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Infinitesimal CR Automorphisms
Nancy K. Stanton

To Masatake Kuranishi on his seventieth birthday

Let M be a real hypersurface through the origin in C" or, more
generally, an integrable CR manifold of hypersurface type. A smooth
vector field X on M is called an infinitesimal CR automorphism of M
if the local one-parameter group it generates is a local group of CR au-
tomorphisms of M. Fix p € M and let aut(M,p) denote the space of
infinitesimal CR automorphisms of M which are defined in a neighbor-
hood of p.

Throughout this paper, M will denote a connected analytic real
hypersurface in C". For p € M, there is a distinguished subspace
hol{(M, p) C aut(M,p) defined as follows. If Z is a holomorphic vector
field defined in a neighborhood of p € C™ and X = Re Z, then the local
one-parameter group of X is a group of biholomorphic transformations
[KN, remarks preceding Proposition IX.2.10]. Here, by holomorphic vec-
tor field, I mean a vector field of type (1, 0) with holomorphic coefficients.
Hence, if X is tangent to M, then X € aut(M, p). Let hol(M, p) denote
the space of all infinitesimal CR automorphisms X of M defined in some
neighborhood of p which are of the form X = Re Z for some holomor-
phic vector field Z, hol(M, p) C aut(M,p). Let hol(M) = hol(M,0) and
aut(M) = aut(M,0).

Infinitesimal CR automorphisms are useful in the study of hyper-
surfaces with degenerate Levi form. I will survey some recent results
about hol(M) and aut(M) and their applications. In Section 1, I use
infinitesimal CR automorphisms to characterize homogeneous hypersur-
faces. Section 2 describes applications of holomorphic nondegeneracy to
finite dimensionality of hol(M) and to mappings of algebraic hypersur-
faces. I will discuss some conditions for equality of hol{M) and aut(M)
in Section 3.
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1. Homogeneous hypersurfaces Following the terminology of
Baouendi, Rothschild and Tréves ([BRT]), a real hypersurface in C” is
called rigid if there are coordinates (z1,..., 2,1, w = u + %v) such that
M is given by an equation of the form

v = F(z,%),

a rigid equation. Tanaka [T] called these regular and D’Angelo [DA]
called them T-regular.

Among rigid hypersurfaces, the simplest ones are the homogeneous
hypersurfaces. A rigid hypersurface is homogeneous if it is locally bi-
holomorphically equivalent to

(1.1) ' v =p(2,2)

with p a homogeneous polynomial. This terminology comes from the
fact that (1.1) is invariant under the nonisotropic dilations

(1.2) (z,w) — (tz,t™w) = 8;(z, w)

where m is the degree of the polynomial p.

How can you tell if a rigid hypersurface is homogeneous? This prob-
lem was first posed by Linda Rothschild. The problem is local, so I will
assume that 0 € M and will work locally in a neighborhood of 0. Equiv-
alences will preserve the origin. I can make a biholomorphic change of
coordinates so that either M is the hyperplane v = 0 or M is given by
an equation of the form

v=p(2,2) + O(m +1)

where p is a nontrivial homogeneous polynomial of degree m with no
pure terms in z or z. In this case, m is an invariant, the type of M at
the origin, and M is of finite type at the origin. Suppose that the origin
is a point of type m. A vector fleld Y is homogeneous of weight j if

Y(fob)=t9(Yf)oé

where §; is the nonisotropic dilation (1.2).
If M is homogeneous, given by

v = p(Z, —Z—)
with p homogeneous of degree m, then
n—1
0] o
Yo =2Re sza—z] +mw%

j=1
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is in hol(M) and is homogeneous of weight 0. It is the infinitesimal gen-
erator of the dilations 6.:. Call a vector field Y € hol(M) an approzimate
infinitesimal dilation if

Y =Y, + terms of weight > 1.

Theorem 1.3 ([S5, Theorem 4.1]). Let M be a rigid analytic
real hypersurface through the origin in C™. Suppose M 1is given by a
rigid equation of the form

v=p(2,Z)+O0(m+1)

with p a nontrivial polynomial homogeneous of degree m having no pure
terms. Then M is homogeneous if and only if M has an approximate
infinitesimal dilation.

This theorem was first proved in C? ([S1], [S2], [S3]), then in C™
under the additional hypothesis that dim hol(M) < oo ([S4]).

Theorem 1.3 can be generalized to characterize weighted homoge-
neous hypersurfaces. Fix positive integers my,...,m,. Now I will use
(#1,...,2n) as coordinates. The non-isotropic group of dilations deter-
mined by (ma,...,my) is the group {6 : t > 0} where

5t(2) = (tmlzl, e ,tm"zn).

A function h is homogeneous of weight j if ho § = t’h. A vector field
Y is homogeneous of weight j if

Y(fob) =t (Yf)ob.
Let

n
1o}

Y, = 2Reijzja—zj.
Jj=1

The one-parameter group generated by Yy is the group of non-isotropic
dilations {6.¢ : t € R}. An analytic real hypersurface M is weighted
homogeneous (with respect to the non-isotropic group of dilations) if it
is locally equivalent, via a biholomorphic map which preserves the origin,

to a hypersurface given by an equation of the form
P(z,z) =0

where P a polynomial which is homogeneous with respect to the non-
isotropic group of dilations.
As before, call a vector field Y € hol(M) an approzimate infinitesi-
mal dilation if
Y = Yy + terms of weight > 1.
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Theorem 1.4 ([S5, Theorem 4.1]). Let M be an analytic real
hypersurface through the origin in C™ and suppose there is an approz-
imate infinitesimal dilation Y € hol(M). Then M is weighted homoge-
neous.

This theorem does not require the hypothesis that M be rigid and
there is no nondegeneracy hypothesis or finite type hypothesis on M.

The theorem can be proved by a technique used by Poincaré in his
thesis [P] and generalized by Dulac [Du]. One linearizes Y, that is, one
finds a change of coordinates so that in the new coordinates Z,

Y = 2Re2m]zjaa~ .

j=1

To do this, one first finds a formal change of variables, then one ap-
plies Poincaré’s by now standard domination argument to prove that
the formal change converges.

Now, after reordering the coordinates and multiplying z, by ¢ if
necessary, I can assume M is given by an equation of the form

(1.5) Imz, = F(3',Z/,Re%,)

where Z/ = (Z1,...,2Z,-1). Applying Y to this equation shows that the
right side of this equation is a weighted homogeneous polynomial and
hence M is homogeneous.

By replacing z,, with aZ, for an appropriate a € C, one may assume
that (1.5) is a rigid equation. This yields the following proposition.

Proposition 1.6 ([S5, Proposition 4.3]). If M is weighted ho-
mogeneous then M is rigid.

2. Holomorphic nondegeneracy How can one tell whether
hol(M) is finite dimensional? In C?2 it is for any hypersurface M of
finite type. The example

v=|zn?

in C", n > 3, shows that some stronger nondegeneracy hypothesis is
required in higher dimensions. In this example, Re f(z, w) S € hol(M)
for any holomorphic function f.

Definition. Let M be an analytic real hypersurface in C™. A
nontrivial holomorphic vector field W is called a holomorphic tangent
to M at p of W is defined in a neighborhood of p and W|M is tangent
to M. The hypersurface M is holomorphically nondegenerate at p if M
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has no holomorphic tangent at p. If M has a holomorphic tangent at p,
M is holomorphically degenerate at p.

Theorem 2.1 ([S4, Theorem 4.3]). Let M be an analytic real
hypersurface through the origin in C2. The following are equivalent.

(1) hol(M) is finite dimensional;

(2) M is not flat;

(3) the Levi form of M is somewhere nondegenerate;

(4) M is holomorphically nondegenerate at the origin.

In higher dimensions holomorphic nondegeneracy is not the same as
nonflat, finite type, essentially finite or somewhere Levi nondegenerate.
(See [BJT] for the definition of essentially finite.)

Theorem 2.2 ([BR2, Theorem 2, Proposition 4.2], [S6,
Corollaries 3.3, 3.4]). Let M be an analytic real hypersurface
through the origin in C™. The following are equivalent.

(1) M is holomorphically nondegenerate at the origin.
(2) M is everywhere holomorphically nondegenerate.
(3) M is essentially finite on an open dense set.

In general, and even for many simple examples of hypersurfaces with
polynomial defining equations, it is very difficult to compute hol(M).
If M is rigid with a rigid defining equation which is a polynomial, in
principle—and often in fact—it is easy to check whether M is holomor-
phically nondegenerate at the origin.

Holomorphic nondegeneracy is a natural condition to introduce in
connection with finite dimensionality of hol(M). Suppose M is a holo-
morphically degenerate real hypersurface, with holomorphic tangent Z.
Then for all multi-indices a, X, = Re2®Z € hol(M) so dimhol(M) =
oo. This gives one direction of the following theorem.

Theorem 2.3 ([S4, Theorem 4.16], [S6, Theorem 1.7]). Let
M be an analytic real hypersurface through the origin in C™. Then the
space hol(M) is finite dimensional if and only if M is holomorphically
nondegenerate.

In C? the theorem follows easily from Theorem 2.1. Theorem 2.3
was first proved in the case of rigid hypersurfaces [S4]. In the rigid case
the proof is long and technical; much of the work goes into proving an
approximate version of the theorem, which requires a polynomial hyper-
surface to approximate M and an approximate version of hol(M). In
dimensions greater than 2, the approximating hypersurface must include
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some higher order terms; the homogeneous part may not give a good ap-
proximation. The proof gives a bound on dim hol(M) which depends on
the type at the origin and the defining equation. To prove the theorem
in the general case, one shows that if M is holomorphically nondegener-
ate and dimhol(M) > 1, then there is an open dense set U C M and an
integer ¢ (computable in terms of an appropriate defining function for
M) such that if p € U, then M is rigid, essentially finite and of type 2
at p, and dim hol(M, p) < £.

The following theorem of Baouendi and Rothschild gives an appli-
cation of holomorphic nondegeneracy to mappings of algebraic hyper-
surfaces. A real hypersurface is algebraic if it is contained in the zero
set of a nontrivial real valued polynomial. A holomorphic map is al-
gebraic if its components satisfy polynomial equations with polynomial
coefficients.

Theorem 2.4 ([BR2, Theorem 1]). Let M be a holomorphi-
cally nondegenerate algebraic real hypersurface in C™ and let M’ be an
algebraic real hypersurface in C™. If f is a biholomorphic map taking M
to M’ then f is algebraic. Conversely, if M is a holomorphically degen-
erate algebraic real hypersurface which contains the origin, then there
is a nonalgebraic biholomorphic map f defined in a neighborhood of the
origin, with f(0) = 0, which takes M to itself.

3. Analyticity of infinitesimal CR automorphisms For any
analytic real hypersurface M and any p € M, hol(M,p) C aut(M,p).
The two spaces are not always equal.

Example 3.1 ([S4, Example 7.11]). Let M = {v = 0} C C%
Then

2 0
X =e Vv — .
e 55 < aut(M)
However, X ¢ hol{M) so hol(M) C aut(M).
There is a sufficient condition for equality of hol(M) and aut(M).

Proposition 3.2 ([S3, Remark 2.5]). Let M be an analytic
real hypersurface through the origin in C™. Suppose every CR diffeo-
morphism on M is analytic. Then hol(M) = aut(M).

The next theorem summarizes what is known about equality of
hol(M) and aut(M) in the case that hol(M) is finite dimensional.

Theorem 3.3. Let M be an analytic real hypersurface through the
origin in C™. Suppose that one of the following holds.

(1) M is essentially finite;



Infinitesimal CR Automorphisms 361

(2) M is rigid and every neighborhood U of 0 contains a pointp € M
such that the Levi form of M is nondegenerate at p;
(3) M is algebraic and holomorphically nondegenerate.

Then aut(M) is finite dimensional and aut(M) = hol(M).
Theorem 3.3 was proved for hypersurfaces satisfying (1) and (2) in

[S4, Theorem 6.1]. For hypersurfaces satisfying (3) it follows from Propo-
sition 3.2 and the following theorem of Baouendi, Huang and Rothschild.

Theorem 3.4 [BHR, Theorem 1]. Let M and M’ be algebraic
real hypersurfaces in C™ and suppose that M is holomorphically nonde-
generate. If H is a smooth CR map from M to M’ and the Jacobian
determinant of H is not everywhere 0, then H extends holomorphically
to a neighborhood of M.

To describe additional results on the question of when hol(M) =
aut(M), I need a characterization of infinitesimal CR automorphisms
analogous to the definition of hol(M).

Proposition 3.5. Let M be a real hypersurface through the origin
i C" and let X be a smooth tangent vector field defined in a neighbor-
hood of the origin on M. Then X € aut(M) if and only if

= 0
. X =R i
(36) e;fyazj

where each f; is a CR function on a neighborhood of the origin in M.

Proof. Let X be a C™ real vector field tangent to M. By Theorem
1 of [BR1], it suffices to show that X is of the form (3.6) if and only if
for every smooth section Y of T%1(M) on a neighborhood of the origin,

(3.7) [(X,Y] e 7% (M).

Now X = (Z + 7)[ 5 for some smooth vector field Z = E?;l fjg‘z— de
fined in a neighborhood of the origin. Let Y = 377, gjg%

C(T % (M)). Then Y extends to a C* vector field ¥ of type (0,1)
defined in a neighborhood of the origin. Now

(X,Y] = ([2,Y] + {7 Y)) |M

(121 Zg;) 8zj ;(Yfa Zv ])‘M
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The first and last terms are of type (0,1). Hence (3.7) holds for all Y
if and only if Y f; = 0 for all smooth sections ¥ of T'%*(M), so if and
only if f; is a CR function for each j.

Baouendi, Huang and Rothschild proved the following theorem
about failure of analyticity of CR diffeomorphisms for holomorphically
degenerate hypersurfaces.

Theorem 3.8 ([BHR, Theorem 4]). Let M be an analytic holo-
morphically degenerate real hypersurface through the origin in C™. If
there is a germ at 0 of a smooth CR function on M which does not ex-
tend to be holomorphic in any neighborhood of 0, then there is a germ of
a smooth CR diffeomorphism from M to itself, fizing 0, which does not
extend holomorphically to any neighborhood of 0.

This result is closely related to the question of when hol(M) =
aut(M) in the holomorphically degenerate case.

Theorem 3.9. Let M be a holomorphically degenerate analytic
real hypersurface through the origin in C™. Then hol(M) = aut(M) if
and only if every CR function defined on a neighborhood of the origin in
M eztends to be holomorphic on a neighborhood of the origin in C™.

Proof. Suppose every CR function on a neighborhood of the origin
in M extends to be holomorphic. Let X € aut(M). Then X is given by
(3.6) for some CR functions f;. There is a neighborhood U of the origin
in C™ such that f;, j=1,...,n, extends to a holomorphic function F;
on U. Hence, X = ReZ|M where Z = EFja_%a and X € hol(M).

Suppose hol(M) = aut(M). Let Z be a holomorphic tangent to M
at the origin, Z =Y fjaizjv for some holomorphic functions f;. Let f
be a CR function defined on a neighborhood of the origin in M. Then,
by Proposition 3.5,

” ]
X=Red ffizn-
= 8Z]'

is in aut(M), so X € hol(M). Because X € hol(M), the proof of
Theorem 3.8 shows that f extends to be holomorphic in a neighborhood
of the origin, so every CR function extends.



Infinitesimal CR Automorphisms 363

References

[BHR] M. S. Baouendi, X. Huang and L. Rothschild, Regularity of CR map-
pings between algebraic hypersurfaces, preprint.

[BJT] M. S. Baouendi, H. Jacobowitz and F. Tréves, On the analyticity of
CR mapping, Annals of Math., 122 (1985), 365-400.

[BR1] M. S. Baouendi and L. P. Rothschild, Transversal Lie group actions
on abstract CR manifolds, Math. Annalen, 287 (1990), 19-33.

[BR2] , Mappings of real algebraic hypersurfaces, preprint.

[BRT] M. S. Baouendi, L. P. Rothschild and F. Tréves, CR structures with
group action and extendability of CR functions, Inventiones Math.,
82 (1985), 359-396.

[DA] J. P. D’ Angelo, Defining equations for real analytic real hypersurfaces
in C™, Trans. A.M.S., 294 (1986), 71-84.

[Du] H. Dulac, Solutions d’un systéme d’équations différentielles dans le
voisinage de valeurs singuliéres, Bull. Soc. Math. de France, 40
(1912), 324-383.

[KN] 8. Kobayashi and K. Nomizu, “Foundations of Differential Geome-
try”, II, Wiley Interscience, New York, 1969.

[P] H. Poincaré, Sur les propriétés des fonctions définies par les équations
aux différences partielles, Premiére These (1879); “(Buvres”, I, IL-
CXXIX, Gauthier-Villars, Paris, 1928.

[s1] N. K. Stanton, Rigid hypersurfaces in C?, in “Proc. Symposia Pure
Math.”, Vol. 52, Part 3, Amer. Math. Soc., Providence, 1991,
pPP- 347-
354.

[S2] —__, A normal form for rigid hypersurfaces in C2, Amer. J. Math.,
113 (1991), 877-910.

[83] , Infinitesimal CR automorphisms of rigid hypersurfaces in C?,
J. Geometric Analysis, 1 (1991), 231-267.

[S4] , Infinitesimal CR automorphisms of rigid hypersurfaces, Amer.
J. Math., 117 (1995), 141-167.

[S5] , Homogeneous real hypersurfaces, Mathematical Research Let-
ters, 2 (1995), 311-319.

[S6] , Infinitesimal CR automorphisms of real hypersurfaces, Amer.

J. Math., to appear.

[T) N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of
the space of n complex variables, J. Math. Soc. Japan, 14 (1962),
397-429.

Department of Mathematics,
University of Notre Dame,
Notre Dame, IN 46556
U.S.A.

Nancy. K.Stanton@nd. edu





