, 

has finite representation type. The Morita equivalence theorem of Dip­
per and James [8] implies that it is enough to consider the algebras 
1in = 1in(q, -qf) of section 2, where f E Z. Recall that we assumed 
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q f. 1 in section 2; however, as we now show, it is easy to determine 
when 1ln(1, Q) has finite representation type. 

Assume that q = 1. Then, as an algebra, 1ln(1, Q) is isomorphic 
to the semidirect product of the commutative algebra Cn and the group 
algebra of the symmetric group KSn, where 

Cn = (K[L]/(L2 - (Q- 1)£- Q))®n 

and Sn acts on Cn by conjugation in the natural way. 
If Q = -1 and n = 2 then £ 2 = (K[L]/(L + 1)2 )®2 is the Kronecker 

algebra and 1£2 (1,Q) = C2 Ef7 C2T1C2. Thus, 1ln(1,-1) has infinite 
representation type when n ~ 2. Hence, we have proved the following. 

Proposition 11. Suppose that K is a field. Then 1ln(1, -1) has 
finite representation type if and only if n = 1. 

If Q f. -1 then the Dipper-James Morita equivalence theorem com­
bined with Uno's proof of Conjecture 3 for type A gives the following. 

Proposition 12. Suppose that K is a field. Then 1ln(1, Q) with 
Q f. -1 has finite representation type if and only if n < 2l where l is 
the charocteristic of the base field. 

Remark 13. We can prove this statement without appealing to the 
Dipper-James Morita equivalence theorem. If l f. 2 then 

K[L]/(L2 - (Q -1)£- Q) ~ K Ef7 K ~ KC2 

and thus 1ln(1, Q) ~ KWn where Wn is the Weyl group of type Bn. 
Therefore, by Theorem 1, 1ln(1, Q) has finite representation type if and 
only if n < 2l. 

Next assume that l = 2. Since KSn is a factor algebra of 1ln(1, Q), 
Theorem 1 again implies that 1ln(1, Q) has infinite representation type 
when n ~ 4. Let Gn = Cg I 6n. To prove that 1ln(1, Q) has finite 
representation type when n < 4 it is enough to observe that there is a 
surjective homomorphism 

By the remarks before Theorem 1, KGn has finite representation type 
if n < 4; hence, 1ln(1, Q) has finite representation type when n < 4. 
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