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C* -algebras over spheres with fibres 
noncommutative tori 

Chun-Gil Park 

Abstract. 

All C* -algebras of sections of locally trivial C* -algebra bundles 
over rr:=l S 2 n; X rr;=l S 2krl with fibres Mc(Aw) are constructed 
under the assumption that each completely irrational noncommuta­
tive torus is realized as an inductive limit of circle algebras. It is 
shown that each C* -algebra of sections of a locally trivial C* -algebra 
bundle over rr:=l S 2n; X rr;=l S 2krl with fibres Mc(Aw) is stably 

isomorphic to C(f1:=1 S 2n' x f1j=1 S 2kj- 1 ) 0 Mc(Aw)· 

Let Aca be a cd-homogeneous C* -algebra over f1:=l S2n; x f1j=1 
S 2 kj-l x ·r+2 of which no non-trivial matrix algebra can be factored 
out. The spherical noncommutative torus §~d is defined by twist­

ing C*(ifr+2 X z=-2 ) in Acd 0 C*(z=-2 ) by a totally skew multi­

plier p on 1fr+2 X z=-2 • We prove that §~d 0 Mpoo is isomorphic to 

C(f1:=l S 2n' X f1j=1 S 2kj- 1 ) 0 C*('ifr+2 x z=-2, p) 0Mca(C) 0Mv= 
if and only if the set of prime factors of cd is a subset of the set of 
those of p. 

§0. Introduction 

Given a locally compact abelian group G and a multiplier wonG, 
one can associate to them the twisted group C*-algebra C*(G,w), which 
is the universal object for unitary w-representations of G. C* (zm, w) is 
said to be a noncommutative torus of rank m and denoted by Aw· The 
multiplier w determines a subgroup Sw of G, called its symmetry group, 
and the multiplier w is called totally skew if the symmetry group Sw is 
trivial. And Aw is called completely irrational if w is totally skew (see 
[1, 12]). It was shown in [1] that if G is a locally compact abelian group 
and w is a totally skew multiplier on G, then C*(G,w) is a simple C*­
algebra. The noncommutative torus Aw of rank m is the universal object 
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for unitary w-representations of zm' so Aw is realized as C* ( u1' ... 'Um I 
UiUj = e 21fifij'ujui), where Ui are unitaries and ()ji are real numbers for 
1:::; i,j:::; m. 

Boca [4] showed that almost all completely irrational noncommuta­
tive tori are isomorphic to inductive limits of circle algebras, where the 
term "circle algebra" denotes a C* -algebra which is a finite direct sum 
of C*-algebras of the form C('lf1) ® Mq(C). We will assume that each 
completely irrational noncommutative torus appearing in this paper is 
an inductive limit of circle algebras. 

Each cd-homogeneous C*-algebra A over M is isomorphic to the C*­
algebra f( TJ) of sections of a locally trivial C* -algebra bundle TJ with base 
space M, fibres Mcd(q, and structure group Aut(Mcd(C)) ~ PU(cd) 
(see [15, 18]). So each cd-homogeneous C*-algebra over Il~=1 szn, X 

n;=1 S2kj- 1 X 1['"+2 is realized as the C*-algebra f(() of sections of 

a locally trivial C*-algebra bundle ( over Il~=1 szn, X n;=1 S 2kj- 1 X 

1f"+2 with fibres Mcd(C). Thus the spherical noncommutative torus 
§~d, defined in Section 2, is realized as the C* -algebra of sections of 

a locally trivial C* -algebra bundle over Il~=1 S 2ni X n;=1 S 2kj - 1 with 

fibres P% ® Mc(C), where P% is defined in Section 2. 
We are going to show that the set of all C* -algebras of sections of lo­

cally trivial C* -algebra bundles over Il~=1 S2n' X n;=1 S2kj - 1 with fibres 

P% ® Mc(C) is in bijective correspondence with the set of all spherical 

noncommutative tori with primitive ideal space Il~=1 szn, X n;=1 S2kj- 1 

and fibres Pt ® Mc(C), that §~d ® Mp= is isomorphic to C(Il~=1 szn, x 

n;=1 S2kr 1) ®C* (P X zm-2' p) ® Mcd ( q ® Mp= if and only if 
the set of prime factors of cd is a subset of the set of prime factors 
of p, and that §~d is stably isomorphic to C(Il~=1 S2n' X n;=1 S2kj - 1) 

®C*(P X zm-Z' p) ® Mcd(q. 

§1. Homogeneous C*-algebras over a product space of spheres 

An important problem, in the bundle theory of geometry, is to com­
pute the set [M, BPU(cd)] of homotopy classes of continuous maps of 
a compact CW-complex M into the classifying space BPU(cd) of the 
Lie group PU(cd). The set [M, BPU(cd)] is in bijective correspondence 
with the set of equivalence classes of principal PU(cd)-bundles over M, 
which is in bijective correspondence with the set of cd-homogeneous C*­
algebras over M (see [15, 18]). [S2n, BPU(cd)] = [S2n-1, PU(cd)] ~ 7/, 

if n > 1, ~ Zed if n = 1, which are the cyclic groups. So each group 
has a generator, and there is a unitary U(z) E PU(cd) such that the 
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generating cd-homogeneous C* -algebra over S 2n can be realized as the 
C* -algebra of sections of a locally trivial C* -algebra bundle over S 2n 

with fibres Med(C) characterized by the unitary U(z) E PU(cd) over 
S 2n-l. If ( cd, k) = p (p > 1), then consider the cd-homogeneous C*­
algebra over S 2n corresponding to each k E Z or Zed as the tensor 
product of Mp(C) with a ~-homogeneous C*-algebra over S2n, which 

k d k 
is given by U(z)"P E PU('"p). Consider U(z)k as U(z)"P ®Ip E PU(cd), 
where Ip denotes the p x p identity matrix. Then each cd-homogeneous 
C* -algebra Bed,k over S 2n can be realized as the C* -algebra of sections 
of a locally trivial C* -algebra bundle over S 2n with fibres Med(C) char­
acterized by the unitary U(z)k E PU(cd) over S 2n-l for some k E Z or 
Zed (see [15]). 

Lemma 1.1. Every cd-homogeneous C* -algebra over S 2n-l X S 1 ' 

whose cd-homogeneous C* -subalgebra restricted to the subspace S 2n-l '----+ 

S 2n-l X S 1 has the trivial bundle structure, is isomorphic to one of the 
C* -subalgebras Aed,k, k E Z or Zed, of C(S2n-l X [0, 1], Med(C)) given 
as follows: iff E Aed,k, then the following condition is satisfied 

f(z, 1) = U(z)k f(z, O)U(z)-k 

for all z E S 2n-I, where U(z) E PU(cd) is the unitary given above. 

Proof. Let A be a cd-homogeneous C*-algebra over S 2n-l X S 1 

whose cd-homogeneous C* -subalgebra restricted to the subspace S 2n-l 

'----+ S 2n-l X S 1 has the trivial bundle structure. Since there is a map of 
degree 1 from S 2n-l X S 1 to S2n, the composite of the map of degree 1 
and the map representing each element of [S2n, BPU(cd)] gives an ele­
ment of[S2n-l xSl, BPU(cd)]. Hence each element of[S2n, BPU(cd)] ~ 
[ S 2n-1, PU ( cd)] representing a cd-homogeneous C* -algebra over S 2n in­
duces an element of [S2n-I, PU(cd)] C [S2n-l x Sl, BPU(cd)], and the 
cd-homogeneous C* -algebras Aed,k over S 2n-l X S 1 corresponding to 
the cd-homogeneous C* -algebras Bed,k over S 2n are constructed in the 
statement. By the assumption, the cd-homogeneous C*-subalgebra of A 
restricted to the subspace s 2n-l X (0, 1) of S 2n-l X S 1 has the trivial bun­
dle structure. Hence A corresponds to an element of [S2n-I, PU(cd)], 
and A is characterized by the unitary U(z)k E PU(cd) over S 2n-l for 
some k E Z or Zed· Q.E.D. 

Lemma 1.2. Let n and k be integers greater than 1. Each cd­
homogeneous C* -algebra over sn X Sk is isomorphic to a cd-homo­
geneous C* -algebra characterized by the unitary U(z)a over sn-l in 
a cd-homogeneous C* -algebra Pe over e+ X sk and e'?:_ X sk' where 
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U(z) E PU(cd) or PU(c) if Mc(C) is factored out of Pc, and e't (resp. 
e"':) is then-dimensional northern (resp. southern) hemisphere. 

Proof. Since e't, e"': are contractible, each cd-homogeneous C* -alge­
bra over e+ X Sk and e"_': X Sk is essentially induced by a cd-homogeneous 
C* -algebra over Sk. Each cd-homogeneous C* -algebra over sn X Sk is 
characterized by a projective unitary over the boundaries sn- 1 X Sk of 
e+ X sk and e"': X sk. But 7r1 ( sn) = { 0} and so the identification of 
the boundaries Sk '---+ e+ X Sk and Sk '---+ e"_': X Sk does give the trivial 
bundle structure. Hence the cd-homogeneous C* -algebra over sn X sk 
is characterized by the unitary U(z)a, a E Z or a E Zed, over sn- 1 

in the cd-homogeneous C* -algebra over e+ X sk and e"': X sk' where 
U(z) E PU(cd) or PU(c). Q.E.D. 

For a cd-homogeneous C* -algebra A over S 2n-1 there is a ma­
trix algebra Mq(C) such that A® Mq(C) is isomorphic to C(S2n- 1 ) ® 
Mcdq(C). Since there is a map of degree 1 from S 2n+1 to S 2n X Sl, 
there are cd-homogeneous C* -algebras over s2n X S 1 induced from cd­
homogeneous C* -algebras over S 2n+1 . Also there are cd-homogeneous 
C* -algebras over S2n X S 1 induced from cd-homogeneous C* -algebras 
over S2n. But the tensor product of each cd-homogeneous C* -algebra 
over S 2 n X S 1 induced from a cd-homogeneous C*-algebra over S 2n+1 

with Mq(C) has the trivial bundle structure for some integer q big 
enough since [ S 2n+l, B PU ( cdq)] ~ { 0}. And there is a map of de­
gree 1 from S 2n to S 2n-1 X Sl, and so there are cd-homogeneous C*­
algebras over S 2n-1 X S 1 induced from cd-homogeneous C*-algebras 
over S2n. Also there are cd-homogeneous C* -algebras over S 2n-1 X S 1 

induced from cd-homogeneous C*-algebras over s 2n-1 . But [S2n-1 X 

S 1 , BPU(cdq)] and [S2n, BPU(dq)] are the same for some integer q since 
[S2n-I, BPU(cdq)] ~ {0}. So the cd-homogeneous C*-subalgebra of the 
tensor product of a cd-homogeneous C* -algebra over s 2n-1 X S 1 with 
Mq(C) restricted to the subspace s 2n- 1 '---+ s 2n- 1 X S 1 has the trivial 
bundle structure (see [17, 18]). From now on, we assume that each cd­
homogeneous C* -algebra over s2n X S 1 is isomorphic to the tensor prod­
uct of a cd-homogeneous C*-algebra over S2n with C(S1 ), and that the 
cd-homogeneous C*-subalgebra of a cd-homogeneous C*-algebra over 
S 2n- 1 X S 1 restricted to the subspace s2n- 1 '---+ S 2n- 1 X S 1 has the 
trivial bundle structure. 

Thomsen [19, Theorem 1.15] computed 7r2n-1 (Aut(Mcdp(C)®Mq=)) 
~ Z/cdpZ for Mq= a UHF-algebra of type q00 , and cdp and q rela­
tively prime integers. Let Acd,k be a cd-homogeneous C* -algebra over 
S 2n-1 X 8 1 of which no non-trivial matrix algebra can be factored out. 
This result implies that for any positive integer p no matrix algebra 
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bigger than Mp(C) can be factored out of Acd,k 0 Mp(C). So the nat­
ural inclusion C(S1 ) <---+ Acd,k induces the canonical homomorphism 
Ko(C(S1 ))----+ Ko(Acd,k) such that [1c(S1)] maps to [1Acd,k]. 

Lemma 1.3. Let Acd,k be a cd-homogeneous C* -algebra over S2n~l 
x 8 1 of which no non-trivial matrix algebra can be factored out. Then 
Ko(Acd,k) ~ K1 (Acd,k) ~ '£'}, and [1Aca,kJ E Ko(Acd,k) is primitive. 

Proof. We will show later that Acd,k is stably isomorphic to C(S2n~l 
xS1 ). Since K0 (C(S2n~l x 8 1 )) ~ K1 (C(S2n~l x 8 1 )) ~ 71}, Ko(Acd,k) 

~ KI(Acd,k) ~ '£'..2. Hence it is enough to show that [1Aca,kl E Ko(Acd,k) 
is primitive. 

No matrix algebra bigger than Mq(C) can be factored out of Acd,k 0 
Mq(C), and so C(S2n~l) cannot be factored out of Acd,k 0 Mq(C). 
Hence the canonical embedding ¢ of C(S2n~l) into Acd,k induces an 
isomorphism fJ of K0 (C(S2n~l x 8 1 )) into K 0 (Acd,k)· But the unit 
1c(S2n-1) maps to the unit 1C(s2n-1 xSl) under the canonical embedding 
'ljJ of C(S2n~l) into C(S2n~l x 8 1 ). Thus [1C(s2n-1 )] E K 0 ( C(S2n~l)) ~ 

;z maps to [1c(S2n-1 xSl )] E Ko( C(S2n~l X 8 1)) ~ Z2 ' primitive m 
Ko(C(S2n~l X 8 1 )) (see [20, 13.3.1]). In the commutative diagram 

Ko( C(S2n~l)) '1/J. Ko(C(S2n~l X Sl)) -------+ 

(identity), 1 lJ.L(e-!) 

Ka(C(s2n~l )) ¢. 
Ko(Acd,k), -------+ 

JJ([1c(S2n-lxS1)]) = ¢. o (identity)* o 'l/;; 1 ([1C(s2n-1 xSl)]) = [1Acd,k]. 
Consequently [1Acd,k] is the image ofthe primitive element [1C(s2n-1 xs1 )] 
E K0(C(S2n~l xS1 )) under the isomorphism f.k· Therefore, [1Acd,k] E 

Ko(Acd,k) ~ Z2 is primitive. 
Thus, Ko(Acd,k) ~ Z2 , K1(Acd,k) ~ Z 2 , and [lAcd,k] E Ko(Acd,k) is 

primitive. Q.E.D. 

Lemma 1.4. Let Bcd,k be a cd-homogeneous C* -algebra over S 2n 
of which no non-trivial matrix algebra can be factored out. Then [1Bcd,k] 
E Ko(Bcd,k) ~ Z 2 is primitive. 

Proof. We will show later that Bcd,k is stably isomorphic to C(S2n) 
0Mcd(C). So Ko(Bcd,k) ~ Ko(C(S2n)) ~ /Zffi/Z. But Bcd,k corresponds 
to Acd,k with respect to the conditions on sections over the boundaries 
S2n~l of e!n II e:_n and S2n~l X [0, 1], and the canonical embedding of 
C(S2n~l) into Acd,k which induces the isomorphism of K0 (C(S2n~l x 
8 1 )) into K 0 (Acd,k) corresponds to the imbedding¢ of C(S2n~l) into 
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Bcd,k· The canonical imbedding¢ of C(S2n-1 ) into Bcd,k induces an 
isomorphism JL of K 0 (C(S2n)) into Ko(Bcd,k), where szn- 1 = oe;n. The 
unit 1C(s2n-1) maps to the unit 1ccs2n) under the canonical embedding 
'1(; of C(S2n-1 ) into C(S2n). [1C(s2n-1J] E K 0(C(S2n-1)) ~ Z maps to 
[1C(s2nJ] E Ko(C(S2n)) ~ Z2 , primitive in Ko(C(S2n)) (see [20, 13.3.1]). 
In the commutative diagram 

(identity). 1 
Ko(C(szn-1 )) 

lJL(~) 

Ko(Bcd,k), 

JL([1C(s2n)]) = ¢* o (identity)* o 'lf;;:- 1 ([1C(s2n)]) = [1Bcd,k]. So [1Bcd,k] is 
the image of the primitive element [1ccs2nJ] E K 0 (C(S2n)) under the 
isomorphism JL· Hence [1Bcd,k] E Ko(Bcd,k) is primitive. 

Therefore, [1Bcd,k] E Ko(Bcd,k) ~ Z2 is primitive. Q.E.D. 

For each 4-dimensional factors of rr 52 X rr+r+Z 51 every d-homo­
geneous C*-algebra overS can be constructed by combining Lemma 1.1 
and Lemma 1.2. If s + r is odd, one can make the integer even by 
tensoring with C(S1 ). So one can assume that s + r is even, and that 
s is greater than or equals to r and big enough. And one can rearrange 
n;=1 szkj-1 and 'fT if needed. 

Theorem 1.5. Let Acd be a cd-homogeneous C* -algebra over I1~~ 1 
szn, X n;=1 S 2 kj - 1 X 'fT X 'f2 whose cd-homogeneous C* -subalgebra re­

stricted to the subspace 'fr X 'f2 <.......+ I1~=1 szn, X n;=1 S 2kj- 1 X 'fT X 'f2 

is realized as C('fr) 0 A1. 0 Mc(C) for A1. a rational rotation alge-
d d 

bra. Then Acd is isomorphic to one of the C* -subalgebras Aba1 ,ba2 '.·.·.· ,bae , 
1, 2, , s+r 

-2-

s+r e -2-

C(Il(e~ni rre:.n') X Il(S2kj- 1 X [0,1]) X 'f1 X [0,1J,Mcd(C)) 
i=l j=1 

consisting of those functions f that satisfy 

(fl 2n'II 2n,)+(zi) = U(zit'(fl 2n'II 2ni)-(zi)U(zi)-a' e+ e_ e+ e_ 

(fl 5 2kj -1 x [o, 11 ) ( Wj, 1) = U( Wj )bj Ul 5 2kj -1 x [o, 11 ) ( Wj, O)U( Wj) -bj 

(fhl"x[0,1j)(x, 1) = U(x)cl(fhr1x[0,1J)(x,O)U(x)-cl 
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s+r 
f ll ( ) E Tie s2n·-1 TI-2 s2k -1 '11'1 JOr a Z1,··· ,ze,w1,··· ,Ws!r,X i=1 ' X j=1 1 X ll , 

one of the tensor products of homogeneous C* -algebras of the type above, 
or one of the C* -algebras given by replacing (I1~=1 S2ni X n;=1 S2 kj - 1 X 

r x 1l2 ) in A~::."."." :~:+r or the tensor products with suitable c' d' -homoge-
-2-

neous C* -algebras in the same sense as above, when Me' d' (C) are fac­
tored out of Aba''."."." ,bae or the tensor products, where U(zi), U(w1 ), and 

l1 ' s+r -2-

U(x) E PU(cd) are defined in the statement of Lemma 1.1. 

Proof. By Lemma 1.1, each cd-homogeneous C*-algebra over S 2kJ- 1 

x S1 corresponds to a cd-homogeneous C* -algebra over S 2kJ. By Lemma 
1.2, each cd-homogeneous C* -algebra over the product space of two even 
dimensional spheres can be constructed. Combining Lemma 1.1 and 
Lemma 1.2 yields that replacing S2ni and S2 kJ- 1 with S 2 and S 1 does 
not give any change in the relation, associated with bundle structure, 
among the factors of TI~=1 S2ni X n;=1 S2kj - 1 X ']['r X ']['2. Hence each 

cd-homogeneous C*-algebra over TI~=1 S2ni X n;=1 S2kJ- 1 X ']['r X ']['2 can 
be given by [5, Theorem 2.5], which is exactly stated in the statement 
for the case ni = 1 and kj = 1. Q.E.D. 

Theorem 1.6. Let Acd be a C* -algebra over TI~=1 S 2ni X 

n;=1 S 2kj - 1 X ']['r X ']['2 constructed in Theorem 1. 5. Assume that no 

non-trivial matrix algebra can be factored of Acd· Then Ko(Acd) """ 
K1(Acd) e,; :Z?e+s+r+l, and [1AcJ E Ko(Acd) is primitive. 

Proof. We are going to show in Lemma 3.1 that Acd is stably iso­
morphic to C(f1~=1 S 2ni X n;=1 S 2kJ- 1 X r X 1l2)@ Mcd(q. By the 
Kiinneth theorem [2, Theorem 23.1.3] 

e s 

Ko(C(IT s2ni X II s2kj-1 X r X ']['2)) 

i=1 j=1 
e s 

i=1 j=1 
e s 

i=1 j=1 

Similarly, one obtains that K 1 ( Acd) e,; ::z;2e+s+r+l. 

It is enough to show that [1AcJ E Ko(Acd) is primitive. But the 
proof is similar to the proof given in [17, Theorem 1.2]. Since the 
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cd-homogeneous C* -algebra Acd is just given by replacing each C*­
subalgebra C(S2 ) (resp. C(S1 )) of the cd-homogeneous C* -algebra over 
TI~=1 S 2 X n:=1 S 1 xr x1I'2 given in [17] with C(S2n;) (resp. C(S2kj- 1 )), 

the proof is just given by replacing C(S2 ) and C(S1 ) given in the proof 
of [17, Theorem 1.2] with C(S2n,) and C(S2kj- 1 ). 

Therefore, Ko(Acd) ~ K1(Acd) ~ Z?e+s+r+l, and [1Acd] E Ko(Acd) 
is primitive. Q.E.D. 

§2. Spherical noncommutative tori 

The noncommutative torus Aw of rank m is obtained by an iteration 
of m- 1 crossed products by actions of :Z:, the first action on C(1I'1 ). 

When Aw is not simple, by a change of basis, Aw is obtained by an 
iteration of m- 2 crossed products by actions of Z, the first action on a 
rational rotation algebra A1.. Since the fibre Md(C) of A1. is factored out 

d d 

of the fibre of Aw, Aw can be obtained by an iteration of m- 2 crossed 
products by actions of :Z:, the first action on A1., where the actions of :Z: 

d 

on the fibre Md(C) of A1. are trivial. This assures us of the existence of 
d 

such actions ai in the definition of Pf below. So one can assume that 
Aw is given by twisting C*(d:Z: x d:Z: x :z:m-2 ) in A1. ® C*(:z:m-2 ) by the 

d 

restriction of the multiplier w to d:Z: X d:Z: x :z:m- 2 , where Ji x Ji is the 
primitive ideal space of A1. and C* ( d:Z: X d:Z:, res of w) = C* ( d:Z: x d:Z:) 

d 

(see [5] for details). 

Definition 2.1. Let Acd be a cd-homogeneous C* -algebra over TI~=l 
S 2ni X n;=1 S2kj- 1 X ']['r X 1['2 whose cd-homogeneous C* -subalgebra re­
stricted to the subspace ']['r X 1['2 ~ Tie s2n; X TIS S 2 kj - 1 X 'j['T X 1['2 

"=1 J=l 
is realized as C(r) ® A1. ® Mc(C) for A1. a rational rotation alge-

d d 

bra. The C*-algebra which is given by twisting C*(Tr X f2 X :z:m-2 ) in 

Acd ® C*(:z:m-2 ) by a totally skew multiplier p on Tr X f2 X :z:m-2 is 
said to be a spherical noncommutative torus of rank ( e, s + r, m) and 

denoted by §~d, where C*(P, res of p) = C*(P), 1['2 is the primitive 

ideal space of A1., and C* (Tr x f2 x :z:m-2 , p) is a completely irrational 
d 

noncommutative torus Ap. 

Then the fibre of§~, which is called a generalized noncommutative 

torus of rank r + m and denoted by Pf, can be obtained by an iteration 
of r + m - 2 crossed products by actions ai of :Z:, the first action on the 
rational rotation algebra A1., where the actions ai on the fibre Md(q of 

d 

A~ are trivial. Thus the spherical noncommutative torus §~d is realized 
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as the C* -algebra of sections of a locally trivial C* -algebra bundle over 
Tie szn, X TIS S 2kj - 1 with fibres pd ,0, M (If") 2=1 ]=1 p 'tY c "-- . 

We are going to show that [1§~d] E K0 (§~d) is primitive. 

Theorem 2.2. Let §~d be a spherical noncommutative torus of 
rank ( e, s + r, m). Assume no non-trivial matrix algebra can be fac-

d 1 A Th K (§cd) K (§cd) '772e+s+r+m-1 d [ ] tore out o cd. en o P ~ 1 P ~ ~ , an 1§~d E 

K0 (§~d) is primitive. 

Proof. The proof is by induction on m. Assume that m = 2. 
We will show later that §~d is stably isomorphic to C(f1~=1 szn, X 

TI.i=1 S 2kj-1) ® Ap ® Mcd(C), where Ap is a noncommutative torus of 
rank r + 2. By the Kiinneth theorem 

e s 

Ko(C(II szn, X II s2kj-1) ® Ap) 
i=1 j=1 

e s 

~ Ko(C(II s2n; X II s2kj-1)) ® Ko(Ap) 
i=1 j=1 

e s 

EBK1(c(II szn, x II szkj-1)) ® K1(Ap) 
i=1 j=1 

Similarly, one obtains that K1(C(f1~=1 S2ni X TI.i=1 S 2kj-1) ® Ap) ~ 
z;ze+s+r+l So K (§cd) ~ K (§cd) ~ K (C(IJe szn, X TIS szkj-1) ,0, 

. 0 p 1 p 0 2=1 J=1 'tY 

Ap) ~ Z2e+s+r+'. It is enough to show that [1§~d] E Ko(§~d) is primitive. 

Combining the tricks given in Theorem 1.6 and [17, Theorem 2.2] yields 
h [1 l K (§cd) · • · • S K (§cd) rv K (§cd) rv '772e+s+r+l t at §~d E o P 1s pnm1t1ve. o o P = 1 P = ~ , 

and [1§~d] E K0 (§~d) is primitive. 
Next, assume that the result is true for all spherical noncommu­

tative tori with m = i - 1. Write §i = C*(§i_ 1, ui), where §i = 
C*(§~d,u3 , ... ,ui), where §~dis the case above, m = 2. Then the 
inductive hypothesis applies to §i_1. Also, we can think of §i as the 
crossed product by an action a of Z on §i-1, where the generator of Z 
corresponds to Ui, which acts on C* ( v1 , · · · , Vr, u~, ug, u3, · · · , ui-1) by 
conjugation (sending Uj to uiuJui1 = e21ri1Jj'uJ,j -=f. 1, 2, sending uj to 
u·udu-:-1 = e21rid1Jj,ud J. = 1 2 and sending v· to u·v·u-:- 1 = e21ri(3j'v·) 

'l J 1, J' ' ' J 'l J 2 J ' 

and which acts trivially on C(IJ~=1 szn, X IJj=1 S2kj-1) ®Mcd(C). Here 

C*(Tr x V,res of p) ~ C*(v1,v2, · · · ,vr,u~,ug). Note that this action 
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is homotopic to the trivial action, since we can homotope eji and f3ji to 0. 
Hence Z acts trivially on the K-theory of §\_1 . The Pimsner-Voiculescu 
exact sequence for a crossed product gives an exact sequence 

and similarly for K 1 , where the map <I> is induced by inclusion. Since 
a* = 1 and since the K-groups of §i_1 are free abelian, this reduces a 
split short exact sequence 

and similarly for K 1 . So K 0 (§i) and K 1(§i) are free abelian of rank 
2·2e+s+r+i-2 = 2e+s+r+i-1. Furthermore, since the inclusion §i-1--" §i 

sends 1s,_ 1 to 1s, [1sJ is the image of [1s,_J, which is primitive in 
K 0(§i_I) by inductive hypothesis. Hence the image is primitive, since 
the Pimsner-Voiculescu exact sequence is a split short exact sequence of 
torsion-free groups. 

( d) ( cd 2e+s+r+m-1 [ ] ( cd) Therefore, K 0 §~ ~ K 1 §P ) ~ Z , and 1s~d E K 0 §P 

is primitive. Q.E.D. 

Corollary 2.3. Let q be a positive integer. Assume that no non­
trivial matrix algebra can be factored out of Acd· Then §~d@ Mq(C) is 
not isomorphic to A Q9 Mpq(CC) for any C*-algebra A and any integer 
p greater than 1. In particular, no non-trivial matrix algebra can be 
factored out of§~d, P;d and Ap. 

Proof. Assume §~d®Mq(C} is isomorphic to A®Mpq(C}. Then the 
unit 1scd@ Iq maps to the unit 1A@ lpq· So [1scd@ Iq] = [1A@ lpq]· Thus 

p p 

there is a projection e E §~d such that q[1s~d] = (pq)[e]. But K0 (§~d) is 

torsion-free, so [1scd] = p[e]. This contradicts Theorem 2.2 if p > 1. 
p 

Therefore, §~d Q9 Mq(C} is not isomorphic to A Q9 Mpq(C). Q.E.D. 

§3. The bundle structure of spherical noncommutative tori 

ForM a compact CW-complex the Cech cohomology group H 3 (M, 
Z) classifies the tensor products of cd-homogeneous C* -algebras over M 
with the C* -algebra JC(H) of compact operators on a separable Hilbert 
space H (see [9]). The Cech cohomology group H 3 (M, Z) is isomorphic 
to the singular cohomology group H 3 (M,Z) when M is triangularizable 
(see [7, Theorem15.8]). 
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Lemma 3.1. Each cd-homogeneous C* -algebra over rr:=1 8 2n; X 

ITs+r+2 8 2kj- 1 is stably isomorphic to C(IJe 8 2n; X rrs+r+2 8 2k1- 1 )"" J=1 "=1 J=1 '<Y 

Med(CC). 

Proof. Each non-trivial element in the Cech cohomology group 
H 3 (IJ:=1 8 2n; X rr;!~+2 8 2kj-I, Z) can be given by a non-trivial ele­

ment in H 3 ( ( 8 1 )3 , Z), H 3 ( 8 2 x 81, Z), or H 3 ( 8 3 , Z) ifthere exist such 
factors. 

First, H 3 (82 x 81, Z) = z. By the Woodward theorem [21], [82 x 
81, BPU(cd)] is embedded into H 2 (82 x 81, Zed) EB H 4 (82 x 81, Z) ~ 
H 2 (82 , Zed)~ Zed· So each cd-homogeneous C*-algebra over 8 2 X 8 1 is 
isomorphic to the tensor product of a cd-homogeneous C* -algebra over 
8 2 with C(81 ), which is stably isomorphic to C(82 ) Q9 C(81) Q9 Med(CC), 
since H 3 (8 2 , Z) = {0}. Thus each cd-homogeneous C* -algebra over 
8 2 X 8 1 is stably isomorphic to C(82 X 8 1) Q9 Med(CC). 

Similarly, one obtains the same result for the other cases. 
Therefore, each cd-homogeneous C* -algebra over rr:=1 8 2n; X rr;!~+2 

8 2 kj - 1 is stably isomorphic to C(IJ:=1 8 2ni X rr;!~+2 8 2k1- 1 ) C9Med(CC). 
Q.E.D. 

We are going to show that §~d Q9 K(H) has the trivial bundle struc­
ture. 

Theorem 3.2. The spherical noncommutative torus §~d is stably 

isomorphic to C(IJ:=1 8 2n, xiJj=1 8 2k1- 1 )C9Ape9Mcd(CC). In particular, 

P% is stably isomorphic to AP Q9 Md(CC). 

Proof. Let §~d be defined by twisting C*(Tr X j2 X zm-2 ) in Aede9 

C*(zm-2) by a totally skew multiplier p on Tr X j2 X zm-2 , where 

C*(V,res of p) = C*(V). By Lemma 3.1, the cd-homogeneous C*­
algebra Aed is stably isomorphic to C(IJ:=1 8 2n; X rr;=1 8 2 k1- 1 X ']['T X 

1!'2 ) C9Med(CC). In particular, C(IJ~= 1 8 2n' x IJj=1 8 2k1- 1 ) is factored out 

of Aede9K(H). By the definition of§~d, C(IJ~=1 8 2n; X rr;=l 8 2 k1- 1 ) is 

factored out of§~de9K(H). So §~dis stably isomorphic to C(IJ:=1 8 2ni X 

IJj=1 8 2kr 1 ) Q9 P% Q9 Me(CC). But it was shown in [5, Theorem 3.4] that 

P% is stably isomorphic to Ap Q9 Md(CC). 
Therefore, §~dis stably isomorphic to C(IJ~=1 8 2n; X rr;=1 8 2k1- 1 )C9 

Ap Q9 Med(CC). Q.E.D. 

Using the fact that [ls~d] E K 0 (§~d) is primitive, we are going to 
investigate the bundle structure of the tensor products of spherical non­
commutative tori §~d with UHF -algebras Mp= of type p=. 
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Theorem 3.3. Let §~d be a spherical noncommutative torus. As­
sume that no non-trivial matrix algebra can be factored out of Acd. Then 
§~d®Mpoo is isomorphic to C(f1~=1 szn; X n;=1 S2kr1 )®Ap®Mcd(C)® 
Mp= if and only if the set of prime factors of cd is a subset of the set 
of prime factors of p. 

Proof. Assume that the set of prime factors of cd is a subset of 
the set of prime factors of p. To show that §~d ® Mp= is isomorphic to 

C(f1~=1 szn; X n;=1 S2kJ- 1) ®Ap®Mcd(q ®Mpoo' it is enough to show 

that §~d ® M(cd)= is isomorphic to C(f1~=1 szn; X n;=1 S 2kJ- 1) ® Ap ® 
Mcd(C) ®M(cd)=. However, there exist the C* -algebra homomorphisms 
which are the canonical inclusions 

e s 

§~d ® M(cd)Y (C) '----+ C(II szn, X II S2kj-1) ® Ap ® Mcd(q ® M(cd)Y (C) 
i=1 j=1 

and the C(IJ:=1 szn, X n;=1 S 2kJ- 1) ®Ap-module maps C(IJ:=1 szn, X 
n;=1 S2kJ- 1 ) ® Ap ® M(cd)Y (C)'----+ §~d ® M(cd)Y(C): 

e s 

§~d '----+ c(II szn, x II S2kJ- 1) ® Ap ® Mcd(q '----+ §~d ® Mcd(q 
i=1 j=1 

e s 

'----+ c(II szn, x II szkj-1) ® Ap ® MccdJ2 (q '----+ . · · . 
i=1 j=1 

The inductive limit of the odd terms 

· · · --+ §~d ® M(cd)Y (C) --+ §~d ® M(cd)Y+l (C) --+ · · · 

is §~d ® M(cd)=, and the inductive limit of the even terms 

e s 

... ___, c(II szn, x II szkj-1) ® Ap ® MccdJY(q 
i=l j=l 

e 

--+ c(II szn, x II szkj-1) ® Ap ® MccdJY+l (C)___, ... 
i=1 j=1 

is C(IJ~=l S 2n' x IJ;=1 S 2kJ - 1) ® Ap ® M(cd)=. Thus by the Elliott 

theorem [11, Theorem 2.1], §~d®M(cd)= is isomorphic to C(f1~=1 szn, X 
IJ;=1 szkj-1) ® Ap ® M(cd)=. 

Conversely, assume that 

e s 

§~d ® Mp= ~ c(II szn, x II S 2k1- 1) ® Ap ® Mcd(q ® Mp=· 
i=1 j=1 
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Then the unit 1s~d01Mpoo maps to the unit 1ccn~=l s2n; xn;=l s2ki-1)0Ap 

01Mpoo 0 Icd· So 

[1s~d 0 1Mpoo l = [1cm~=l s2n; xn;=l s2kj -1)0Ap 0 1Mpoo 0 Icd] 

[1scd ®1M oo] = [1scd]0 [1M oo] p p p p 

[1cm~=l S2n; xnJ=l s2ki-1)0Ap 0 1Mpoo 0 Icd] 

= cd([1ccm=1 8 2n; xn;= 1 8 2k;-l)®A) 0 [1Mv=D· 

Under the assumption that 1scd 0 1M oo maps to 
p p 

if there is a prime factor q of cd such that q f p, then [1Mpoo] -1- q[e=] 
for e= a projection in Mpoo. So there is a projection e E §~d such that 
[1scd] = q[e]. This contradicts Theorem 2.2. Thus the set of prime 

p 

factors of cd is a subset of the set of prime factors of p. 
Therefore, §~d®Mpoo is isomorphic to C(IJ~=i S 2n; X rr;=l S2kj-l )0 

Ap 0 Mcd (C) 0 Mpoo if and only if the set of prime factors of cd is a subset 
of the set of prime factors of p. Q.E.D. 

§4. Completely irrational noncommutative tori 

It was proved in [3, Theorem 1.5] that every completely irrational 
noncommutative torus has real rank 0, where the "real mnk 0" means 
that the set of invertible self-adjoint elements is dense in the set of self­
adjoint elements. Combining Theorem 3.2 and [8, Corollary 3.3] yields 
that the generalized noncommutative torus P% has real rank 0 since the 
noncommutative torus Ap has real rank 0. The Lin and R¢rdam theo­
rem [16, Proposition 3] says that the generalized noncommutative torus 
P% is an inductive limit of circle algebras, since P%®K(H) ~ Ap®K.(H) 
is an inductive limit of circle algebras [16, Proposition]. Combining [11, 
Theorem 7.1] and [13, Theorem 1.3] yields that the completely irrational 
noncommutative tori Aw of rank r + m and the generalized noncommu­
tative tori P% of rank r + m are isomorphic if the ranges of the traces 
equal. 

Lemma 4.1. ([6, Lemma 4.1]) tr(K0 (P%)) = ~ · tr(K0 (Ap)). 

Theorem 4.2. ([6, Theorem 4.2]) Let Aw be a completely irra­
tional noncommutative torus of mnk r + m with tr(Ko(Aw)) = ~ · 
tr(K0 (Ap)) for Ap a completely irrational noncommutative torus of mnk 
r + m. Then Aw is isomorphic to P%. 
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§5. C*-algebras over spheres with fibres noncommutative tori 

We are going to show that the set of all spherical noncommuta­
tive tori with primitive ideal space I1~=1 S 2n; X n;=1 S 2ki- 1 and fi­
bres Aw ® Mc(C) is in bijective correspondence with the set of all C*­
algebras of sections of locally trivial C* -algebra bundles over I1~=1 S2n; X 

TI;=1 S2kr1 with fibres Aw ®Mc(C) for Aw a completely irrational non­
commutative torus. 

Let Aw be a noncommutative torus of rank m with S:, £:! 1!'1. Then 
Aw is realized as the C* -algebra of sections of a locally trivial C* -algebra 
bundle over di and fibres C* (zm / Sw, w1) for some totally skew mul­
tiplier w1, where C*(Zm,/Sw,w1) £:! Ap ® Md(C) for Ap a completely 
irrational noncommutative torus of rank m- 1 (see [1, 12]). By the 
definition of Aw, C('JI'1) and Ap split. Since [1!'\ BPU(d)] £:! {0}, C('JI'1) 
and Md(C) split. And Md(C) and Ap also split. But by Corollary 2.3, 
Aw has a non-trivial bundle structure if d > 1. This implies that a C*­
subalgebra of Ap plays a role as a base space in the bundle structure. In 
fact, Aw can be obtained by an iteration of m - 2 crossed products by 
actions of Z, the first action on a rational rotation algebra A1., and the 

d 

non-triviality of the bundle structure is given by a non-trivial element 
of [1!'2 , BPU(d)] £:! [1!'1, PU(d)] £:! Zd, which represents A1. canonically 

d 

embedded into Aw. 
Let d be the biggest integer among the possible integers satisfying 

the condition tr(Ko(Aw)) = ~ · tr(Ko(Ap)), i.e., Aw £:! P%- For a d­
homogeneous C*-algebra A over S 2n+l, there is a matrix algebra Mq(C) 
such that A® Mq(C) is isomorphic to C(S2n+1) ® Mdq(C). But there 
is a matrix subalgebra Mq(C) big enough satisfying the above condition 
such that Mq(C) is embedded into Pf, since Pf is an inductive limit of 
circle algebras, which is simple. 

Lemma 5.1. Each C* -algebra f( 17) of sections of a locally trivial 
C* -algebra bundle 17 over S 2n+l with fibres P; = Ap has the trivial 
bundle structure. 

Proof. Let P; = ~(E9j=1 C(1!'1) ® MPi(j)(C)). The C*-algebra 
f(17) is isomorphic to an inductive limit of direct sums of Pi(j)-homogene­
ous C* -algebras over S 2n+1 x 1!'1, and each C(S2n+l x 1!'1) is canonically 
embedded into f(17). So there could be a canonical homomorphism of 
C(S2n+1) ® Md(C) into the C*-algebra f(17) of sections of a locally triv­
ial C* -algebra bundle 17 over S2n+ 1 with fibres P; such that the non­
triviality can be given by ad-homogeneous C*-algebra over S 2n+1 X 1!'1. 
Then Md(C) must be factored out ofthe circle algebra in each inductive 
step, and so the range of the trace of P; would be the form ~ · tr(A) for 
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A a simple unital C* -algebra, which is impossible by the assumption. 
We have two cases; one of them is the case that a C* -subalgebra of P~ 
plays a role as a base space in the bundle structure, and the other is not. 

For the first case, when a C* -subalgebra of P~ plays a role as a base 
space in the bundle structure and P~ is realized as a tensor product 
of non-trivial completely irrational noncommutative tori, the torsion­
free groups in P~ = Ap giving simple noncommutative tori which are 
given by twisting the torsion-free groups by totally skew multipliers must 
split, so all factors of P~ must split. The relation among factors of P~ 
is different from the relation between fibres Md(C) and base Ap in the 
fibres of the non-simple noncommutative torus Aw given above, and so 
one can assume that all factors of P~ play roles as a base space in the 
bundle structure. Hence P~ plays a role as a base space in the bundle 
structure, and so f(ry) is isomorphic to C(S2n+l) 0 P~. 

For the other case, since P~ = ~(EBj=1 C(11'1 ) 0 MPi(j) (C)), there 
is a matrix algebra Mv ( q big enough which is embedded into P~. 
Since [S2n+I, BPU(p)] ~ {0}, C(S2n+ 1 ) and Mp(C) split, i.e., any p­
homogeneous C* -algebra over S 2n+1 has the trivial bundle structure. 
By the same reasoning as above, Mv(C) cannot be factored out of the 
circle algebras in all inductive steps. But r(ry) has a locally trivial bun­
dle structure. Hence C(S2n+l) and (Mv(q '----*) P~ must split, and so 
r(ry) has the trivial bundle structure. 

Therefore, each C*-algebra f(ry) of sections of a locally trivial C*­
algebra bundle 1'] over S 2n+1 with fibres p~ has the trivial bundle struc­
ture. Q.E.D. 

Now we want to show that each C* -algebra of sections of a locally 
trivial C* -algebra bundle over n:=1 S 2ni X n;=1 S 2kj- 1 with fibres p~ = 
Ap has the trivial bundle structure. 

Proposition 5.2. Each C*-algebra f(ry) of sections of a locally 
trivial C* -algebra bundle 1'] over n:=1 S 2ni X n;=1 S 2 kj - 1 with fibres 

P~ = Ap has the trivial bundle structure. 

Proof. Let P~ be an inductive limit of EBj=1 C(11'1 ) 0 MPi(j)(q. 

For some pair (2kj- 1, 2kj'- 1) = (2kj- 1, 1), if the C*-subalgebra of 
sections of a locally trivial C* -algebra bundle over S2k1 - 1 x S 1 with fibres 
P~, which is canonically embedded into f(ry), has a non-trivial bundle 
structure, then the factor S 2 k1 - 1 X S 1 can be replaced by S 2 k1 , since 
there is a map of degree 1 from S2kj-1 X S 1 to S2kj. For each j, there is 
a canonical homomorphism of the C* -subalgebra r( 1']j) of sections of a 
locally trivial C*-algebra bundle 1'Jj over S 2k1- 1 with fibres P~ into f(ry). 
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By Lemma 5.1, the C* -algebra of sections of a locally trivial C* -algebra 
bundle over S 2kj- 1 with fibres P~ has the trivial bundle structure. Thus 
C(S2kr1) are factored out of r(7J), and so C(IJ;=1 S 2kj- 1) is factored 
out of r(17). 

Next, [S2n;,B(Aut(P~))] = [S2n;- 1 ,Aut(P~)]. But there is a map 
of degree 1 from s2n; to s 2n;-1 X 8 1 . So for each i each C*-algebra of 
sections of a locally trivial C* -algebra bundle over S2n' with fibres P~ 
is induced from the C*-algebra r((i) of sections of a locally trivial C*­
algebra bundle (i over S 2n; - 1 x 1I'1 with fibres P~. Consider the crossed 
product by the action a9 of Z on r((i) for a suitable irrational number 
() such that the range of the trace of P~ 181 A9 is not ~ x the range of the 
trace of any simple irrational noncommutative torus of rank m+ 1 for any 
positive integer w greater than 1, where the action a 9 on C(S2n;- 1 )181P~ 

is trivial and C(1I'1 ) Xa 8 Z is the irrational rotation algebra A9. Then 
r ( (i) x <>e Z is obviously realized as the C* -algebra of sections of a locally 
trivial C*-algebra bundle over s2n;- 1 with fibres P~181A(J. But r((i) Xae 

Z has the trivial bundle structure. So each C* -algebra of sections of 
a locally trivial C* -algebra bundle over S 2n; with fibres P~ has the 
trivial bundle structure. Thus C ( S 2n;) are factored out of r ( 1J). Hence 
C(IJ~=l S 2n;) is factored out ofr(7J), and so C(f1~= 1 S 2n; xf1;=1 S 2kj-1 ) 

is factored out of r(7J), as desired. Q.E.D. 

Each cd-homogeneous C*-algebra over TI~=l S2n; X n;=l S2kj-l X 

'li'r x 1I'2 is realized as the C*-algebra r(7J) of sections of a locally trivial 
C*-algebra bundle 1] over TI~=l s2n; X n;=l S 2kj-l X ']['r X ']['2 with fibres 

Mcd(C), and hence §~d is realized as the C*-algebra of sections of a 

locally trivial C*-algebra bundle over TI~=l S 2n; X n;=l S 2kj-l with 

fibres P% 181 Mc(C). 

Theorem 5.3. The set of spherical noncommutative tori with prim­
itive ideal space TI~=l S 2n; X n;=l S2kj-l and fibres P% 181 Mc(q is in 
bijective correspondence with the set of C* -algebms of sections of lo­
cally trivial C* -algebm bundles over TI~=l S 2n; X n;=l S 2kj-l with fibres 

P% 181 Mc(C). 

Proof. If cd = 1, we have obtained the result in Proposition 5.2. 
So assume that cd > 1. Then one can assume that there is a matrix 
subalgebra Mcd(C) which is factored out of each inductive step, even 
though Md(C) is not factored out of P%. And P% is isomorphic to 
A~ Xa3 ZX 04 • • • X 0 r+=z. By Proposition 5.2, each C*-algebra of sections 

of a locally trivial C*-algebra bundle over TI~=l S 2n; X n;=l S2kj-l with 
fibres C* ( dZ X dZ) X 03 Z X 04 • • • X <>r+m Z has the trivial bundle structure. 
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Hence each C* -algebra of sections of a locally trivial C* -algebra bundle 
over TI~=l S 2n; X n;=l S 2kj-l with fibres P%&JMc(C) is given by twisting 

C*(Tr X v X zm- 2 ) in Acd@ C*(zm-2 ) by the totally skew multiplier 

p on Tr X V X zm-2 , which is a spherical noncommutative torus. 
Therefore, the set of spherical noncommutative tori with primitive 

ideal space TI~=l S2n; X n;=l S 2kj-l and fibres P%@ Mc(q is in bijec­
tive correspondence with the set of C* -algebras of sections of locally 
trivial C* -algebra bundles over TI~=l S2n; X n;=l S2kj -l with fibres 

P% &J Me( C). Q.E.D. 
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