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Orbits on Homogeneous Spaces of Arithmetic Origin
and Approximations

George Tomanov

Abstract.

We prove an S-arithmetic version, in the context of algebraic
groups defined over number fields, of Ratner’s theorem for closures
of orbits of subgroups generated by unipotent elements. We apply
this result in order to obtain a generalization of results of Margulis
and of Borel-Prasad about values of irrational quadratic forms at in-
tegral points to the general setting of hermitian forms over division
algebras with involutions of first or second kind. As a byproduct of
our considerations we obtain another proof of the strong approxima-
tion theorem for algebraic groups defined over number fields.

Introduction

Many problems from number theory and, in particular, in Diophan-
tine approximations can be reformulated in terms of dynamics of actions
of subgroups on homogeneous spaces. In this way, ideas and methods
from dynamical systems can be successfully used in number theory and,
vice versa, problems from number theory stimulate the study of certain
kinds of dynamical systems. One of the most impressing example is
provided by the following conjecture formulated by Oppenheim in 1929
[Op 1,2]: If f is a real nondegenerate indefinite quadratic form of n > 5
variables and f is not a multiple of a quadratic form with rational co-
efficients, then for any real € > 0 there exists a nonzero vector z € Z"
such that | f(z) |< e. Let us briefly recall some of the conjectures and
the subsequent results connected with Oppenheim’s conjecture. (For
detail, we refer the reader to the exhaustive review paper [M6], as well
as to the earlier review papers [B2],[D4],[M5],[Rat4] and [S2].) In the
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mid-seventies, M.S.Raghunathan formulated a conjecture that the clo-
sure of an orbit of a unipotent subgroup on a homogeneous space G/T,
where G is a Lie group and I is a lattice in G, is an orbit of a larger
subgroup, and also noted that this statement implies the Oppenheim
conjecture. In 1981, S.G.Dani [D2] formulated the metric version of
the Raghunathan conjecture, often called ”measure rigidity” : any U-
invariant U-ergodic Borel probability measure on G/T’, where U is a
unipotent subgroup of G, coincides with the Haar measure on a closed
orbit of a connected subgroup containing U. In [M2,3], using the ho-
mogeneous space approach, G.A.Margulis proved that f(Z") is dense in
IR which, in particular, confirms Oppenheim’s conjecture . The conjec-
tures of Dani and Raghunathan have been proved in full generality by
M.Ratner in [Ratl] and [Rat2], respectively. (We will refer to the first
result as to "the measure classification theorem” and to the second one
as to ”the theorem for orbit closures.”) The main part in [Rat2] is dedi-
cated to the proof of a theorem about uniform distribution of unipotent
flows on the homogeneous space G/T". Later Dani and Margulis [DM2]
applied other methods in order to prove a refined version of Ratner’s
uniform distribution theorem.

In [BPr] Borel and Prasad obtained the following generalization of
the Margulis theorem. Let S be a finite set of normalized valuations
of a number field K containing the set S, of archimedean ones, Kg
the direct sum of the completions K, of K at v € S, and O the ring
of S-integers of K. Let fs be a nondegenerate quadratic form on Kg;
equivalently, let fg be a collection f,, v € S, where f, is a nondegenerate
quadratic form on K. Assume that fg is K-irrational (i.e. fg is not
a multiple of a quadratic form on K™), f, is isotropic for all v € S
and n > 3. Then fg(O™) is dense in Kg. (Note that K (respectively,
O") is diagonally embedded in Kg (respectively, in K%). Under these
embeddings, K is a K-algebra and O™ is a lattice in KZ.) The Borel-
Prasad result can be regarded as an analog for the irrational quadratic
forms of the local-global principle for quadratic forms over number fields
(that is, of the Hasse-Minkowski theorem [Se, ch. 4, Theorem 8§]). In
fact, Landherr, Kneser and Springer proved the local-global principle
for K-rational hermitian forms over finite-dimensional division algebras
with involutions of first or second kind(cf. [L], [K1] and [Sch,ch. 10]).
This suggests the problem about the extension of the results [M2,3] and
[BPr] to the general framework of the hermitian forms over division
algebras. In [BPr| and [Pr2] Borel and Prasad raised the problem of
generalizing Ratner’s theorems to the case when G is a finite direct
product of real and p-adic Lie groups. The generalizations of these
theorems were obtained by Ratner herself [Rat3] and, independently,
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the generalization of the measure classification theorem was obtained by
Margulis and the author [MTol,2].

Note that for the arithmetic applications of the theorem for orbit
closures we need only the S-arithmetic version of this theorem when G
is a K-algebraic group, G = G(Kg) and T is an S-arithmetic subgroup of
G in the sense that I" and G(O) are commensurable subgroups of G(K).
(Here and further on S and Kg are as above and G is identified with the

direct product [] G(K,).) The proof of the theorem in the S-arithmetic
veES
case allows to avoid some technical complications although the main

ideas from the general case remain involved. In the present paper we
give a proof of the theorem for orbit closures in the S-arithmetic case
using the approach and methods from Dani-Margulis paper [DM2] and,
subsequently, we apply this theorem in order to obtain the analogs for the
‘hermitian forms over division algebras of the result of Borel and Prasad
[BPr]. Our versions in the S-arithmetic case of both the theorem for
orbit closures and the measure classification theorem (see Theorem 1 and
Theorem 2 below) are somewhat more precise than in the general case
of direct products of real and p-adic Lie groups (cf.[Rat3], [MTol,2]).
Some of our arguments are applied in order to give a short proof of
the strong approximation theorem for the simply connected algebraic
groups defined over number fields (see [P]] and also [Prl] where the
strong approximation theorem is proved for any global field K).

Let us fix the following notions.We say that a connected K-algebraic
subgroup P of G is a subgroup of class F (relatively to S) if for each
proper normal K-algebraic subgroup Q of P there exists v € S such that
(P/Q)(K,) contains a unipotent element different from the identity.
Recall that according to [B1], an S-arithmetic subgroup I' of G is a
lattice (i.e. I' has finite covolume in G) if and only if the connected
component of G does not admit nontrivial K-rational characters. In
the latter case, I' is called S-arithmetic lattice. Note that if P is a
subgroup of class F in G then P’ NI is an S-arithmetic lattice in P’ for
any subgroup of finite index P’ in P(Kg) and any S-arithmetic subgroup
I' in G. Given a subgroup H C G, we will denote by H, the subgroup
generated by all 1-parameter unipotent subgroups of H (see 1.5).

Theorem 1. Let G be a K-algebraic group, T' an S-arithmetic
lattice in G, H a subgroup of G such that H = H,, and x = gI' a point
in G/T. Then there exists a subgroup P C G of class F and a subgroup
of finite index P’ in P(Kg) such that gP'g~! contains H and the closure
of Hx in G/T coincides with gP'g~ .
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In sections 3 and 4 we will give a direct proof of Theorem 1. (It can
also be deduced from [Rat3, Theorem 2] and Theorem 3 below.) The
proof of Theorem 1 essentially uses the following measure classification
theorem, very important by itself.

Theorem 2. Let G be a K-algebraic group, I' an S-arithmetic
subgroup of G, H a subgroup of G such that H = H, and p an H-
invariant H-ergodic Borel probability measure on G/T'. Then there exist
a subgroup P C G of class F, a subgroup of finite index P’ in P(Kg)
and a point x = gI' in G/T such that gP'g~' contains H, gP'g™x is
closed in G/T' and the measure p is gP'g~1-invariant and concentrated
on gP'g 'x.

Recall that in the usual formulations of the above theorems (see
[Rat3] and [MTol]) P’ is a closed subgroup of G such that P’ N T has
finite covolume in P’ (without the additional specification that P’ has
finite index in P(Kg), where P is a subgroup of class F). Theorem 2
follows from [MTol,Theorem 2] or [Rat3. Theorem 1] and from the next
theorem.

Theorem 3. Let G be a K-algebraic group, I' an S-arithmetic
subgroup of G , M a closed subgroup of G, x = gT" a point in G/T" and
M, = {a € G| ax = z}. Assume that Mz is closed, Myx is dense
in Mz and Mz admits M-invariant Borel probability measure u. Let
P = P(Kg) where P is the connected component of the Zariski closure
of g7'M,g in G. Then P' ={a € P |ag—'u = g~ 'u} is a subgroup of
finite index in P, gP'g™' = Mz, and g~*Mg N P is an open subgroup
in P’ containing g~'M,g. Furthermore, P is an algebraic subgroup of
class F in G and it is uniquely defined by pu.

Theorem 3 will be proved in section 2. Also in section 2, we easily
derive from Theorem 3 the following strong approximation theorem.

Theorem 4. (cf. [Pl]) Let G be a connected, simply connected,
algebraic group defined over a number field K. Let V be the adele ring of
K and T be a finite set of normalized valuations of K. Assume that for
any proper K-algebraic subgroup N of G there exists a valuation v € T
such that (G/N)(K,) is not compact. Then G(K7)G(K) is dense in
G(V).

Note that the group G in the formulation of Theorem 4 is actually a
group of class F. Indeed, since G is a simply connected algebraic group,
the solvable radical of G coincides with its unipotent radical. This
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implies that G is of class F relatively to any finite set S of valuations
of K containing T and S...

In order to formulate the results about the hermitian forms, we
need to fix some standard algebraic notions and concepts (cf. [Sch.],
ch.8,10]). We denote by D a central division algebra over a number field
L and of finite degree r i.e. dim;D = r?. We fix a subfield K of L
such that either L = K or L is a quadratic extension of K. We let
S, See, O, K, and Kg be the same as before. In addition, we denote
by A an O-order in D (i.e. A is an O-algebra of finite type such that
D = AQoy K). Tensoring with K, gives the topological K,-algebras
Dy, =DQyK, and L, = LQy K,. Let T be a subset of S. The
direct sums Dr = @,cr Do, Ly = @ er Ly and Kr = @, or K,
are endowed with the product topology. We will identify D, L and K
with their diagonal embeddings in Dy, Ly and Kr, respectively. It is
well known that each of these embeddings is dense. Furthermore, A
is a discrete cocompact abelian subgroup of Dg. Note that Lg (resp.
L,) coincides with the center of Dg (resp. D,).Let v € S and 7, be
a L, /K,-involution on D,, i.e. T, is an antiautomorphism on D, such
that 72 = id and K, = {z € L, | "z = z}. Clearly, 7p = @ cp 70 is a
Lt /Krp-involution on Dy for any T' € S and, conversely, every Ly /K-
involution on Dr is a direct sum of L,/K,-involution on D,, v € T.
Note that any L/K-involution 7 on D extends in a unique way to a
L, /K,-involution on D, (resp. Lt/Kr-involution on Dr). If L = K
(resp. L is a quadratic extension of K), then 7, 7r and 7 are involutions
of first (resp. second) kind (cf.[Sch]).

Let Ar = (Ay)ver € L1 and hr be a nondegenerate Ar-hermitian
form on D7F. (see 5.1). Then hr can be equivalently viewed as a collection
hy, v € T, where h, is a A,-hermitian form (with respect to 7,) on
D?.(Note that if 77 =id and Ar = 1 (resp. At = —1) then Dy = K
and each h, , v € T, is a bilinear symmetric (resp. symplectic) form.
In the first case h,(z, z) is a quadratic form which is the object under
investigation in [M2,3] and [BPr].)

The hermitian form hp is called K-rational if there exists an invert-
ible element a in D and a A-hermitian form h on D™ such that A+ = ah
and hr is called K-irrational in the opposite case. If hg is a nondegener-
ate hermitian form on DY, we denote by Sy the set of all v € S such that
h., is isotropic (i.e. the K,-algebraic group SU(h,,) corresponding to h,
is K,-isotropic, see 5.1). The form hg is called isotropic if Sy # 0. We
will denote by hg, the hermitian form on Dg given by all h,, v € S.
The hermitian forms hg and h are properly equivalent if there exists
g € SLn(Ds) such that hlg = h% (where SL,(Ds) = [],cg SLn(D,) acts
in the usual way on the hermitian forms). We will say that hg and hj
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are almost S-integer equivalent if for any € > 0 and any O-order A in D
there exists g € SL,(A) such that

IR — hsli<e,

where || || is a norm on the space of all hermitian forms on D% com-
parable with the topology on this space induced by the topology on
Ks.

It is easy to prove that the almost S-integer equivalence between
two hermitian forms implies their proper equivalence (see 5.6). The next
theorem shows in particular that the converse is true for all K-irrational
isotropic hermitian forms of dimension n > 3.

Theorem 5. With the above notations, let hg be a nondegenerate
isotropic hermitian form on D%. Assume that (a) rn > 3 if 75 is of first
kind and s # id, (b) rn > 2 if 75 is of second kind, and (c) n > 3 if
T7g = id. Then the following conditions are equivalent:

(%) hs, is K-irrational hermitian form;

(%) hg is properly equivalent to an hermitian form kY if and only if
hs is almost S-integer equivalent to hls.

Theorem 5 and the next corollary will be proved in section 5. (Also in
85 we give examples which show that the restrictions in the formulation
of the theorem can not be weekened.)

Corollary 1. Let n > 2, hg be as in Theorem 1 and hg, be
K -irrational. Then for any € > 0, any O-order A in D and any
Z1,%2,...,Tn_1 € D% there exist zq,...,2,—1 € A™ such that

(1) | hs(zs, ;) — hs(2i, 25) <,

for alli,j (here| | stands for a norm on Dg comparable with the topol-
ogy on Dg). In particular, the closure of { hs(z,2) | z € A"} in Dg
coincides with { hg(z,z) | z € DE}.

In the case of quadratic forms (i.e. 7g = id and Ag = 1), the above
corollary was proved by Borel and Prasad (see [BPr], [B2]) for primitive
vectors zi,...z2p—1 € O™ assuming that S = Sy. (For 3-dimensional real
quadratic forms the result had been earlier proved by Dani and Margulis
[DM1].) The observation in the case of quadratic forms that Sy C S may
be taken arbitrary nonempty belongs to Margulis.

In contrast to the case of quadratic forms, it is generally possible
that all nondegenerate hermitian forms on D% are K-irrational. This
occurs when D is not abelian and D does not admit L/K-involutions.
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Recall that D admits a nontrivial involution of first kind if and only if D
is a quaternion division algebra. The conditions for the existence on D of
an L/K-involution of second kind is given by relations between the local
invariants of D (cf. [Sch., 10.2.4]). Our theorem implies immediately
the following criterion.

Corollary 2. Let D be non-abelian and L = K (resp. L is a
quadratic extension of K).Then the following assertions are equivalent :

(i) D does not admit an involution of first (resp. an L/K -involution
of second) kind;

(ii) If rn > 3 (resp. rn > 2) and two nondegenerate isotropic her-
mitian forms on D% are properly equivalent, then they are almost
S-integer equivalent.

The present paper represents a written version of my talks at the
conference “Analysis on Homogeneous Spaces and Representations of
Lie Groups” in Kyoto. I take the opportunity to thank RIMS and
Hayashibara Foundation for the hospitality during the conference and
the financial support.

I would like to thank G.A.Margulis for several discussions which
were useful for the proof of Theorem 1. :

81. Notation and terminology

1.1 As usual, C,RQQ,,Z,N denote the complex, real, rational,

rational p-adic, integer and natural numbers. Furthermore, R™ will be
the set of all strictly positive real numbers. K will denote a number
field, i.e.a finite extension of @. All valuations of K under consideration
will be normalized valuations (see [CaF, ch.1]). In particular, if v is a
valuation of K and K, is the completion of K with respect to v then | |,
and 6, denote the normalized norm and the normalized Haar measure
on K,, respectively. The field K, contains a unique completion @, of
Q), where p, is a prime number if v is nonarchimedean and p, = oo and
Q. = R if v is archimedean.

If v is a nonarchimedean valuation we denote by O, the ring of
integers of K,. We will denote by V the adele ring of K (i.e. V is the
restricted topological product of all completions K, of K relative to O,,
v ¢ Soo [CaF, ch.2)).

1.2 Throughout the paper, we fix a finite set S of valuations of K
containing the set So,. We denote by O the ring of S-integers of K and
by O* the group of units in O.
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Given a subset T of S, we denote by 07 = [] 6, the Haar measure
veT

on Kt and by || || = supyer | |v, the norm on Kr.
Let r: T — R and a = (a,) be a point in K7. By an interval with
radius r and center a in K7, we mean the set

I(r,a) = {(zv) € K1 | | @y —ay |» < 7(v) forall veT}.

If a = 0, we write I(r) instead of I(r,0). v
1.3 By a Kp-algebraic variety M, we mean a (formal) direct product

[T M, of K,-algebraic varieties M,. A map f: M — M’, where M and
veT
M’ are Kr-algebraic varieties, is called Kg-rational (resp. Kg-regular)

if f is a product of K,-rational (resp. K,-regular) maps f, : M, —
M), v € S. If in the above definition of M all M,,, v € S, are K,-
algebraic groups we say that M is a Kg-algebraic group. Analogously,
we define the notions of linear Kg-space, K s-rational representation of a

Kg-algebraic group etc. The set [ M, (K,) will be denoted by M(Ks)
vES
or simply M and called set of Kg-rational points of M (respectively,

group of Kg-rational points, in the case of a Kg-algebraic group M).
Naturally if V is a K-algebraic variety, we associate to it a Kg-algebraic
variety, also denoted by V, such that V, =V for allv € S.

1.4 By Zariski topology on a Kg-algebraic variety M, we mean the
product of the Zariski topologies on M,,, v € §. M is called connected
if every M,,, v € S, is connected for the Zariski topology.

On M(Kg) we have two topologies : one induced by the Zariski
topology on M and another which is a product of the locally compact
Hausdorff topologies on M(K,), v € S. In order to distinguish the two
topologies, all topological notions connected with the first one will be
used with the prefix “Zariski”. (We will say : Zariski closure, Zariski
closed, etc.) Given a subset X in M(Ks), we will denote by X the
Zariski closure of X in M(Ks). By a Ks-algebraic subvariety of M(K),
we mean a Zariski closed subset of M(Ks).

1.5 Let G be an algebraic group defined over K. Every G(K,) is
naturally embedded in G. By a l-parameter unipotent K,-subgroup
U, = {u,(t)} of G, we mean a nontrivial K,-rational homomorphism
uy : Ky — G(K,). Given a subgroup M of G, we will denote by M,, the
subgroup of M generated by all 1-parameter unipotent K,-subgroups
forallve S.

Let. T C S and for each v € T let U, = {uy(t,) | tv € K,} be
a l-parameter unipotent K,-subgroup. Then the homomorphism up :
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Kr — G, (ty)ver — (uyp(ts))ver, defines a 1-parameter unipotent K-

subgroup Ur = [] U, of G.
veT
Finally, given a 1-parameter unipotent K,-subgroup U, = {u,(t)}

of G and a 1-dimensional over @, linear subspace ! in K, the restriction
of u, on [ is called 1-parameter unipotent @, -subgroup of G.

§2. Proof of Theorem 3 and of the strong approximation the-
orem.

Theorem 3 will be proved in 2.1-2.4. We preserve the notations from
its announcement.

2.1 Denote by p the M-invariant Borel probability measure on Mz.
Note that u is M,-ergodic and M’z = Mz for each open subgroup
M' C M containing M,,. Replacing, if necessary, M by its subgroup of
finite index, we will assume that M satisfies the following conditions:

(*) Every open subgroup of M is Zariski dense in M and M =
[I,cs My where M, C G(K,).

We need the following version of the Borel density theorem.
Lemma M, is Zariski dense in M.

Proof. Since Mz is closed Mz is homeomorphic to M/M, and,
therefore, p can be considered as a M-invariant M,-ergodic Borel prob-
ability measure on M/M,. Let p; be the image of the measure p on
M/M N M, under the natural map M/M, — M/M N M,. Clearly
the measure u; is My-invariant and M,-ergodic. On the other hand,
M/M N'M, can be regarded as a Borel subset of a K- algebraic variety
on which M, acts rationally. This in view of [MTol, 3.1] implies that
w1 is concentrated in a point. The lemma is proved.

2.2 We will denote by R(M) the solvable radical of M (i.e. R(M) is
the maximal connected in the Zariski topology solvable normal subgroup
of M). Clearly M = [],.g M, and R(M) = [],cs R(M,) where R(M,)
is the solvable radical of M,,.

Lemma Assume that R(M) = R(M),. Then M is open in the
Hausdorff topology of M.

Proof. It is enough to prove the lemma when S = {v}. Let G
be the Lie algebra of M,. It is well known that the commutator of G
coincides with the Lie algebra of the commutator D!(M,,) of M,. (cf.
[C, ch.2, theorem 13]). Therefore the commutator D*(M,,) of M, is open
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in D'(M,) . This allows to reduce the proof of the lemma to the case
when M, is abelian. In this case M, is isomorphic to a vector space K. o
Now the lemma follows from the assumption (*) and from the fact that
if v is archimedean (respectively, nonarchimedean) then the connected
component of M, is Zariski closed (respectively, {1} is the only discrete
subgroup of M,,).

2.3 Lemma Let R(M) = R(M), and also let Mz be closed and
admit M-invariant Borel probability measure fi. Then M' = {a € M |
aMz = Mz} is a subgroup of finite index in M.

Proof. Since M, is a normal subgroup of M and M,z is dense in
Mz we get that for any a € M either aMxz = Mz or aMzNMz =0 . In
view of 2.2 Ti(aMz) = fi(Mx) > 0 for all a € M. Therefore there exists
a finite subset {a;,as,...,a.} C M such that Mz = a;Mz U a;Mz U
... Ua,Mz and the multiplication from the left by an element from M
permutes the subsets a; Mz,i = 1,2, ...,r. This implies the lemma.

2.4 Proof of Theorem 3. Replacing u by ¢g~'u and M by g~ Mg
we may (and will) assume that ¢ = e. Let P; be the largest normal
subgroup of class F in P and P; = P1(Kg). In view of Lemma 2.1 M is
contained in P and, therefore, M, C P;. Since P; NT is a lattice in P;
the orbit Pyx is closed and contains Mz. In particular, P, contains an
open subgroup of M. In view of the assumption (*), Lemma 2.1 and the
definition of P we get that P = P; and P = M. It follows from 2.2 and
2.3 that M is open in P and P’ = {a € P | ap = p} has finite index in
P. The uniqueness of P follows from the fact that the Lie algebras of
P(K,) and M,, v € S, coincide. The theorem is proved.

2.5 Proof of Theorem 4. Let us first consider the case when
G is semisimple. In view of Weil’s restriction of scalars functor [W2,
ch.1] and the result of Borel and Tits [BTi2, 6.21(ii)] we may (and will)
assume that G is absolutely almost simple. Also, it is easy to see that it
is enough to prove the theorem for T' = {v,}. Assuming all this, denote
by S, the (finite) set of all nonarchimedean valuations v of K such that
G is K,-anisotropic. Let S; be any finite set of valuations such that
S1MN(SoU{vo}) =0 and Sy U {v,} contains all archimedean valuations
of K. For each v € S,, fix an open subgroup R, in G(K,). Define an
open subgroup A in G(V) as follows:

A= HvGS1U{vO} G(Kv) X HvESo R, x Hv¢SOUSIU{v0} G(OU)

The group I' = AN G(K) is an S-arithmetic subgroup, where S =
SoUS1U{v,}. Since G is simply connected, G(K,,) = G(K,, )., (cf.[P]]).
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Let G’ be the closure of G(K,,)[' in G(Kg). In view of Theorem 3, G’ is
a subgroup of finite index in G(Kg). Note that G(K,) does not contain
a subgroup of finite index if v is archimedean (Cartan) and, also, if
v is nonarchimedean and G is K,-isotropic (cf. [Til],[Pl]). Therefore
G' O G(Kg,ufv,})- Since the subgroups R,, v € S,, can be chosen
arbitrary small and the finite set S; arbitrary large, we obtain that
the closure of G(K, )G(K) in G(V) contains all adeles z = (z,) with
z, =1for each v € S,. If S, # 0 then G is a group of type A,, and, for
every v € S,, G(K,) is the group of elements with reduced norm 1 in a
central division algebra over K,,. By a result of Kneser [K2| the diagonal

embedding of G(K) in [] G(K,) is dense. Therefore G(K,_ )G(K) is
vES,

dense in G(V).

For a non-semisimple K-algebraic group G, we apply the follow-
ing standard argument. The group G is a semidirect product over K
of its unipotent radical U and its semisimple K-algebraic subgroup L.
Therefore G(V)L(V)U(V) and G(K) = L(K)U(K). Now, the theorem
follows from the validity of the strong approximation for both L and U.
This completes the proof.

§3. Ratner’s uniform distribution theorem

3.1 Similarly to [Rat2,3], we will deduce Theorem 1 from its stronger
version for 1-parameter unipotent Kp-subgroups, the so-called uniform
distribution theorem.

Theorem. Let G,T" and x = gI" be as in Theorem 1. Furthermore,
let T be a nonempty subset of S and U = {u(t) | t € Kt} be a 1-
parameter unipotent Kr-subgroup of G and let {I(r;)} be an increasing
sequence of intervals in Kr such that U;I(r;) = Kr. Then there exists
a subgroup P C G of class F and a subgroup of finite index P’ in
P =P(Kg) such that the closure of the orbit Uz coincides with gP'g™ 'z
and

lim ———— / fu@)z)dor(t) = / f(y)du(y)

i—oo O I(
gP'g~ 'z

for any bounded continuous function f on G/T, where p is the Haar
1

measure on gP' g™ x.

For 1-parameter real and p-adic subgroups U = {u(t¢)} the uniform
distribution theorem was proved in the general context of direct products
of real and p-adic Lie groups in [Rat3, Theorem 3|. (In fact in [Rat3] and,
earlier, in [DM2] for real Lie groups, a stronger version of this theorem
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is proved : the point z is replaced by a sequence of points converging
to a generic point z (cf [Rat3, Theorem 4] and [DM2; Theorem 2]. In
the present paper we do not treat this more technical case.) Our proof
of Theorem 3.1 uses methods, with some modifications, of the proof in
[DM2].

3.2 Deduction of Theorem 1 from Theorem 3.1. It is enough
to prove Theorem 1 for x = I'. Let H = H, as in the formulation
of Theorem 1. Denote by M the subset of all unipotent elements in
H. 1t is clear that M is a Kg-algebraic subvariety of G. Since each
element in M is contained in a maximal unipotent subgroup of H and
any two maximal unipotent subgroups of H are conjugated [B3,15.9],
M is Zariski connected. On the other hand, every element a € M is
contained in a 1-parameter unipotent Kp-subgroup U(a) of H. In view
of Theorem 3.1, there exists a K-algebraic subgroup P(a) C G of class
F and a subgroup of finite index P(a) in the group of Kg-rational points
of P(a) such that the closure of U(a)z coincides with P{a)'z. Let A be
an open subset in M homeomorphic to a neighbourhood of 0 in some
linear Kg-space. Then since {P(a)’ | a € M} is a countable set, there
exists a, € M such that P(a,)’ N A has positive Lebesque measure. As
M is Zariski connected, we get that P(a,)’ N A is Zariski dense in M.
Therefore, H C P(a,)’, which implies Theorem 1.

3.3 The following result is important for the proof of Theorem 3.1.

Theorem. With G,T" and U as in Theorem 8.1, let € > 0 and
K C G/T be a compact. Then there erists a compact K1 in G/T' such
that for any x € K, and any interval I(r) in Kr,

Q—T(—}(;)—)GT{t €I | ul®zeKi} >1—c.
. In the case when T = {v}, the above theorem was announced in

[MT1,11.4] with indications about the proof. (The details will appear
elsewhere.) The general case follows from this one by a simple appli-
cation of the Fubini theorem. In the real case the theorem is proved
in [DM2,6.1] using earlier results [M1], [D1,3,4] and the arithmeticity
theorem [M4,ch.9)].

3.4 Singular and generic points. Given a subgroup U of G and
a proper subgroup P C G of class F, we put X(P,U)={g€ G| UgC
gP}. Tt is clear that X(P,U) is a Kg-algebraic subvariety of G. We
denote S(U) = Uper p2cX(P,U)I'/T and G(U) = G/T — S(U). As
in [DM2], the points from S(U) (resp. G(U)) are called singular (resp.
generic) points with respect to U.

Theorem 3.1 will be derived from the following
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Proposition. Let G,T',U,e and K be as in Theorem 3.3. Also let

P be a proper subgroup of G of class F and C = [] C, be a compact
veS
subset of X (P,U), where C, C G(K,) for each v € S. Then there exists

a compact D = [ D, in X(P,U) such that D, D C, for allv € S,
vES
D, =C, forvgT and the following holds: For any neighbourhood @,

of D in G there exists a neighbourhood ® of C in G, such that for any
z € K—®,T'/T and any interval I(r) in Kr,

2) %(}(—r))eT{t € I(r) | u(t)z € BT/T} < e.

3.5 Deduction of the theorem for uniform distribution from
Proposition 3.4. Let P be the smallest subgroup of class F in G such
that Ug C gP (if z is singular then P # G). Put U; = g~ 'Ug and
A =TnNP. Then A is an S- arithmetic lattice in P, y = A is a generic
point in P/A with respect to U; C P, and PI'/T is closed in G/I" and
homeomorphic to P/A. This reduces the proof of the theorem to the
case when z is generic, which we will assume from now on.

For any interval I(r) define a probability measure y, on G/T" by the
formula

/ F )y () = m / f(u(t)z)dbr (2),

G/T I(r)

where f is a bounded continuous function on G/T'. We denote by G/T
the one-point compactification of G/T" if G/T" is not compact, and G/T it-
self if G/T" is compact. It is well-known that, given a compact metrizable
topological space Y, the space P(Y) of all Borel probability measures
on Y is compact with respect to the weak * topology. Let {I(r;)} be a
sequence of intervals as in the formulation of Theorem 3.1. Put p; = p,,
for every i. The sequence of measures {y;} is naturally embedded in
P(G/T). Let A be a limit point of {x;} in P(G/T). It follows from 3.3
that A is concentrated on G/T". Using the fact that f is bounded and
performing the linear substitution s = ¢, + ¢ in the integrals

[ statto + vo)aor(o),
I(rs)
a simple argument shows that
AMu(to) f) = (u(—to)A)(f) = A(f),

for any bounded continuous function f on G/T'. This means that A
is U-invariant. On the other hand, since X (P,U) is second countable
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topological space and F is countable it follows from Proposition 3.4
applied for K = {z} that A\(S(G/I")). = 0. In view of Theorem 2, every U-
invariant U-ergodic measure on G/T" which is not supported by an orbit
of an open subgroup of G is supported by S(G/T"). This, in view of the
decomposition of A into a continuous sum of its U-ergodic components
implies that A is U-ergodic and coincides with the Haar measure on
G’z where G’ is an open subgroup of G. So, assuming the validity of
Proposition 3.4, the proof of Theorem 3.1 is complete.

84. Polynomial-like behaviour of the unipotent orbits and
proof of Proposition 3.4

4.0 Let us make the following simple observation : Given a field
F and a l-parameter unipotent subgroup U = {u(t)} in GL,(F), the
map t — u(t)z is polynomial of degree less that or equal to n for each
x € F™. This fact is in the root of the phenomenon that the dynam-
ics of the actions of subgroups on homogeneous spaces are much easier
to be understood when the subgroups are generated by unipotent ele-
ments than, say, when they are generated by split semisimple elements.
(In more geometrical terms, the first type of actions corresponds to a
horosperical flow and the second one to a geodesic flow on a Riemannian
manifold with constant negative curvature.) The above observation will
be used in the proof of the key Proposition 4.2. For the proof of 4.2,
we need a property of polynomial maps given by the following lemma.
(Note that Lemma 4.1 plays also a crucial role in the proof of Theorem
3.3.)

4.1 Lemma. Let v be either a real or a nonarchimedean valuation of

K and e and o be positive reals. Also, let f = (f1,..., fs) be a polynomial

map K, — K of degree not greater than n € IN (i.e. degf; < n for all

t). Puté = ﬁ and denote by | ||» the norm sup on K. Then

for any interval I C K,, which contains a number t, with ||f(to)|lv = o,
Ou{t € I | |[f(tollo < ba} <eluft € I||[f(to]l < a}.

Proof. We will omit the case when K, = R which is considered in
detail in [DM2,4.1]. Without loss of generality we may assume that « is
a value of the norm | |,. It is easy to see that, given two intervals in K,
with nonempty intersection, one of them contains the other. So, for any
x € I there exists a unique interval J(z) in I which contains z and is
maximal with the property : ||f(y)||» < a for all y € J(z). Therefore, it
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is enough to consider the case I = J(z). Clearly, I contains an element
Yo With || f(yo)|l» = e Since there exists an ¢ such that | f;(y,) |»= «,
the proof is reduced to the case when s = 1. Furthermore, replacing f
by af, where a € K, and | a |,= a~1, and doing a linear substitution
t — t 4+ t,, we reduce the proof of the lemma to the following case :
I={teK,| |t|<1},to =0,] f(0) |,=a = 1,6 < 1, and
| f(¢) |[,< 1 for all t € I. Assume that the statement of the lemma is
false, that is,

0,(4) > ¢,
where A={teI| | f(t) [v< 6} Denote 1 ={t € K, | [t].< 7557}
Since the norm'| |, and the measure 6, on K,, are normalized, we obtain
€
0,(I1) < ——
’U( 1) = ns 17

cf. [CaF, ch.1]. Therefore, there exist points a;, ..., @41 in A such that
{os+ L} Nn{a; + 1} =0 for all i # j. (Note that I; is an ideal in the
ring I.) In particular,

€

(3) | i — o o> .

for all ¢ # j. Let us write the Lagrange interpolation formula for f at

‘the points a1, asg, ..., py1:

sy (;’6 - Oél)...(.’L‘ - a,-_l)(a: - Oti_,_l)...(:L‘ - dn+1)

f(t) = ; f(az) (ai - ozl)...(ai - ai_l)(ai - ozi+1)...(a,- - O[n+1) ’

The substitution ¢ = 0, the inequality (5), and the ultrametric in-
equality in K, imply that

| f(0) o<
Contradiction. The lemma is proved.

4.2 Proposition. Let M be a Zariski closed subset in K]*. Then
for any compact subset A of M and any € > 0 there exists a compact B
in M containing A such that the following holds: given a compact neigh-
bourhood W, of B in K", there exists a neighbourhood W of A in K.
such that for any 1-parameter unipotent subgroup {u(t)} in GLn(K,),
any a € K" — W, and any interval I in K,, containing 0, we have

(4) 0.{t € I |u(t)a e W} <e{t € I|u(t)a € W,}.
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Proof. Note that the case K, =C can be easily reduced to the real
one by embedding M in R?>™ via Weil’s restriction of scalars and by using
Lemma, 4.4 below. The real case itself is considered in [DM2, 4.2]. So, we
will assume that v is nonarchimedean. First note that if the proposition
is true for a compact subset of M containing A, then it is also true for
A. Therefore, it is enough to consider the case A = {z € M | ||z|| < R,}
where R, > 0 is a constant and || | is the norm sup on K]*. Let
fi, f2y s fr € Kylz1,..,2m] be such that M = {z € K" | fi(z) =
0forall i = 1,2,...,r}. Let n € N be such that the degree of each
polynomial f; is < n. Put § = mﬂ—_‘i?{:—n—m Let R be a real number

such that R > R,6~! and R be a value of the norm || ||. Denote,
B={se M|zl <R}

Let W, be a neighbourhood of B, a ¢ W, and u(t) be a l-parameter
unipotent subgroup of GL,,(K,). Denote g(t) = u(t)a, t € K,. Then
g(t) = (g1(t), ..., gm (t)) where g;(t) are polynomials of degree < m. Also
denote F(t) = (Fi(t), ..., Fr.(t)) where F;(t) = fi(g1(t), ..., gm(t)) for all
i. It is easy to see (for example, by an argument from the contrary and
using the compactness of B) that there exists an a > 0 which is a value
of the norm | |, and such that

Wy ={xe K" |||zl £ R and | fi(z) |, < « for all i}
is a neighbourhood of B contained in W,. We will prove that
W= {ze€ K" ||z|| £ R, and | fi(z) |,< «é for all i}

is the required neighbourhood of A. Let I C K, be an interval containing
0. Put J = {t € I | u(t)a € W1}. For each t € J, we denote by J(t)
the maximal (closed) subinterval of I such that u(J(t))a C W;. Since
a ¢ Wi and 0 € I, for every ¢ € J there exists t’ € J(t) such that either
lu(t)al| = R or ||F(¢')|| = o Using 4.1 we get

0,(J (1)) 2 0u{y € J(¥) | lu(y)all < R, and ||F(y)|| < ad}.

Since the intervals J(t) form a partition of .J, the above formula implies

(4).

4.3 Lemma. Assume that Proposition 3.4 is valid if T is a single-
ton. Then it is valid for any T.

Proof. The proof is by induction on the cardinality of 7. Let
T =T, UT,, where both T} and T, are nonempty and U = U; x U,
where U; = {u;(t) | t € K1,}, i = 1,2, are 1-parameter Kr,-subgroups
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of G. Assume that Proposition 3.4 is true for both U; and U,. Let
K, C and € be as in 3.4. We have to prove that a compact D, as in
the formulation of Proposition 3.4, exists. Because of 3.3, there exists a
compact subset Kq in G/T" such that for any « € K and any interval I]
in K7, containing 0,

L

’ S
> —
(5) GI(I{)Ol{tEIl |ui(t)z e K1} > 1 37

where 81 = 07, (see 1.2). Note that X (P, U) = X(P,U;) N X(P,Us).
Applying Proposition 3.4 for Uz, we get a compact D' = [[ D) in
veS
X(P,U) with D! = C, for all v ¢ T; and such that if ¥ is a neighbour-
hood of D’ then there exists a neighbourhood ® of C such that for any

y € Ky — 9T'/T and any interval I in K71, containing 0, we have

1 €
6 ———0;{t € I. t /It >1-— =
© SOl € T2l ua(t)y ¢ BT/) 2 1= 5,
where 6, = 0r,. Applying again Proposition 3.4 (this time for U;),

we get a compact D = [[ D, in X(P,U) with D, = Dj for all v ¢
vES
T, and such that if &, is a neighbourhood of D then there exists a

neighbourhood ¥ of D’ with

1

(7) 01(11)01{t611|u1(t)w¢\llr/r}2 1_;

for any interval I; in K, containing 0 and any z € X — @,I"/T.

Let I = I; x I3 be an interval in K containing 0, &, a neighbour-
hood of D, ¥ a neighbourhood of D’ as given by (7) and ® a neighbour-
hood of C as given by (6). Now it follows from (5)-(7) and the Fubini
theorem that

1
ryfrit e lue ¢ 0/} >

L

QT{t = (tl,tg) el l ul(tl)x S ’Cl—\I/F/F and ul(tl)UQ(tg).’L‘ ¢ (I)F/F} >
(1)

c\3
(1——3—) >1—¢

for any z € K — ®,I'/T". The lemma is proved.
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4.4 Let T = {v}, K, =C and U = {u(t)} a 1-parameter unipotent
(C-subgroup of G. In this case the proof of Proposition 3.4 can be reduced
to the case of actions of 1-parameter unipotent real subgroup of G as
follows. For every 1-dimensional real subspace | CT we denote by u; the
restriction of w on I. Put U; = {w;(¢)}. In order to prove that (2) holds

it is enough to show that for all I CQ and all intervals I(r) = [—r,7] in
IR we have,

1
(8) ————0,{t € I(r) | w(t)x € PT/T'} < ¢,

0o(1(r))

where 0, is the Lebesques measure on IR. The fact that the fulfilment
of (8) for all [ implies (2) follows from the elementary lemma below.

Lemma.Let I = {t €@ | | ¢t|< 1}, € > 0 and A be a measurable
subset of I such that for any x € I we have, :

ebo{a € R|ax €I} >0,{a € R|az c IN A}.
Then 6,(A) < em.

4.5 Up to the end of section 4, we preserve the notations from
3.4 and suppose that T = {v}. Denote by U = {u(t)} a l-parameter
unipotent IR-subgroup if v is archimedean and put & = U if v is nonar-
chimedean. We let F' = IR in the former and F = K, in the latter case.
Note that X(P,U) = X(P,U).

Let us fix a K-rational representation ¢ : G — GL(V) such that
the normalizer Ng(P) of P in G coincides with the stabilizer in G
of a 1-dimensional subspace of V spanned by a vector m € V(K).
(The existence of such a representation follows from the Chevalley the-
orem [B3,5.1].) Let x be the K-rational character of Ng(P) given by
gm = x(g)m, g € Ng(P). We denote N = {g € G | gm = m},
N = N(Kg),[n =T'NN and T'p =T NNg(P). Let n: G — Gm,
g — gm. (We will denote in the same way the map G — V, g — gv,
where V' = V(Kg).) Note that Gm is open in its Zariski closure,
Gm is isomorphic to G/N and 7 is a quotient map [B3, 6.7]. Let
X ={g € G| Ug C gP}. Clealy, X is a Kgs-algebraic variety and
X(Kg) = X(P,U). We will denote X,, = X,(K,). Since XNg(P) = X,
N C Ng(P) and 7 is a Zariski open map, we get that n(X) is Zariski
closed in Gm. This implies that

(9) 1 (n(X(P,U)) = X(P,U).

(In the above formula the Zariski closure is taken in V.)
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4.6 In the following remarks we use some standard facts from alge-
braic number theory (cf.[CaF],[W1]).

(a) Since x is a K-character, x(I') N O* has finite index in x(T'). In
view of the facts that O is integrally closed and x(I') C K, we get that
x(T') € O*. Also since V(O) is discrete in V and 7 is K-rational, I'm is
discrete in V.

(b) Denote by K} the set of all z = {z, }wes € Ks such that

II 12w lw=1.

weS

The group O* is diagonally embedded in Ki. For each w € S let
Aw @ K} —R be the map z — log|z|,. Put R, = Im(\,). So, R,
coincides with R if v is archimedean and R,, is a cyclic subgroup of IR if
v is nonarchimedean. Let X : Ké — [] R. be the direct sum of all A,,
weS

and let R = Im()\). Then R is a locally compact abelian group,\(O*)
is a lattice in R and Ker(A) N O* is the group of roots of unity in K
[CaF,ch.2, 18.1]. Therefore there exists 6 > 0 such that if £ € O* and
[1—¢|, <6 for allw # v then & is a root of unity in K.

(c) Let A= ][] Aw be a subset of G. We will say that A is S(v)-
weS
small if for every w # v in S the following holds : if ¢ € K is such

that
c(Apym)NA,m #0

then | ¢ — 1 |w< 8. In particular, if ¢ € O* then, in view of (b), cis a
root of unity.

(d) Clearly, every element g € G is contained in a S(v)-suffitiently
small neighbourhood.

The consideration of S(v)-sufficiently small subsets for @-algebraic
varieties was suggested by G.A.Margulis.

4.7 Proposition. Let ¢ : G/T'y — G/T xV, ¢(gT'n) = (gT', gm).
Then ¢ is a proper map.

Proof. Let {g;l'v} be a sequence in G/T'y such that ¢(g;I'n) con-
verges to (cI',q) € G/T' x V. Fix ¢; € G and ~; € I such that g; = ¢;;
for all 4 and lim;c; = ¢. As {vim} C V is discrete (cf. 4.6(a)), there
exists i, such that v;m = v, m for all ¢ > ¢,. So, v;I'zv = v, I'n for all
i > i,. Therefore {g;['n} is bounded in G/T' ny which proves that ¢ is a
proper map.

4.8 The above proposition implies the following
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Corollary. Let D, and L be compact subsets in G. Then there
exists a compact D in G such that D, C D C D,N and

(10) DNNLT C DTy.

Furthermore, if Q is a neighbourhood of D then Q contains a neigh-
bourhood ¥ of D, such that

UNNLT C UTy.

According to 4.7, ¢~ }(LT'/T', D,m) is a compact subset of D,N/T' .
Now, the existence of D satisfying (10) follows by a simple continuity
argument. The second part can be proved in a similar way.

4.9 Let A be a subset of G. Following [DM2], a point z € A will be
called a point of (P,T')-self-intersection in A if there exists y € ' —I'p
such that zy € A. The next proposition corresponds to Corollary 3.5 in
[DM2].

Proposition. Let D, and L be compact subsets of G and Y be the
(closed) subset of all points of (P,T')-self-intersections in D,. Assume
that D,N N LI' C D,I'y. Then for every relatively compact neighbour-
hood U of Y there exists an open neighbourhood Q2 of D, such that

(Q=9T'p)NLT
does not contain points of (P,T")-self-intersections.

Proof. Assume the contrary, that is, there exists a sequence of
neighbourhoods {€2;} of D, such that ; D Q;11, [ = D, and there

K3

exist g;,g; € (2 — UT'p) N LT with g; = ¢;vi, g = ¢y}, where ¢; € L,
v; and 4] € T, and ~; 1%{ ¢ T'p. Passing to subsequences, we may
(and will) assume that each of the sequences {¢;}, {gim} and {gim}
converges. Since I'm is discrete, there exists i, such that v,m = v; m
and y;m =« m for all i > 4,. Put ¢ = lim;c;. Then cv;,m and cy; m €
D,m. Therefore cy;_, C’y{o e DONNLT ¢ D, I'y. As '7;1720 € I'p, we
get that cy;, € YI'p. The latter contradicts the fact that c¢y;, & ¥I'p.
The proposition is proved.

4.10 Proof of Proposition 3.4 Let K C G/T', ¢ > 0 and C be
as in the formulation of Proposition 3.4. According to 4.3 and 4.4, it is
enough to prove (2) for U as defined in 4.5. Also, in view 4.6(d) we can
(as we will) suppose that C is S(v) - small subset of X(P,U).
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The proposition will be proved by induction on dimP. (The proof
is trivial for dimP = 0.)
Using 4.2, we can find a compact B = [] By, in X(P,U)m C V
weS
such that B,, = C,m for all w # v, B, D C,m, and for any neigh-

bourhood A, of B, in V(K,,) there exists a neighbourhood A of C,m
in V(K,) such that

(11)  6{te I(r) | u(t)a € A} < %G{t € I(r) | u(t)a € A},

for all @ € X,, — A,, where k is the order of the group of roots of unity
in K. (Here and later on # is the Haar measure on F' and I(r) is an
interval in F' with radius r centered at 0.)

Applying 3.3, we fix a compact L C G such that £ € LT'/T" and

1 €
12 -t el LT/Ty>1-— -
(12) gy it € 1) [u(®)z € L0/T 21— 4,
for all x € K.

In view of 4.7, 4.8 and (9), there exists a compact D, C X(P,U)

which satisfies
¢ (LT x B) Cc D,I'n/T'n,

and

D,NNLT C D,I'y.

Denote by Y the subset of all points of (P,T')-self- intersection in
D,. If y € Y there exists v € I' — I'p such that yy € Y. This implies
that Uy C Qy where Q@ = Q(Ks) and Q is a group from the class
F contained in P N yP~~1, in particular, dimQ < dimP.Since D, is
compact and I' is discrete in G, there are finitely many proper algebraic
subgroups P, ..., P, of P such that P; € F for all s and |J X(F,,U) D

i>1
Y. Denote C; = X(P,,U)NY,i=1,2,...,s. By the induction hypothesis
there exists for every i a compact D; C X(P;,U) so that if &, is any
neighbourhood of |J D; then we have an open neighbourhood ¥ of

U C; such that =
i>1

1 €
(13) ma{t € I(’f') l u(t)a: S \I/F/F} S Z’

for all z € K — ®,I'/T and any interval I(r).
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Put D = | D;. Now, let us fix a neighbourhood ®, of D. We will
i>0 :
prove that there exists a neighbourhood ® of C which satisfies (2). Let

WU be a neighbourhood of |J C; which satisfies (13) for the last choice of
i>1

®,. Using 4.9, 4.8 and the definition of D,, one can find a neighbourhood

Q of D, such that 2 C ®,, the set (2 — ¥I'p) N LT is without points of

(P, T')-self-intersections, and
QNNLT Cc QL.

This, together with (9) and the fact that B is S(v)-small, implies
that there exists a compact S(v)-small neighbourhood W, of B in V
such that

(14) ¢~ (W, x LT)T) C QT /T

Using the property (11) of B, as well as the fact that U acts trivially
on V(K,,) for all w # v, we fix a neighbourhood W of C in V such that
if a € X(P,U)m — W, and I is a maximal subinterval of I(r) with
u(l)a C W, then

(15) o{t e I |u(t)a € W} < %9(1).

We will prove that ® = p~1(W) is the neighbourhood of C which
we need. Let z = gT" € K — ®,T'/T". Denote

JO = {t € I(r) | u(t)z & LT/T or u(t)z € ¥T'/T}

and
J® = {t e I(r) | u(t)x € (®8T/T N LT/T) — ¥T/T}.

It is clear that
(16) JOUJI® > {t e I(r) | u(t)s € ®T/T}.
In view of (12) and (13)
(17) 6(JV) < Z60(I(r).
Assume that there exists v € T' with gym € W,. Then since z €

LT'/T, it follows from (14) that gy € QI 5 which, in view of the inclusion
Q C ®,, implies that € ®,I'/T. Contradiction. Therefore,
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(18) gym & W,

for all v € T".

Next, for every g € gI'm, we define a subset Jj; in I(r) in the follow-
ing way: (i) if v is nonarchimedean then ¢ € J, iff ¢ is contained by a
subinterval I of I(r) such that u(l)gym C W, and u(t')z € LT /T—YT/T’
for some ¢’ € I, and (ii) if v is archimedean then ¢ € J, iff ¢t is con-
tained by a subinterval [a, 8] in I(r) such that u([a, 8])gym C W,
and u(B)z € LI'/T — UI'/T. Let t € J, N Jy where ¢ = gym and
¢ = gy'm. Denote by J4(t) (resp. Jy(t) ) the maximal interval in J,
(resp. Jy) containing t. It follows from the definition of J; and Jg
(and from the fact that in the nonarchimedean case if two intervals have
nonempty intersection then one of them contains the other) that there
exists t, € Jy(t)NJy (t) such that u(t,)x € LI'/T—¥T'/T. It follows from
(14) that u(t,)gy and u(t,)gy’ belong to QI'y. Since (QI'y —¥YTp)NLT
is a set without (P,T")-self-intersections, we obtain that ' = 46, where
6 € I'p. Therefore u(t,)gy'm = x(6)u(t,)gym.

Since x(6) € O*, u(t,)gym and u(t,)gy'm belong to W, and W, is
S(v)-small set, using 4.6(c) we obtain that

(19) q =¢&q,

where £ is a root of unity in K.
Applying (15) and (18), we get

égzo(Jq(t)) > 0(J4(t) N T@).

Since for any ¢ and ¢’ in J, either J,(t) = J,(t') or Jo(t)NJy(t') = 0,
we obtain

(20) %9@,) > 0(J, N JD).

Now since |JJ; D J@), it follows from (19) and (20) that
q

“0U(r) 2 Z6(UT) > o Zq:auq) > geuq nJ®) > o(IP).

This, in view of (16) and (17), completes the proof.
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§5. Applications to the Hermitian forms.

5.0 In this section we prove Theorem 5 and its corollaries, after
first developping the necessary algebraic background for the irrational
hermitian forms. We conclude the section by giving some examples and
making some remarks about possible generalizations and strenghtenings
of Theorem 5.

5.1 Let R be a ring with center Z and an involution ¢ (i.e. o is
an antiautomorphism of R of order two). Also let A € Z be such that
AN = 1. A A-hermitian form (relatively to the involution o) on the
right free R-module R™ is a sesquilinear map h : R™ X R® — R such
that

(21) h(z,y) = A7h(y,z)

for all z,y € R™. The hermitian form h is nondegenerate if the map
h: R* —Hompg (R™,R), (im)(y) = h(z,y), is an isomorphism of abelian
groups [Sch,7.1.3]. Further on, by an hermitian form we will mean al-
ways a nondegenerate hermitian form.

5.2 Unless something else is specified, in the subsections 5.2 - 5.5 we
will denote by D a central division algebra of degree r over an arbitrary
infinite field L of characteristic # 2. As in the Introduction, K is a
subfield of L such that either L = K or L is a quadratic extension of K.
Let K be any field extension of K, D; = D@y Ky and Ly = L Q K.
(In the applications, D will be a division algebra over a number field L,
K will stand for the completion K, of K at a valuation v of K, L; = L,
and Dy = D,.) We will assume that D; admits an involution 7 which is
a L1/ Ki-involution, that is, K1 = {x € L, | "z = z}. (Recall that 7 is
an involution of first (respectively, second) kind if L; = K (respectively,
L # K1).) ‘

There are two possibilities : either L; is a field or L; = K1 @ K;.
Let first L; be a field. Then D; coincides with a matrix algebra M;(A)
with entries from a central division algebra A over L;. It is known [K1,
Theorem, p.37] that A admits an involution ~ : A — A which is of the
same kind as 7. We can define a standard involution o on D; as follows:
"(aij) = (Eji) for all (aij) GMS(A).

Now let L; = K1 @@ K;. Then the restriction of 7 on L; transposes
the direct summands of L;. This implies that D; = M;(A) @ M,(A°)
where A is a division algebra with center K; and A° is the division
algebra opposite to A (i.e. A° coincides with A as abelian group and
has the multiplication z.y = yz). In this case "(z,y) = (y,z) for all
(a: ’ y) €D 1-
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The relation between the different involutions of the same kind on
D, is given by the following Proposition. Its proof is similar to [Sch,
8.7.4].

Proposition. Let o and 7 be L;/K;-involutions on D;. Then
T = oo Int(d), where d is an invertible element of D1 such that °d = +d
when o and T are involutions of first kind, and °d = d when ¢ and T
are involutions of second kind.

Proof. By the Scolem-Noether theorem, 7 = colnt(b) where b €
D;. A simple direct argument shows that

id = 7% = Int((“b71)b).

So, b = b where | € L,. This implies that Il = 1. Hence if o is of

first kind then [ = +1 acnd we can choose d = b. Otherwise there exists

¢ € Ly such that [ = —, ¢ € L. (The existence of ¢ follows from the
9c

Hilbert 90 theorem if L; is a field. If L; = K; @ K; and I = (s,571)
then we can choose ¢ = (s,1) since o acts on L by interchanging the
two coordinates.) Put d = c¢b. It is easy to check that °d = d. The
proposition is proved.

5.3 Let h be a A-hermitian form on D}, n > 1, with respect to
7. Since "AX = 1, we get that A = £1 if 7 is of first kind. Let 7 be of
second kind and let ¢ be an invertible element in L;. It follows from (21)

that ch is a \'-hermitian form with respect to 7 where X' = A Ti . By
c

Hilbert 90 theorem (and its simple analog when L; = K1 @@ K1) ¢ can
T

be chosen in such a way that A = —E. In this case, ch is a 1-hermitian
form. ¢

Let d € D; be such that "d = ed where € = 1. An easy computa-
tion shows that 7/ = 7olnt(d) is an involution on D; and A’ = dh is an
eA-hermitian form with respect to 7/ [Sch, 7.6.7]. The converse of this
assertion is given by the following proposition.

Proposition. Let h be a A-hermitian form on D7} with respect to a
L1/ Kj-involution 7 and b’ be a X -hermitian form on D} with respect to
a Li/K;-involution 7'. Assume that h' = ah where a € Dy. Then there

exist o € Ly and d € Dy such that a = ad, 7/ = Tolni(d), X = A(%)
and "d = +d if T is of first kind and "d = d if T is of second kind.
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Proof. Since h and h’ are nondegenerate hermitian forms a is an
invertible element in D;. Let 2,y € D} and ¢ € D;. Then

(" W (2,y) = a("e)h(z,y) = a(Tc)a" W (,y).
Hence
(22) Tc=a("c)at.

On the other hand, 7 = 7olnt(d) with d as in Proposition 5.2.
Then dh is a A-hermitian form with respect to 7/. Applying (22) with
dh instead of h we get that ad~! is in the center of D; i.e. a = ad where

« € Ly. The fact that X' = )\(%) follows from (21). The proposition
is proved.

5.4 Let h be a A-hermitian form on D} with respect to an involution
7 such that A = 1 if 7 is of first kind and A = 1 if 7 is of second kind
(see 5.3). Denote by Nrd : M, (D;) — L; the usual reduced norm on
M, (D1) if D, is a simple algebra and the direct sum of the reduced
norms on M,s(A) and M,(A°) if Dy = M,(A) PM;(A°) (see 5.1).
The special unitary group corresponding to h is defined by SU(h) = {g €
M, (D;) |[Nrd(g) = 1 and h(z,y) = h(gz,gy) for all z,y € D}}. The
group SU(h) coincides with the group of Kj-rational points of a K-
algebraic group SU(h). The hermitian form h is isotropic if SU(h)
is K;-isotropic, equivalently, if SU(h) contains a diagonizable over K;
infinite subgroup. It is known ( and follows easily from the classification
results in [Ti2] and [K1]) that any classical algebraic group defined over
an infinite field K of characteristic # 2 can be realized as SU(h) for
certain h. If 7 is of first kind then SU(k) gives all K;-algebraic groups
of types B, Cp, and D,,. If 7 is of second kind then we get all K-
algebraic groups of type A,,. Note that if L, is a field then h is isotropic
if and only if h represents nontrivially 0. If L; = K; P K; (i.e. D1 =
M, (A) @ M,(A®)) then the description of 7 in 5.2 implies that SU(h)
coincides with the image of SLps(A) in Mys(A) P Mys(A°) under the
embedding g — (9,97 ). In particular, SU(h) is K;-isotropic if and
only if ns > 1.

Let us summarize the last observations in the following lemma.

Lemma.Assume that either n # 1 or D1 #* A A° where A is a
division. algebra. Then h is isotropic if and only if h represents nontriv-
tally zero. ’
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Remark. Let K be a number field, K; = K, be the completion of
K at a valuation v of K and h be isotropic. Recall that if G is a simple
K-isotropic K,-algebraic group then the subgroup of G(K,) generated
by its unipotent elements has finite index [BTil, 6.14]. Also, if L, is a
field then the only central division algebras over L, with an involution of
the first kind (respectively, an L, /K,-involution of second kind) are L,
itself and the unique quaternion division algebra (respectively, L, itself)
[Sch, 10.2.2]. Using these facts and the above description of SU(h), one
can easily see that the unipotent elements in SU(h) generate a subgroup
of finite index (and, therefore, Zariski dense subgroup) if and only if (a)
rn > 3 if 7 is of first kind and 7 # id, (b) rn > 2 if 7 is of second kind,
and (c) n > 3 if 7 = id. If the inequality in some of the cases (a)-(c)
is not fulfilled then SU(h) is abelian, it consists of semisimple elements,
and Theorem 5 (as well as Theorem 1) is not true (see 5.8).

5.5 Proposition. With the notations from 5.4, let ¥ be a subgroup
of SU(h)N SL,(D) which is Zariski dense in SU(h). Assume that (a)
rn > 3 if 7 is of first kind and T # id, (b) rn > 2 if T is of second
kind, and (c) n > 3 if 7 = id. Then there exist, defined by X, an
involution o on D of the same kind as T and an hermitian form ho on
D™ with respect to o such that h = aho, a € Dy. In particular, SU(h)N
SLn (D) =SU(ho).

Proof. Let M = (h(e;,e;)) be the matrix of h relatively to the
standard basis ey, ..., e, of D}. Denote by p : M,(D;) — M, (D;) the
involution ?(a;;) = ("aji), (a:;) € Mn(D1). Then ?M =AM with A € L,
and SU(h) = {g €SL,(Dy) | PgMg = M}. Let I : M,(Dy) — M, (D1)
where Ta = M~1(Pa) M for all @ € M,(D;). Since L; coincides with the
center of D;, we get that I is an involution of the same kind as p. Let
G be the Zariski closure of ¥ in SL, (D) and L[X] be the L-subalgebra
of M,,(D) generated by ¥ over L. It is easy to see that L is I-invariant
and Ig = g=! for each g € X. Therefore the restriction of I on L[X]
induces an involution which will be denoted also by I. It follows from
the assumptions (a)-(c) in the formulation of Theorem 5 (see also 5.4)
that the algebra M, (D;) is generated by SU(h) over L;. Since ¥ is
Zariski dense in SU(h), this implies that M,,(D;) is generated by X over
L,. Therefore L[X] = M, (D). Now, the existence of the involution I on
M, (D) implies the existence of an involution o on D of the same kind as
p (and 7)[K1,Theorem, p.37]. Let J : M,(D) — M, (D), 7(a;;) = (°a;;).
According to Proposition 5.2, I = JoInt(N) where N € GL, (D) and
IN = AN, X\ = £1. Since SU(h) = {g € SL.(D1) | Ig = g7 '}, we have
that G = {g € SL,(D) | 7gNg = N}. Therefore G = SU(h,) where h,
is the A-hermitian form with respect to ¢ having matrix N.
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In view of 5.3, having replaced h by a suitable multiple, we may
(and will) assume that 7 = o (equivalently, I = J). Therefore

g =N"1g)N=M""g)M

for all g € G. So, MN~! commutes with each g € G. Therefore M N~}
is in the center of M,,(D;) i.e. h = ah, where a € D;. The proposition
is proved.

5.6 Proof of Theorem 5. We will use the notations from the
formulation of Theorem 5 in the Introduction. Let G, be the L-algebraic
group corresponding to SL, (D), i.e G1(L) =SL, (D). Let G = Ry, kG
where Ry, is Weil’s restriction of scalars. Then G(K,) = SL,(D,) for
each v € S. Put G = G(Kg), I' = SL,(A) and H = [],sSU(hy)-
It follows from [BTil, 3.18] that, under the natural action of G on the
space of all hermitian forms on D%, the orbit Gh is closed and, therefore,
homeomorphic to G/H. Hence, the almost S-integer equivalence implies
the proper equivalence and , also, the assertion (ii) from the formulation
of Theorem 5 is equivalent to the density of HT in G.

Let us prove that (i) implies (ii). In view of the above remark, it
is enough to show that H,T is dense in G. Since T is a lattice in G,
it follows from Theorem 1 that there exists a connected K-algebraic
group L of G and a subgroup of finite index L’ in L = L(Kg) such
that the closure of H,I'/T in G/T coincides with L'T/T, ¥ = L' NT is
Zariski dense in L, and L' centains H,,. Note that SU(h,) is a maximal
connected algebraic subgroup of SL,,(D) and L'NSU(h,) is Zariski dense
in SU(h,) for all v € S,. This implies that either L(K,) = SU(h,) for
all v € S, or L = G. In the first case, it follows from Proposition 5.5
that there exists an hermitian form h, on D™ determined by ¥ and such
that hg, is multiple of h,. This contradicts our hypothesis. Let L = G.
We will show that L'T’ = G. This is clear when n > 1 because G(K,),
v € S, does not contain subgroups of finite index and, therefore, L' = G.
Let n = 1. It follows from the general description of the orders [W1,
ch. 5] that I is the intersection of G with an open compact subgroup of
G(Vs) where Vg is the S-adele ring (i.e. Vg is the restricted topological
product of all fields K, v € S, relative to the rings of integers O, C K,,
v € S). By the strong approximation theorem, the projection of I" into
G(Kg-s,) is dense. Therefore L'T' = G, which proves the implication.

Next we will prove that (ii) implies (i). Assume the contrary, that
is , hg, is a multiple of a rational form h, on D™. Let L; = SU(h,),
Ly =L(Ks) and C = [[,cg_g,SU(hy). Since H,I" is dense in G, LiT’
is closed, Ly D H, and C is compact, we get that G = CL;I". Note
that H, commutes elementwise with C. Therefore every H,-ergodic
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component of the Haar measure on G/T" is concentrated on gL T'/T" for
some g € C. In particular, H, does not act ergodically on G/T" . On
the other hand, by a generalization of a theorem of Moore about the
Mautner property [MTo2, 2.1], every H,-invariant L2-function on G/T"
is invariant under the action of the smallest normal subgroup G, C G
containing H,. It is clear that G, = G(Kg,). Since G,I" is dense in G
by the strong approximation, G, acts ergodically on G/T'. Therefore,
the action of H,, is ergodic. Contradiction. The theorem is proved.

5.7 Proof of Corollary 1 Since D" is dense in D% (weak ap-
proximation), we can approximate each z; by a vector y; € D" in
such a way that yi,¥s,...,Yn_1 are linearly independent over D and
| hs(zs,zj) — hs(¥i,y;) |< % for all 7,5 = 1,2,...,n — 1. Denote by
e1, €, ...,e, the standard basis of D™. There exists g €SL,(D) such
that ge; = y; for all s = 1,2,...,n — 1. Put y, = ge, and b’ = h.
In view of Theorem 1, hs is almost S-integer equivalent to h’. Hence
there exists v €SL,,(A) such that | hg(x;, z;) — hs(ves,ve;) |< g for all
1,7 = 1,2,...,n — 1. This implies (1) with z; = ye;. The Corollary is
proved.

5.8 Examples and concluding remarks. 1. Let us show that the
assumptions in the formulation of Theorem 5 are essential and can not
be relaxed. Let a,b € Z — {0} and D = {a, b} be the quaternion algebra
over defined by a and b, i.e. D =@ +Qi +®Qj +Qk where i*> = a,5? =b
and k = ij — j4. Assume that D, = D ®12 R is isomorphic to Ma(IR).
Let 7 : D — D be the standard involution of D, i.e. "(x+yi+zj+tk) =
z —yi—zj—tk), and let A = Z + Zi + Zj + Zk. Recall that 7 acts on

D, as follows :
T(x y [t -y
(z t) - (—z T )’

[Sch, p.361]. Denote by G the Q-algebraic group corresponding to
SL{(D) (i.e G@) =SL; (D)) and put I' =SL; (D)NA. Then G(IR) =SL;(R)
and, in view of a classical result of Borel and Harish-Chandra [M4,
1.3.2.4], SL2(IR) /T is compact if and only if D is a division algebra. Let
T be the subgroup of all diagonal matrices in SLy(R) and K =SO2(R).
Then X = K\SLy(IR)/T can be regarded as a Riemannian surface with
constant curvature -1, and the action of T by left transformations on
SLs(IR)/T induces the geodesic flow on X. It is a standard fact that
there exists a relatively compact, non-compact, and non-dense T-orbit
on X. (We refer to [St1, Lemma 2] for a more general result due to
Margulis.) Thus, there exists a g €SLy(IR) such that I'gT is neither
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dense nor closed in SLy(R). Put a, = <(1) _01) and a = ga,g~ L.
Then " = —a and h(z,y) = "zay is an isotropic -1-hermitian form

on D.,. Since I'gT is not closed, h is not rational, and since I'gT is
not dense in SLz(IR), there are hermitian forms which are properly but
not almost S-integer equivalent to k. In the case when D is a division
algebra (say, {a,b} = {—1, 3}), we get an example showing that if n =1
and r = 2 (i.e. the assumption (a) in the formulation of Theorem 1 is
not fulfilled) then (i) does not imply (ii). If D =M>@) and A =My(Z)
then a = (:g ;6) , where 3,7,6 € R. It is easy to see that if the
quadratic form f(z,y) = Bz? + 2yzy + 6y? is isotropic and irrational
then the closure of f(Z?) in IR does not contain 0 and there exists a
properly equivalent to f quadratic form which is not almost S-integer
equivalent to f. This shows that the assumption (c) in Theorem 5 is
essential. (We refer to [M3, 1.2] and [G, 4.2] for explicit examples of
quadratic forms with the same properties.) Concerning (b), note that if
r =n = 1 then hg is always rational.

2. We use the notations from Corollary 1. It is easy to see that
if n > 2 then hg is anisotropic if and only if the map D% — Dsg,
z — hg{(z,z), is proper. This implies that if hg is anisotropic then
the subset {hs(z,2) | 2 € A"} C Dg is discrete. Let n = 1. Then
Nrd{hs(z,z) | z € A"} is discrete in Lg. This means that the assertion
analogous to Corollary 1 is not true for n = 1. Similar arguments
show that Theorem 5 can not be modified to be true for “equivalent”
instead of “properly equivalent” hermitian forms. (Two hermitian forms
hs and h'y are equivalent if they are conjugated by an element from
GLy(Ds) = [T,e5GLn(Dy).)

3. Almost the same proofs allow to establish similar results to The-
orem 5 and its corollaries when considering finite dimensional central
simple algebras with involutions g of “mixed” type (i.e. 7s = @, cg 7o
where 7,,v € S, is an involution of first or second type).

4. Recently Eskin, Margulis and Mozes proved the quantitative
version of the Oppenheim conjecture for real quadratic forms [EMM].
It is plausible to obtain quantitative results in the general framework of
the hermitian forms over division algebras in the S-arithmetic case.

5. Another very interesting application of the dynamical approach
to the number theory is the recent proof by Kleinbock and Margulis
[KM] of conjectures of Bauer and Sprindzhuk from the theory of the
Diophantine approximation on manifolds. It is of interest to generalize
these results to the S-arithmetic setting as well.
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