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§1. Introduction 

It is well-known that there exists a close relationship between sub­
factor theory and (ordinary or non-commutative) probability theory. In­
deed, one may observe it already in V. F. R. Jones' original paper [12], 
where £ 1-estimate of conditional expectations plays an important role 
in his proof of reducibility of Jones subfactors of index larger than 4. 
Since then, several authors discussed the relationship between these two 
fields [1] [2] [8] [9] [10] [15] [16] [17] [18]. Among other notions in prob­
ability theory, the most suitable one for subfactors so far is the theory 
of Poisson boundaries of random walks. It is well-known that the center 
of the core of a subfactor can be identified with the £ 00-space of the 
Poisson boundary of some random walk on the principal graph. 

In [11], the author obtained a precise description of the relative com­
mutant of the fixed point subalgebra under the infinite tensor product 
action of the quantum group SUq(2) on the Powers factor. Indeed, it 
may be regarded as "the function algebra" over "the Poisson bound­
ary" of a non-commutative Markov operator (synonymously, a unital 
completely positive operator) on "the group algebra" of SUq(2). 

Following the same philosophy, in this note we provide a general ma­
chinery to determine the structure of the (higher) relative commutants 
of the core inclusions of (not necessarily strongly amenable) subfactors. 
These relative commutants also may be regarded as "the function al­
gebras" of "the Poisson boundaries" of some non-commutative Markov 
operators of finite type I von Neumann algebras. As an easy application, 
we give a new proof, based on a random walk on some ladder-like graph, 
to the above mentioned fact about Jones inclusions. 
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§2. Preliminaries 

In this section, we give a quick introduction to two main ingredi­
ents of this note: (1) Poisson boundaries for Markov operators (2) a 
bimodule description of higher relative commutants of subfactors. Our 
basic reference for the boundary theory of (ordinary) random walks is 
V.A. Kaimanovich's review article [13]. Here, we give an algebraic de­
scription of the Poisson boundaries, and also give their extension to the 
non-commutative setting. For subfactors, we freely use definitions and 
notations in D. E. Evans andY. Kawahigashi's book [5]. 

2.1. Poisson Boundaries 

We start with a simple and classical case. Let X be a countable 
set. A Markov operator P on the state space X is a unital normal 
positive map from t'00 (X) to itself. For a given Markov operator, the 
corresponding transition probability p(s, t) from sEX totE X is given 
by 

P(8t) = L p(s, t)88 , 

sEX 

where 8 s is the characteristic function of the one point set { s}. A func­
tion f is called harmonic if the right-hand side of the following makes 
sense and it is satisfied: 

f(s) = LP(s, t)f(t), 
tEX 

which is equivalent to P(f) = f for bounded f. We denote by H 00 (X,P) 
the set all bounded harmonic functions. 

The Poisson boundary of (X, P) is, roughly speaking, a measure 
space ( D, J.L) describing H 00 (X, P), as in an analogous manner that the 
boundary values on the unit circle determines harmonic functions on 
the unit disc through the classical Poisson integral formula. Though one 
can find in [13] a decent measure theoretic construction of the Poisson 
boundary of (X, P), in this note we adopt the following characterization 
as a local definition [14, pp. 462], which is more suitable for the non­
commutative situation: For every pair f,g E H 00 (X,P), strong limit 

s- lim Pn(fg) 
n--+oo 

always exists and harmonic. This introduces a new associative product 
into H 00 (X, P), and equips it with abelian von Neumann algebra struc­
ture. The Poisson boundary is characterized as a measure space (D, J.L) 
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such that £=(o, JL) is isomorphic to the abelian von Neumann algebra 
H=(x, P). 

Now we consider the notion of "Poisson boundaries" in a more gen­
eral situation. Let A be a von Neumann algebra and P be a normal 
unital completely positive map from A to itself. Sometimes, we call 
P a non-commutative Markov operator for an obvious reason. We say 
that x E A is P -harmonic or harmonic with respect to P if x is fixed 
by P. H=(A, P) denotes the set of P-harmonic elements. Note that 
H=(A, P) is a weakly closed operator system [4]: namely it is a unital 
self-adjoint subspace of A. 

We show that H=(A, P) has a von Neumann algebra structure as 
in the classical case, though it is in general non-commutative and no 
underlying measure theoretic object exists. We fix a free ultrafilter w E 

j)N \ N and define a norm one projection Ew from A to H=(A, P) by 
the weak limit 

1 n-1 

Ew(x) = w- lim - "pk(x). 
n~wn L.....t 

k=O 

Then, we can introduce von Neumann algebra structure into H=(A,P) 
by using the Choi-Effros product Ew(xy) for x, y E H=(A, P) [4]. The 
resulting von Neumann algebra may be considered as a non-commutative 
analogue of the function algebra over "the Poisson boundary" associ­
ated with (A, P). Note that the Choi-Effros product Ew(xy) for x, y E 

H=(A, P) does not depend on w because every completely positive sur­
jective isometry between two von Neumann algebras is actually an iso­
morphism. 

As in the classical case, a natural and tempting question would be to 
identify this von Neumann algebra with known one for a given concrete 
example of P. The goal of this note is to show that some von Neumann 
algebra naturally appearing in a subfactor problem happens to be "the 
function algebra" of "the Poisson boundary" of some non-commutative 
Markov operator, and H=(A, P) with the Choi-Effros product gives a 
better description of the algebra. 

2.2. Core Inclusions 

Throughout this note, N C M denotes an extremal inclusion of type 
II1 factors with a finite Jones index [M: N]. Let 

N = M-1 c M = Mo c M1 c Mz c M3 c · · · , 

be the Jones tower for N c M. We set An:= M' n Mn, n = 0, 1, 2, · · ·, 
and En:= N'nMn, n = -1, 0, 1, · · ·. Then, the standard invariant of the 
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inclusion introduced by S. Popa [17] is the following nested commuting 
squares: 

Ao c A1 c A2 c 
n n n 

B_l c Bo c B1 c Bz c 

We denote by Aoo and Boo the weak closures of Un An and Un Bn re­
spectively in theGNS representations with respect to the natural traces. 
The inclusion Aoo C Boo is called the core of M C M1, which is known 
to be anti-isomorphic to the original one if M is hyperfinite and N C M 
is strongly amenable (See [17] for these terms). However, we focus on 
the non-strongly amenable case in this note. 

As in [5], we identify An and Bn with appropriate endomorphism 
spaces of bimodules M 1; more precisely, we have the following identifi­
cation: 

A2n = EndM(Mn)M, 

A2n+l = EndM(Mn)N, 

B2n = EndN(Mn)M, 

B2n+l = EndN(Mn)N. 

These spaces have natural inclusion relations coming from taking tensor 
products with the basic bimodules NMM and MMN from either left 
or right, which are of course compatible with the inclusion relations of 
{An}n and {Bn}n-

Let g and 1i be the principal graphs of N C M. We denote by go 
and 1{0 the set of vertices of g and 1i respectively. g and 1i are bipartite 
graphs and we denote by geven, godd, 'Heven, 'Hodd their even and odd 
vertices respectively. We identify geven (respectively godd, '}-{even, '}-{odd) 

with the set of irreducible M- M (respectively M- N, N- N, N- M) 
bimodules contained in MMnM (respectively MMnN> NMnN> NMnM) 
for some n. For even (respectively odd) n, we denote by g~ C go the set 
of even (respectively odd) vertices with distance from the distinguished 
vertex * M = M MM less than or equal to n. Note that each element of 
g~ is identified with a simple component of An-

It is well-known that the centers Z(Aoo) (respectively Z(Boo)) of Aoo 
(respectively Boo) can be identified with the £=-space of the Poisson 
boundaries of some random walk on g (respectively H) [10] [17]. In this 
note, we give a similar description of the relative commutant A~ n Boo 
using a non-commutative Markov operator. While the random walk on 
g is determined only by the trace vector [10] [17], the Markov operator 
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describing A~ n Boo is much more involved. Indeed, it is described in 
terms of intertwiners of bimodules. 

In the rest of this section, we collect notations for bimodules and 
string algebras that will be used in this note. 

Let A, B, and C be II1 factors. For an A- B bimodules AXE, we 
defined the statistical dimension of X by 

For irreducible bimodules AXE, BYe, and AZc with finite statistical 
dimensions, we denote by 'HJc,Y the space of bimodule maps 

and by N~ y the multiplicity of AZc in AX iZJB Yc. In particular, we 
set (3 := d(~MM) = d(MMN), and 

for A= B = M, C =Nand bimodules X and Z associated with the 
inclusion N c M. Let rx E 'H~,x be the element defined by 

where ~' 7] EA X are A-bounded elements and (-,·)A is the A-valued 
inner product. Note that this is, up to constant, the Frobenius dual of 
the identity map lx E 'H}. x· Then, the right hand side Frobenius dual 

of a E 'HJc,Y is expressed ~s 

dimXB * 
d" z (lx@ry)·(a IZJly-). 

Im c 

For a graph g and a path ~ on 9, s(~), r(~), and 1~1 denote the 
source, the range, and the length of ~ respectively. For a vertex v E go 
and n E N, we denote by Path~ (9) the set of paths on g with source v 
and length n. We denote by A~(g) the string algebra spanned by the 
strings (~, ry) with~' 7] E Path~(9), r(~) = r(ry). 

§3. Main Result 

Let Coo := A~ n Boo, Cn := A~ n En, n = 0, 1, 2, · · ·. We denote 
by En the trace preserving conditional expectation from Boo onto Bn· 

Thanks to the commuting square condition, for a given x E Coo, 
Xn := En(x) belongs to Cn. The sequence {xn}~=O converges to x in 
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strong *-topology. On the other hand, if {xn}~=O is a bounded sequence 
satisfying Xn E Cn and En(Xn+d = Xn, the sequence converges to some 
element x E Coo such that Xn = En(x). Therefore, all information of 
x E Coo is encoded in the sequence { Xn}~=l· Here, a possible difficulty 
in analyzing this sequence would be that all members of { Xn} ~=l belong 
to different algebras Cn, n = 0, 1, 2, · · ·. We start with a description 
of Cn in terms of bimodules. The following lemma is just a translation 
from an algebra language to a bimodule language: 

Lemma 3.1. With the above notation, we have 

C2n ~ ffi EndN(NM ®M XM)M, 
XEQ~n 

C2n+1 ~ EB EndN(NM ®M XN)N· 

XEQ~n+l 

Proof. Using the string algebra expression of Cn with respect to the 
inclusions 

we can see that every element in Cn has the following form: 

L L Cu+,O"- (C 0"+, C 0"_), Cu+,O"- E C. 
lu+I=ILI=lll;l=n 

This means that we have isomorphisms 

C2n ~ EB A1:-(Q), 
XEQ~n 

C2n+l ~ EB A1:-('H), 
XEQ~n+l 

where godd is identified with Hodd though the contragredient map in the 
second equation. Thus, we get the result. Q.E.D. 

In view of the above lemma, we set 
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veven := ffi Dx, 
XEQeven 

Dodd:= ffi Dx, 
XEgodd 

D := Deven EEl Dodd, 

207 

where the direct sums are understood as von Neumann algebra direct 
sums. We regard Dn as a subalgebra of D in a natural way, and denote 
by 7rn : D -----+ Dn the natural projection. Let Bn : Dn -----+ Cn be 
the isomorphism established in the above lemma. Note that Bn is not 
compatible with the inclusion relations of { Dn} and { Cn} (in fact, there 
exists no inclusion relation between Dn and Dn+l)· 

We introduce a Markov operator P of D. For simplicity, the bimod­
ule NMM and MMN will be denote by p and p. For x E Dx, X E geven, 
we set 

where {vy,i} ~~{ is an orthonormal basis of H~,-p· In a similar way, for 
x E Dx and X E godd, we set 

where {vy,i}~:{ is an orthonormal basis ofH~,p· It is easy to show that 
P restricted to Deven and Dodd are unital normal completely positive 
maps from one to the other. In fact, this is the right Markov operator 
that gives Coo as "the function algebra" of "the Poisson boundary". 

Lemma 3.2. Let En, Bn, 7rn, and P be as above. Then, they 
satisfy 

Bn-1 · 7rn-1 · P = En-1 · Bn · 7rn, n = 1, 2, · · · . 

Proof. It suffices to show the equality for x E Dx, X E 9~. We may 
and do further assume that n is even, (the odd case can be treated in 
a similar way), and xhas the form x = a.f- ·a_, where a+, a- E H;;:x, 
for some irreducible N W M. Let { ~h be an orthonormal basis of H~,p· 
Since N C M is extremal, we have 
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d o y _ d(Y) 
lmM -ft, dim Y N = f3d(Y). 

Thus, the right hand side Frobenius dual of ~i is given by 

Therefore, the Dy.;component of P( x) is given by 

rv,x 

L (lp®Y 18) rp) 0 (((lp 18) ~n ° a.f- 0 a_ 0 (lp 18) ~i)) QS)lp) 
i=l 

Let NVN be an irreducible N -N bimodule contained in NMQ9M YN. We 
choose orthonormal bases { ru }j and { (k} k of 'H.~ y and 'H.~P respectively. 
Using the connection and the basis of Hom(N M Q9 M Y Q9 N MM, N W N) 
coming from these, we get 

(lp 18) ~n ° a.f- 0 a_ 0 (lp 18) ~i) 

y I;; 
X y I;; 

~ ~ 

:L 1Jj l l a+ 1]j' l 
V,j,j' ,k,k' v ~ w v ~ 

(k 'k' 

Using the Frobenius reciprocity again, we get 

X 
l a_ (1Jj Q91p). (Z. (k' 
w 

(lp®Y Q9 rp). (((1Jj Q9 lp). (Z. (k'. (1Ji' Q9 lp)) Q91p). (lp®Y Q9 r;) 

1Jj. (lv Q9 rp). ((Z. (k' Q91p). (lv Q9 r;) "1Ji' 

d(W) - ~* 
f3d(V) 1Jj . (k . (k' . 1Ji' 

8k,k'd(W) * 
f3d(V) 1Jj . 1Ji'' 
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where (k is the right hand side Frobenius dual of (k· Thus, the Dy­
component of P(x) is 

y 
L d(W) T/j 1 

V,i,j,j',k j3d(V) V 

t;, 
-+ 

-+ 
(k 

X y 

1 (j+ T/j' 1 
w v 

t;, 
X -+ 

1 (j_ * T/j . T/j'. 
-+ w 
(k 

Now, we compute En-1 ·On · 7rn(x). The string algebra expression 
of ()n · 1rn(x) in terms of the inclusions An-1 CAn C Bn is 

L (~. O"+,C (j_). 

l€1=n 

The same element can be expressed in terms of An-1 C Bn-1 C Bn as 

y t;, 
X y t;, 

X -+ -+ 

2:.::: 2:.::: T/j 1 1 (j+ T/j' 1 1 (j_ (v·ryj"(k, V·rJj' ·(k'). 
lvl=n-1 V,i,j,j' ,k,k' v -+ w v -+ w 

(k (k' 

Therefore, we can get the statement from the explicit formula of the 
conditional expectation from Bn to Bn_1 in terms of the string algebra 
[5, Lemma 11.7]. Q.E.D. 

Theorem 3.3. There exists a unital completely positive surjective 
isometry()=: H=(D,P) ____, C= satisfying 

(1) For every x E H=(D, P), ()=(x) is given by 

()=(x) = s- lim On· 1rn(x). 
n-->CXJ 

(2) For every pair x, y E H=(D, P), {Pn(xy)}~=1 converges to an ele­
ment in H=(D, P) in strong operator topology, and 

Except for surjectivity of()=, Theorem 3.3 is a direct consequence of 
Lemma 3.2 and the non-commutative martingale convergence theorem 
mentioned at the beginning of this section. To show that ()= is surjective, 
we need the following Fougel'type estimate as usual: 

Lemma 3.4. For the Markov operator P as above, we have 

lim llpn+2- pnll = 0. 
n-+CXJ 

In consequence, for every bounded sequence { Xn}~= 1 in D satisfying 
Xn E Dn, 1l"n · P(xn+1) = Xn, n = 0, 1, 2, · · ·, there exists X E H=(D, P) 
such that 1rn(x) = Xn for all n. 
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Proof. For V E geven, we define a normal completely positive map <I>v 
from neven to itself in a similar way as P; for X E Dx' we set 

Ny-
where {~Y,i}i=~,v is an orthonormal basis of1liv- Then, it is a routine 

work to show <I>v(1) = d(V) and ' 

<I>v · <I>w = LN~w<I>z. 
z 

In the same way, for V E 1teven we define a normal completely positive 
map <I>v from Dodd to itself. 

For a probability measure p, on geven or on 1teven, we set 

which is a non-commutative Markov operator. Then, we get ¢1-' · ¢v = 
¢1-'*v' where p, *vis the convolution product of two probability measure 
p, and v introduced in [10]. Moreover, the following holds: 

2 1 
p = ,62(<I>ppE9<I>pp)· 

If we define two probability measures p, on geven and v on 1teven by 

_ "' d(V)Nl,P 
p, - L..J ,62 8v, 

v 

_ "' d(V)NJ_P 
v- L..J ,62 8v, 

v 

we get P 2n = cpl-'n EB ¢vn, where p,n and vn are the n-fold convolution 
product of p, and v. Thanks to Fougel's theorem [6] [10, Lemma 3.1], 
we have the following 1!1-norm estimate: 

lim IIJ-tn+l- J-tnllt = 0, lim llvn+l- vnllt = 0. 
n~~ n~oo 

Therefore, we get limn-->oo II pn+2 - pn II = 0. The rest of the statements 
is standard (see [13] for example). Q.E.D. 

(2) of Theorem 3.3 implies the following: 

Corollary 3.5. If g or 1t has no multi-edges, C00 is abelian. 

Remark. 
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(1) Assume neither Q or H has multi-edges. Then, since Dis abelian, 
P induces a random walk on a graph. Let MXM, MYN, NVN, 

and N W M be irreducible bimodules associated with the inclusion 

N c M and ~ E H~,p' rJ E H¥,y, ( E Hlf,P, u E H~x be 
normalized unique (up to phase) intertwiners. Then, we have 

P( * ) = "' d(W) 
u u L.J (3d(V) 

'f) 

y -1 
rJl 
v ----> 

( 

X 
lu 
w 

2 

* rJ . TJ· 

Therefore, if we regard D as the C00-space over the set of vertical 
paths X, the transition probability from rJ to u is given by 

d(W) 
p( rJ, u) = (3d(V) 

y -1 
rJl 
v ----> 

( 

X 
lu 
w 

2 

This is a reversible random walk in the sense of [19] thanks to 
the renormalization rule of the connection. Let T be the natural 
trace on B 00 • Then, for f E H 00 (D, P) we get 

Now we assume, for simplicity, that N C M is irreducible and 
u0 EX is the path corresponding to the intertwiner in Hom(p0M 
M M, p). Since the dimension of Do is one, the above equation 
means that T(Boo(f)) is given by the evaluation off at u0 . Thus, 
the measure corresponding to the restriction ofT to Coo is noth­
ing but the harmonic measure on the Poisson boundary of the 
Markov chain induce by P with the initial distribution Da0 • 

(2) Let 

· · · M-2 c M-1 = N c Mo = M 

be a tunnel. We set Ai,j := M'_i n Mj and define Ai,oo to be 
the weak closure of UjAi,j· Then, the same machinery works in 
order to obtain Cn,oo := A~,oo n An,oo· Indeed, there are obvious 
elements in Cn,oo coming from An,o, and what we really need 
to obtain is pCn,ooq where p and q are minimal projections in 
An,O· Let AYM and AZM be bimodules corresponding p and q 
respectively, where A is either M or N depending on the parity 
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of n. Instead of D, we need to work on 

EfJ HomA(Y0MX,Z0MX)M 
XEQeven 

E9 EB HomA(Y0MX,Z0MX)N, 
XEQodd 

as an object that the Markov operator Pacts on. Or to make it 
an algebra, we can put it into 

where the product is given by the composition (the product of 
not composable two elements is understood as 0). 

(3) Let A be a von Neumann algebra and P be a unital normal 
completely positive map form A to itself. As we stated in the 
last section, we can always discuss the "Poisson boundary" using 
the Choi-Effros product. However, those P coming from natural 
examples, such as the classical examples or the ones discussed 
here, seem to have an additional property: namely, for every 
pair x,y E H 00 (A,P), the sequence {Pn(xy)}n converges to an 
element in H 00 (A, P) in the strong operator topology. Does this 
hold for every unital normal completely positive map? If it is not 
the case, only those with the above property maybe deserve to 
be called "non-commutative Markov operators". 

§4. Examples 

In this section, we take the most fundamental example among non­
trivial ones: a subfactor with the principal graph A 00 and index larger 
than 4 (Aoo should not be confused with the algebra A 00 in the previous 
two sections). Another example, for which H 00 (D, P) may be explicitly 
obtained, would be the free composition of the A3 and A4 subfactors [3] 
[7] (see also [10]), though computation would be more complicated. 

Let N C M be a subfactor with the principal graph Aoo and index 
larger than 4. Then, the core of this subfactor is the Jones inclusion, 
whose reducibility was first proven in Jones paper [12]. Another proof 
is available in Pimsner and Popa's paper [15]. We choose 0 < q < 1 
satisfying (3 = [2]q, where 

qn _ q-n 
[n]q = q-l , n = 1, 2, · · · . 

q-
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For the edges of Q and H, we use the following labeling: 

Q: 1-2-3-4-... ' 

H: 1'-2'-3'-4'-· · ·, 

The statistical dimension of the bimodules corresponding to n and n' is 
[n]q· 

There exists only one connection, up to gauge freedom, for Aoo 
graph, which is given by 

n --+ n+1 ( -1)n+l 
1 1 

n+1' --+ n' [n]q 

n --+ n-1 ( -1)n 
1 1 

[n]q ' n -11 --+ n' 

n --+ n+l n+2 --+ n+1 

1 1 1 1 = 1, 
n+ 1' --+ n+2' n+1' --+ n' 

n --+ n+1 n --+ n-1 
J[n- 1]q[n + 1]q 

1 1 1 1 
n -1' --+ n' n+ 1' --+ n' [n]q 

We use the following labeling of the vertical paths of length 1: 

n 
an= 1 

n+ 11 

n+1 
bn = 1 

n' 

Then, D is identified with the £00 -space over 
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I I I I 
Fig. 1. Graph X 

Thanks to the formula obtained in the remark of the last section, the 
transition probabilities corresponding to P are given as follows: 

p(an,bn) 
1 

n ~ 1, 
[2]q[n]q[n + 1]q' 

p(an, an+1) 
[n+2]q 

n ~ 1, 
[2]q[n + 1]q' 

p(an, an-1) 
[n -1]q 

n ~ 2, 
[2]q[n]q' 

p(bn,an) 
1 

n ~ 1, 
[2]q[n]q[n + 1]q' 

p(bn,bn+l) 
[n+2]q 

n ~ 1, 
[2]q[n + 1]q' 

p(bn, bn-1) 
[n -1]q 

n ~ 2. 
[2]q[n]q' 

All the other transition probabilities are 0. Therefore, we can regard X 
as the vertex set of the graph X as in Figure 1, such that transitions 
occur only to the nearest neighbors. 

An important feature of this random walk is that the vertical bonds 
decay exponentially fast as n tends to infinity, while we have asymptotics 
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More intuitively, when n is sufficiently large, the graph looks like split­
ting into two straight lines, while our random walk quickly goes to infin­
ity. In consequence, we get exactly two points in the Poisson boundary, 
or in other words, Coo ~ C EEl C. 

To make the above intuitive argument rigorous, we explicitly cal­
culate the harmonic functions. There are exactly two independent (not 
necessary bounded) harmonic functions (even when q = 1). We choose 
a basis of them consisting of the constant function 1 and h satisfying 
h(an) = -h(bn), n = 1, 2, · · · , h(ar) = 1. Let Xn = h(an) and Xo = 0. 
Then, the sequence {xn}~=O is determined by the following three-term 
recurrence relation: 

xo =0, 

(1) (1 + [2]q[n]q[n + 1]q)Xn 
= [n + 2]q[n]qxn+l + [n + 1]q[n -1]qXn-1, n ~ 1, 

We show that this sequence is monotone increasing, and obtain the limit 
limn an for 0 < q < 1. Equation (1) can be expressed as 

(2) [n + 2]q[n]q(Xn+1- Xn) 

-[n + 1]q[n- 1]q(Xn- Xn-1), n ~ 1. 

Thus, by induction we can show that {xn}~=O is positive and monotone 
increasing. We set Yn := Xn+1 - Xn, n = 0, 1, 2, · · ·. Then, Equation (2) 
implies 

Yo= 1, 
2 

Y1 = [3]q, 

(3) 2[n + 1]qYn = [n + 3]qYn+l + [n- 1]qYn-1, n ~ 1. 

When q = 1, it is easy to solve Equation (3), and we can see that {xn}~= 1 
is not bounded and C00 is trivial. When, 0 < q < 1, we introduce an 
analytic function g(z) defined on a neighborhood of 0 as follows (it is 
easy to show that the radius of convergence is positive): 

00 

g(z) = LYnZn. 
n=O 

Equation (3) implies that the following function equation holds: 
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This means that the radius of convergence of g(z) is larger than or equal 
to q~ 2 (in fact it is q~2 ). Setting z = q in Equation (4), we get 

(1) = q+q~1 
g ~1 ' q - q 

and so, 
00 q + q~1 

lim Xn = LYn = g(1) = -~----:1:----
n->oo n=O q - q 

Therefore, h is bounded and dim Coo = 2. 
We set 

f - g(1) + h 
1 - 2g(1) ' 

g(1)- h 
h = 2g(1) . 

Then, h and h are two extremal positive harmonic functions of norm 
1, and so Boo(h) and Boo(h) are two minimal projections in C 00 • The 
trace evaluations of these projections are given by 

q~1 

T(Boo(h)) = h(al) = + ~1' 
q q 

T(Boo(h)) = h(a1) = +q ~ 1 q q 

Of course, this agrees with the result in [15]. 
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