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On Adelic Zeta Functions of
Prehomogeneous Vector Spaces
with a Finitely Many Adelic Open Orbits

Tatsuo Kimura and Takeyoshi Kogiso

Introduction

The two adelic zeta functions Z, (w, ®) and Z,,(w, ®) for a prehomo-
geneous vector space (abbrev. P.V.) (G, p, V') have no relation in general.
For an irreducible case, Professor J. Igusa showed that Z, = 7Z,, with
some constant 7 when #(G 4\Y4) < co under the condition (HW) where
Y is the open G-orbit in V' (see Igusa [4]).

In this paper, we shall show that the condition (HW) is not neces-
sary. Moreover, we shall show that the theorem of the same type holds
even for simple P.V’s and 2-simple P.V.’s of type I. It is known that
when Z, = 7Z,, holds, we can generalize Iwasawa -Tate Theory for such
P.V.’s and we can have many informations (see T. Kimura [11]).
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§1. Basic definitions

Let G be a connected reductive linear algebraic group and
p: G —> GL(V) a rational representation of G with the open dense
G-orbit Y. In this case, we call a triplet (G, p,V) a prehomogeneous
vector space (abbrev. P.V.). The complement S of Y is a Zariski-
closed set which is called the singular set of (G,p,V). We assume
that the isotropy subgroup H of p(G) at a point in Y is connected
and semisimple. The irreducible components S; of codimension one
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are the zeros of some irreducible polynomials f;(z) (i = 1,2,...,7).
Then fi(z), fo(x),..., f-(x) are algebraically independent relative in-
variants, i.e., fi(p(g)z) = xi(g9)fi(z) for ¢ € G, x € V with some
rational characters y; of G. Moreover any relative invariant rational
function f(z) is of the form f(z) = c¢- fi(z)™ fa(z)™2 - - - fr(x)™ with
(my1,ma,...,m,) € Z " and some constant ¢ (see p.60 in (M. Sato and
T. Kimura [5])).

Let k be an algebraic number field. We assume that (G,p,V) is
defined over k and all coefficients of f;{x) are in k. We denote by G4, Vjy,
etc. the adelization of G,V etc. with respect to k. Let Q(k};/k>) be
the space of quasicharacters of the idele class group k/k* and S(Va)
the Schwartz-Bruhat space on V4.

For w = (wq,...,w,) € Qk,/k*)", we write w(x(9)) = wi1{x1(9))
- we(xr(9)) and w(f(z)) = wi(f1(z)) -+ wr(fr(2)) (9 € Ga,z € Yy =
(V — 8)a) for simplicity. Now we define the two adelic zeta~functions
Zo(w, ®) and Z,,(w, ®) of (G, p,V).

awmzlwawnm§jwmwa%xm

£EY,
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(® € S(Va))

Here d¢, is a Haar measure on G4 and dy, is a G 4-invariant mea-
sure on Y4 (see the beginning of § 2). We take the same convergence
factor for dg, and dy,. The role of Z,(w,®) is a functional equation
based on the adelic Poisson summation formula while Z,,(w, ®) has an
Euler product Z,,(w, ®) = e Z, (wy, D) when ® = ®,cn®, where &
denotes the set of places of k.

For the absolute convergence of Z,,(w, ®), see p.90 in (T. Ono [13]
and F. Sato [9]).

§2. Some sufficient conditions for Z, =77,

For simplicity, we assume that G C GL(V) and (G,V) is defined
over an algebraic number field k. Take a k-rational generic point n €
Y. = (V — 9); and we denote by H the isotropy subgroup of G at 7.
Since we assume that H is semisimple, we have vol(Ha/Hy) < +o0
(see A. Borel and Harish-Chandra [12]), and there exists a G 4-invariant
measure dy, on Y. Since H is connected, G4 - 7 is open in Y. We
normalize measures dg,,dr, and dy, on Ga,H4 and Y4 by
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/ $(9)dc. () = / dy@) ([ $lgh)di, (1))
Ga

Gam Ha
(with z =gHa4)

for any ¢ € LY(G4).
Proposition 1-1. We have

w(x(g)) D(gé)da,(9)
(L1) /GA/Gk EGZ;:'W N

=7 [ wUE)eEin @
Gam

for & € S(V4) where T = fHA/Hk dr, (= vol(Ha/Hy) < 400).

Proof.  First we observe that w(x(v)) = 1 for v € G and w(f(n)) =

L ie., w(x(g7)) = w(f(gn))-
Since G is reductive,the Haar measure d¢, is right-invariant, ie.,

da, (97) =dg, (g)
Now

L.HS. = /G e w(x(g))veg;m ®(gyn)dc,(9)

_ / w(x(9))®(gn)da, (9)
Ga/Hy

_ / dy, (2)( / w(F(gh - 1)®(gh - n)ds, (h))
Gam Ha/Hyg
(with z=gHj,)

=1 [ el @
Gam

where 7= [ Ha/Hy dmg, is a finite number by assumption.

Q.E.D.
Now the following proposition is obvious.

Proposition 1-2. Assume that Yy = Gr-n and Y4 = G4 - 7.
Then we have Zg = 172,,.

Proposition 1-3. Let (G, V) and (G', V) be P.V.’s satisfying G C
G CGLV)andY' =Y. If Vi = Gr-n and Y4 = G4 -7, then we have
ZL =712 =T Z, and Z!, = Z.
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Proof. Since Y/ =Y, we have Z! = Z,,. Since G C G’, we have
Yy = G),-nand Y4 = G/, -n, hence Z,, = 7' Z,, by Proposition 1-2. Since
Zio = TZm, we have Z! = TTIZG. Q.E.D.

Proposition 1-4. For (GLg4, M) with a k-form (GL4(k), Ma(k)),
we have Y, = Gy - I and Y4 = G 4 - I; (hence we have Z, = 172,,).

P?"OOf. Since Yk - GLd(k) = Gk = Gk - Id, and YA = (GLd)A =
Ga = G4 - Iz, we have our assertion by Proposition 1-2. Q.E.D.

Proposition 1-5. Let G, be a connected k-split algebraic subgroup
of SLy acting on My as p(go, 91) - T = go7'g1 (9o € Go, 91 € GLa,w €
My). Then for a P.V. (G, X GLg4, p, My) with the k-form

((Go)k x GL4(k), p, Ma(k)),
we have Zy, = 1720.,,.

Proof. 1t is clear by Proposition 1-3 and Proposition 1-4.
- Q.E.D.

Theorem 1-6 (Igusa [4] with the above Proposition 1-5). Let
(G, p,V) be an irreducible regular P.V. defined over k such that Y4 de-
composes into o finitely many G 4-orbits. Then with a suitable k-form,
we have

Lo = Thy.

Remark. The point of Theorem 1-6 is that the condition (HW) is
not necessary (see p.16 Remark in (Igusa [4])).

More explicitly, we can express Theorem 1-6 as follows.

Theorem 1-7. We have Zy(w,®) = 72, (w, ®) for an irreducible
regular P.V. which is castling-equivalent to one of the following reduced
P.V.’s with the split k-form.

(1) (HxGLy, pm, My,) where H is any k-split connected semisim-
ple algebraic subgroup of SL., with py(h,g)z = hxtg for (g,h) € H x
GL,, and z € M,,,. We take a k-form (Hy X GLy,(k), pm, My (k)). The
relative invariant f(z) = det z.

(2) (GLap,p, Alta,y,) where p(g)z = gxtg for g € GLay, and z =
—tz € Alty,.We take a k-form (GLay,(k), p, Altom(k)). The relative
invariant f(z) = Pf(z) (= the Pfaffian of z).
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(3) (GL1 X SO9m, A1 ® Ay, Aff2m) with m > 2.

Here SOq,, = {A € SLow? AKA = K} with K = [IO IS"”il
so that f(z) = z1Tmi1 + - + TmTom 18 the relative invariant. Let
G be the image of GLy X SOgy, by p = A1 ® Ay in GLay,, and put
G = GN GLay (k). We take a k-form (G, k*™). For any A € k>, put

o=t/ (Vim0 )
\/X m

Then g(X) is in Gy and f(g(N)z) = Af(x).

Hence, with the SOq,, (k)-homogeneity of f~1(1), we have Yy, = G-
with £ = e1+emy1. The isotropy subgroup G¢ of G at £ is SOzy,—1. Note
that p(—1,—Iom) = 1. Since SOqy,—1 is connected, we have Y4 = G4-&
(¢f. Theorem 1-8).

(3) (GL; x Sping, A1 ® (the spin rep.), V(8))
We identify V (8) with Af f® by the standard base

{1,e;65(1 £ i< j<4),erezezeq}.

Let G be the image of GLy x Spin; in GLg by A1 ® (the spin rep.)
and put Gy, = GNGLg(k). We take a k-form (Gy, k®). Since the relative
invariant is a quadratic form, we have G C GO(8). By p.13 in (Igusa
[2]), one sees that Yy, = Gy - €. We have Y4 = G4 - € (see Igusa [4]).

(3)” (GLl X Sping, Al ® Al, V(lﬁ))
Everything is similar as (3)'. In this case,we have G C GO(16).

(4) (Spm X GLar, A1 ® A1, Moy, 2r) (m > 2r)
We take k-form

(Spm (k‘) X GLQ-,»(IC), A1 ] A], M2m,2'r(k))-
The relative invariant f(z) = Pf(*zJx).

(5) (GLl X E(;,Al, j(27))

J(27) is the totality of 3 x 3 hermitian matrices over the octonion
algebra, and the relative invariant f(z) is their determinant. The image
G of GL; x Eg by Ay ® Ay is Sim(f) and Gy, is transitive on Y}, (see
p.15 in (Igusa [2]).

(6) (Spin;g XxGLa, (a half-spin rep.) ®A1,V(16) ® V(2))
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Let G be the image of Spinjg XxGLy in GL3y. We identify V(16)
with Af 18 by the standard basis

Leie;(1<i<j<5),e(1<k<5)},
7 k

and put Gy = GL3a(k) N G. Put S;(A) = A1+ (A — A Deeips (see
p.1002 in (Igusa [1])). For any a € k>, put g{a) = (s1(A) - - - s5(A), Al)
with A =* /a. Then we have g(a) € Gy, and f(g(a)z) = af(z). Since
f71(1) is Spin;o-homogeneous, we can say that Yy = Gy - € and Y4 =
Ga-& for

(6) (GLy x Spinyq, A1 ® (A+ A),V(16) & V(16)) where A is the
(even) half-spin representation.
In particular, we have Yy, = G - £ and Y4 = G 4 - € for (6).

(7) (GL7,A3,V(35))

Let G be the image of GL7; under A3z in GL3s. For any local field
k# R, Yy is Gr-homogeneous and Yr = GRr - &1 UGR - &. However we
have #(G4\Ya) < +oo. The relative invariant f(x) is of degree 7.

In this case, we have Z, = 72, by (Igusa [4]).

Theorem 1-8. Assume that a universally transitive reqular P.V.
(G,V) defined over k satisfies the two conditions:

(1) Ye=Gk-n

(2) the isotropy subgroup G, is connected.

Then we have Z, = 7Z,,.

Proof. By (2), every G4-orbit in Y4 contains a point of Y} (see
(p.14 in Igusa [4]). Then, by (1), we have Y4 = G4 - n. Hence by
Proposition 1-2, we obtain our result. Q.E.D.

§3. Simple P.V.’s with #(G4\Y4) < +oo

Assume that #(G 4\Yy4) < +oo for a simple P.V. (G, p, V) with G =
p(G). Then for almost all places v of k, Y, must be G,-transitive. Such
non-irreducible regular simple P.V.’s with a semisimple generic isotropy
subgroup H = p(G¢) (£ € Yi) are given as follows. (see (T. Kimura,
S. Kasai and H. Hosokawa [8])).

(1) (GLy x SL,,A1 ® Ay +1® A}) with H = SL,,.

n

[P
(2) (GL,, Ay @ ---®A,) with H = {1}.

(3) (GLY x GLy,pp +1® Ay) with H = {1}, where p,(g)z =
Ax(diag(aq, -+, an)) for g = (a1, - an, A) € GL} x GL, and = € M,
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(4) (GLI X Sp'm Al 52 (Al + Al)) with H = Spn—l
(5) (GLy X GLym,1® Ag + Ay @ (AL + AD)) with H = Spn_,.
(6) (GL2m+1,A2 @Al) with H = Spm.

(7) (GL} X GLamy1,A2 ® Ay @ (A1 & A1)™) with H = Spp,_1,
where GL$ acts on A; @ (A; ® A1) as scalar multiplications. Here
(A ® A1)™ stands for A; @ Ay or its dual (A; @ Aq)*%).

(8) (GL? x Spin,, (a half-spin rep.) @(vector rep.)) (n = 8,10)
with H = (G2) for n = 8 and H = Spin, for n = 10.

(9) (GL; x Spingg, A1 ® (A + A)) with H = (G3), where A is the
even half-spin representation.

We shall check each of them.

(1) Wetake a k-form (GLq1(k)x SL,(k),A1 ®A1+1® A}, k"B k™).
Then Yy, = Gy - £ with £ = (e, 1) and G¢ = SL,,_; (k).

n

o ccpmmna,
(2) For (GLn(k),A1 & --- @ Ay, My (k)), we have Y = Gy - I, and
H={1}.

(3) We take a k-form
(GLY (k) X GLn(k), My (k) © k™),
and put € = (I,,'(1,---,1)). Then Y} = G - £ and G¢ = {1}

(4) Let G be the image of GL; X Sp,, in GLy, by p = Ay Q(A1+A4),
and put Gy, = GN GLy, (k). For any o € k™, put

s =wa (V5" )

Then g(a) € G and f(g(a)z) = af(z). Since f71(1) is Sp,(k)-
transitive, we have Y, = Gy - £ with £ = (e, en41) and G¢ = Sp,_1 (see
p.16 in [8]).

(5) We take a k-form

(GL1(k) x GLam(k),1® Az + A1 @ (A + A, Alto, (k) @ £2™ @ k™),



28 T. Kimura and T. Kogiso

where Ag*) implies A; or its dual A}. Since the generic isotropy subgroup
of (GLam, A2) is exactly Spp,, we have Y, = G -§ and Y4 =G4 - € by
(4).

(6) Consider (GL2m+1 (k), A2 D Al,A1t2m+1(k) D k2m+1). Then
Yk = GL2m+1(k) f with

e=(3 o] 00

where J = [—(I] 16”} and G¢ = Spp,(k). By Theorem 1-8, we have

Y =Gr-&and Yy = G, - € for (6).
(7) We take a k-form

(GLams1(k) x GL3(k), Ao + Ay + (A 4+ A7)™,
A1t2m+1(k‘) D k2m+1 o k2m+1 D k2m+1)

where GL3 (k) acts on k™1 @ k2m+1 @ k2™ F! as scalar multiplications.
Then we have Y, = G}, - £ with

J 0
= (<0 O) s €2m+1,€1 + €2m+1, €m+1 + €2my1)

and the image of the isotropy subgroup is connected. Note that (—Iap,+1,
—1,—1,—1) is in the kernel of

p=RA®A & (A ®A).

(8) Since the generic isotropy subgroup of (A1 ® ¢)(GL1 x Spin,,,)
is ¢(Sping,,_;) where ¢ is the vector representation, we have Yz = G- £
and Y, = G4 - € by using the results of irreducible case.

(9) In p.14 of (Igusa [2]), it is proved that Y = Gy -£. One can see
easily from p.11 of (Igusa [4]) that G is connected so that Y4 = G4 - &.
From the above observation,we obtain the following theorem.

Theorem 2-1. For a simple regular P.V. with #(Ga\Ya) < +o0,
we have Z, = T7Z,,. »

Theorem 2-2. For a simple reqular P. V. with #(G 4\Ya) < +o0,
we have #(G\Yir) = #(Ga\Ya) =1 for a suitable k-form.
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§4. 2-Simple P.V.’s of Type I with #(G4\Ya) < +o0

By (T. Kimura, S. Kasai and H. Hosokawa [8]), all non-irreducible
regular 2-simple P.V.’s of Type I with #(G4\Y4) < 400 are given as
follows. Here we adjust the scalar multiplications so that the generic
isotropy subgroup H = p(G¢) is semisimple.

(1) (GLy x GLs x GLy, 1@ Ay ® A +1® AT @1+ A, @A 1)
with H = {1}.

(2) (GL1 X Spn X GLam, 1 ® A1 ® A1 + A1 @ 1 ® (AP + ALY))
(n>m) with H = Sp,,_, X SDrm_1.

(3) (Spn X GLopy1,A1 ® A1 + A1 ®1) (n>m) with H = Sp,, x
Spn—m—l-

(4) (GL3xSppxGLami1, AMi®A+A@1+1®(A1+A1)H) (n > m)
with H = Spy—1 X Spr—m—1, where GL3 actson A;®1+1®(A; +A1)(*)
as scalar multiplications.

(5) (GL; x Spinyg XxGL2,1® (a half-spin rep.) ®A; + A1 ®1®
(Al + Al)) with H = GQ.

(6) (GLl X Spinlo XGL% X GLQ,A1® (a half—spin rep.) ®1 ®A1 —+
1®1® (p2+1® A1) with H = G5. (See (3) in §3 for ps).

‘We shall check each of them.
(1) We take a k-form
(GLl(k‘) X GL5(]€) X GLQ(k), 1A A +1 ®AT R1I+A® AT ® 1).

Its generic isotropy subgroup is exactly {1} (see (p.26—p.27 in
T. Kimura, S. Kasai and H. Hosokawa [8]). We have Y}, = Gy, - €.

(2) We shall consider (GLy X Spp, X GLoy, 10 A1 @ A1 + A1 ®1®
(A7 + A1)
We take a k-form of the image of p=1®A1 A1+ A1 ®1® (Ag*) +
A(*))
1)
Since G La,-part of the generic isotropy subgroup of (Sp, x GLan,
A1 ® Aq) is Spy, , it reduces to (4) in §3.

(3) In this case, we have G¢ = Spy X SPp—m—1 and Y3, = G - €
(cf. p.102 in (M. Sato and T. Kimura [5])).
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(4) ((GL3X)SppxGLams1, A @A+ (A1 ®1+1®(A1+A1) ) (n >
m) where GL3 acts on A ® 1+1® (A1 +A;)™) as scalar multiplications.
Since G La,,y1-part of the generic isotropy subgroup of (GL, x Sp, x

. A 0
GLgm_H,l@Al QAL+ Ay ®A1®1) 18 {( 0 Q/) 1A E Spy;a € GLl} R
it reduces to (4) of §3. We have Yy = G-€ and G¢ = Spp—1 X SPn—m—1-
Note that (—1)3 x (=I2p) X (—J2m+1) is in the kernel of p = A1 ® Ay +

A®1+1® (A +A1)(*).

(5) (GLl X Spil’llo XGLQ, 1® A X A1 =+ Al R1IR (A]_ + Al)) with
A = (a half-spin representation). Since the generic isotropy subgroup of
(GL1 x GL2, A1 ® (A1 + A1)) is {(a™ Y, alz);a € GL1}, (5) reduces to
(9) in §3.

(6) Since GLo-part of the generic isotropy subgroup of (GL? x
GLa,p2+1® A1) is 1 (see (3) in §3) , reduces to (9) in §3.

Theorem 3-1. For a regular 2-simple P.V. of type 1 with
#(G 4\Ya) < H00, we have Zy = TZp,.

Theorem 3-2. For a reqular 2-simple P.V.’s of type 1 with
#(G4\Ya) < +oo, we have #(Gp\Yr) = #(Ga\Ya) = 1 for a suit-
able k-form.

References

[1] J. Igusa, A classification of spinors up to dimension twelve, Amer. J.
Math., 92 (1970), 997-1028.

[2] —, On functional equations of complex powers, Invent. Math., 85
(1986), 1-29.
[3] , On a certain class of prehomogeneous vector spaces, J. Pure

Appl., 47 (1987), 265-282.

; Zeta distributions associated with some invariants, Amer. J.
Math., 109 (1987), 1-34.

[5] M. Sato and T. Kimura, A classification of irreducible prehomogeneous
vector spaces and their relative invariants, Nagoya Math. J., 65 (1977),
1-155.

[6] T. Kimura, A classification of prehomogeneous vector spaces of simple
algebraic groups with scalar multiplications, J. Algebra, 83 No. 1
(1983), 72-100.

[7] T. Kimura, S. Kasai, M. Inuzuka and O. Yasukura, A classification of
2-simple prehomogeneous vector spaces of type I, J. Algebra, 114
No. 2 (1988), 369-400.




On Adelic Zeta Functions 31

[8] T. Kimura, S. Kasai and H. Hosokawa, Universal transitivity of sim-
ple and 2-simple prehomogeneous vector spaces, Ann. Inst. Fourier
(Grenoble), 38,2 (1988), 11-41.

[9] F. Sato, Zeta functions in several variables associated with prehomoge-
neous vector spaces II: A covergence criterion, Tohoku Math. J., 35
No. 1 (1983), 77-99.

[10] T. Kimura, The b-functions and holonomy diagrams of irreducible regu-
lar prehomogeneous vector spaces, Nagoya Math. J., 85 (1982), 1-80.

, Iwasawa-Tate theory for prehomogeneous vector spaces with
Za = 1Zm,.

[12] A. Borel and Harish-Chandra, Arithmetic subgroups and Algebraic
groups, Ann. of Math., 75 (1962), 458-535.

[13] T. Ono, an integral attached to a hypersurface, Amer. J. Math., 90
(1968), 1224-1236.

[11]

The Institute of Mathematics
University of Tsukuba
Ibaraki, 305

Japan





