Advanced Studies in Pure Mathematics 38, 2004 Operator Algebras and Applications pp. 159–176

C^* -algebras over spheres with fibres noncommutative tori

Chun-Gil Park

Abstract.

All C^* -algebras of sections of locally trivial C^* -algebra bundles over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $M_c(A_{\omega})$ are constructed under the assumption that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras. It is shown that each C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $M_c(A_{\omega})$ is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes M_c(A_{\omega})$.

Let A_{cd} be a cd-homogeneous C^* -algebra over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1} \times \mathbb{T}^{r+2}$ of which no non-trivial matrix algebra can be factored out. The spherical noncommutative torus \mathbb{S}_{ρ}^{cd} is defined by twisting $C^*(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2})$ in $A_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}$. We prove that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes C^*(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of those of p.

§0. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^* -algebra $C^*(G, \omega)$, which is the universal object for unitary ω -representations of G. $C^*(\mathbb{Z}^m, \omega)$ is said to be a noncommutative torus of rank m and denoted by A_{ω} . The multiplier ω determines a subgroup S_{ω} of G, called its symmetry group, and the multiplier ω is called totally skew if the symmetry group S_{ω} is trivial. And A_{ω} is called completely irrational if ω is totally skew (see [1, 12]). It was shown in [1] that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* algebra. The noncommutative torus A_{ω} of rank m is the universal object

2000 Mathematics Subject Classification. Primary 46L87, 46L05; Secondary 55R15.

for unitary ω -representations of \mathbb{Z}^m , so A_{ω} is realized as $C^*(u_1, \dots, u_m \mid u_i u_j = e^{2\pi i \theta_{ji}} u_j u_i)$, where u_i are unitaries and θ_{ji} are real numbers for $1 \leq i, j \leq m$.

Boca [4] showed that almost all completely irrational noncommutative tori are isomorphic to inductive limits of circle algebras, where the term "circle algebra" denotes a C^* -algebra which is a finite direct sum of C^* -algebras of the form $C(\mathbb{T}^1) \otimes M_q(\mathbb{C})$. We will assume that each completely irrational noncommutative torus appearing in this paper is an inductive limit of circle algebras.

Each *cd*-homogeneous C^* -algebra A over M is isomorphic to the C^* algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η with base space M, fibres $M_{cd}(\mathbb{C})$, and structure group $\operatorname{Aut}(M_{cd}(\mathbb{C})) \cong PU(cd)$ (see [15, 18]). So each *cd*-homogeneous C^* -algebra over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^{r+2}$ is realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^{r+2}$ with fibres $M_{cd}(\mathbb{C})$. Thus the spherical noncommutative torus \mathbb{S}_{ρ}^{cd} , defined in Section 2, is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$, where P_{ρ}^d is defined in Section 2.

We are going to show that the set of all C^* -algebras of sections of locally trivial C^* -algebra bundles over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$ is in bijective correspondence with the set of all spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ and fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$, that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1})$ $\prod_{j=1}^{s} S^{2k_j-1}) \otimes C^*(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, and that \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1})$ $\otimes C^*(\widehat{\mathbb{T}^{r+2}} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}).$

§1. Homogeneous C^* -algebras over a product space of spheres

An important problem, in the bundle theory of geometry, is to compute the set [M, BPU(cd)] of homotopy classes of continuous maps of a compact CW-complex M into the classifying space BPU(cd) of the Lie group PU(cd). The set [M, BPU(cd)] is in bijective correspondence with the set of equivalence classes of principal PU(cd)-bundles over M, which is in bijective correspondence with the set of cd-homogeneous C^* algebras over M (see [15, 18]). $[S^{2n}, BPU(cd)] = [S^{2n-1}, PU(cd)] \cong \mathbb{Z}$ if $n > 1, \cong \mathbb{Z}_{cd}$ if n = 1, which are the cyclic groups. So each group has a generator, and there is a unitary $U(z) \in PU(cd)$ such that the generating *cd*-homogeneous C^* -algebra over S^{2n} can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^{2n} with fibres $M_{cd}(\mathbb{C})$ characterized by the unitary $U(z) \in PU(cd)$ over S^{2n-1} . If (cd, k) = p (p > 1), then consider the *cd*-homogeneous C^* -algebra over S^{2n} corresponding to each $k \in \mathbb{Z}$ or \mathbb{Z}_{cd} as the tensor product of $M_p(\mathbb{C})$ with a $\frac{cd}{p}$ -homogeneous C^* -algebra over S^{2n} , which is given by $U(z)^{\frac{k}{p}} \in PU(\frac{cd}{p})$. Consider $U(z)^k$ as $U(z)^{\frac{k}{p}} \otimes I_p \in PU(cd)$, where I_p denotes the $p \times p$ identity matrix. Then each *cd*-homogeneous C^* -algebra $B_{cd,k}$ over S^{2n} can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^{2n} with fibres $M_{cd}(\mathbb{C})$ characterized by the unitary $U(z)^k \in PU(cd)$ over S^{2n-1} for some $k \in \mathbb{Z}$ or \mathbb{Z}_{cd} (see [15]).

Lemma 1.1. Every cd-homogeneous C^* -algebra over $S^{2n-1} \times S^1$, whose cd-homogeneous C^* -subalgebra restricted to the subspace $S^{2n-1} \hookrightarrow S^{2n-1} \times S^1$ has the trivial bundle structure, is isomorphic to one of the C^* -subalgebras $A_{cd,k}$, $k \in \mathbb{Z}$ or \mathbb{Z}_{cd} , of $C(S^{2n-1} \times [0,1], M_{cd}(\mathbb{C}))$ given as follows: if $f \in A_{cd,k}$, then the following condition is satisfied

$$f(z,1) = U(z)^k f(z,0)U(z)^{-k}$$

for all $z \in S^{2n-1}$, where $U(z) \in PU(cd)$ is the unitary given above.

Proof. Let A be a cd-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ whose cd-homogeneous C^* -subalgebra restricted to the subspace S^{2n-1} $\hookrightarrow S^{2n-1} \times S^1$ has the trivial bundle structure. Since there is a map of degree 1 from $S^{2n-1} \times S^1$ to S^{2n} , the composite of the map of degree 1 and the map representing each element of $[S^{2n}, BPU(cd)]$ gives an element of $[S^{2n-1} \times S^1, BPU(cd)]$. Hence each element of $[S^{2n}, BPU(cd)] \cong$ $[S^{2n-1}, PU(cd)]$ representing a cd-homogeneous C*-algebra over S^{2n} induces an element of $[S^{2n-1}, PU(cd)] \subset [S^{2n-1} \times S^1, BPU(cd)]$, and the cd-homogeneous C*-algebras $A_{cd,k}$ over $S^{2n-1} \times S^1$ corresponding to the *cd*-homogeneous C^* -algebras $B_{cd,k}$ over S^{2n} are constructed in the statement. By the assumption, the cd-homogeneous C^* -subalgebra of Arestricted to the subspace $S^{2n-1} \times (0,1)$ of $S^{2n-1} \times S^1$ has the trivial bundle structure. Hence A corresponds to an element of $[S^{2n-1}, PU(cd)]$, and A is characterized by the unitary $U(z)^k \in PU(cd)$ over S^{2n-1} for some $k \in \mathbb{Z}$ or \mathbb{Z}_{cd} . Q.E.D.

Lemma 1.2. Let n and k be integers greater than 1. Each cdhomogeneous C^* -algebra over $S^n \times S^k$ is isomorphic to a cd-homogeneous C^* -algebra characterized by the unitary $U(z)^a$ over S^{n-1} in a cd-homogeneous C^* -algebra P_c over $e^n_+ \times S^k$ and $e^n_- \times S^k$, where $U(z) \in PU(cd)$ or PU(c) if $M_c(\mathbb{C})$ is factored out of P_c , and e^n_+ (resp. e^n_-) is the n-dimensional northern (resp. southern) hemisphere.

Proof. Since e_+^n, e_-^n are contractible, each *cd*-homogeneous C^* -algebra over $e_+^n \times S^k$ and $e_-^n \times S^k$ is essentially induced by a *cd*-homogeneous C^* -algebra over S^k . Each *cd*-homogeneous C^* -algebra over $S^n \times S^k$ is characterized by a projective unitary over the boundaries $S^{n-1} \times S^k$ of $e_+^n \times S^k$ and $e_-^n \times S^k$. But $\pi_1(S^n) = \{0\}$ and so the identification of the boundaries $S^k \hookrightarrow e_+^n \times S^k$ and $S^k \hookrightarrow e_-^n \times S^k$ does give the trivial bundle structure. Hence the *cd*-homogeneous C^* -algebra over $S^n \times S^k$ is characterized by the unitary $U(z)^a, a \in \mathbb{Z}$ or $a \in \mathbb{Z}_{cd}$, over S^{n-1} in the *cd*-homogeneous C^* -algebra over $e_+^n \times S^k$ and $e_-^n \times S^k$, where $U(z) \in PU(cd)$ or PU(c). Q.E.D.

For a *cd*-homogeneous C^* -algebra A over S^{2n-1} there is a matrix algebra $M_q(\mathbb{C})$ such that $A \otimes M_q(\mathbb{C})$ is isomorphic to $C(S^{2n-1}) \otimes$ $M_{cdq}(\mathbb{C})$. Since there is a map of degree 1 from S^{2n+1} to $S^{2n} \times S^1$, there are cd-homogeneous C^* -algebras over $S^{2n} \times S^1$ induced from cdhomogeneous C^* -algebras over S^{2n+1} . Also there are *cd*-homogeneous C^* -algebras over $S^{2n} \times S^1$ induced from *cd*-homogeneous C^* -algebras over S^{2n} . But the tensor product of each *cd*-homogeneous C^* -algebra over $S^{2n} \times S^1$ induced from a *cd*-homogeneous C^* -algebra over S^{2n+1} with $M_q(\mathbb{C})$ has the trivial bundle structure for some integer q big enough since $[S^{2n+1}, BPU(cdq)] \cong \{0\}$. And there is a map of degree 1 from S^{2n} to $S^{2n-1} \times S^{1}$, and so there are *cd*-homogeneous C^{*} algebras over $S^{2n-1} \times S^1$ induced from *cd*-homogeneous C^* -algebras over S^{2n} . Also there are *cd*-homogeneous C^* -algebras over $S^{2n-1} \times S^1$ induced from *cd*-homogeneous C^* -algebras over S^{2n-1} . But $[S^{2n-1} \times$ $S^1, BPU(cdq)$ and $[S^{2n}, BPU(dq)]$ are the same for some integer q since $[S^{2n-1}, BPU(cdq)] \cong \{0\}$. So the cd-homogeneous C*-subalgebra of the tensor product of a *cd*-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ with $M_q(\mathbb{C})$ restricted to the subspace $S^{2n-1} \hookrightarrow S^{2n-1} \times S^1$ has the trivial bundle structure (see [17, 18]). From now on, we assume that each cdhomogeneous C^* -algebra over $S^{2n} \times S^1$ is isomorphic to the tensor product of a *cd*-homogeneous C^* -algebra over S^{2n} with $C(S^1)$, and that the cd-homogeneous C^* -subalgebra of a cd-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ restricted to the subspace $S^{2n-1} \hookrightarrow S^{2n-1} \times S^1$ has the trivial bundle structure.

Thomsen [19, Theorem 1.15] computed $\pi_{2n-1}(\operatorname{Aut}(M_{cdp}(\mathbb{C})\otimes M_{q^{\infty}})) \cong \mathbb{Z}/cdp\mathbb{Z}$ for $M_{q^{\infty}}$ a *UHF*-algebra of type q^{∞} , and cdp and q relatively prime integers. Let $A_{cd,k}$ be a *cd*-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ of which no non-trivial matrix algebra can be factored out. This result implies that for any positive integer p no matrix algebra

bigger than $M_p(\mathbb{C})$ can be factored out of $A_{cd,k} \otimes M_p(\mathbb{C})$. So the natural inclusion $C(S^1) \hookrightarrow A_{cd,k}$ induces the canonical homomorphism $K_0(C(S^1)) \to K_0(A_{cd,k})$ such that $[1_{C(S^1)}]$ maps to $[1_{A_{cd,k}}]$.

Lemma 1.3. Let $A_{cd,k}$ be a cd-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ of which no non-trivial matrix algebra can be factored out. Then $K_0(A_{cd,k}) \cong K_1(A_{cd,k}) \cong \mathbb{Z}^2$, and $[1_{A_{cd,k}}] \in K_0(A_{cd,k})$ is primitive.

Proof. We will show later that $A_{cd,k}$ is stably isomorphic to $C(S^{2n-1} \times S^1)$. Since $K_0(C(S^{2n-1} \times S^1)) \cong K_1(C(S^{2n-1} \times S^1)) \cong \mathbb{Z}^2$, $K_0(A_{cd,k}) \cong K_1(A_{cd,k}) \cong \mathbb{Z}^2$. Hence it is enough to show that $[1_{A_{cd,k}}] \in K_0(A_{cd,k})$ is primitive.

No matrix algebra bigger than $M_q(\mathbb{C})$ can be factored out of $A_{cd,k} \otimes M_q(\mathbb{C})$, and so $C(S^{2n-1})$ cannot be factored out of $A_{cd,k} \otimes M_q(\mathbb{C})$. Hence the canonical embedding ϕ of $C(S^{2n-1})$ into $A_{cd,k}$ induces an isomorphism μ of $K_0(C(S^{2n-1} \times S^1))$ into $K_0(A_{cd,k})$. But the unit $1_{C(S^{2n-1})}$ maps to the unit $1_{C(S^{2n-1} \times S^1)}$ under the canonical embedding ψ of $C(S^{2n-1})$ into $C(S^{2n-1} \times S^1)$. Thus $[1_{C(S^{2n-1})}] \in K_0(C(S^{2n-1})) \cong \mathbb{Z}$ maps to $[1_{C(S^{2n-1} \times S^1)}] \in K_0(C(S^{2n-1} \times S^1)) \cong \mathbb{Z}^2$, primitive in $K_0(C(S^{2n-1} \times S^1))$ (see [20, 13.3.1]). In the commutative diagram

$$\begin{array}{ccc} K_0(C(S^{2n-1})) & \stackrel{\psi_*}{\longrightarrow} & K_0(C(S^{2n-1} \times S^1)) \\ (\text{identity})_* & & & & \\ K_0(C(S^{2n-1})) & \stackrel{\phi_*}{\longrightarrow} & K_0(A_{cd,k}), \end{array}$$

$$\begin{split} &\mu([1_{C(S^{2n-1}\times S^1)}]) = \phi_* \circ (\text{identity})_* \circ \psi_*^{-1}([1_{C(S^{2n-1}\times S^1)}]) = [1_{A_{cd,k}}].\\ &\text{Consequently} \left[1_{A_{cd,k}}\right] \text{ is the image of the primitive element } \left[1_{C(S^{2n-1}\times S^1)}\right] \\ &\in K_0(C(S^{2n-1}\times S^1)) \text{ under the isomorphism } \mu. \text{ Therefore, } \left[1_{A_{cd,k}}\right] \in K_0(A_{cd,k}) \cong \mathbb{Z}^2 \text{ is primitive.} \end{split}$$

Thus, $K_0(A_{cd,k}) \cong \mathbb{Z}^2$, $K_1(A_{cd,k}) \cong \mathbb{Z}^2$, and $[1_{A_{cd,k}}] \in K_0(A_{cd,k})$ is primitive. Q.E.D.

Lemma 1.4. Let $B_{cd,k}$ be a cd-homogeneous C^* -algebra over S^{2n} of which no non-trivial matrix algebra can be factored out. Then $[1_{B_{cd,k}}] \in K_0(B_{cd,k}) \cong \mathbb{Z}^2$ is primitive.

Proof. We will show later that $B_{cd,k}$ is stably isomorphic to $C(S^{2n})$ $\otimes M_{cd}(\mathbb{C})$. So $K_0(B_{cd,k}) \cong K_0(C(S^{2n})) \cong \mathbb{Z} \oplus \mathbb{Z}$. But $B_{cd,k}$ corresponds to $A_{cd,k}$ with respect to the conditions on sections over the boundaries S^{2n-1} of $e_+^{2n} \amalg e_-^{2n}$ and $S^{2n-1} \times [0,1]$, and the canonical embedding of $C(S^{2n-1})$ into $A_{cd,k}$ which induces the isomorphism of $K_0(C(S^{2n-1} \times S^1))$ into $K_0(A_{cd,k})$ corresponds to the imbedding ϕ of $C(S^{2n-1})$ into $B_{cd,k}$. The canonical imbedding ϕ of $C(S^{2n-1})$ into $B_{cd,k}$ induces an isomorphism μ of $K_0(C(S^{2n}))$ into $K_0(B_{cd,k})$, where $S^{2n-1} = \partial e_{\pm}^{2n}$. The unit $1_{C(S^{2n-1})}$ maps to the unit $1_{C(S^{2n})}$ under the canonical embedding ψ of $C(S^{2n-1})$ into $C(S^{2n})$. $[1_{C(S^{2n-1})}] \in K_0(C(S^{2n-1})) \cong \mathbb{Z}$ maps to $[1_{C(S^{2n})}] \in K_0(C(S^{2n})) \cong \mathbb{Z}^2$, primitive in $K_0(C(S^{2n}))$ (see [20, 13.3.1]). In the commutative diagram

$$\begin{array}{ccc} K_0(C(S^{2n-1})) & \stackrel{\psi_*}{\longrightarrow} & K_0(C(S^{2n})) \\ & & & & \downarrow^{\mu(\cong)} \\ & & & & \downarrow^{\mu(\cong)} \\ & & & & K_0(C(S^{2n-1})) & \stackrel{\phi_*}{\longrightarrow} & K_0(B_{cd,k}), \end{array}$$

 $\mu([1_{C(S^{2n})}]) = \phi_* \circ (\text{identity})_* \circ \psi_*^{-1}([1_{C(S^{2n})}]) = [1_{B_{cd,k}}]. \text{ So } [1_{B_{cd,k}}] \text{ is the image of the primitive element } [1_{C(S^{2n})}] \in K_0(C(S^{2n})) \text{ under the isomorphism } \mu. \text{ Hence } [1_{B_{cd,k}}] \in K_0(B_{cd,k}) \text{ is primitive.}$

Therefore, $[1_{B_{cd,k}}] \in K_0(B_{cd,k}) \cong \mathbb{Z}^2$ is primitive. Q.E.D.

For each 4-dimensional factor S of $\prod^{e} S^2 \times \prod^{s+r+2} S^1$ every d-homogeneous C^* -algebra over S can be constructed by combining Lemma 1.1 and Lemma 1.2. If s + r is odd, one can make the integer even by tensoring with $C(S^1)$. So one can assume that s + r is even, and that s is greater than or equals to r and big enough. And one can rearrange $\prod_{j=1}^{s} S^{2k_j-1}$ and \mathbb{T}^r if needed.

Theorem 1.5. Let A_{cd} be a cd-homogeneous C^* -algebra over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ whose cd-homogeneous C^* -subalgebra restricted to the subspace $\mathbb{T}^r \times \mathbb{T}^2 \hookrightarrow \prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ is realized as $C(\mathbb{T}^r) \otimes A_{\frac{1}{d}} \otimes M_c(\mathbb{C})$ for $A_{\frac{1}{d}}$ a rational rotation algebra. Then A_{cd} is isomorphic to one of the C^* -subalgebras $A^{a_1,a_2,\cdots,a_e}_{b_1,b_2,\cdots,b_{\frac{s+r}{2}}}$, $a_1,\cdots,a_e,b_1,\cdots,b_{\frac{s+r}{2}} \in \mathbb{Z}$, of

$$C(\prod_{i=1}^{e} (e_{+}^{2n_{i}} \amalg e_{-}^{2n_{i}}) \times \prod_{j=1}^{\frac{s+r}{2}} (S^{2k_{j}-1} \times [0,1]) \times \mathbb{T}^{1} \times [0,1], M_{cd}(\mathbb{C}))$$

consisting of those functions f that satisfy

$$\begin{aligned} (f|_{e_{+}^{2n_{i}}\amalg e_{-}^{2n_{i}}})_{+}(z_{i}) &= U(z_{i})^{a_{i}}(f|_{e_{+}^{2n_{i}}\amalg e_{-}^{2n_{i}}})_{-}(z_{i})U(z_{i})^{-a_{i}}\\ (f|_{S^{2k_{j}-1}\times[0,1]})(w_{j},1) &= U(w_{j})^{b_{j}}(f|_{S^{2k_{j}-1}\times[0,1]})(w_{j},0)U(w_{j})^{-b_{j}}\\ (f|_{\Xi^{1}\times[0,1]})(x,1) &= U(x)^{cl}(f|_{\Xi^{1}\times[0,1]})(x,0)U(x)^{-cl} \end{aligned}$$

for all $(z_1, \cdots, z_e, w_1, \cdots, w_{\frac{s+r}{2}}, x) \in \prod_{i=1}^e S^{2n_i-1} \times \prod_{j=1}^{\frac{s+r}{2}} S^{2k_j-1} \times \mathbb{T}^1$, one of the tensor products of homogeneous C^* -algebras of the type above, or one of the C^* -algebras given by replacing $(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2)$ in $A^{a_1, \cdots, a_e}_{b_1, \cdots, b_{\frac{s+r}{2}}}$ or the tensor products with suitable c'd'-homogeneous C^* -algebras in the same sense as above, when $M_{c'd'}(\mathbb{C})$ are factored out of $A^{a_1, \cdots, a_e}_{b_1, \cdots, b_{\frac{s+r}{2}}}$ or the tensor products, where $U(z_i), U(w_j)$, and $U(x) \in PU(cd)$ are defined in the statement of Lemma 1.1.

Proof. By Lemma 1.1, each cd-homogeneous C^* -algebra over $S^{2k_j-1} \times S^1$ corresponds to a cd-homogeneous C^* -algebra over S^{2k_j} . By Lemma 1.2, each cd-homogeneous C^* -algebra over the product space of two even dimensional spheres can be constructed. Combining Lemma 1.1 and Lemma 1.2 yields that replacing S^{2n_i} and S^{2k_j-1} with S^2 and S^1 does not give any change in the relation, associated with bundle structure, among the factors of $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$. Hence each cd-homogeneous C^* -algebra over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ can be given by [5, Theorem 2.5], which is exactly stated in the statement for the case $n_i = 1$ and $k_j = 1$.

Theorem 1.6. Let A_{cd} be a C^* -algebra over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ constructed in Theorem 1.5. Assume that no non-trivial matrix algebra can be factored of A_{cd} . Then $K_0(A_{cd}) \cong K_1(A_{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive.

Proof. We are going to show in Lemma 3.1 that A_{cd} is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2) \otimes M_{cd}(\mathbb{C})$. By the Künneth theorem [2, Theorem 23.1.3]

$$\begin{aligned} K_0(A_{cd}) &\cong K_0(C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j - 1} \times \mathbb{T}^r \times \mathbb{T}^2)) \\ &\cong K_0(C(\prod_{i=1}^e S^{2n_i})) \otimes K_0(C(\prod_{j=1}^s S^{2k_j - 1} \times \mathbb{T}^r \times \mathbb{T}^2)) \\ &\oplus K_1(C(\prod_{i=1}^e S^{2n_i})) \otimes K_1(C(\prod_{j=1}^s S^{2k_j - 1} \times \mathbb{T}^r \times \mathbb{T}^2)) \\ &\cong \mathbb{Z}^{2^e} \otimes \mathbb{Z}^{2^{s+r+1}} \oplus \{0\} \cong \mathbb{Z}^{2^{e+s+r+1}}.
\end{aligned}$$

Similarly, one obtains that $K_1(A_{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$

It is enough to show that $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive. But the proof is similar to the proof given in [17, Theorem 1.2]. Since the

cd-homogeneous C^* -algebra A_{cd} is just given by replacing each C^* -subalgebra $C(S^2)$ (resp. $C(S^1)$) of the cd-homogeneous C^* -algebra over $\prod_{i=1}^{e} S^2 \times \prod_{i=1}^{s} S^1 \times \mathbb{T}^r \times \mathbb{T}^2$ given in [17] with $C(S^{2n_i})$ (resp. $C(S^{2k_j-1})$), the proof is just given by replacing $C(S^2)$ and $C(S^1)$ given in the proof of [17, Theorem 1.2] with $C(S^{2n_i})$ and $C(S^{2k_j-1})$.

Therefore, $K_0(A_{cd}) \cong K_1(A_{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $[1_{A_{cd}}] \in K_0(A_{cd})$ is primitive. Q.E.D.

$\S 2.$ Spherical noncommutative tori

The noncommutative torus A_{ω} of rank m is obtained by an iteration of m-1 crossed products by actions of \mathbb{Z} , the first action on $C(\mathbb{T}^1)$. When A_{ω} is not simple, by a change of basis, A_{ω} is obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{\frac{i}{d}}$. Since the fibre $M_d(\mathbb{C})$ of $A_{\frac{i}{d}}$ is factored out of the fibre of A_{ω} , A_{ω} can be obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on $A_{\frac{i}{d}}$, where the actions of \mathbb{Z} on the fibre $M_d(\mathbb{C})$ of $A_{\frac{1}{d}}$ are trivial. This assures us of the existence of such actions α_i in the definition of P_{ρ}^d below. So one can assume that A_{ω} is given by twisting $C^*(d\mathbb{Z} \times d\mathbb{Z} \times \mathbb{Z}^{m-2})$ in $A_{\frac{1}{d}} \otimes C^*(\mathbb{Z}^{m-2})$ by the restriction of the multiplier ω to $d\mathbb{Z} \times d\mathbb{Z} \times \mathbb{Z}^{m-2}$, where $\widehat{d\mathbb{Z}} \times \widehat{d\mathbb{Z}}$ is the primitive ideal space of $A_{\frac{1}{d}}$ and $C^*(d\mathbb{Z} \times d\mathbb{Z}, \operatorname{res} of \omega) = C^*(d\mathbb{Z} \times d\mathbb{Z})$ (see [5] for details).

Definition 2.1. Let A_{cd} be a cd-homogeneous C^* -algebra over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ whose cd-homogeneous C^* -subalgebra restricted to the subspace $\mathbb{T}^r \times \mathbb{T}^2 \hookrightarrow \prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ is realized as $C(\mathbb{T}^r) \otimes A_{\frac{1}{d}} \otimes M_c(\mathbb{C})$ for $A_{\frac{1}{d}}$ a rational rotation algebra. The C^* -algebra which is given by twisting $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2})$ in $A_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}$ is said to be a spherical noncommutative torus of rank (e, s + r, m) and denoted by \mathbb{S}_{ρ}^{cd} , where $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}, \rho)$ is a completely irrational noncommutative torus A_{ρ} .

Then the fibre of \mathbb{S}_{ρ}^{d} , which is called a *generalized noncommutative* torus of rank r + m and denoted by P_{ρ}^{d} , can be obtained by an iteration of r + m - 2 crossed products by actions α_{i} of \mathbb{Z} , the first action on the rational rotation algebra $A_{\frac{1}{d}}$, where the actions α_{i} on the fibre $M_{d}(\mathbb{C})$ of $A_{\frac{1}{d}}$ are trivial. Thus the spherical noncommutative torus \mathbb{S}_{ρ}^{cd} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$.

We are going to show that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Theorem 2.2. Let \mathbb{S}_{ρ}^{cd} be a spherical noncommutative torus of rank (e, s + r, m). Assume no non-trivial matrix algebra can be factored out of A_{cd} . Then $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$, and $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Proof. The proof is by induction on m. Assume that m = 2. We will show later that \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$, where A_{ρ} is a noncommutative torus of rank r + 2. By the Künneth theorem

$$K_0(C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes A_\rho)$$

$$\cong K_0(C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1})) \otimes K_0(A_\rho)$$

$$\oplus K_1(C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1})) \otimes K_1(A_\rho)$$

$$\cong \mathbb{Z}^{2^{e+s}} \otimes \mathbb{Z}^{2^{r+1}} \cong \mathbb{Z}^{2^{e+s+r+1}}.$$

Similarly, one obtains that $K_1(C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes A_\rho) \cong \mathbb{Z}^{2^{e+s+r+1}}$. So $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong K_0(C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes A_\rho) \cong \mathbb{Z}^{2^{e+s+r+1}}$. It is enough to show that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive. Combining the tricks given in Theorem 1.6 and [17, Theorem 2.2] yields that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive. So $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^{e+s+r+1}}$, and $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Next, assume that the result is true for all spherical noncommutative tori with m = i - 1. Write $\mathbb{S}_i = C^*(\mathbb{S}_{i-1}, u_i)$, where $\mathbb{S}_i = C^*(\mathbb{S}_{\rho}^{cd}, u_3, \ldots, u_i)$, where \mathbb{S}_{ρ}^{cd} is the case above, m = 2. Then the inductive hypothesis applies to \mathbb{S}_{i-1} . Also, we can think of \mathbb{S}_i as the crossed product by an action α of \mathbb{Z} on \mathbb{S}_{i-1} , where the generator of \mathbb{Z} corresponds to u_i , which acts on $C^*(v_1, \cdots, v_r, u_1^d, u_2^d, u_3, \cdots, u_{i-1})$ by conjugation (sending u_j to $u_i u_j u_i^{-1} = e^{2\pi i \theta_{ji}} u_j, j \neq 1, 2$, sending u_j^d to $u_i u_j^d u_i^{-1} = e^{2\pi i d\theta_{ji}} u_j^d, j = 1, 2$, and sending v_j to $u_i v_j u_i^{-1} = e^{2\pi i \beta_{ji}} v_j$), and which acts trivially on $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes M_{cd}(\mathbb{C})$. Here $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2}$, res of $\rho) \cong C^*(v_1, v_2, \cdots, v_r, u_1^d, u_2^d)$. Note that this action

is homotopic to the trivial action, since we can homotope θ_{ji} and β_{ji} to 0. Hence \mathbb{Z} acts trivially on the *K*-theory of \mathbb{S}_{i-1} . The Pimsner-Voiculescu exact sequence for a crossed product gives an exact sequence

$$K_0(\mathbb{S}_{i-1}) \xrightarrow{1-\alpha_*} K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \longrightarrow K_1(\mathbb{S}_{i-1}) \xrightarrow{1-\alpha_*} K_1(\mathbb{S}_{i-1})$$

and similarly for K_1 , where the map Φ is induced by inclusion. Since $\alpha_* = 1$ and since the K-groups of \mathbb{S}_{i-1} are free abelian, this reduces a split short exact sequence

$$\{0\} \longrightarrow K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \longrightarrow K_1(\mathbb{S}_{i-1}) \longrightarrow \{0\}$$

and similarly for K_1 . So $K_0(\mathbb{S}_i)$ and $K_1(\mathbb{S}_i)$ are free abelian of rank $2 \cdot 2^{e+s+r+i-2} = 2^{e+s+r+i-1}$. Furthermore, since the inclusion $\mathbb{S}_{i-1} \to \mathbb{S}_i$ sends $1_{\mathbb{S}_{i-1}}$ to $1_{\mathbb{S}_i}$, $[1_{\mathbb{S}_i}]$ is the image of $[1_{\mathbb{S}_{i-1}}]$, which is primitive in $K_0(\mathbb{S}_{i-1})$ by inductive hypothesis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Therefore, $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^{e+s+r+m-1}}$, and $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive. Q.E.D.

Corollary 2.3. Let q be a positive integer. Assume that no nontrivial matrix algebra can be factored out of A_{cd} . Then $\mathbb{S}_{\rho}^{cd} \otimes M_q(\mathbb{C})$ is not isomorphic to $A \otimes M_{pq}(\mathbb{C})$ for any C^* -algebra A and any integer p greater than 1. In particular, no non-trivial matrix algebra can be factored out of \mathbb{S}_{ρ}^{cd} , P_{ρ}^{cd} and A_{ρ} .

Proof. Assume $\mathbb{S}_{\rho}^{cd} \otimes M_q(\mathbb{C})$ is isomorphic to $A \otimes M_{pq}(\mathbb{C})$. Then the unit $1_{\mathbb{S}_{\rho}^{cd}} \otimes I_q$ maps to the unit $1_A \otimes I_{pq}$. So $[1_{\mathbb{S}_{\rho}^{cd}} \otimes I_q] = [1_A \otimes I_{pq}]$. Thus there is a projection $e \in \mathbb{S}_{\rho}^{cd}$ such that $q[1_{\mathbb{S}_{\rho}^{cd}}] = (pq)[e]$. But $K_0(\mathbb{S}_{\rho}^{cd})$ is torsion-free, so $[1_{\mathbb{S}_{\rho}^{cd}}] = p[e]$. This contradicts Theorem 2.2 if p > 1.

Therefore, $\mathbb{S}_{\rho}^{cd} \otimes M_q(\mathbb{C})$ is not isomorphic to $A \otimes M_{pq}(\mathbb{C})$. Q.E.D.

$\S3$. The bundle structure of spherical noncommutative tori

For M a compact CW-complex the Čech cohomology group $H^3(M, \mathbb{Z})$ classifies the tensor products of cd-homogeneous C^* -algebras over M with the C^* -algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable Hilbert space \mathcal{H} (see [9]). The Čech cohomology group $H^3(M, \mathbb{Z})$ is isomorphic to the singular cohomology group $H^3(M, \mathbb{Z})$ when M is triangularizable (see [7, Theorem15.8]).

168

Lemma 3.1. Each cd-homogeneous C^* -algebra over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s+r+2} S^{2k_j-1}$ is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s+r+2} S^{2k_j-1}) \otimes M_{cd}(\mathbb{C}).$

Proof. Each non-trivial element in the Čech cohomology group $H^3(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^{s+r+2} S^{2k_j-1}, \mathbb{Z})$ can be given by a non-trivial element in $H^3((S^1)^3, \mathbb{Z}), H^3(S^2 \times S^1, \mathbb{Z})$, or $H^3(S^3, \mathbb{Z})$ if there exist such factors.

First, $H^3(S^2 \times S^1, \mathbb{Z}) = \mathbb{Z}$. By the Woodward theorem [21], $[S^2 \times S^1, BPU(cd)]$ is embedded into $H^2(S^2 \times S^1, \mathbb{Z}_{cd}) \oplus H^4(S^2 \times S^1, \mathbb{Z}) \cong H^2(S^2, \mathbb{Z}_{cd}) \cong \mathbb{Z}_{cd}$. So each *cd*-homogeneous C^* -algebra over $S^2 \times S^1$ is isomorphic to the tensor product of a *cd*-homogeneous C^* -algebra over S^2 with $C(S^1)$, which is stably isomorphic to $C(S^2) \otimes C(S^1) \otimes M_{cd}(\mathbb{C})$, since $H^3(S^2, \mathbb{Z}) = \{0\}$. Thus each *cd*-homogeneous C^* -algebra over $S^2 \times S^1$ is stably isomorphic to $C(S^2 \times S^1) \otimes M_{cd}(\mathbb{C})$.

Similarly, one obtains the same result for the other cases.

Therefore, each *cd*-homogeneous C^* -algebra over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^{s+r+2} S^{2k_j-1}$ is stably isomorphic to $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^{s+r+2} S^{2k_j-1}) \otimes M_{cd}(\mathbb{C})$. Q.E.D.

We are going to show that $\mathbb{S}_{\rho}^{cd} \otimes \mathcal{K}(\mathcal{H})$ has the trivial bundle structure.

Theorem 3.2. The spherical noncommutative torus \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. In particular, P_{ρ}^{d} is stably isomorphic to $A_{\rho} \otimes M_{d}(\mathbb{C})$.

Proof. Let \mathbb{S}_{ρ}^{cd} be defined by twisting $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2})$ in $A_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}$, where $C^*(\widehat{\mathbb{T}^2}, \operatorname{res of } \rho) = C^*(\widehat{\mathbb{T}^2})$. By Lemma 3.1, the *cd*-homogeneous C^* -algebra A_{cd} is stably isomorphic to $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2) \otimes M_{cd}(\mathbb{C})$. In particular, $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1})$ is factored out of $A_{cd} \otimes \mathcal{K}(\mathcal{H})$. By the definition of \mathbb{S}_{ρ}^{cd} , $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1})$ is factored out of $\mathbb{S}_{\rho}^{cd} \otimes \mathcal{K}(\mathcal{H})$. So \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes P_{\rho}^d \otimes M_c(\mathbb{C})$. But it was shown in [5, Theorem 3.4] that P_{ρ}^d is stably isomorphic to $A_{\rho} \otimes M_d(\mathbb{C})$.

Therefore, \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}).$ Q.E.D.

Using the fact that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive, we are going to investigate the bundle structure of the tensor products of spherical noncommutative tori \mathbb{S}_{ρ}^{cd} with UHF-algebras $M_{p^{\infty}}$ of type p^{∞} .

Theorem 3.3. Let \mathbb{S}_{ρ}^{cd} be a spherical noncommutative torus. Assume that no non-trivial matrix algebra can be factored out of A_{cd} . Then $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of cd is a subset of the set of prime factors of p. To show that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$, it is enough to show that $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$ is isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{(cd)^{\infty}}$. However, there exist the C^* -algebra homomorphisms which are the canonical inclusions

$$\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^g}(\mathbb{C}) \hookrightarrow C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{(cd)^g}(\mathbb{C})$$

and the $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho}$ -module maps $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{(cd)^g}(\mathbb{C}) \hookrightarrow \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^g}(\mathbb{C})$:

$$S^{cd}_{\rho} \hookrightarrow C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \hookrightarrow S^{cd}_{\rho} \otimes M_{cd}(\mathbb{C})$$
$$\hookrightarrow C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho} \otimes M_{(cd)^{2}}(\mathbb{C}) \hookrightarrow \cdots.$$

The inductive limit of the odd terms

$$\cdots \to \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^g}(\mathbb{C}) \to \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to \cdots$$

is $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$, and the inductive limit of the even terms

$$\cdots \to C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{(cd)^g}(\mathbb{C})$$
$$\to C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{(cd)^{g+1}}(\mathbb{C}) \to \cdots$$

is $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{(cd)^{\infty}}$. Thus by the Elliott theorem [11, Theorem 2.1], $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$ is isomorphic to $C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho} \otimes M_{(cd)^{\infty}}$.

Conversely, assume that

$$\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}} \cong C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}.$$

Then the unit $1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}$. So

$$\begin{split} [1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}] &= [1_{C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}] \\ [1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}] &= [1_{\mathbb{S}_{\rho}^{cd}}] \otimes [1_{M_{p^{\infty}}}] \\ [1_{C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}] \\ &= cd([1_{C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho}}] \otimes [1_{M_{p^{\infty}}}]). \end{split}$$

Under the assumption that $1_{\mathbb{S}_{o}^{cd}} \otimes 1_{M_{p^{\infty}}}$ maps to

$$1_{C(\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd},$$

if there is a prime factor q of cd such that $q \nmid p$, then $[1_{M_{p^{\infty}}}] \neq q[e_{\infty}]$ for e_{∞} a projection in $M_{p^{\infty}}$. So there is a projection $e \in \mathbb{S}_{\rho}^{cd}$ such that $[1_{\mathbb{S}_{\rho}^{cd}}] = q[e]$. This contradicts Theorem 2.2. Thus the set of prime factors of cd is a subset of the set of prime factors of p.

Therefore, $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(\prod_{i=1}^{e} S^{2n_{i}} \times \prod_{j=1}^{s} S^{2k_{j}-1}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p. Q.E.D.

§4. Completely irrational noncommutative tori

It was proved in [3, Theorem 1.5] that every completely irrational noncommutative torus has real rank 0, where the "real rank 0" means that the set of invertible self-adjoint elements is dense in the set of selfadjoint elements. Combining Theorem 3.2 and [8, Corollary 3.3] yields that the generalized noncommutative torus P_{ρ}^{d} has real rank 0 since the noncommutative torus A_{ρ} has real rank 0. The Lin and Rørdam theorem [16, Proposition 3] says that the generalized noncommutative torus P_{ρ}^{d} is an inductive limit of circle algebras, since $P_{\rho}^{d} \otimes \mathcal{K}(\mathcal{H}) \cong A_{\rho} \otimes \mathcal{K}(\mathcal{H})$ is an inductive limit of circle algebras [16, Proposition]. Combining [11, Theorem 7.1] and [13, Theorem 1.3] yields that the completely irrational noncommutative tori A_{ω} of rank r + m and the generalized noncommutative tori P_{ρ}^{d} of rank r + m are isomorphic if the ranges of the traces equal.

Lemma 4.1. ([6, Lemma 4.1]) $\operatorname{tr}(K_0(P_{\rho}^d)) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_{\rho})).$

Theorem 4.2. ([6, Theorem 4.2]) Let A_{ω} be a completely irrational noncommutative torus of rank r + m with $\operatorname{tr}(K_0(A_{\omega})) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_{\rho}))$ for A_{ρ} a completely irrational noncommutative torus of rank r + m. Then A_{ω} is isomorphic to P_{ρ}^d .

§5. C^* -algebras over spheres with fibres noncommutative tori

We are going to show that the set of all spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ and fibres $A_{\omega} \otimes M_c(\mathbb{C})$ is in bijective correspondence with the set of all C^* algebras of sections of locally trivial C^* -algebra bundles over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $A_{\omega} \otimes M_c(\mathbb{C})$ for A_{ω} a completely irrational noncommutative torus.

Let A_{ω} be a noncommutative torus of rank m with $\widehat{S_{\omega}} \cong \mathbb{T}^1$. Then A_{ω} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{d\mathbb{Z}}$ and fibres $C^*(\mathbb{Z}^m/S_{\omega},\omega_1)$ for some totally skew multiplier ω_1 , where $C^*(\mathbb{Z}^m/S_{\omega},\omega_1) \cong A_{\rho} \otimes M_d(\mathbb{C})$ for A_{ρ} a completely irrational noncommutative torus of rank m-1 (see [1, 12]). By the definition of A_{ω} , $C(\mathbb{T}^1)$ and A_{ρ} split. Since $[\mathbb{T}^1, BPU(d)] \cong \{0\}, C(\mathbb{T}^1)$ and $M_d(\mathbb{C})$ split. And $M_d(\mathbb{C})$ and A_{ρ} also split. But by Corollary 2.3, A_{ω} has a non-trivial bundle structure if d > 1. This implies that a C^* -subalgebra of A_{ρ} plays a role as a base space in the bundle structure. In fact, A_{ω} can be obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{\frac{1}{d}}$, and the non-triviality of the bundle structure is given by a non-trivial element of $[\mathbb{T}^2, BPU(d)] \cong [\mathbb{T}^1, PU(d)] \cong \mathbb{Z}_d$, which represents $A_{\frac{1}{d}}$ canonically embedded into A_{ω} .

Let d be the biggest integer among the possible integers satisfying the condition $\operatorname{tr}(K_0(A_\omega)) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_\rho))$, i.e., $A_\omega \cong P_\rho^d$. For a dhomogeneous C^* -algebra A over S^{2n+1} , there is a matrix algebra $M_q(\mathbb{C})$ such that $A \otimes M_q(\mathbb{C})$ is isomorphic to $C(S^{2n+1}) \otimes M_{dq}(\mathbb{C})$. But there is a matrix subalgebra $M_q(\mathbb{C})$ big enough satisfying the above condition such that $M_q(\mathbb{C})$ is embedded into P_ρ^d , since P_ρ^d is an inductive limit of circle algebras, which is simple.

Lemma 5.1. Each C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over S^{2n+1} with fibres $P^1_{\rho} = A_{\rho}$ has the trivial bundle structure.

Proof. Let $P_{\rho}^{1} = \lim_{i \to \infty} (\bigoplus_{j=1} C(\mathbb{T}^{1}) \otimes M_{p_{i(j)}}(\mathbb{C}))$. The C*-algebra $\Gamma(\eta)$ is isomorphic to an inductive limit of direct sums of $p_{i(j)}$ -homogeneous C*-algebras over $S^{2n+1} \times \mathbb{T}^{1}$, and each $C(S^{2n+1} \times \mathbb{T}^{1})$ is canonically embedded into $\Gamma(\eta)$. So there could be a canonical homomorphism of $C(S^{2n+1}) \otimes M_d(\mathbb{C})$ into the C*-algebra $\Gamma(\eta)$ of sections of a locally trivial C*-algebra bundle η over S^{2n+1} with fibres P_{ρ}^{1} such that the non-triviality can be given by a d-homogeneous C*-algebra over $S^{2n+1} \times \mathbb{T}^{1}$. Then $M_d(\mathbb{C})$ must be factored out of the circle algebra in each inductive step, and so the range of the trace of P_{ρ}^{1} would be the form $\frac{1}{d} \cdot \operatorname{tr}(A)$ for

A a simple unital C^* -algebra, which is impossible by the assumption. We have two cases; one of them is the case that a C^* -subalgebra of P^1_{ρ} plays a role as a base space in the bundle structure, and the other is not.

For the first case, when a C^* -subalgebra of P_{ρ}^1 plays a role as a base space in the bundle structure and P_{ρ}^1 is realized as a tensor product of non-trivial completely irrational noncommutative tori, the torsionfree groups in $P_{\rho}^1 = A_{\rho}$ giving simple noncommutative tori which are given by twisting the torsion-free groups by totally skew multipliers must split, so all factors of P_{ρ}^1 must split. The relation among factors of P_{ρ}^1 is different from the relation between fibres $M_d(\mathbb{C})$ and base A_{ρ} in the fibres of the non-simple noncommutative torus A_{ω} given above, and so one can assume that all factors of P_{ρ}^1 play roles as a base space in the bundle structure. Hence P_{ρ}^1 plays a role as a base space in the bundle structure, and so $\Gamma(\eta)$ is isomorphic to $C(S^{2n+1}) \otimes P_{\rho}^1$.

For the other case, since $P_{\rho}^{1} = \underline{\lim}(\bigoplus_{j=1} C(\mathbb{T}^{1}) \otimes M_{p_{i(j)}}(\mathbb{C}))$, there is a matrix algebra $M_{p}(\mathbb{C})$ big enough which is embedded into P_{ρ}^{1} . Since $[S^{2n+1}, BPU(p)] \cong \{0\}, C(S^{2n+1})$ and $M_{p}(\mathbb{C})$ split, i.e., any *p*-homogeneous C^{*} -algebra over S^{2n+1} has the trivial bundle structure. By the same reasoning as above, $M_{p}(\mathbb{C})$ cannot be factored out of the circle algebras in all inductive steps. But $\Gamma(\eta)$ has a locally trivial bundle structure. Hence $C(S^{2n+1})$ and $(M_{p}(\mathbb{C}) \hookrightarrow) P_{\rho}^{1}$ must split, and so $\Gamma(\eta)$ has the trivial bundle structure.

Therefore, each C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* algebra bundle η over S^{2n+1} with fibres P^1_ρ has the trivial bundle structure. Q.E.D.

Now we want to show that each C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}$ with fibres $P_{\rho}^1 = A_{\rho}$ has the trivial bundle structure.

Proposition 5.2. Each C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $P_{\rho}^1 = A_{\rho}$ has the trivial bundle structure.

Proof. Let P_{ρ}^{1} be an inductive limit of $\bigoplus_{j=1} C(\mathbb{T}^{1}) \otimes M_{p_{i(j)}}(\mathbb{C})$. For some pair $(2k_{j} - 1, 2k_{j'} - 1) = (2k_{j} - 1, 1)$, if the C^{*} -subalgebra of sections of a locally trivial C^{*} -algebra bundle over $S^{2k_{j}-1} \times S^{1}$ with fibres P_{ρ}^{1} , which is canonically embedded into $\Gamma(\eta)$, has a non-trivial bundle structure, then the factor $S^{2k_{j}-1} \times S^{1}$ can be replaced by $S^{2k_{j}}$, since there is a map of degree 1 from $S^{2k_{j}-1} \times S^{1}$ to $S^{2k_{j}}$. For each j, there is a canonical homomorphism of the C^{*} -subalgebra $\Gamma(\eta_{j})$ of sections of a locally trivial C^{*} -algebra bundle η_{j} over $S^{2k_{j}-1}$ with fibres P_{ρ}^{1} into $\Gamma(\eta)$. By Lemma 5.1, the C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^{2k_j-1} with fibres P_{ρ}^1 has the trivial bundle structure. Thus $C(S^{2k_j-1})$ are factored out of $\Gamma(\eta)$, and so $C(\prod_{j=1}^s S^{2k_j-1})$ is factored out of $\Gamma(\eta)$.

Next, $[S^{2n_i}, B(\operatorname{Aut}(P^1_{\rho}))] = [S^{2n_i-1}, \operatorname{Aut}(P^1_{\rho})]$. But there is a map of degree 1 from S^{2n_i} to $S^{2n_i-1} \times S^1$. So for each *i* each C^* -algebra of sections of a locally trivial C^{*}-algebra bundle over S^{2n_i} with fibres P_a^1 is induced from the C^{*}-algebra $\Gamma(\zeta_i)$ of sections of a locally trivial C^{*}algebra bundle ζ_i over $S^{2n_i-1} \times \mathbb{T}^1$ with fibres P_a^1 . Consider the crossed product by the action α_{θ} of \mathbb{Z} on $\Gamma(\zeta_i)$ for a suitable irrational number θ such that the range of the trace of $P_{\rho}^1 \otimes A_{\theta}$ is not $\frac{1}{w} \times$ the range of the trace of any simple irrational noncommutative torus of rank m+1 for any positive integer w greater than 1, where the action α_{θ} on $C(S^{2n_i-1}) \otimes P_{\rho}^1$ is trivial and $C(\mathbb{T}^1) \times_{\alpha_{\theta}} \mathbb{Z}$ is the irrational rotation algebra A_{θ} . Then $\Gamma(\zeta_i) \times_{\alpha_{\theta}} \mathbb{Z}$ is obviously realized as the C^{*}-algebra of sections of a locally trivial C^* -algebra bundle over S^{2n_i-1} with fibres $P^1_{\rho} \otimes A_{\theta}$. But $\Gamma(\zeta_i) \times_{\alpha_{\theta}}$ \mathbb{Z} has the trivial bundle structure. So each C^* -algebra of sections of a locally trivial C^{*}-algebra bundle over S^{2n_i} with fibres P_o^1 has the trivial bundle structure. Thus $C(S^{2n_i})$ are factored out of $\Gamma(\eta)$. Hence $C(\prod_{i=1}^e S^{2n_i})$ is factored out of $\Gamma(\eta)$, and so $C(\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1})$ is factored out of $\Gamma(\eta)$, as desired. Q.E.D.

Each *cd*-homogeneous C^* -algebra over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ is realized as the C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1} \times \mathbb{T}^r \times \mathbb{T}^2$ with fibres $M_{cd}(\mathbb{C})$, and hence \mathbb{S}^{cd}_{ρ} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$.

Theorem 5.3. The set of spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ and fibres $P_{\rho}^{d} \otimes M_c(\mathbb{C})$ is in bijective correspondence with the set of C^* -algebras of sections of locally trivial C^* -algebra bundles over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $P_{\rho}^{d} \otimes M_c(\mathbb{C})$.

Proof. If cd = 1, we have obtained the result in Proposition 5.2. So assume that cd > 1. Then one can assume that there is a matrix subalgebra $M_{cd}(\mathbb{C})$ which is factored out of each inductive step, even though $M_d(\mathbb{C})$ is not factored out of P_{ρ}^d . And P_{ρ}^d is isomorphic to $A_{\frac{1}{d}} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_{r+m}} \mathbb{Z}$. By Proposition 5.2, each C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^e S^{2n_i} \times \prod_{j=1}^s S^{2k_j-1}$ with fibres $C^*(d\mathbb{Z} \times d\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_{r+m}} \mathbb{Z}$ has the trivial bundle structure.

174

Hence each C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$ is given by twisting $C^*(\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2})$ in $A_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by the totally skew multiplier ρ on $\widehat{\mathbb{T}^r} \times \widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}$, which is a spherical noncommutative torus.

Therefore, the set of spherical noncommutative tori with primitive ideal space $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ and fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$ is in bijective correspondence with the set of C^* -algebras of sections of locally trivial C^* -algebra bundles over $\prod_{i=1}^{e} S^{2n_i} \times \prod_{j=1}^{s} S^{2k_j-1}$ with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$. Q.E.D.

References

- L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct. Anal. 14 (1973), 299–324.
- [2] B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, New York, Heidelberg, London, Paris and Tokyo, 1986.
- B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-Theory 6 (1992), 267-284
- [4] F. Boca, The structure of higher-dimensional noncommutative tori and metric Diophantine approximation, J. Reine Angew. Math. 492 (1997), 179–219.
- [5] D. Boo, P. Kang and C. Park, The sectional C^{*}-algebras over a torus with fibres a non-commutative torus, Far East J. Math. Sci. 1 (1999), 561–579.
- [6] D. Boo and C. Park, The fundamental group of the automorphism group of a noncommutative torus, Chinese Ann. Math. Series B 21 (2000), 441–452.
- [7] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, Heidelberg and Berlin, 1982.
- [8] L. Brown and G. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
- [9] J. Dixmier, C*-Algebras, North-Holland, Amsterdam, New York and Oxford, 1977.
- [10] G. A. Elliott, On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group in Operator Algebras and Group Representations, Ed. G. Aresene et al., 1, Pitman, London, 1984, 157–184
- G. A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443, (1993), 179–219
- P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191–250.

- [13] R. Ji and J. Xia, On the classification of commutator ideals, J. Funct. Anal. 78 (1988), 208–232.
- [14] M. Karoubi, K-Theory, Springer-Verlag, Berlin, Heidelberg and New York, 1978.
- [15] F. Krauss and T. C. Lawson, Examples of homogeneous C^{*}-algebras, Memoirs A.M.S. 148 (1974), 153–164.
- H. Lin and M. Rørdam, Extensions of inductive limits of circle algebras, J. London Math. Soc. 51 (1995), 603–613.
- [17] C. Park, The bundle structure of spherical non-commutative tori, Vietnam J. Math. 29 (2001), 27–38.
- [18] M. Takesaki and J. Tomiyama, Applications of fibre bundles to the certain class of C^* -algebras, Tohoku Math. J. **13** (1961), 498–522.
- [19] K. Thomsen, The homotopy type of the group of automorphisms of a UHF-algebra, J. Funct. Anal. 72 (1987), 182–207.
- [20] N.E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford Univ. Press, Oxford, New York and Tokyo, 1993.
- [21] L. Woodward, The classification of principal PU(k)-bundles over a 4complex, J. London Math. Soc. 25 (1982), 513–524.

Department of Mathematics Chungnam National University Daejeon 305-764 Korea E-mail address: cgpark@math.cnu.ac.kr