C^{*}-algebras over spheres with fibres noncommutative tori

Chun-Gil Park

Abstract

. All C^{*}-algebras of sections of locally trivial C^{*}-algebra bundles over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $M_{c}\left(A_{\omega}\right)$ are constructed under the assumption that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras. It is shown that each C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $M_{c}\left(A_{\omega}\right)$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes M_{c}\left(A_{\omega}\right)$.

Let $A_{c d}$ be a $c d$-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s}$ $S^{2 k_{j}-1} \times \mathbb{T}^{r+2}$ of which no non-trivial matrix algebra can be factored out. The spherical noncommutative torus $\mathbb{S}_{\rho}^{c d}$ is defined by twisting $C^{*}\left(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}\right)$ in $A_{c d} \otimes C^{*}\left(\mathbb{Z}^{m-2}\right)$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}$. We prove that $\mathbb{S}_{\rho}^{c d} \otimes M_{p \infty}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes C^{*}\left(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho\right) \otimes M_{c d}(\mathbb{C}) \otimes M_{p \infty}$ if and only if the set of prime factors of $c d$ is a subset of the set of those of p.

§0. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^{*}-algebra $C^{*}(G, \omega)$, which is the universal object for unitary ω-representations of $G . C^{*}\left(\mathbb{Z}^{m}, \omega\right)$ is said to be a noncommutative torus of rank m and denoted by A_{ω}. The multiplier ω determines a subgroup S_{ω} of G, called its symmetry group, and the multiplier ω is called totally skew if the symmetry group S_{ω} is trivial. And A_{ω} is called completely irrational if ω is totally skew (see [1, 12]). It was shown in [1] that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^{*}(G, \omega)$ is a simple C^{*} algebra. The noncommutative torus A_{ω} of rank m is the universal object

[^0]for unitary ω-representations of \mathbb{Z}^{m}, so A_{ω} is realized as $C^{*}\left(u_{1}, \cdots, u_{m} \mid\right.$ $u_{i} u_{j}=e^{2 \pi i \theta_{j i}} u_{j} u_{i}$), where u_{i} are unitaries and $\theta_{j i}$ are real numbers for $1 \leq i, j \leq m$.

Boca [4] showed that almost all completely irrational noncommutative tori are isomorphic to inductive limits of circle algebras, where the term "circle algebra" denotes a C^{*}-algebra which is a finite direct sum of C^{*}-algebras of the form $C\left(\mathbb{T}^{1}\right) \otimes M_{q}(\mathbb{C})$. We will assume that each completely irrational noncommutative torus appearing in this paper is an inductive limit of circle algebras.

Each $c d$-homogeneous C^{*}-algebra A over M is isomorphic to the C^{*} algebra $\Gamma(\eta)$ of sections of a locally trivial C^{*}-algebra bundle η with base space M, fibres $M_{c d}(\mathbb{C})$, and structure group $\operatorname{Aut}\left(M_{c d}(\mathbb{C})\right) \cong P U(c d)$ (see $[15,18]$). So each $c d$-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times$ $\prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r+2}$ is realized as the C^{*}-algebra $\Gamma(\zeta)$ of sections of a locally trivial C^{*}-algebra bundle ζ over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times$ \mathbb{T}^{r+2} with fibres $M_{c d}(\mathbb{C})$. Thus the spherical noncommutative torus $\mathbb{S}_{\rho}^{c d}$, defined in Section 2, is realized as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$, where P_{ρ}^{d} is defined in Section 2.

We are going to show that the set of all C^{*}-algebras of sections of locally trivial C^{*}-algebra bundles over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ is in bijective correspondence with the set of all spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ and fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$, that $\mathbb{S}_{\rho}^{c d} \otimes M_{p^{\infty}}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times\right.$ $\left.\prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes C^{*}\left(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho\right) \otimes M_{c d}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of $c d$ is a subset of the set of prime factors of p, and that $\mathbb{S}_{\rho}^{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right)$ $\otimes C^{*}\left(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho\right) \otimes M_{c d}(\mathbb{C})$.

§1. Homogeneous C^{*}-algebras over a product space of spheres

An important problem, in the bundle theory of geometry, is to compute the set $[M, B P U(c d)]$ of homotopy classes of continuous maps of a compact $C W$-complex M into the classifying space $B P U(c d)$ of the Lie group $P U(c d)$. The set $[M, B P U(c d)]$ is in bijective correspondence with the set of equivalence classes of principal $P U(c d)$-bundles over M, which is in bijective correspondence with the set of $c d$-homogeneous C^{*} algebras over M (see $[15,18])$. $\left[S^{2 n}, B P U(c d)\right]=\left[S^{2 n-1}, P U(c d)\right] \cong \mathbb{Z}$ if $n>1, \cong \mathbb{Z}_{c d}$ if $n=1$, which are the cyclic groups. So each group has a generator, and there is a unitary $U(z) \in P U(c d)$ such that the
generating $c d$-homogeneous C^{*}-algebra over $S^{2 n}$ can be realized as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 n}$ with fibres $M_{c d}(\mathbb{C})$ characterized by the unitary $U(z) \in P U(c d)$ over $S^{2 n-1}$. If $(c d, k)=p(p>1)$, then consider the $c d$-homogeneous C^{*} algebra over $S^{2 n}$ corresponding to each $k \in \mathbb{Z}$ or $\mathbb{Z}_{c d}$ as the tensor product of $M_{p}(\mathbb{C})$ with a $\frac{c d}{p}$-homogeneous C^{*}-algebra over $S^{2 n}$, which is given by $U(z)^{\frac{k}{p}} \in P U\left(\frac{c d}{p}\right)$. Consider $U(z)^{k}$ as $U(z)^{\frac{k}{p}} \otimes I_{p} \in P U(c d)$, where I_{p} denotes the $p \times p$ identity matrix. Then each $c d$-homogeneous C^{*}-algebra $B_{c d, k}$ over $S^{2 n}$ can be realized as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 n}$ with fibres $M_{c d}(\mathbb{C})$ characterized by the unitary $U(z)^{k} \in P U(c d)$ over $S^{2 n-1}$ for some $k \in \mathbb{Z}$ or $\mathbb{Z}_{c d}$ (see [15]).

Lemma 1.1. Every cd-homogeneous C^{*}-algebra over $S^{2 n-1} \times S^{1}$, whose cd-homogeneous C^{*}-subalgebra restricted to the subspace $S^{2 n-1} \hookrightarrow$ $S^{2 n-1} \times S^{1}$ has the trivial bundle structure, is isomorphic to one of the C^{*}-subalgebras $A_{c d, k}, k \in \mathbb{Z}$ or $\mathbb{Z}_{c d}$, of $C\left(S^{2 n-1} \times[0,1], M_{c d}(\mathbb{C})\right)$ given as follows: if $f \in A_{c d, k}$, then the following condition is satisfied

$$
f(z, 1)=U(z)^{k} f(z, 0) U(z)^{-k}
$$

for all $z \in S^{2 n-1}$, where $U(z) \in P U(c d)$ is the unitary given above.
Proof. Let A be a $c d$-homogeneous C^{*}-algebra over $S^{2 n-1} \times S^{1}$ whose $c d$-homogeneous C^{*}-subalgebra restricted to the subspace $S^{2 n-1}$ $\hookrightarrow S^{2 n-1} \times S^{1}$ has the trivial bundle structure. Since there is a map of degree 1 from $S^{2 n-1} \times S^{1}$ to $S^{2 n}$, the composite of the map of degree 1 and the map representing each element of $\left[S^{2 n}, B P U(c d)\right]$ gives an element of $\left[S^{2 n-1} \times S^{1}, B P U(c d)\right]$. Hence each element of $\left[S^{2 n}, B P U(c d)\right] \cong$ $\left[S^{2 n-1}, P U(c d)\right]$ representing a $c d$-homogeneous C^{*}-algebra over $S^{2 n}$ induces an element of $\left[S^{2 n-1}, P U(c d)\right] \subset\left[S^{2 n-1} \times S^{1}, B P U(c d)\right]$, and the $c d$-homogeneous C^{*}-algebras $A_{c d, k}$ over $S^{2 n-1} \times S^{1}$ corresponding to the $c d$-homogeneous C^{*}-algebras $B_{c d, k}$ over $S^{2 n}$ are constructed in the statement. By the assumption, the $c d$-homogeneous C^{*}-subalgebra of A restricted to the subspace $S^{2 n-1} \times(0,1)$ of $S^{2 n-1} \times S^{1}$ has the trivial bundle structure. Hence A corresponds to an element of $\left[S^{2 n-1}, P U(c d)\right]$, and A is characterized by the unitary $U(z)^{k} \in P U(c d)$ over $S^{2 n-1}$ for some $k \in \mathbb{Z}$ or $\mathbb{Z}_{c d}$.
Q.E.D.

Lemma 1.2. Let n and k be integers greater than 1. Each cdhomogeneous C^{*}-algebra over $S^{n} \times S^{k}$ is isomorphic to a cd-homogeneous C^{*}-algebra characterized by the unitary $U(z)^{a}$ over S^{n-1} in a cd-homogeneous C^{*}-algebra P_{c} over $e_{+}^{n} \times S^{k}$ and $e_{-}^{n} \times S^{k}$, where
$U(z) \in P U(c d)$ or $P U(c)$ if $M_{c}(\mathbb{C})$ is factored out of P_{c}, and e_{+}^{n} (resp. e_{-}^{n}) is the n-dimensional northern (resp. southern) hemisphere.

Proof. Since e_{+}^{n}, e_{-}^{n} are contractible, each $c d$-homogeneous C^{*}-algebra over $e_{+}^{n} \times S^{k}$ and $e_{-}^{n} \times S^{k}$ is essentially induced by a $c d$-homogeneous C^{*}-algebra over S^{k}. Each $c d$-homogeneous C^{*}-algebra over $S^{n} \times S^{k}$ is characterized by a projective unitary over the boundaries $S^{n-1} \times S^{k}$ of $e_{+}^{n} \times S^{k}$ and $e_{-}^{n} \times S^{k}$. But $\pi_{1}\left(S^{n}\right)=\{0\}$ and so the identification of the boundaries $S^{k} \hookrightarrow e_{+}^{n} \times S^{k}$ and $S^{k} \hookrightarrow e_{-}^{n} \times S^{k}$ does give the trivial bundle structure. Hence the $c d$-homogeneous C^{*}-algebra over $S^{n} \times S^{k}$ is characterized by the unitary $U(z)^{a}, a \in \mathbb{Z}$ or $a \in \mathbb{Z}_{c d}$, over S^{n-1} in the $c d$-homogeneous C^{*}-algebra over $e_{+}^{n} \times S^{k}$ and $e_{-}^{n} \times S^{k}$, where $U(z) \in P U(c d)$ or $P U(c)$.
Q.E.D.

For a $c d$-homogeneous C^{*}-algebra A over $S^{2 n-1}$ there is a matrix algebra $M_{q}(\mathbb{C})$ such that $A \otimes M_{q}(\mathbb{C})$ is isomorphic to $C\left(S^{2 n-1}\right) \otimes$ $M_{c d q}(\mathbb{C})$. Since there is a map of degree 1 from $S^{2 n+1}$ to $S^{2 n} \times S^{1}$, there are $c d$-homogeneous C^{*}-algebras over $S^{2 n} \times S^{1}$ induced from $c d$ homogeneous C^{*}-algebras over $S^{2 n+1}$. Also there are $c d$-homogeneous C^{*}-algebras over $S^{2 n} \times S^{1}$ induced from $c d$-homogeneous C^{*}-algebras over $S^{2 n}$. But the tensor product of each $c d$-homogeneous C^{*}-algebra over $S^{2 n} \times S^{1}$ induced from a $c d$-homogeneous C^{*}-algebra over $S^{2 n+1}$ with $M_{q}(\mathbb{C})$ has the trivial bundle structure for some integer q big enough since $\left[S^{2 n+1}, B P U(c d q)\right] \cong\{0\}$. And there is a map of degree 1 from $S^{2 n}$ to $S^{2 n-1} \times S^{1}$, and so there are $c d$-homogeneous C^{*} algebras over $S^{2 n-1} \times S^{1}$ induced from $c d$-homogeneous C^{*}-algebras over $S^{2 n}$. Also there are $c d$-homogeneous C^{*}-algebras over $S^{2 n-1} \times S^{1}$ induced from $c d$-homogeneous C^{*}-algebras over $S^{2 n-1}$. But $\left[S^{2 n-1} \times\right.$ $\left.S^{1}, B P U(c d q)\right]$ and $\left[S^{2 n}, B P U(d q)\right]$ are the same for some integer q since $\left[S^{2 n-1}, B P U(c d q)\right] \cong\{0\}$. So the $c d$-homogeneous C^{*}-subalgebra of the tensor product of a $c d$-homogeneous C^{*}-algebra over $S^{2 n-1} \times S^{1}$ with $M_{q}(\mathbb{C})$ restricted to the subspace $S^{2 n-1} \hookrightarrow S^{2 n-1} \times S^{1}$ has the trivial bundle structure (see [17, 18]). From now on, we assume that each $c d$ homogeneous C^{*}-algebra over $S^{2 n} \times S^{1}$ is isomorphic to the tensor product of a $c d$-homogeneous C^{*}-algebra over $S^{2 n}$ with $C\left(S^{1}\right)$, and that the $c d$-homogeneous C^{*}-subalgebra of a $c d$-homogeneous C^{*}-algebra over $S^{2 n-1} \times S^{1}$ restricted to the subspace $S^{2 n-1} \hookrightarrow S^{2 n-1} \times S^{1}$ has the trivial bundle structure.

Thomsen $\left[19\right.$, Theorem 1.15] computed $\pi_{2 n-1}\left(\operatorname{Aut}\left(M_{c d p}(\mathbb{C}) \otimes M_{q \infty}\right)\right)$ $\cong \mathbb{Z} / c d p \mathbb{Z}$ for $M_{q^{\infty}}$ a $U H F$-algebra of type q^{∞}, and $c d p$ and q relatively prime integers. Let $A_{c d, k}$ be a $c d$-homogeneous C^{*}-algebra over $S^{2 n-1} \times S^{1}$ of which no non-trivial matrix algebra can be factored out. This result implies that for any positive integer p no matrix algebra
bigger than $M_{p}(\mathbb{C})$ can be factored out of $A_{c d, k} \otimes M_{p}(\mathbb{C})$. So the natural inclusion $C\left(S^{1}\right) \hookrightarrow A_{c d, k}$ induces the canonical homomorphism $K_{0}\left(C\left(S^{1}\right)\right) \rightarrow K_{0}\left(A_{c d, k}\right)$ such that $\left[1_{C\left(S^{1}\right)}\right]$ maps to $\left[1_{A_{c d, k}}\right]$.

Lemma 1.3. Let $A_{c d, k}$ be a cd-homogeneous C^{*}-algebra over $S^{2 n-1}$ $\times S^{1}$ of which no non-trivial matrix algebra can be factored out. Then $K_{0}\left(A_{c d, k}\right) \cong K_{1}\left(A_{c d, k}\right) \cong \mathbb{Z}^{2}$, and $\left[1_{A_{c d, k}}\right] \in K_{0}\left(A_{c d, k}\right)$ is primitive.

Proof. We will show later that $A_{c d, k}$ is stably isomorphic to $C\left(S^{2 n-1}\right.$ $\left.\times S^{1}\right)$. Since $K_{0}\left(C\left(S^{2 n-1} \times S^{1}\right)\right) \cong K_{1}\left(C\left(S^{2 n-1} \times S^{1}\right)\right) \cong \mathbb{Z}^{2}, K_{0}\left(A_{c d, k}\right)$ $\cong K_{1}\left(A_{c d, k}\right) \cong \mathbb{Z}^{2}$. Hence it is enough to show that $\left[1_{A_{c d, k}}\right] \in K_{0}\left(A_{c d, k}\right)$ is primitive.

No matrix algebra bigger than $M_{q}(\mathbb{C})$ can be factored out of $A_{c d, k} \otimes$ $M_{q}(\mathbb{C})$, and so $C\left(S^{2 n-1}\right)$ cannot be factored out of $A_{c d, k} \otimes M_{q}(\mathbb{C})$. Hence the canonical embedding ϕ of $C\left(S^{2 n-1}\right)$ into $A_{c d, k}$ induces an isomorphism μ of $K_{0}\left(C\left(S^{2 n-1} \times S^{1}\right)\right)$ into $K_{0}\left(A_{c d, k}\right)$. But the unit $1_{C\left(S^{2 n-1}\right)}$ maps to the unit $1_{C\left(S^{2 n-1} \times S^{1}\right)}$ under the canonical embedding ψ of $C\left(S^{2 n-1}\right)$ into $C\left(S^{2 n-1} \times S^{1}\right)$. Thus $\left[1_{C\left(S^{2 n-1}\right)}\right] \in K_{0}\left(C\left(S^{2 n-1}\right)\right) \cong$ \mathbb{Z} maps to $\left[1_{C\left(S^{2 n-1} \times S^{1}\right)}\right] \in K_{0}\left(C\left(S^{2 n-1} \times S^{1}\right)\right) \cong \mathbb{Z}^{2}$, primitive in $K_{0}\left(C\left(S^{2 n-1} \times S^{1}\right)\right)($ see $[20,13.3 .1])$. In the commutative diagram

$$
\begin{aligned}
K_{0}\left(C\left(S^{2 n-1}\right)\right) \xrightarrow{\psi_{*}} & K_{0}\left(C\left(S^{2 n-1} \times S^{1}\right)\right) \\
\text { (identity) })_{*} \downarrow & \downarrow \mu(\cong) \\
K_{0}\left(C\left(S^{2 n-1}\right)\right) \xrightarrow{\phi_{*}} & K_{0}\left(A_{c d, k}\right),
\end{aligned}
$$

$\mu\left(\left[1_{C\left(S^{2 n-1} \times S^{1}\right)}\right]\right)=\phi_{*} \circ(\text { identity })_{*} \circ \psi_{*}^{-1}\left(\left[1_{C\left(S^{2 n-1} \times S^{1}\right)}\right]\right)=\left[1_{A_{c d, k}}\right]$. Consequently $\left[1_{A_{c d, k}}\right]$ is the image of the primitive element $\left[1_{C\left(S^{2 n-1} \times S^{1}\right)}\right]$ $\in K_{0}\left(C\left(S^{2 n-1} \times S^{1}\right)\right)$ under the isomorphism μ. Therefore, $\left[1_{A_{c d, k}}\right] \in$ $K_{0}\left(A_{c d, k}\right) \cong \mathbb{Z}^{2}$ is primitive.

Thus, $K_{0}\left(A_{c d, k}\right) \cong \mathbb{Z}^{2}, K_{1}\left(A_{c d, k}\right) \cong \mathbb{Z}^{2}$, and $\left[1_{A_{c d, k}}\right] \in K_{0}\left(A_{c d, k}\right)$ is primitive.
Q.E.D.

Lemma 1.4. Let $B_{c d, k}$ be a cd-homogeneous C^{*}-algebra over $S^{2 n}$ of which no non-trivial matrix algebra can be factored out. Then $\left[1_{B_{c d, k}}\right]$ $\in K_{0}\left(B_{c d, k}\right) \cong \mathbb{Z}^{2}$ is primitive.

Proof. We will show later that $B_{c d, k}$ is stably isomorphic to $C\left(S^{2 n}\right)$ $\otimes M_{c d}(\mathbb{C})$. So $K_{0}\left(B_{c d, k}\right) \cong K_{0}\left(C\left(S^{2 n}\right)\right) \cong \mathbb{Z} \oplus \mathbb{Z}$. But $B_{c d, k}$ corresponds to $A_{c d, k}$ with respect to the conditions on sections over the boundaries $S^{2 n-1}$ of $e_{+}^{2 n} \amalg e_{-}^{2 n}$ and $S^{2 n-1} \times[0,1]$, and the canonical embedding of $C\left(S^{2 n-1}\right)$ into $A_{c d, k}$ which induces the isomorphism of $K_{0}\left(C\left(S^{2 n-1} \times\right.\right.$ $\left.S^{1}\right)$) into $K_{0}\left(A_{c d, k}\right)$ corresponds to the imbedding ϕ of $C\left(S^{2 n-1}\right)$ into
$B_{c d, k}$. The canonical imbedding ϕ of $C\left(S^{2 n-1}\right)$ into $B_{c d, k}$ induces an isomorphism μ of $K_{0}\left(C\left(S^{2 n}\right)\right.$) into $K_{0}\left(B_{c d, k}\right)$, where $S^{2 n-1}=\partial e_{ \pm}^{2 n}$. The unit $1_{C\left(S^{2 n-1}\right)}$ maps to the unit $1_{C\left(S^{2 n}\right)}$ under the canonical embedding ψ of $C\left(S^{2 n-1}\right)$ into $C\left(S^{2 n}\right) .\left[1_{C\left(S^{2 n-1}\right)}\right] \in K_{0}\left(C\left(S^{2 n-1}\right)\right) \cong \mathbb{Z}$ maps to $\left[1_{C\left(S^{2 n}\right)}\right] \in K_{0}\left(C\left(S^{2 n}\right)\right) \cong \mathbb{Z}^{2}$, primitive in $K_{0}\left(C\left(S^{2 n}\right)\right)$ (see [20, 13.3.1]). In the commutative diagram

$\mu\left(\left[1_{C\left(S^{2 n}\right)}\right]\right)=\phi_{*} \circ(\text { identity })_{*} \circ \psi_{*}^{-1}\left(\left[1_{C\left(S^{2 n}\right)}\right]\right)=\left[1_{B_{c d, k}}\right]$. So $\left[1_{B_{c d, k}}\right]$ is the image of the primitive element $\left[1_{C\left(S^{2 n}\right)}\right] \in K_{0}\left(C\left(S^{2 n}\right)\right)$ under the isomorphism μ. Hence $\left[1_{B_{c d, k}}\right] \in K_{0}\left(B_{c d, k}\right)$ is primitive.

Therefore, $\left[1_{B_{c d, k}}\right] \in K_{0}\left(B_{c d, k}\right) \cong \mathbb{Z}^{2}$ is primitive.
Q.E.D.

For each 4-dimensional factor S of $\prod^{e} S^{2} \times \prod^{s+r+2} S^{1}$ every d-homogeneous C^{*}-algebra over S can be constructed by combining Lemma 1.1 and Lemma 1.2. If $s+r$ is odd, one can make the integer even by tensoring with $C\left(S^{1}\right)$. So one can assume that $s+r$ is even, and that s is greater than or equals to r and big enough. And one can rearrange $\prod_{j=1}^{s} S^{2 k_{j}-1}$ and \mathbb{T}^{r} if needed.

Theorem 1.5. Let $A_{c d}$ be a cd-homogeneous C^{*}-algebra over $\prod_{i=1}^{e}$ $S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ whose cd-homogeneous C^{*}-subalgebra restricted to the subspace $\mathbb{T}^{r} \times \mathbb{T}^{2} \hookrightarrow \prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ is realized as $C\left(\mathbb{T}^{r}\right) \otimes A_{\frac{l}{d}} \otimes M_{c}(\mathbb{C})$ for $A_{\frac{l}{d}}$ a rational rotation algebra. Then $A_{c d}$ is isomorphic to one of the C^{*}-subalgebras $A_{b_{1}, b_{2}, \cdots, b_{\frac{s+r}{2}}}^{a_{1}, a_{2}, \cdots, a_{e}}$, $a_{1}, \cdots, a_{e}, b_{1}, \cdots, b_{\frac{s+r}{2}} \in \mathbb{Z}$, of

$$
C\left(\prod_{i=1}^{e}\left(e_{+}^{2 n_{i}} \amalg e_{-}^{2 n_{i}}\right) \times \prod_{j=1}^{\frac{s+r}{2}}\left(S^{2 k_{j}-1} \times[0,1]\right) \times \mathbb{T}^{1} \times[0,1], M_{c d}(\mathbb{C})\right)
$$

consisting of those functions f that satisfy

$$
\begin{aligned}
\left(\left.f\right|_{e_{+}^{2 n_{i}} \amalg e_{-}^{2 n_{i}}}\right)_{+}\left(z_{i}\right) & =U\left(z_{i}\right)^{a_{i}}\left(\left.f\right|_{e_{+}^{2 n_{i}} \amalg e_{-}^{2 n_{i}}}\right)_{-}\left(z_{i}\right) U\left(z_{i}\right)^{-a_{i}} \\
\left(\left.f\right|_{S^{2 k_{j}-1} \times[0,1]}\right)\left(w_{j}, 1\right) & =U\left(w_{j}\right)^{b_{j}}\left(\left.f\right|_{S^{2 k_{j}-1} \times[0,1]}\right)\left(w_{j}, 0\right) U\left(w_{j}\right)^{-b_{j}} \\
\left(\left.f\right|_{\mathbb{T}^{1} \times[0,1]}\right)(x, 1) & =U(x)^{c l}\left(\left.f\right|_{\mathbb{T}^{1} \times[0,1]}\right)(x, 0) U(x)^{-c l}
\end{aligned}
$$

for all $\left(z_{1}, \cdots, z_{e}, w_{1}, \cdots, w_{\frac{s+r}{2}}, x\right) \in \prod_{i=1}^{e} S^{2 n_{i}-1} \times \prod_{j=1}^{\frac{s+r}{2}} S^{2 k_{j}-1} \times \mathbb{T}^{1}$, one of the tensor products of homogeneous C^{*}-algebras of the type above, or one of the C^{*}-algebras given by replacing $\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times\right.$ $\left.\mathbb{T}^{r} \times \mathbb{T}^{2}\right)$ in $A_{b_{1}, \cdots, b_{\frac{s+r}{}}}^{a_{1}, \cdots, a_{e}}$ or the tensor products with suitable $c^{\prime} d^{\prime}$-homogeneous C^{*}-algebras in the same sense as above, when $M_{c^{\prime} d^{\prime}}(\mathbb{C})$ are factored out of $A_{b_{1}, \cdots, b_{\frac{s+r}{}}}^{a_{1}, \cdots, a_{e}}$ or the tensor products, where $U\left(z_{i}\right), U\left(w_{j}\right)$, and $U(x) \in P U(c d)$ are defined in the statement of Lemma 1.1.

Proof. By Lemma 1.1, each $c d$-homogeneous C^{*}-algebra over $S^{2 k_{j}-1}$ $\times S^{1}$ corresponds to a $c d$-homogeneous C^{*}-algebra over $S^{2 k_{j}}$. By Lemma 1.2, each $c d$-homogeneous C^{*}-algebra over the product space of two even dimensional spheres can be constructed. Combining Lemma 1.1 and Lemma 1.2 yields that replacing $S^{2 n_{i}}$ and $S^{2 k_{j}-1}$ with S^{2} and S^{1} does not give any change in the relation, associated with bundle structure, among the factors of $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$. Hence each $c d$-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ can be given by [5, Theorem 2.5], which is exactly stated in the statement for the case $n_{i}=1$ and $k_{j}=1$.
Q.E.D.

Theorem 1.6. Let $A_{c d}$ be a C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times$ $\prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ constructed in Theorem 1.5. Assume that no non-trivial matrix algebra can be factored of $A_{c d}$. Then $K_{0}\left(A_{c d}\right) \cong$ $K_{1}\left(A_{c d}\right) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $\left[1_{A_{c d}}\right] \in K_{0}\left(A_{c d}\right)$ is primitive.

Proof. We are going to show in Lemma 3.1 that $A_{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}\right) \otimes M_{c d}(\mathbb{C})$. By the Künneth theorem [2, Theorem 23.1.3]

$$
\begin{aligned}
& K_{0}\left(A_{c d}\right) \cong K_{0}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}\right)\right) \\
& \cong K_{0}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}}\right)\right) \otimes K_{0}\left(C\left(\prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}\right)\right) \\
& \oplus K_{1}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}}\right)\right) \otimes K_{1}\left(C\left(\prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}\right)\right) \\
& \cong \mathbb{Z}^{2^{e}} \otimes \mathbb{Z}^{2^{s+r+1}} \oplus\{0\} \cong \mathbb{Z}^{2^{e+s+r+1}}
\end{aligned}
$$

Similarly, one obtains that $K_{1}\left(A_{c d}\right) \cong \mathbb{Z}^{2^{e+s+r+1}}$.
It is enough to show that $\left[1_{A_{c d}}\right] \in K_{0}\left(A_{c d}\right)$ is primitive. But the proof is similar to the proof given in [17, Theorem 1.2]. Since the
$c d$-homogeneous C^{*}-algebra $A_{c d}$ is just given by replacing each C^{*} subalgebra $C\left(S^{2}\right)$ (resp. $C\left(S^{1}\right)$) of the $c d$-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2} \times \prod_{i=1}^{s} S^{1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ given in [17] with $C\left(S^{2 n_{i}}\right)\left(\right.$ resp. $C\left(S^{2 k_{j}-1}\right)$), the proof is just given by replacing $C\left(S^{2}\right)$ and $C\left(S^{1}\right)$ given in the proof of [17, Theorem 1.2] with $C\left(S^{2 n_{i}}\right)$ and $C\left(S^{2 k_{j}-1}\right)$.

Therefore, $K_{0}\left(A_{c d}\right) \cong K_{1}\left(A_{c d}\right) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $\left[1_{A_{c d}}\right] \in K_{0}\left(A_{c d}\right)$ is primitive.
Q.E.D.

§2. Spherical noncommutative tori

The noncommutative torus A_{ω} of rank m is obtained by an iteration of $m-1$ crossed products by actions of \mathbb{Z}, the first action on $C\left(\mathbb{T}^{1}\right)$. When A_{ω} is not simple, by a change of basis, A_{ω} is obtained by an iteration of $m-2$ crossed products by actions of \mathbb{Z}, the first action on a rational rotation algebra $A_{\frac{l}{d}}$. Since the fibre $M_{d}(\mathbb{C})$ of $A_{\frac{l}{d}}$ is factored out of the fibre of A_{ω}, A_{ω} can be obtained by an iteration of $m-2$ crossed products by actions of \mathbb{Z}, the first action on $A_{\frac{l}{d}}$, where the actions of \mathbb{Z} on the fibre $M_{d}(\mathbb{C})$ of $A_{\frac{l}{d}}$ are trivial. This assures us of the existence of such actions α_{i} in the definition of P_{ρ}^{d} below. So one can assume that A_{ω} is given by twisting $C^{*}\left(d \mathbb{Z} \times d \mathbb{Z} \times \mathbb{Z}^{m-2}\right)$ in $A_{\frac{l}{d}} \otimes C^{*}\left(\mathbb{Z}^{m-2}\right)$ by the restriction of the multiplier ω to $d \mathbb{Z} \times d \mathbb{Z} \times \mathbb{Z}^{m-2}$, where $\widehat{d \mathbb{Z}} \times \widehat{d \mathbb{Z}}$ is the primitive ideal space of $A_{\frac{l}{d}}$ and $C^{*}(d \mathbb{Z} \times d \mathbb{Z}$, res of $\omega)=C^{*}(d \mathbb{Z} \times d \mathbb{Z})$ (see [5] for details).

Definition 2.1. Let $A_{c d}$ be a cd-homogeneous C^{*}-algebra over $\prod_{i=1}^{e}$ $S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ whose cd-homogeneous C^{*}-subalgebra restricted to the subspace $\mathbb{T}^{r} \times \mathbb{T}^{2} \hookrightarrow \prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ is realized as $C\left(\mathbb{T}^{r}\right) \otimes A_{\frac{l}{d}} \otimes M_{c}(\mathbb{C})$ for $A_{\frac{l}{d}}$ a rational rotation algebra. The C^{*}-algebra which is given by twisting $C^{*}\left(\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}\right)$ in $A_{c d} \otimes C^{*}\left(\mathbb{Z}^{m-2}\right)$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}$ is said to be a spherical noncommutative torus of $\operatorname{rank}(e, s+r, m)$ and denoted by $\mathbb{S}_{\rho}^{c d}$, where $C^{*}\left(\widehat{\mathbb{T}^{2}}\right.$, res of $\left.\rho\right)=C^{*}\left(\widehat{\mathbb{T}^{2}}\right), \mathbb{T}^{2}$ is the primitive ideal space of $A_{\frac{l}{d}}$, and $C^{*}\left(\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}, \rho\right)$ is a completely irrational noncommutative torus A_{ρ}.

Then the fibre of \mathbb{S}_{ρ}^{d}, which is called a generalized noncommutative torus of rank $r+m$ and denoted by P_{ρ}^{d}, can be obtained by an iteration of $r+m-2$ crossed products by actions α_{i} of \mathbb{Z}, the first action on the rational rotation algebra $A_{\frac{l}{d}}$, where the actions α_{i} on the fibre $M_{d}(\mathbb{C})$ of $A_{\frac{l}{d}}$ are trivial. Thus the spherical noncommutative torus $\mathbb{S}_{\rho}^{c d}$ is realized
as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$.

We are going to show that $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive.
Theorem 2.2. Let $\mathbb{S}_{\rho}^{c d}$ be a spherical noncommutative torus of rank $(e, s+r, m)$. Assume no non-trivial matrix algebra can be factored out of $A_{c d}$. Then $K_{0}\left(\mathbb{S}_{\rho}^{c d}\right) \cong K_{1}\left(\mathbb{S}_{\rho}^{c d}\right) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$, and $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in$ $K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive.

Proof. The proof is by induction on m. Assume that $m=2$. We will show later that $\mathbb{S}_{\rho}^{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times\right.$ $\left.\prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C})$, where A_{ρ} is a noncommutative torus of rank $r+2$. By the Künneth theorem

$$
\begin{aligned}
& K_{0}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}\right) \\
& \cong K_{0}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right)\right) \otimes K_{0}\left(A_{\rho}\right) \\
& \quad \oplus K_{1}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right)\right) \otimes K_{1}\left(A_{\rho}\right) \\
& \cong \mathbb{Z}^{2^{e+s}} \otimes \mathbb{Z}^{2^{r+1}} \cong \mathbb{Z}^{2^{e+s+r+1}} .
\end{aligned}
$$

Similarly, one obtains that $K_{1}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}\right) \cong$ $\mathbb{Z}^{2^{e+s+r+1}}$. So $K_{0}\left(\mathbb{S}_{\rho}^{c d}\right) \cong K_{1}\left(\mathbb{S}_{\rho}^{c d}\right) \cong K_{0}\left(C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes\right.$ $\left.A_{\rho}\right) \cong \mathbb{Z}^{2^{e+s+r+1}}$. It is enough to show that $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive. Combining the tricks given in Theorem 1.6 and [17, Theorem 2.2] yields that $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive. So $K_{0}\left(\mathbb{S}_{\rho}^{c d}\right) \cong K_{1}\left(\mathbb{S}_{\rho}^{c d}\right) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive.

Next, assume that the result is true for all spherical noncommutative tori with $m=i-1$. Write $\mathbb{S}_{i}=C^{*}\left(\mathbb{S}_{i-1}, u_{i}\right)$, where $\mathbb{S}_{i}=$ $C^{*}\left(\mathbb{S}_{\rho}^{c d}, u_{3}, \ldots, u_{i}\right)$, where $\mathbb{S}_{\rho}^{c d}$ is the case above, $m=2$. Then the inductive hypothesis applies to \mathbb{S}_{i-1}. Also, we can think of \mathbb{S}_{i} as the crossed product by an action α of \mathbb{Z} on \mathbb{S}_{i-1}, where the generator of \mathbb{Z} corresponds to u_{i}, which acts on $C^{*}\left(v_{1}, \cdots, v_{r}, u_{1}^{d}, u_{2}^{d}, u_{3}, \cdots, u_{i-1}\right)$ by conjugation (sending u_{j} to $u_{i} u_{j} u_{i}^{-1}=e^{2 \pi i \theta_{j i}} u_{j}, j \neq 1,2$, sending u_{j}^{d} to $u_{i} u_{j}^{d} u_{i}^{-1}=e^{2 \pi i d \theta_{j i}} u_{j}^{d}, j=1,2$, and sending v_{j} to $\left.u_{i} v_{j} u_{i}^{-1}=e^{2 \pi i \beta_{j i}} v_{j}\right)$, and which acts trivially on $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes M_{c d}(\mathbb{C})$. Here $C^{*}\left(\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}}\right.$, res of $\left.\rho\right) \cong C^{*}\left(v_{1}, v_{2}, \cdots, v_{r}, u_{1}^{d}, u_{2}^{d}\right)$. Note that this action
is homotopic to the trivial action, since we can homotope $\theta_{j i}$ and $\beta_{j i}$ to 0 . Hence \mathbb{Z} acts trivially on the K-theory of \mathbb{S}_{i-1}. The Pimsner-Voiculescu exact sequence for a crossed product gives an exact sequence

$$
K_{0}\left(\mathbb{S}_{i-1}\right) \xrightarrow{1-\alpha_{*}} K_{0}\left(\mathbb{S}_{i-1}\right) \xrightarrow{\Phi} K_{0}\left(\mathbb{S}_{i}\right) \longrightarrow K_{1}\left(\mathbb{S}_{i-1}\right) \xrightarrow{1-\alpha_{*}} K_{1}\left(\mathbb{S}_{i-1}\right)
$$

and similarly for K_{1}, where the map Φ is induced by inclusion. Since $\alpha_{*}=1$ and since the K-groups of \mathbb{S}_{i-1} are free abelian, this reduces a split short exact sequence

$$
\{0\} \longrightarrow K_{0}\left(\mathbb{S}_{i-1}\right) \xrightarrow{\Phi} K_{0}\left(\mathbb{S}_{i}\right) \longrightarrow K_{1}\left(\mathbb{S}_{i-1}\right) \longrightarrow\{0\}
$$

and similarly for K_{1}. So $K_{0}\left(\mathbb{S}_{i}\right)$ and $K_{1}\left(\mathbb{S}_{i}\right)$ are free abelian of rank $2 \cdot 2^{e+s+r+i-2}=2^{e+s+r+i-1}$. Furthermore, since the inclusion $\mathbb{S}_{i-1} \rightarrow \mathbb{S}_{i}$ sends $1_{\mathbb{S}_{i-1}}$ to $1_{\mathbb{S}_{i}},\left[1_{\mathbb{S}_{i}}\right]$ is the image of $\left[1_{\mathbb{S}_{i-1}}\right]$, which is primitive in $K_{0}\left(\mathbb{S}_{i-1}\right)$ by inductive hypothesis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Therefore, $K_{0}\left(\mathbb{S}_{\rho}^{c d}\right) \cong K_{1}\left(\mathbb{S}_{\rho}^{c d}\right) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$, and $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive.
Q.E.D.

Corollary 2.3. Let q be a positive integer. Assume that no nontrivial matrix algebra can be factored out of $A_{c d}$. Then $\mathbb{S}_{\rho}^{c d} \otimes M_{q}(\mathbb{C})$ is not isomorphic to $A \otimes M_{p q}(\mathbb{C})$ for any C^{*}-algebra A and any integer p greater than 1. In particular, no non-trivial matrix algebra can be factored out of $\mathbb{S}_{\rho}^{c d}, P_{\rho}^{c d}$ and A_{ρ}.

Proof. Assume $\mathbb{S}_{\rho}^{c d} \otimes M_{q}(\mathbb{C})$ is isomorphic to $A \otimes M_{p q}(\mathbb{C})$. Then the unit $1_{\mathbb{S}_{\rho}^{c d}} \otimes I_{q}$ maps to the unit $1_{A} \otimes I_{p q}$. So $\left[1_{\mathbb{S}_{\rho}^{c d}} \otimes I_{q}\right]=\left[1_{A} \otimes I_{p q}\right]$. Thus there is a projection $e \in \mathbb{S}_{\rho}^{c d}$ such that $q\left[1_{\mathbb{S}_{\rho}^{c d}}\right]=(p q)[e]$. But $K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is torsion-free, so $\left[1_{\mathbb{S}_{\rho}^{c d}}\right]=p[e]$. This contradicts Theorem 2.2 if $p>1$.

Therefore, $\mathbb{S}_{\rho}^{c d} \otimes M_{q}(\mathbb{C})$ is not isomorphic to $A \otimes M_{p q}(\mathbb{C})$. Q.E.D.

§3. The bundle structure of spherical noncommutative tori

For M a compact $C W$-complex the Čech cohomology group $H^{3}(M$, \mathbb{Z}) classifies the tensor products of $c d$-homogeneous C^{*}-algebras over M with the C^{*}-algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable Hilbert space \mathcal{H} (see [9]). The Čech cohomology group $H^{3}(M, \mathbb{Z})$ is isomorphic to the singular cohomology group $H^{3}(M, \mathbb{Z})$ when M is triangularizable (see [7, Theorem15.8]).

Lemma 3.1. Each cd-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times$ $\prod_{j=1}^{s+r+2} S^{2 k_{j}-1}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s+r+2} S^{2 k_{j}-1}\right) \otimes$ $M_{c d}(\mathbb{C})$.

Proof. Each non-trivial element in the Čech cohomology group $H^{3}\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s+r+2} S^{2 k_{j}-1}, \mathbb{Z}\right)$ can be given by a non-trivial element in $H^{3}\left(\left(S^{1}\right)^{3}, \mathbb{Z}\right), H^{3}\left(S^{2} \times S^{1}, \mathbb{Z}\right)$, or $H^{3}\left(S^{3}, \mathbb{Z}\right)$ if there exist such factors.

First, $H^{3}\left(S^{2} \times S^{1}, \mathbb{Z}\right)=\mathbb{Z}$. By the Woodward theorem [21], [$S^{2} \times$ $\left.S^{1}, B P U(c d)\right]$ is embedded into $H^{2}\left(S^{2} \times S^{1}, \mathbb{Z}_{c d}\right) \oplus H^{4}\left(S^{2} \times S^{1}, \mathbb{Z}\right) \cong$ $H^{2}\left(S^{2}, \mathbb{Z}_{c d}\right) \cong \mathbb{Z}_{c d}$. So each $c d$-homogeneous C^{*}-algebra over $S^{2} \times S^{1}$ is isomorphic to the tensor product of a $c d$-homogeneous C^{*}-algebra over S^{2} with $C\left(S^{1}\right)$, which is stably isomorphic to $C\left(S^{2}\right) \otimes C\left(S^{1}\right) \otimes M_{c d}(\mathbb{C})$, since $H^{3}\left(S^{2}, \mathbb{Z}\right)=\{0\}$. Thus each $c d$-homogeneous C^{*}-algebra over $S^{2} \times S^{1}$ is stably isomorphic to $C\left(S^{2} \times S^{1}\right) \otimes M_{c d}(\mathbb{C})$.

Similarly, one obtains the same result for the other cases.
Therefore, each $c d$-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s+r+2}$ $S^{2 k_{j}-1}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s+r+2} S^{2 k_{j}-1}\right) \otimes M_{c d}(\mathbb{C})$.
Q.E.D.

We are going to show that $\mathbb{S}_{\rho}^{c d} \otimes \mathcal{K}(\mathcal{H})$ has the trivial bundle structure.

Theorem 3.2. The spherical noncommutative torus $\mathbb{S}_{\rho}^{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C})$. In particular, P_{ρ}^{d} is stably isomorphic to $A_{\rho} \otimes M_{d}(\mathbb{C})$.

Proof. Let $\mathbb{S}_{\rho}^{c d}$ be defined by twisting $C^{*}\left(\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}\right)$ in $A_{c d} \otimes$ $C^{*}\left(\mathbb{Z}^{m-2}\right)$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}$, where $C^{*}\left(\widehat{\mathbb{T}^{2}}\right.$, res of $\left.\rho\right)=C^{*}\left(\widehat{\mathbb{T}^{2}}\right)$. By Lemma 3.1, the $c d$-homogeneous C^{*} algebra $A_{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times\right.$ $\left.\mathbb{T}^{2}\right) \otimes M_{c d}(\mathbb{C})$. In particular, $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right)$ is factored out of $A_{c d} \otimes \mathcal{K}(\mathcal{H})$. By the definition of $\mathbb{S}_{\rho}^{c d}, C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right)$ is factored out of $\mathbb{S}_{\rho}^{c d} \otimes \mathcal{K}(\mathcal{H})$. So $\mathbb{S}_{\rho}^{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times\right.$ $\left.\prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$. But it was shown in [5, Theorem 3.4] that P_{ρ}^{d} is stably isomorphic to $A_{\rho} \otimes M_{d}(\mathbb{C})$.

Therefore, $\mathbb{S}_{\rho}^{c d}$ is stably isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes$ $A_{\rho} \otimes M_{c d}(\mathbb{C})$.
Q.E.D.

Using the fact that $\left[1_{\mathbb{S}_{\rho}^{c d}}\right] \in K_{0}\left(\mathbb{S}_{\rho}^{c d}\right)$ is primitive, we are going to investigate the bundle structure of the tensor products of spherical noncommutative tori $\mathbb{S}_{\rho}^{c d}$ with $U H F$-algebras $M_{p^{\infty}}$ of type p^{∞}.

Theorem 3.3. Let $\mathbb{S}_{\rho}^{c d}$ be a spherical noncommutative torus. Assume that no non-trivial matrix algebra can be factored out of $A_{c d}$. Then $\mathbb{S}_{\rho}^{c d} \otimes M_{p^{\infty}}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C}) \otimes$ $M_{p \infty}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of $c d$ is a subset of the set of prime factors of p. To show that $\mathbb{S}_{\rho}^{c d} \otimes M_{p^{\infty}}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C}) \otimes M_{p \infty}$, it is enough to show that $\mathbb{S}_{\rho}^{c d} \otimes M_{(c d)^{\infty}}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes$ $M_{c d}(\mathbb{C}) \otimes M_{(c d)^{\infty}}$. However, there exist the C^{*}-algebra homomorphisms which are the canonical inclusions
$\mathbb{S}_{\rho}^{c d} \otimes M_{(c d)^{g}}(\mathbb{C}) \hookrightarrow C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C}) \otimes M_{(c d)^{g}}(\mathbb{C})$
and the $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}$-module maps $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times\right.$ $\left.\prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{(c d)^{g}}(\mathbb{C}) \hookrightarrow \mathbb{S}_{\rho}^{c d} \otimes M_{(c d)^{g}}(\mathbb{C}):$

$$
\begin{aligned}
& \mathbb{S}_{\rho}^{c d} \hookrightarrow C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C}) \hookrightarrow \mathbb{S}_{\rho}^{c d} \otimes M_{c d}(\mathbb{C}) \\
& \quad \hookrightarrow C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{(c d)^{2}}(\mathbb{C}) \hookrightarrow \cdots
\end{aligned}
$$

The inductive limit of the odd terms

$$
\cdots \rightarrow \mathbb{S}_{\rho}^{c d} \otimes M_{(c d)^{g}}(\mathbb{C}) \rightarrow \mathbb{S}_{\rho}^{c d} \otimes M_{(c d)^{g+1}}(\mathbb{C}) \rightarrow \cdots
$$

is $\mathbb{S}_{\rho}^{c d} \otimes M_{(c d) \infty}$, and the inductive limit of the even terms

$$
\begin{aligned}
\cdots & \rightarrow C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{(c d)^{g}}(\mathbb{C}) \\
& \rightarrow C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{(c d)^{g+1}}(\mathbb{C}) \rightarrow \cdots
\end{aligned}
$$

is $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{(c d)^{\infty}}$. Thus by the Elliott theorem [11, Theorem 2.1], $\mathbb{S}_{\rho}^{c d} \otimes M_{(c d) \infty}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times\right.$ $\left.\prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{(c d) \infty}$.

Conversely, assume that

$$
\mathbb{S}_{\rho}^{c d} \otimes M_{p^{\infty}} \cong C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho} \otimes M_{c d}(\mathbb{C}) \otimes M_{p^{\infty}}
$$

Then the unit $1_{\mathbb{S}_{\rho}^{c d}} \otimes 1_{M_{p} \infty}$ maps to the unit $1_{C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}}$ $\otimes 1_{M_{p} \infty} \otimes I_{c d}$. So

$$
\left.\begin{array}{l}
{\left[1_{\mathbb{S}_{\rho}^{c d}} \otimes 1_{M_{p} \infty}\right]=\left[1_{C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}} \otimes 1_{M_{p} \infty} \otimes I_{c d}\right]} \\
{\left[1_{\mathbb{S}_{\rho}^{c d}} \otimes 1_{M_{p} \infty}\right]}
\end{array}=\left[1_{\left.\mathbb{S}_{\rho}^{c d}\right]}\right] \otimes\left[1_{M_{p} \infty}\right] .\right] \begin{aligned}
& {\left[1_{C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}} \otimes 1_{M_{p} \infty} \otimes I_{c d}\right] } \\
&=c d\left(\left[1_{C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}}\right] \otimes\left[1_{M_{p} \infty}\right]\right) .
\end{aligned}
$$

Under the assumption that $1_{\mathbb{S}_{\rho}^{c d}} \otimes 1_{M_{p} \infty}$ maps to

$$
1_{C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes A_{\rho}} \otimes 1_{M_{p} \infty} \otimes I_{c d}
$$

if there is a prime factor q of $c d$ such that $q \nmid p$, then $\left[1_{M_{p} \infty}\right] \neq q\left[e_{\infty}\right]$ for e_{∞} a projection in $M_{p \infty}$. So there is a projection $e \in \mathbb{S}_{\rho}^{c d}$ such that $\left[1_{\mathbb{S}_{\rho}^{c d}}\right]=q[e]$. This contradicts Theorem 2.2. Thus the set of prime factors of $c d$ is a subset of the set of prime factors of p.

Therefore, $\mathbb{S}_{\rho}^{c d} \otimes M_{p^{\infty}}$ is isomorphic to $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right) \otimes$ $A_{\rho} \otimes M_{c d}(\mathbb{C}) \otimes M_{p \infty}$ if and only if the set of prime factors of $c d$ is a subset of the set of prime factors of p.
Q.E.D.

§4. Completely irrational noncommutative tori

It was proved in [3, Theorem 1.5] that every completely irrational noncommutative torus has real rank 0 , where the "real rank 0 " means that the set of invertible self-adjoint elements is dense in the set of selfadjoint elements. Combining Theorem 3.2 and [8, Corollary 3.3] yields that the generalized noncommutative torus P_{ρ}^{d} has real rank 0 since the noncommutative torus A_{ρ} has real rank 0 . The Lin and Rørdam theorem [16, Proposition 3] says that the generalized noncommutative torus P_{ρ}^{d} is an inductive limit of circle algebras, since $P_{\rho}^{d} \otimes \mathcal{K}(\mathcal{H}) \cong A_{\rho} \otimes \mathcal{K}(\mathcal{H})$ is an inductive limit of circle algebras [16, Proposition]. Combining [11, Theorem 7.1] and [13, Theorem 1.3] yields that the completely irrational noncommutative tori A_{ω} of rank $r+m$ and the generalized noncommutative tori P_{ρ}^{d} of rank $r+m$ are isomorphic if the ranges of the traces equal.

Lemma 4.1. ([6, Lemma 4.1]) $\operatorname{tr}\left(K_{0}\left(P_{\rho}^{d}\right)\right)=\frac{1}{d} \cdot \operatorname{tr}\left(K_{0}\left(A_{\rho}\right)\right)$.
Theorem 4.2. ([6, Theorem 4.2]) Let A_{ω} be a completely irrational noncommutative torus of rank $r+m$ with $\operatorname{tr}\left(K_{0}\left(A_{\omega}\right)\right)=\frac{1}{d}$. $\operatorname{tr}\left(K_{0}\left(A_{\rho}\right)\right)$ for A_{ρ} a completely irrational noncommutative torus of rank $r+m$. Then A_{ω} is isomorphic to P_{ρ}^{d}.

§5. C^{*}-algebras over spheres with fibres noncommutative tori

We are going to show that the set of all spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ and fibres $A_{\omega} \otimes M_{c}(\mathbb{C})$ is in bijective correspondence with the set of all C^{*} algebras of sections of locally trivial C^{*}-algebra bundles over $\prod_{i=1}^{e} S^{2 n_{i}} \times$ $\prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $A_{\omega} \otimes M_{c}(\mathbb{C})$ for A_{ω} a completely irrational noncommutative torus.

Let A_{ω} be a noncommutative torus of rank m with $\widehat{S_{\omega}} \cong \mathbb{T}^{1}$. Then A_{ω} is realized as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\widehat{d \mathbb{Z}}$ and fibres $C^{*}\left(\mathbb{Z}^{m} / S_{\omega}, \omega_{1}\right)$ for some totally skew multiplier ω_{1}, where $C^{*}\left(\mathbb{Z}^{m} / S_{\omega}, \omega_{1}\right) \cong A_{\rho} \otimes M_{d}(\mathbb{C})$ for A_{ρ} a completely irrational noncommutative torus of rank $m-1$ (see [1, 12]). By the definition of $A_{\omega}, C\left(\mathbb{T}^{1}\right)$ and A_{ρ} split. Since $\left[\mathbb{T}^{1}, B P U(d)\right] \cong\{0\}, C\left(\mathbb{T}^{1}\right)$ and $M_{d}(\mathbb{C})$ split. And $M_{d}(\mathbb{C})$ and A_{ρ} also split. But by Corollary 2.3, A_{ω} has a non-trivial bundle structure if $d>1$. This implies that a C^{*} subalgebra of A_{ρ} plays a role as a base space in the bundle structure. In fact, A_{ω} can be obtained by an iteration of $m-2$ crossed products by actions of \mathbb{Z}, the first action on a rational rotation algebra $A_{\frac{l}{d}}$, and the non-triviality of the bundle structure is given by a non-trivial element of $\left[\mathbb{T}^{2}, B P U(d)\right] \cong\left[\mathbb{T}^{1}, P U(d)\right] \cong \mathbb{Z}_{d}$, which represents $A_{\frac{l}{d}}$ canonically embedded into A_{ω}.

Let d be the biggest integer among the possible integers satisfying the condition $\operatorname{tr}\left(K_{0}\left(A_{\omega}\right)\right)=\frac{1}{d} \cdot \operatorname{tr}\left(K_{0}\left(A_{\rho}\right)\right)$, i.e., $A_{\omega} \cong P_{\rho}^{d}$. For a d homogeneous C^{*}-algebra A over $S^{2 n+1}$, there is a matrix algebra $M_{q}(\mathbb{C})$ such that $A \otimes M_{q}(\mathbb{C})$ is isomorphic to $C\left(S^{2 n+1}\right) \otimes M_{d q}(\mathbb{C})$. But there is a matrix subalgebra $M_{q}(\mathbb{C})$ big enough satisfying the above condition such that $M_{q}(\mathbb{C})$ is embedded into P_{ρ}^{d}, since P_{ρ}^{d} is an inductive limit of circle algebras, which is simple.

Lemma 5.1. Each C^{*}-algebra $\Gamma(\eta)$ of sections of a locally trivial C^{*}-algebra bundle η over $S^{2 n+1}$ with fibres $P_{\rho}^{1}=A_{\rho}$ has the trivial bundle structure.

Proof. Let $P_{\rho}^{1}=\underset{\longrightarrow}{\lim }\left(\bigoplus_{j=1} C\left(\mathbb{T}^{1}\right) \otimes M_{p_{i(j)}}(\mathbb{C})\right)$. The C^{*}-algebra $\Gamma(\eta)$ is isomorphic to an inductive limit of direct sums of $p_{i(j)}$-homogeneous C^{*}-algebras over $S^{2 n+1} \times \mathbb{T}^{1}$, and each $C\left(S^{2 n+1} \times \mathbb{T}^{1}\right)$ is canonically embedded into $\Gamma(\eta)$. So there could be a canonical homomorphism of $C\left(S^{2 n+1}\right) \otimes M_{d}(\mathbb{C})$ into the C^{*}-algebra $\Gamma(\eta)$ of sections of a locally trivial C^{*}-algebra bundle η over $S^{2 n+1}$ with fibres P_{ρ}^{1} such that the nontriviality can be given by a d-homogeneous C^{*}-algebra over $S^{2 n+1} \times \mathbb{T}^{1}$. Then $M_{d}(\mathbb{C})$ must be factored out of the circle algebra in each inductive step, and so the range of the trace of P_{ρ}^{1} would be the form $\frac{1}{d} \cdot \operatorname{tr}(A)$ for
A a simple unital C^{*}-algebra, which is impossible by the assumption. We have two cases; one of them is the case that a C^{*}-subalgebra of P_{ρ}^{1} plays a role as a base space in the bundle structure, and the other is not.

For the first case, when a C^{*}-subalgebra of P_{ρ}^{1} plays a role as a base space in the bundle structure and P_{ρ}^{1} is realized as a tensor product of non-trivial completely irrational noncommutative tori, the torsionfree groups in $P_{\rho}^{1}=A_{\rho}$ giving simple noncommutative tori which are given by twisting the torsion-free groups by totally skew multipliers must split, so all factors of P_{ρ}^{1} must split. The relation among factors of P_{ρ}^{1} is different from the relation between fibres $M_{d}(\mathbb{C})$ and base A_{ρ} in the fibres of the non-simple noncommutative torus A_{ω} given above, and so one can assume that all factors of P_{ρ}^{1} play roles as a base space in the bundle structure. Hence P_{ρ}^{1} plays a role as a base space in the bundle structure, and so $\Gamma(\eta)$ is isomorphic to $C\left(S^{2 n+1}\right) \otimes P_{\rho}^{1}$.

For the other case, since $P_{\rho}^{1}=\underset{\longrightarrow}{\lim }\left(\bigoplus_{j=1} C\left(\mathbb{T}^{1}\right) \otimes M_{p_{i(j)}}(\mathbb{C})\right)$, there is a matrix algebra $M_{p}(\mathbb{C})$ big enough which is embedded into P_{ρ}^{1}. Since $\left[S^{2 n+1}, B P U(p)\right] \cong\{0\}, C\left(S^{2 n+1}\right)$ and $M_{p}(\mathbb{C})$ split, i.e., any p homogeneous C^{*}-algebra over $S^{2 n+1}$ has the trivial bundle structure. By the same reasoning as above, $M_{p}(\mathbb{C})$ cannot be factored out of the circle algebras in all inductive steps. But $\Gamma(\eta)$ has a locally trivial bundle structure. Hence $C\left(S^{2 n+1}\right)$ and $\left(M_{p}(\mathbb{C}) \hookrightarrow\right) P_{\rho}^{1}$ must split, and so $\Gamma(\eta)$ has the trivial bundle structure.

Therefore, each C^{*}-algebra $\Gamma(\eta)$ of sections of a locally trivial C^{*} algebra bundle η over $S^{2 n+1}$ with fibres P_{ρ}^{1} has the trivial bundle structure.
Q.E.D.

Now we want to show that each C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{1}=$ A_{ρ} has the trivial bundle structure.

Proposition 5.2. Each C^{*}-algebra $\Gamma(\eta)$ of sections of a locally trivial C^{*}-algebra bundle η over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{1}=A_{\rho}$ has the trivial bundle structure.

Proof. Let P_{ρ}^{1} be an inductive limit of $\bigoplus_{j=1} C\left(\mathbb{T}^{1}\right) \otimes M_{p_{i(j)}}(\mathbb{C})$. For some pair $\left(2 k_{j}-1,2 k_{j^{\prime}}-1\right)=\left(2 k_{j}-1,1\right)$, if the C^{*}-subalgebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 k_{j}-1} \times S^{1}$ with fibres P_{ρ}^{1}, which is canonically embedded into $\Gamma(\eta)$, has a non-trivial bundle structure, then the factor $S^{2 k_{j}-1} \times S^{1}$ can be replaced by $S^{2 k_{j}}$, since there is a map of degree 1 from $S^{2 k_{j}-1} \times S^{1}$ to $S^{2 k_{j}}$. For each j, there is a canonical homomorphism of the C^{*}-subalgebra $\Gamma\left(\eta_{j}\right)$ of sections of a locally trivial C^{*}-algebra bundle η_{j} over $S^{2 k_{j}-1}$ with fibres P_{ρ}^{1} into $\Gamma(\eta)$.

By Lemma 5.1, the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 k_{j}-1}$ with fibres P_{ρ}^{1} has the trivial bundle structure. Thus $C\left(S^{2 k_{j}-1}\right)$ are factored out of $\Gamma(\eta)$, and so $C\left(\prod_{j=1}^{s} S^{2 k_{j}-1}\right)$ is factored out of $\Gamma(\eta)$.

Next, $\left[S^{2 n_{i}}, B\left(\operatorname{Aut}\left(P_{\rho}^{1}\right)\right)\right]=\left[S^{2 n_{i}-1}, \operatorname{Aut}\left(P_{\rho}^{1}\right)\right]$. But there is a map of degree 1 from $S^{2 n_{i}}$ to $S^{2 n_{i}-1} \times S^{1}$. So for each i each C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 n_{i}}$ with fibres P_{ρ}^{1} is induced from the C^{*}-algebra $\Gamma\left(\zeta_{i}\right)$ of sections of a locally trivial C^{*} algebra bundle ζ_{i} over $S^{2 n_{i}-1} \times \mathbb{T}^{1}$ with fibres P_{ρ}^{1}. Consider the crossed product by the action α_{θ} of \mathbb{Z} on $\Gamma\left(\zeta_{i}\right)$ for a suitable irrational number θ such that the range of the trace of $P_{\rho}^{1} \otimes A_{\theta}$ is not $\frac{1}{w} \times$ the range of the trace of any simple irrational noncommutative torus of rank $m+1$ for any positive integer w greater than 1 , where the action α_{θ} on $C\left(S^{2 n_{i}-1}\right) \otimes P_{\rho}^{1}$ is trivial and $C\left(\mathbb{T}^{1}\right) \times \alpha_{\theta} \mathbb{Z}$ is the irrational rotation algebra A_{θ}. Then $\Gamma\left(\zeta_{i}\right) \times \alpha_{\theta} \mathbb{Z}$ is obviously realized as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 n_{i}-1}$ with fibres $P_{\rho}^{1} \otimes A_{\theta}$. But $\Gamma\left(\zeta_{i}\right) \times_{\alpha_{\theta}}$ \mathbb{Z} has the trivial bundle structure. So each C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $S^{2 n_{i}}$ with fibres P_{ρ}^{1} has the trivial bundle structure. Thus $C\left(S^{2 n_{i}}\right)$ are factored out of $\Gamma(\eta)$. Hence $C\left(\prod_{i=1}^{e} S^{2 n_{i}}\right)$ is factored out of $\Gamma(\eta)$, and so $C\left(\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}\right)$ is factored out of $\Gamma(\eta)$, as desired.
Q.E.D.

Each $c d$-homogeneous C^{*}-algebra over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times$ $\mathbb{T}^{r} \times \mathbb{T}^{2}$ is realized as the C^{*}-algebra $\Gamma(\eta)$ of sections of a locally trivial C^{*}-algebra bundle η over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1} \times \mathbb{T}^{r} \times \mathbb{T}^{2}$ with fibres $M_{c d}(\mathbb{C})$, and hence $\mathbb{S}_{\rho}^{c d}$ is realized as the C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$.

Theorem 5.3. The set of spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ and fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ is in bijective correspondence with the set of C^{*}-algebras of sections of locally trivial C^{*}-algebra bundles over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$.

Proof. If $c d=1$, we have obtained the result in Proposition 5.2. So assume that $c d>1$. Then one can assume that there is a matrix subalgebra $M_{c d}(\mathbb{C})$ which is factored out of each inductive step, even though $M_{d}(\mathbb{C})$ is not factored out of P_{ρ}^{d}. And P_{ρ}^{d} is isomorphic to $A_{\frac{1}{d}} \times \alpha_{3} \mathbb{Z} \times{ }_{\alpha_{4}} \cdots \times_{\alpha_{r+m}} \mathbb{Z}$. By Proposition 5.2, each C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $C^{*}(d \mathbb{Z} \times d \mathbb{Z}) \times_{\alpha_{3}} \mathbb{Z} \times{ }_{\alpha_{4}} \cdots \times_{\alpha_{r+m}} \mathbb{Z}$ has the trivial bundle structure.

Hence each C^{*}-algebra of sections of a locally trivial C^{*}-algebra bundle over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ is given by twisting $C^{*}\left(\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}\right)$ in $A_{c d} \otimes C^{*}\left(\mathbb{Z}^{m-2}\right)$ by the totally skew multiplier ρ on $\widehat{\mathbb{T}^{r}} \times \widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}$, which is a spherical noncommutative torus.

Therefore, the set of spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ and fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ is in bijective correspondence with the set of C^{*}-algebras of sections of locally trivial C^{*}-algebra bundles over $\prod_{i=1}^{e} S^{2 n_{i}} \times \prod_{j=1}^{s} S^{2 k_{j}-1}$ with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$.
Q.E.D.

References

[1] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct. Anal. 14 (1973), 299-324.
[2] B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, New York, Heidelberg, London, Paris and Tokyo, 1986.
[3] B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-Theory 6 (1992), 267-284
[4] F. Boca, The structure of higher-dimensional noncommutative tori and metric Diophantine approximation, J. Reine Angew. Math. 492 (1997), 179-219.
[5] D. Boo, P. Kang and C. Park, The sectional C^{*}-algebras over a torus with fibres a non-commutative torus, Far East J. Math. Sci. 1 (1999), 561-579.
[6] D. Boo and C. Park, The fundamental group of the automorphism group of a noncommutative torus, Chinese Ann. Math. Series B 21 (2000), 441-452.
[7] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, SpringerVerlag, New York, Heidelberg and Berlin, 1982.
[8] L. Brown and G. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
[9] J. Dixmier, C^{*}-Algebras, North-Holland, Amsterdam, New York and Oxford, 1977.
[10] G. A. Elliott, On the K-theory of the C^{*}-algebra generated by a projective representation of a torsion-free discrete abelian group in Operator Algebras and Group Representations, Ed. G. Aresene et al., 1, Pitman, London, 1984, 157-184
[11] G. A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443, (1993), 179-219
[12] P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250.
[13] R. Ji and J. Xia, On the classification of commutator ideals, J. Funct. Anal. 78 (1988), 208-232.
[14] M. Karoubi, K-Theory, Springer-Verlag, Berlin, Heidelberg and New York, 1978.
[15] F. Krauss and T. C. Lawson, Examples of homogeneous C^{*}-algebras, Memoirs A.M.S. 148 (1974), 153-164.
[16] H. Lin and M. Rørdam, Extensions of inductive limits of circle algebras, J. London Math. Soc. 51 (1995), 603-613.
[17] C. Park, The bundle structure of spherical non-commutative tori, Vietnam J. Math. 29 (2001), 27-38.
[18] M. Takesaki and J. Tomiyama, Applications of fibre bundles to the certain class of C^{*}-algebras, Tohoku Math. J. 13 (1961), 498-522.
[19] K. Thomsen, The homotopy type of the group of automorphisms of a UHF-algebra, J. Funct. Anal. 72 (1987), 182-207.
[20] N.E. Wegge-Olsen, K-Theory and C^{*}-Algebras, Oxford Univ. Press, Oxford, New York and Tokyo, 1993.
[21] L. Woodward, The classification of principal $P U(k)$-bundles over a 4complex, J. London Math. Soc. 25 (1982), 513-524.

Department of Mathematics
Chungnam National University
Daejeon 305-764
Korea
E-mail address: cgpark@math.cnu.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 46L87, 46L05; Secondary 55R15.

