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Operator Algebras, Topology and Subgroups of 
Quantum Symmetry 

- Construction of Subgroups of Quantum Groups -

Adrian Ocneanu 

Abstract. 

In this article, we will discuss several interactions between the 
non commutative Galois problems, i.e., inclusions of operator alge­
bras and topological quantum field theory in three dimensions. Those 
interactions are shown to be concretely solved and are related to both 
the quantum subgroups of the quantum group SU(2)N at the defor­
mation parameter q = exp(27ri/N). 

§1. Basics on operator algebras 

1.1. C*-algebras and von Neumann algebras 

Let H be a Hilbert space with the inner product ( ·, · ), B(H) be 
a set of bounded linear operators on H and M be a *-subalgebra of 
B(H). The commutant of Min B(H), M' n B(H), is defined to be the 
set {x E B(H) : xm = mx 'tim E M}. The algebra M is said to be a 
C* -algebm if it is closed with respect to the operator norm II · II· The 
algebra M is said to be a von Neumann algebm if it is closed with respect 
to the strong operator topology. It is necessary and sufficient for M to 
be a von Neumann algebra that M = M", which reads an algebraic 
condition is equivalent to a topological condition. For example, let G be 
a locally compact group represented on H with a unitary representation 
p. Then the intertwiner space p( G)' n B(H) is a von Neumann algebra. 
From this example, one considers that the trivial intertwiner space is 
meaningful to analyze von Neumann algebras. M is said to be a factor 
when its center is trivial, i.e., M' n M = ClM, where 1M is the identity 
element of M. A factor is classified to be either of type I (when values of 
the trace of projections in M are in {1, 2, ... , n} or N), type II1 (when 
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values of the trace of projections in M are in [0, 1]), type Il00 (when 
values of the trace of projections in Mare in [0, +oo]) or type III (when 
there is no trace, i.e., when all non zero projections are equivalent in the 
sense of Murray-von Neumann). 

1.2. Murray-von Neumann's continuous geometry (The 
hyperfinite 111 factor) 

We will see how a von Neumann algebra R with the continuous 
dimension of subspaces in the ambient space where R acts is constructed. 
Namely, find an algebra R with a trace tr : R -+ C such that tr(p) E 

[0, 1], where pis a projection in R. 
First, let A1 be the matrix algebra M 2 (C). Then, the value of the 

projections in A1 is either 0, 1/2 or 1. Embed A1 into A2 = M2(C) ® 
M 2 (C) so that x in A1 is embedded in A2 as x ® 1. Then, the value 
of the projections in A1 is either 0, 1/4, 1/2, 3/4 or 1. Continue this 
procedure, then we have an increasing sequence of finite dimensional C*­
algebras An· Each An has an inner product defined by (x, y) = tr(xy*). 
Hence we can make the £ 2-completion L2 (An) and make an infinite 
dimensional Hilbert space H which is a completion of UL2 (An)· Let R 
be a weak closure of U An represented on H. This R turns out to be a II 1 

factor which has an increasing sequence of finite dimensional algebras 
approximating R. Such a von Neumann algebra is called hyperfinite 
or approximately finite dimensional. It is obvious that the values of 
the projections in R are in [0, 1] from the construction. Hyperfinite 
II1 factors are isomorphic to each other due to a theorem of Murray­
von Neumann. Hence, we can take R to be a completion of a Clifford 
algebra of a real separable Hilbert space for example, which reads that 
R has many symmetries. Moreover, any subfactor of R is automatically 
isomorphic to either Mn(C) or R due to a deep theorem of A. Connes, 
which reads R is good for Galois theory. 

§2. Subfactors and bimodules 

Let R be the hyperfinite II1 factor. Then, any left module Hover R, 
i.e., any normal representation of Ron H, is projective. Hence we have 
the spatial isomorphism RH ~R L 2 (R)ffin P which commutes with the 
left actions of R, where Pis a projection in B(L2 (R)ffin). (We denote 
the completion of R with respect to the inner product (x, y) = tr(xy*) 
by L 2 (R).) The "rank" dim(RH) of Hover R is defined to be tr(P), 
which takes its value in [0, +oo]. Let us assume we have an inclusion 
of II1 factors N C M. V. Jones defined the index [M : N] of the 
inclusion N C M to be dim N L 2 ( M), which surprisingly takes its value in 
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{ 4 cos2 ~ : n = 3, 4, ... } U [ 4, +oo ]. As an analogue of the representation 
theory of compact groups as in H. Weyl, we see that the N-M bimodule 
NMM essentially contains the same information as N C M. (We drop 
the symbol £ 2 ( ·) in the sequel.) That is, let g be the N-M bimodule 
N MM as a generator and make the iterative tensor products over N and 
M · · · g ® g ® g ® g · · · . Then, we can decompose this into the direct 

M N M 
sum of the irreducible components. Here is an example of the graph r 
coming from the decomposition of the tensor products by the generator 
N MM. Such a graph is called a principal graph of the inclusion N c M. 

Fig. 1. An example of the principal graph. 

In general, the graph norm llr!l of r coincides with [M : N] 112 

if the number of irreducible objects is finite. (When the number of 
irreducibles is finite, then the inclusion N C M is called of finite depth.) 
In particular, if [M: N] < 4, then we have llr!l < 2. Hence the Coxeter 
graphs of type A, D and E are allowed to be such graphs coming from 
the decomposition of the tensor product by the generator N MM. In fact, 
the following finer result holds. 

Theorem 1. If [M : N] < 4, then only Coxeter graphs of An, 
D2n, E6 and E 8 appear as principal graphs. For E6 and E 8 , we have 
(N c M) ';f. (N°PP c M 0 PP). In this sense, we have an algebraic chi­
rality. In general case, if M is hyperfinite and the inclusion is of finite 
depth, then we can describe the complete position. invariant. 

The position invariant in Theorem 1 is called a paragroup. In the 
case of infinite depth with amenablity, we have the spanning theorem 
due to S. Popa which guarantees that we have the complete position 
invariants. 

Note that the Coxeter graphs of type Dodd and E7 do not appear. It 
is not difficult to check the non-occurence of these subfactors. However, 
the existence of subfactors of Deven, E6, and Es is checked with very 
complicated computations. It is an interesting question whether one can 
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find a structure with irreducible objects labeled by E7. Note that E7(l), 

the affine E 7 , comes from the isometry group of the binary icosahedron. 

§3. Topological quantum field theory in three dimensions, 
braidings and quantum doubles 

3.1. Topological quantum field theory in three dimensions 
Roughly speaking, a topological quantum field theory (briefly, 

TQFT) is a functor from topological objects to algebraic objects, which 
was axiomatized by M. Atiyah. In particular, we are interested in 3-
dimensional TQFT's which we abbreviate as TQFT3 , which have 3-
dimensional manifolds as topological objects and Hilbert spaces as alge­
braic objects. Let us summarize what TQFT is in the case of a finite 
group G. Let a: be an irreducible representation of G. We use a graphical· 
way to describe an irreducible representation a: and a set of homomor­
phisms H ~::, = Hom( a: 0 (3, 'Y) as in the following figure. 

a: 

+ 
'Y 

Fig. 2. Homomorphisms. 

Naturally, H~::, is a finite dimensional Hilbert space. Hence, H0 = 
ffi.>. Hom( a: 0 (3, .A) 0 Hom( .A, 8 01) is a finite dimensional Hilbert space 
as well. We have several orthonormal bases in H 0 . In particular, the 
change of bases between two orthonormal bases given by the following 
figure gives rise to a vector ( E H 0 0Hrs~ = H 8 rzJ, where Hrs~ is the basis 
change of H 0 as in Figure 3. 

From this observation, we see that ( plays a role of composition of 
faces of tetrahedra in a triangulated 3-dimensional manifolds. Let S be 
a triangulated surface. Fix the label of the representations of G on the 
edges inS and assign a Hilbert space H~::, on each triangle. Make tensor 
products of these Hilbert spaces for a given label of irreducible represen­
tations on edges and then take the direct sum over all the possible labels. 
Denote the resulting large Hilbert space by Hs, which has an exponen­
tial behavior for the disjoint union of two surfaces Hs1 us2 = Hs1 0Hs2 • 

(This is known to give a baby model of a quantum field theory.) _For 
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Fig. 3. Change of bases. 

a triangulated 3-dimensional manifold M, we evaluate each tetrahedron 
by ( and make a product of those with respect to the fixed labels of 
the edges and faces. Then, take a summation over all the possible label. 
This gives a topological invariant of M. Moreover, this construction 
gives a rational simplicial unitary TQFT3 . In the case of irreducible 
representations of SU(2), similar constructions were done by Penrose 
and Ponzano-Regge in physics context and they showed the topological 
invariance although the summation is taken over the infinite labels. In 
the case of irreducible representations of the quantum group SU(2)N at 
a root of unity, this was first done by Turaev-Viro in a mathematically 
rigorous way. In a similar way, we can extend those construction to irre­
ducible bimodules over II1 factors coming from an inclusion of II1 factors 
with finite Jones index and finite depth. Moreover, we see that all the 
rational simplicial unitary TQFT3 's appear in this way. One direction 
from bimodules to a TQFT3 is similar to the case of a finite group as 
we have seen above. We explain how the other direction works in the 
next section. 

3.2. From a TQFT3 to bimodules 
Assume that a rational simplicial unitary TQFT3 is given, namely, 

labels of the vertices and edges, triangles for the finite dimensional 
Hilbert spaces and the evaluation for the tetrahedra ( are given. Then, 
we can construct an increasing sequence of finite dimensional C* -algebras 
in a specific way as follows. Let Algn(A) be a Hilbert space for the sur­
face S in Figure 4, which gives rise to a finite dimensional C* -algebra 
in an obvious way and is block-diagonalized into the direct sum in the 
right hand side of Figure 4. 

This C* -algebra is embedded into a larger algebra Algn+l (A) and 
the embedding is compatible with the trace, using information of tetra­
hedra. Hence, we get a hyperfinite II1 factor Alg(A) = Un Algn(A), 
which is isomorphic to R. Note that Alg(A) is a factor after taking the 
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A A A 

=E9 
a 

Fig. 4. A C*-algebra Algn(A). 

closure and in fact, Algn(A) is not a factor in general. This is an es­
sential use of the argument from von Neumann algebras. Similarly, we 
can construct an Algn(A)-Algn(B) bimodule Modn(AXB) associated to 
a surface as in Figure 5, which is compatible with the embeddings as 
well. 

A X B 

Fig. 5. A surface bimodule. 

Then, we get an Alg(A)-Alg(B) bimodule Aig(A)Mod(AxB)Aig(B)· 
Again, this bimodule is irreducible only after taking the closure. We see 
that all the information on a given TQFT3 is contained in 
Aig(A)Mod(AxB)Aig(B)· Namely, in any TQFT3, a Hilbert space cor­
responding to a triangle is exactly a space of homomorphisms and the 
evaluation ( at each tetrahedron is a composition of homomorphisms. 

3.3. Braidings in a TQFT3 
We will describe the "R-matrix" in a TQFT3. As we see in the pre­

vious section we may assume that a TQFT3 comes from bimodules over 
II1 factors. A braiding of a system of bimodules is a distinguished choice 
of homomorphisms c: = ffia,b C:a,b E ffia,b Hom[a®b, b®a], which satisfies 
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several axioms. (See [7] for the details of the axioms.) Graphically, a 
braiding is drawn as in Figure 6. 

b ® I = EB a I a = L L a e c a 13:1 ob 13:1 o,b c,,,, " 
b b 

Fig. 6. A braiding. 

It is natural to ask whether we can classify all braidings on a given fu­
sion system, i.e., a system of bimodules. For the quantum group SU(2)N 
at a root of unity, this was already done by Kazhdan-Wenzl. In more 
general case, the solution was given by the author in the past Taniguchi 
Symposium on Operator Algebras. We will review the solution here. 
(Also see [7] for the details.) The main idea is in constructing a topo­
logical double. Namely, instead of using an usual wire, we use a tube. 
An element in EBa b c Hom[ a® b, b ® c] is described as a tube as in the 
Figure 7. Hence, vle' get a tube as a homomorphism. 

~glue @ () 

Fig. 7. Tube as a homomorphism. 

The space of tubes makes a C* -algebra in the following manner. 
For the multiplication, compose two tubes and take the inner product 
over EBa b c Hom[a ® b, b ® c], then get another tube. For the *-structure, 
reverse th~ tube. (More precisely, we need a use of Frobenius reciprocity 
for the intertwiners in EBa b c Hom[a ® b, b ® c] to reverse a tube. See [7] 
for the details of tube alg~bras.) Hence we get a finite dimensional C*­
algebra Thbe called a tube algebra. Diagonalize Thbe, then we get the 
isomorphism of C* -algebras Thbe ~ EBcEC Kc ® Kc, where C is a set of 
minimal central projections in a tube algebra. We draw a tube which has 
a label c in C by a circle. (Note that such a tube looks like an annulus 
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with the same labels of circles for both inside and outside. Shrink the 
band of the annulus, then we get a circle with label c. Also note that 
we had only edges for single labels.) Accordingly, we get new Hilbert 
spaces which are circles labeled with c E C and a vector (. Thus, we 
get a smooth theory (or double) from the initial theory (or simple). The 
difference between a simple theory and a double is graphically explained 
in Figure 8. 

+ 0 

¥ /Jl c§ 
simple double 

Fig. 8. Simple theory and double theory. 

Naturally, the double has a braiding constructed from a fusion sys­
tem as in the following figure. 

A 
() () 

b:l 

Fig. 9. Natural braiding. 

In general, a simple theory cannot be embedded into a double. How­
ever, for a given braiding on a simple theory, we have a map <pr;; which 
is defined in Figure 10. 

We get a theorem on this 'Pe· 

Theorem 2. For each a in a braided simple theory, r.pr;;(a) is a 
minimal central projection in the center of the tube algebra. In conse­
quence, <pr;; (a) is an irreducible object of the double. 
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Fig. 10. A map 'Pe:· 

Note that 'Pe: maps a triangle in a simple theory to trousers in a 
double as in Figure 8 and a crossing to a crossing of tubes. 

Thus, we see that a braiding is identified with the embedding of 
simple objects into a double in this sense. Hence it allows us to classify 
possible braidings on all known systems. For example, a system of hi­
modules corresponding to the Coxeter graph Eit has an abelian system 
of bimodules but no braiding on it. 

In general, for a given non degenerate braiding, the center of the tube 
algebra consists of the elements {Pa,,a} graphically drawn in Figure 11. 

Pa,,B = L @)= 
'Y • 

'Y 

Fig. 11. An element in the center of Tube. 

From this, we see that braidings are rigid and computable and get 
the solution of the problem stated above in a general scheme. 

3.4. Algebraic doubles and topological doubles 
Let M 0 C M 1 be an inclusion of factors of type II1 with finite Jones 

index. Then, we can make a Jones tower of inclusions in a canonical way. 
Namely, Mo C Mt C M2 = End(MtM0 ) C M3 C · · · C Moo = Un Mn, 
where the completion is taken with respect to the trace tr. Hence we 
get the new inclusion Mo V (Mo' n Moo) C Moo out of Mo c Mt. This 
inclusion is called an asymptotic inclusion. On the other hand, we have 
another way to construct a new inclusion using ultrafilter. Let w E ,BN\N 
be a free ultrafilter on N. For a fixed w, we have a ultraproduct algebra 
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Mw = {(xn)n: bounded sequence in M}/(xn --t 0), which is a very big 
n-+w 

algebra but still a II1 factor. Hence, we have the new inclusion (Mo)w n 
(M1)w C (Ml)w again. This is called a central sequence inclusion. We 
reach the following theorem. · 

Theorem 3. Constructions of an asymptotic inclusion, a central 
sequence algebra and a topological double are all equivalent as position 
invariants. 

We will make a brief comment on the relationship between topo­
logical invariants of 3-dimensional manifolds by Thraev-Viro and by 
Reshetikhin-Turaev. As shown in the proceedings of the Taniguchi Sym­
posium on Operator Algebras, we can also make a Reshetikhin-Thraev 
type invariant from a system of bimodules if it admits (nondgenerate) 
braidings. For a given inclusion M0 C M1 with finite Jones index and 
finite depth, which may not have braidings at all, passing to the asymp­
totic inclusion Mo V (Mo' nMoo) C Moo, we have the braidings on a sys­
tem of M 00-M00 bimodules. Hence we can make a Reshetikhin-Thraev 
invariant TM 00 in a similar manner to the original work of Reshetikhin­
Thraev. On the other hand, from the asymptotic inclusion, we can 
construct a Thraev-Viro type invariant (Moo. Recall we have a split­
ting type theorem by Thraev if the braiding is nondegenerate. Namely, 
(Moo = IT Moo 12 It is easy to see that (Moo is equal to the square of 
the modulus of the Thraev-Viro type invariant (M for the original inclu­
sion. Hence, we have the equality I(M I = IT Moo I· Actually, the following 
stronger result holds. 

Theorem 4. The Turaev- Viro type triangulation invariant of a 3-
dimensional closed manifold M is equal to the Reshetikhin- Turaev type 
invariant of M computed with the double. 

§4. Maximal atlas and rigidity of topological quantum field 
theory 

4.1. Maximal atlrui 
In TQFT3 , the basic data such as the labeled vertex A, edges, finite 

dimensional Hilbert spaces as triangles and the distinguished vector ( 
for the evaluation of tetrahedra is given. In what follows, we will find the 
maximal atlas, namely, find all new vertex labels B and edges, triangles, 
and tetrahedra all labeled with new vertices, which are compatible with 
the given theory. More precisely, for a subdivided tetrahedron, the label 
of the center of a regular vertex can be changed between A and B. (See 
Figure 12.) 
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Fig. 12. Change of labels. 

For example, when G is a finite group, each edge is labeled with 
g E G and a triangle is described as in Figure 13 and each tetrahedron 
takes its value at 1. 

A 

g n 8ghk,l A A -
A A 

k 

Fig. 13. Labels by G. 

Hence, for a closed triangulated manifold M, the evaluation by ( 
is exactly IGI-1#Hom(7rl(M),G). As a new label B, we put the ini­
tial data as follows. For edges with vertices A and B, assign the trivial 
representation of G, for each edge with vertices both B, assign an irre­
ducible representation a of G, for each triangle labeled with an edge a 
with two B's, assign a representation space of a and for each triangle 
with vertices of B, assign Hom[a ® ,13, ')']. 

A----B B--et--B B~BBfiB 
Fig. 14. Labels by Rep(G). 

Let us compute the invariant of the lens space L = £(2, 1) in two 
different ways. Since 11'1 (£) = Z/2, ((L) = #{Hom(7r1 (L), G)}= #{g E 

G : g2 = 1} when computed with vertices labeled only with A. On the 
other hand, ((L) = L.:±ial, where summation is taken over a E IrrG 
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satisfying 1 E a- 0 a- when computed with vertices labeled only with B. 
Hence, we get the equality #{g E G: g2 = 1} = l: ±)a-), which is called 
Probenius-Schur index. 

In the group G case, note that the vertices of the maximal atlas 
labeled with (H, p,) for a subgroup H C G is up to inner conjugacy, i.e., 
p, E H 2 (H, 1!'), which is called a Schur multiplier in theory of projective 
representations. 

In the case of Turaev-Viro type TQFT 3 coming from the quantum 
group SU(2)N at a root of unity, we have a Coxeter graph AN-l with 
vertices labeled with irreducible representations, where N is the Coxeter 
number. The maximal atlas for this system is given by all the Coxeter 
graphs with Coxeter number N. For instance, in the case of the quan­
tum group SU(2)29 , we have the Coxeter graph of A28 and the Coxeter 
number is 29. Thus there is no vertex other than the initial system of 
A 29 • In the case of quantum group SU(2)30 , we have the Coxeter graph 
of A30 and its Coxeter number is 30. Hence, the other vertices in the 
maximal atlas come from the vertices of D16 and E8 • 

More examples are given in terms of bimodules over type 111 factors. 
The maximal atlas for bimodules is formulated as before. Namely, for 
given family ofbimodules {AxA}, which is closed under the operations of 
tensor product, direct sum and conjugation, find all family of bimodules 
{AYB} with {AYl 0 y2A} is in the span of {Ax A}· For example from a 

B 
subfactor N C M, we have families of bimodules {NXN} and {MYM} 
which are on the maximal atlas because we have {NZM} bimodules to 
make a closed system of bimodules. The maximal atlas for subfactors is 
described in terms of intermediate subfactors N C PC M. 

Theorem 5. For a given inclusion N C M of type Ih factors 
with finite index and finite depth, the edges of the maximal atlas which 
connect vertices correspond to intermediate subfactors 

pMo C Qo c Q1 CpMnP 

for the Jones tower Mo = N C M 1 = M C M2 C M3 C · · · and 
p E Proj(Mo' n Mn)· 

For the inclusion generated by the Jones projections at N = 30, 
Mo = (ei)i>l C M1 = (ei)i>o, it contains Es± on the maximal atlas. - -

We have some rigidity results on TQFT's. 

Theorem 6. For a rational TQFT, the maximal atlas is finite. 
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Theorem 7. Rational TQFT's are rigid. Namely, for any fi­
nite fusion rule algebra, there are finitely many possibilities for the 6j­
symbols, up to gauge. Moreover, the 6j-symbols ( can be chosen to be 
algebraic numbers. 

For the proofs on the rigidity results, in both theorems use a pertur­
bation and compactness argument for the unitary orbits of 6j-symbols. 

As a corollary of Theorem 7, we have 

Corollary 8. The hyperfinite Ih factor R has countably many fi­
nite depth subfactors M C R, up to conjugacy. 

We shall list several problems for our future directions. The main 
objective is to find structure behind rigidity as for semisimple Lie groups. 

1. Find a complete set of numerical invariants. 
2. Find all relations between invariants. 
3. Find discrete structure, i.e., each invariant takes its value in 

{0, 1, 2, ... }. 
4. Classify structures ... 

4.2. The topological interpretation of the maximal atlas 

Assume we have a smooth theory of TQFT 3 . Namely, we have a 
finite dimensional Hilbert space Hs for a surfaceS, a vector (M E HaM 
for a. 3-dimensional manifold M with boundary, a complex number (M 
for a closed 3-dimensional manifold M. However, we want numerical 
invariants even for embedded surfaces and 3-dimensional manifold with 
boundary. For this purpose, we need a distinguished surface, called rind. 

\ /(j 
glue 

Fig. 15. 3-manifold with rind. 

In Figure 15, the right small part gives a Hilbert space with rind 
instead of the Hilbert space labeled with a circle. 

To evaluate a 3-dimensional manifold with rind, we construct a cone 
over the rind. Namely, for a given vertex label A in the maximal atlas, 
build the cone over the rind. (See Figure 16.) 
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A 

Fig. 16. A cone built over rind. 

Hence we get a closed manifold with an additional vertex A and 
evaluate it by the given smooth theory with the maximal atlas and 
get a complex number. Conversely, for a given TQFT3 with rind, use 
information from the rind to build one or more labels for vertices in 
the maximal atlas. Henceforth, a vertex label in the maximal atlas 
corresponds to an irreducible extension of TQFT3 up to a TQFT3 with 
rind. A vertex label A in the maximal atlas can make a cone over the 
empty rind 8 1 x 8 1 but it does not have enough information to rebuild 
a vertex label in the maximal atlas. Modular invariants are described 
from such a cone over 8 1 x 8 1. (See 6.1.) 

§5. Modular invariants 

5.1. Modular invariants and quantum symmetries 

Classification of modular invariants is one of the most important 
problem in conformal field theory and in fact, the classification pro­
gram is complete by Capelli-Itzykson-Zuber in the case of SU(2) and 
by Gannon in the case of SU(3). (See [1] and [3] for the details.) In the 
following, first we consider the case of SU(2) modular invariants. 

Let n be a positive integer and N = 2n. We denote the standard 
basis of cn-l by {Xl, ... , Xn-d· Define a unitary representation p of 
SL(2,Z) 

p: S£(2, Z) -t U(n- 1, C) 

by specifying the actions of the generators 
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as follows 

-2i n-1 (1rkl) 
p(S)(Xk) = ffi ~sin -:;;: xz, 

p(T)(Xk) = exp(1ri (~ + ~)) Xk· 

Problem. Find all (n- 1) x (n- 1) matrices M = (mk,l) which 
satisfy the following conditions; 

1. 2:::~.~20 mklXkXl is an S£(2, Z)-invariant sesquilinear form on the 
dual space of cn- 1 . 

2. mkz 2: 0 for all k, l. 
3. mu = 1. 

The above problem is equivalent to the following problem, where 
the two (n- 1) x (n- 1) matrices p(S) and p(T) are defined as above. 

Problem. Find all intertwiners M = (mk,l)k,l=1, ... ,n-1 such that 

p(g)M = Mp(g), g E S£(2, Z) 

with mk,l E N = {0, 1, 2, ... } and m1,1 = 1. 

The above self-intertwiners M are called the SU(2) modular in­
variants. The next answer to this problem is due to Capelli-ltzykson­
Zuber [1]. 

Theorem 9. Any sesquilinear form satisfying the above condi­
tions is given by one of the following table. These sesquilinear form are 
called modular invariant partition functions in conformal field theory. 

type modular invariant partition function 
n 

An l:lxkl 2 

k=1 
4n-1 2n-2 

D2n+1 2::: lxkl2 + 2::: (XkX4n-k + X4n-kXk) + IX2n 12 
k=1 k=2,kE2Z 

2n-1 
D2n+2 L IXk + X4n+2-kl 2 + 2IX2nHI 2 

k=1 
E6 lx1 + X1l 2 + IX4 + xsl2 + lx5 + xul 2 

E1 lx1 + x11l2 + lx5 + xd2 + lx1 + xnl2 + lx91 2 
+(X3 + X15)Xg + Xg(X3 + X15) 

Es lx1 + xn + X19 + X2912 + lx1 + X13 + X11 + X231 2 



250 A. Ocneanu 

The corresponding matrix M which is a self-intertwiner of the modu­
lar representation of SU(2) by Hurwitz-Verlinde is also called the SU(2) 
modular invariant matrix. Some of them are given in Figures 17, 18 
and 19, where a dot means 0 in the matrix entries. Note that each di­
agonal term is equal to the number of exponents of the corresponding 
Coxeter graph r. 

. 1 
. 1 

. 1 1 
. 1 

·2 

' 1 
' 1 

' 1 

Fig. 17. Modular invariant matrices of type A 8 , D 6 , D7 . 

. I 

. I 

. I 
' 1 

. I 

. I . I 

' 1 '1 . I . I . I 
1 '1 . I . I 

1 . I . I ' 1 '1 
. I 

E6 '1 ' 1 E1 . I 

Fig. 18. Modular invariant matrices of type E6 and E7 . 

However, an interpretation of off-diagonal terms has been unknown 
until very recently. Therefore it is natural to consider the following 
problem. 

Problem. Relate the modular invariants labeled with r, which is 
one of the A-D-E Coxeter graphs, to the graph r. 

At first sight the Coxeter graphs themselves do not have enough 
symmetries. However it turns out that they have many quantum sym­
metries which are enough to interpret the off-diagonal terms of mod­
ular invariant matrices. Here the quantum symmetry in our sense is 



Quantum Symmetry 251 

I I I I 

I I I I 

I I I I 

I I I I 

I I I I 

I I I I 

I I I I 

Es I I I 

Fig. 19. Modular invariant matrix of type E8 . 

defined by the following procedure. First we replace the edges of the 
graph f by a set of linear combinations of paths ([Path r on f which 
has a natural Hilbert space structure and we denote this Hilbert space 
by HPath r. Then the quantum symmetry of the graph r is a linear 
map ci> which preserves the length of the paths in HPath r and respects 
contracted concatenation, i.e., ci>(~ on ry) = ci>(~) on ci>(ry), where ~on TJ 
represents the contracted concatenation. (For the details see [8].) A 
gauge transformation of a quantum symmetry is given by a change of 
bases in End(HPathr). 

The set of quantum symmetries modulo gauge transformation has 
a natural product defined in the following way. 

ci> o 1l1 : HPath r ---+ Matm (HPath f) ---+ Matm (Matn (HPath f)) 

Moreover with this product it becomes a fusion rule algebra by introduc­
ing the natural notions of irreducibility and direct sum. (See [8].) Here 
we get a surprising and unexpected result, that is, if a graph r is one 
of the A-D-E Coxeter graphs there are only finitely many irreducible 
quantum symmetries. The following theorem describes the relationship 
between the modular invariant matrices for r and the quantum symme­
tries on r. 
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Theorem 10. Let M = (mkz) be the modular invariant matrix 
for an A-D-E graph r. Then the number of irreducible quantum sym­
metries is equal to the sum of squares of entries of the modular matrix 
M, i.e., 2:: m~1 • The fusion rule algebra of the quantum symmetries is 
isomorphic to the direct sum of finite dimensional matrix algebras of the 
form EBk 1 MatmkJC). Hence the entries of a modular invariant matrix 
M repres'ent the number of characters of the fusion rule algebra. 

If the graph r is one of the affine A-D-E Coxeter graphs, the quan­
tum symmetries are labeled by double cosets G \ SU(2)/G of SU(2) by 
a finite subgroup G of SU(2) corresponding to the graph r. For the 
quantum SU(2) case, i.e., the case when the graph r is one of the A-D­
E Coxeter graphs, the quantum symmetries and their fusion rules are 
given as in Figures 20, 21, 22 and 23, respectively. 

l ~· 2 . 
3 

A3 A4 A5 . - -K=2 K=3 K=4 K=5 K=6 

Fig. 20. Quantum symmetries for Coxeter graphs An. 

A quantum symmetry <I? = (<l?kz) : HPathr __, Matn(HPathr) is 
determined by its action on edges of r. We define a map W from a 
set of cells of r to C by the first equality in Figure 24. This map W 
is called a connection which is an analogue of Boltzmann weights in 
the RSOS models in the statistical physics. Then the (k, l)-th entry 
of <l?(a) is written as in the second equality in Figure 24 in terms of 
a connection W, where a is an element in HPathr. There are two 
generator symmetries <J?+ = (<l?ti) and <1?- = (<l?k"1) of r. We denote the 
corresponding connections by w+ and w- respectively. One of the two 
generator symmetries, say, w+ is defined by the following equality as in 
Figure 25, where N is the Coxeter number of r, c: = i exp( ni /2N) and k 
and l are taken from edges of r. The other generator w- is a complex 
conjugate of w+. Diagramatically these two connections w+ and w­
are expressed as in Figure 26. 
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0 

0 

0 
0 

Ds 
-· _,,_,_, -·---<( 

K= 14 

Fig. 21. Quantum symmetries for Coxeter graphs Dn. 

0 
0 

• • 
E1 

I • I I 
K= 12 K= 18 

Fig. 22. Quantum symmetries for Coxeter graphs E6 

and E7. 
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0 

even odd 
0 • chiral left symmetry 

0 • chiral right symmetry 

@ (!) ambichiral symmetry 

0 0 classical symmetry 

-+- complex conjugacy 
0@ unit 

-"- left generator 

• right generator 

I®· 
chiralleft graph -

~ chiral right graph 
I®· left coset graph 
·®r right coset graph 

lC-30 

Fig. 23. Quantum symmetries for Coxeter graphs Es. 

These quantum symmetries of an A-D-E Coxeter graph r can be 
naturally considered as representations of a quantum subgroup of the 
quantum group SU(2)N at N = K, the Coxeter number of r. A subset 
of quantum symmetries of r generated by <J>+ (resp. <I>-) is called the 
chimlleft ( resp. right) part in SU ( 2) N. The intersection of the chiralleft 
and right parts is called the ambichiml part. In general chiral left (or 
right) part is not braided though SU(2)N itself is braided. But there is 
a relative bmiding between chiral left part and chiral right part. Hence 
there is a braiding on the ambichiral part. 

Fig. 24. Quantum symmetry <I> of a graph r and a con­
nection W. 
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Fig. 25. A generator symmetry <I>+ and w+ of a graph 
r. 

w+( ,[],) ~ ,ffi, ~ ~ 

= c k Pal +€ kbSl 
1j 1j 1j 1j 

w-( .[J,) ~ ,ffi, ~ ~ 

=€ kPal +c kbSl 
1j 1j 1j 1j 

Fig. 26. Two generator symmetries w+ and w-. 

5.2. Quantum kleinian invariants 

255 

In the following we review the classical SU(2) invariant theory of 
F. Klein. Then as an analogy of classical invariants of SU(2), we de­
scribe quantum (Kleinian) invariants of SU(2)N. First we introduce 
diagrams as shown in Figure 27. Here each oriented line represents a 
generator of (irreducible) representations of quantum SU(2)N such as 
the fundamental representation, and we denote it by a. Their tensor 
product a ® a is drawn as two parallel lines. And n parallel lines with 
a rectangle in Figure 27 represents the quantum symmetrizer, i.e., the 
Jones-Wenzl projector of SU(2)N· (See (4, Chapter 3].) 

~=a, :=:::::=a ®a, ~=~=an 
--WJ-l-

Fig. 27. A generator oflrr SU(2)N and a quantum sym­
metrizer. 

For the classical SU(2), we have invariant theory of Icos-, the bi­
nary icosahedral group, which is a finite subgroup of SU(2) and the 
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corresponding Coxeter graph is E~1) as in Figure 29. In this case we 
have three invariant polynomials of two variables u and v of degree 12, 
20 and 30. We denote them by X12, Y2o and Z3o, respectively. The 
roots of these three polynomials correspond to vertices, each barycenter 
of faces and edges of icosahedron, respectively. Moreover, these three 
polynomials satisfy the equation X 5 + Y 3 + Z 2 = 0. See Figure 29 for 
other classical cases. 

~ Y2o ( u, v) = -----....u 

~ Z3o(u,v)=~ 

Roots : vertices of icosahedron 

Roots : barycenters of faces of icosahedron 

Roots : barycenters of edges of icosahedron 

Fig. 28. The classical SU(2) invariant theory of 
F. Klein for icosahedral group. 

For the quantum SU(2)3o, we have a quantum subgroup which cor­
responds to the Coxeter graph E8 • We can regard it as a quantum 
icosahedral group and we denote it by Qicos. Similarly to the classical 
case, the chiralleft part Qicos+ of Qicos has three invariants of degree 
10, 18 and 28. We denote them by x+, y+ and z+, respectively. (See 
Figure 31.) We remark that the degrees of these invariants correspond 
to the the column number of non-zero entries in the first row of the 
modular invariant matrix of type Es. (See Figure 19.) 

In the classical invariant theory for Ieos-, the set of all invariants 
are given by C[X, Y, Z]j(X5 + Y3 + Z 2 = 0). Note that the polynomial 
Y of degree 20 is obtained by taking the Hessian of X and similarly Z 
is obtained by the Jacobian of X andY. (See Figures 28 and 30.) 

In the quantum case, we have the chiral left part as well as the 
chiral right part. So all invariants consist of ones in the chiralleft part, 
ones in the chiral right part and mixed ones of them. Now we describe 
another relationship between the modular invariants and the quantum 
symmetries on r. The (k, l)-th entry mkz of the modular invariant matrix 
represents the number of invariants of degree (k, l), i.e., the number of 
mixed invariants appears in the product of chiral left representation of 
degree k and chiral right representation of degree l. (See Figure 32.) 
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2 2 2 

ord =24 
cox= 12 

ord = 48 
cox= 18 
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1 3 2 3 1 Sym4 

\NN 
2 4 2 

x3y + y3 + z2 = o 

Alts- ord = 120 
COX =30 

3 5 3 4 J\lts 

\N'l/\ 
2 4 6 2 

Fig. 29. Platonic solids and finite subgroups of SU(2). 

§6. Quantum subgroups of a braided quantum group 

6.1. A general method of constructing maximal atlas of a 
given braided system 

Suppose a commutative fusion rule algebra of type A-A (such as the 
one from SU(2)N) and a nondegenerate braiding on it are given. We 
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~=20 Y = Hess(X) 

~ 30 
~= Z = Jac(X, Y) 

Fig. 30. The classical SU(2) invariant theory for Ieos-. 

< 2-@= 
+ 

z+ =x+.y+ 

Fig. 31. The quantum Kleinian invariants of Qlcos+. 

Fig. 32. A mixed invariants of degree (k, l). 

draw diagrams for a fusion and a braiding as in Figure 33. Define S­
and T-matrices by the equalities in Figure 34. These matrices SandT 
become the images of canonical generators 

( ~1 ~) and 
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in a unitary representation of the modular group S£(2, Z), respectively. 
Additionally to the A-A fusion rule algebra, we suppose a new system of 
a fusion rule algebra of type A-B is given. We draw thin wires for A-A 
objects and thick wires for A-B objects as in Figure 35. Now the problem 
is how to find all irreducible objects of type B-B, which are naturally 
considered as irreducible representations of a quantum subgroup of a 
given quantum group of type A-A labeled by the symbol B. We draw 
very thick wires for B-B objects as in Figure 35. 

A 
A A y Ia a 

A A b L b 
A A A A 

Fusion Braiding 

Fig. 33. Fusion and braiding. 

ebb a a 

= Sab 

I 

Fig. 34. S- and T-matrices. 

B 
B 

B 

Fig. 35. Thick wires as A-B objects and very thick 
wires as B-B objects. 

A very general method to find all irreducible objects of a fusion rule 
algebra of type B-B is as follows. First we define an algebra A called 
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a double triangle algebra with the horizontal product as in Figure 36. 
(See [8] for the definition and properties of double triangle algebras.) 
One sees that to find all irreducibles of type B-B is equivalent to di­
agonalize the algebra A as in Figure 37. We have two embeddings \ji+ 

and \!i- into a larger system using braidings as in Figure 38. Note that 
these embeddings give the characters of A. By these two embeddings, 
we obtain the chiral left part and the chiral right part. In particular, 
we get chiral generators Pt and p;; as in Figure 39. These elements Pt 
and p;; in A become minimal central projections in A in some cases. 
(See [8] for more details.) In this setting the entries mkl of the modular 
invariant matrix M are described by the equality in Figure 40. Then, 
we compute all irreducible representations of A from the above data 
such as chiral left and right parts, ambichiral part, modular invariant 
matrices, characters of the fusion rule algebra, and so on. (See [8] for 
more details.) 

I·I JI 
Fig. 36. The (horizontal) product of the double triangle 

algebra A. 

I 2: ( coeff) >--< 
Fig. 37. Diagonalization of the double triangle algebra 

A. 

The entries of the modular invariant matrix M = (ma,b) have an­
other description by the inner product from TQFT3 with the singular­
ities. (See Figure 41.) Take the modular invariant vector~ E Hs1xs1 
and make the suspension with the vertex labeled by B. Then, TQFT 3 

with the new label B gives the vector t, which is canonically associated 
with ~- For the vector coupled with ~' take a double basis of H 8 1 xs1 

as in Figure 41. The inner product of these two vectors gives ma,b, an 
entry of the modular invariant matrix M. 
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a a 

\ll+: I I--t 
(1) 

~ a 

{3 {3 r~fz=I a a 

I y a,o: -
\ll_: a 

I--t 

{3 {3 

Fig. 38. Two embeddings w+ and -w-. 

Fig. 39. Chiral generators p;): and p-;;. 

Fig. 40. A description of the modular invariant matrix. 

Fig. 41. Another description of the modular invariant 
matrix by TQFT3. 

261 
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6.2. Quantum subgroups of a nondegenerate braided quan­
tum group 

For quantum subgroups of a nondegenerate braided quantum group, 
we have the following structural results. 

Theorem 11. Subgroups of the nondegenerate braided quantum 
group SU(2)N have the following structures. 

1. A subgroup is a product of the chiral left part and the chiral right 
part fibred over the ambichiral part; 
Subgroup= Subgroup+ XAmbichiral Subgroup-, 

2. A subgroup is a product of the groups modulo Kleinian invariants; 
Subgroup = (Group x Group) j Klein ian invariants, 

3. The chiral left part of a subgroup is the group modulo Kleinian 
invariants of degree (k, 0); 
Subgroup+= Group/ Kleinian invariants of degree (k, 0). 

Moreover we have the following structural results concerning the 
quantum doubles of subgroups of the nondegenerate braided quantum 
group SU(2)N. 

Theorem 12. The quantum doubles of subgroups of the nonde­
generate braided quantum group SU(2)N have the following structures. 

1. The quantum double of a subgroup is same as the quantum double 
of the original quantum group and they are isomorphic to the 
product of the group and its complex conjugate; 
Double(Subgroup) =Double( Group)= Group x Group, 

2. The quantum double of the chiralleft part of a subgroup is isomor­
phic to the product of the original group and a complex conjugate 
of the ambichiral part; 
Double(Subgroup+) = Group x Ambichiral. 
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