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Prehomogeneous Vector Spaces 
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Introduction 

The two adelic zeta functions Za(w, <I>) and Zm(w, <I>) for a prehomo­
geneous vector space (abbrev. P.V.) (G, p, V) have no relation in general. 
For an irreducible case, Professor J. lgusa showed that Za = T Zm with 
some constant T when #(GA \YA)< oo under the condition (HW) where 
Y is the open G-orbit in V (see lgusa [4]). 

In this paper, we shall show that the condition (HW) is not neces­
sary. Moreover, we shall show that the theorem of the same type holds 
even for simple P.V's and 2-simple P.V.'s of type I. It is known that 
when Za = TZm holds, we can generalize lwasawa-Tate Theory for such 
P.V.'s and we can have many informations (see T. Kimura [11]). 
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§ 1. Basic definitions 

Let G be a connected reductive linear algebraic group and 
p : G ------, GL(V) a rational representation of G with the open dense 
G-orbit Y. In this case, we call a triplet ( G, p, V) a prehomogeneous 
vector space (abbrev. P.V.). The complement S of Y is a Zariski­
closed set which is called the singular set of ( G, p, V). We assume 
that the isotropy subgroup H of p( G) at a point in Y is connected 
and semisimple. The irreducible components Si of codimension one 
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are the zeros of some irreducible polynomials Ji(x) (i = 1,2, ... ,r). 
Then Ji ( x), h ( x), ... , Jr ( x) are algebraically independent relative in­
variants, i.e., Ji (p(g )x) = Xi (g) Ji ( x) for g E G, x E V with some 
rational characters Xi of G. Moreover any relative invariant rational 
function J(x) is of the form J(x) = C · fi(x)m 1 h(x)m2 • • • Jr(xrr with 
(m1 , m 2 , ... , mr) E Zr and some constant c (see p.60 in (M. Sato and 
T. Kimura [5])). 

Let k be an algebraic number field. We assume that (G, p, V) is 
defined over k and all coefficients of Ji(x) are ink. We denote by GA, VA, 
etc. the adelization of G, V, etc. with respect to k. Let O(k~/kx) be 

the space of quasicharacters of the idele class group k~/kx and S(VA) 
the Schwartz-Bruhat space on VA. 

For w = (w1, ... ,wr) E O(k~/Pf, we write w(x(g)) = w1(X1(g)) 
· · ·wr(Xr(g)) and w(f(x)) = w1(fi(x)) · · ·wrUr(x)) (g E GA,X E YA= 
(V - S)A) for simplicity. Now we define the two adelic zeta-functions 
Za(w, <I>) and Zm(w, <I>) of (G, p, V). 

Za(w, <I>)= r w(x(g)) L <I>(p(g) · Ode A (g) 
le A/Gk ~EYk 

Zm(w, <I>)= r w(f(x))<I>(x)dyA (x) 
}yA 

Here dcA is a Haar measure on GA and dyA is a GA-invariant mea­
sure on YA (see the beginning of § 2). We take the same convergence 
factor for dcA and dyA. The role of Za(w,<I>) is a functional equation 
based on the adelic Poisson summation formula while Zm(w, <I>) has an 
Euler product Zm(w, <I>)= IlvEEZv(wv, <I>v) when <I>= ®vEE<I>v where I:: 
denotes the set of places of k. 

For the absolute convergence of Zm(w, <I>), see p.90 in (T. Ono [13] 
and F. Sato [9]). 

§2. Some sufficient conditions for Za = T Zm 

For simplicity, we assume that G C GL(V) and (G, V) is defined 
over an algebraic number field k. Take a k-rational generic point 'T/ E 

Yk = (V - S)k and we denote by H the isotropy subgroup of G at ry. 
Since we assume that H is semisimple, we have vol(HA/ Hk) < +oo 
(see A. Borel and Harish-Chandra [12]), and there exists a GA-invariant 
measure dyA on YA. Since H is connected, GA • rJ is open in YA. We 
normalize measures dcA,dHA and dyA on GA,HA and YA by 
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r </J(g)dGA (g) = r dyA (x)( r </J(gh)dHA (h)) 
JGA JGA·'1 }HA 

(with x = gHA) 

Proposition 1-1. We have 

(1.1) 

f w(x(g)) L if!(g~)dGA (g) 
GA/Gk f;EGk·'1 

= T r w(J(x))it!(x)dyA(x) 
JGA·'1 

for if! E S(VA) where T = JHA/Hk dHA(= vol(HA/Hk) < +oo). 
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Proof First we observe that w(x('y)) = 1 for 1' E Gk and w(f('l])) = 
1, i.e., w(x(n)) = w(f(g'l])). 

Since G is reductive,the Haar measure dGA is right-invariant, i.e., 
dGA (g--y) = dGA (g). 

Now 

L.H.S. = 1 w(x(g)) L if!(g--y'T])dGA(g) 
GA/Gk ,EGk/Hk 

= r w(x(g))if!(g'T])dGA (g) 
JGA/Hk 

= r dyA(x)( r w(J(gh · 'l]))if!(gh · 'T])dHA(h)) 
JGA·1) JHA/Hk 

(with x = gHA) 

= T r w(J(x))if!(x)dyA (x) 
JGA·'1 

where T = JHA/Hk dHA is a finite number by assumption. 

Q.E.D. 

Now the following proposition is obvious. 

Proposition 1-2. Assume that Yk = Gk · 7] and YA = GA· 7]. 

Then we have Za = TZrn. 

Proposition 1-3. Let (G, V) and (G', V) be P. V. 's satisfying G C 

G' C GL(V) and Y' = Y. If Yk =Gk· '1] and YA= GA· 7], then we have 

z~ = T1 z:,, = r/:-Za and z:,, = Zrn. 
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Proof. Since Y' = Y, we have z;n = Zm. Since G C G', we have 
Yk = G~ •1] and YA= G~ ·1], hence Z~ = T1 Zm by Proposition 1-2. Since 

Za = TZm, we have z~ = ~Za. Q.E.D. 

Proposition 1-4. For (GLd, Md) with a k-form (GLd(k), Md(k)), 
we have Yk =Gk· Id and YA= GA· Id (hence we have Za = TZm). 

Proof. Since Yk = GLd(k) = Gk =Gk· h and YA = (GLd)A = 
GA= GA· Id, we have our assertion by Proposition 1-2. Q.E.D. 

Proposition 1-5. Let G0 be a connected k-split algebraic subgroup 
of SLd acting on Md as p(g0 , g1) · X = g0 xtg1 (go E Go, g1 E GLd, X E 

Md)· Then for a P. V. (G0 x GLd,P,Md) with the k-form 

we have Za = TZm. 

Proof. It is clear by Proposition 1-3 and Proposition 1-4. 
Q.E.D. 

Theorem 1-6 (Igusa [4] with the above Proposition 1-5). Let 
(G, p, V) be an irreducible regular P. V. defined over k such that YA de­
composes into a finitely many GA -orbits. Then with a suitable k-form, 
we have 

Remark. The point of Theorem 1-6 is that the condition (HW) is 
not necessary (see p.16 Remark in (Igusa [4])). 

More explicitly, we can express Theorem 1-6 as follows. 

Theorem 1-7. We have Za(w, <I>)= TZm(w., <I>) for an irreducible 
regular P. V. which is castling-equivalent to one of the following reduced 
P. V. 's with the split k-form. 

(1) (H X GLm, Pm, Mm) where His any k-split connected semisim­
ple algebraic subgroup of SLm with Pm(h, g)x = hxtg for (g, h) E H x 
GLm and x E Mm- We take a k-form (Hk x GLm(k), Pm, Mm(k)). The 
relative invariant f ( x) = <let x. 

(2) (GL2m,p,Alt2m) where p(g)x = gxtg for g E GL2m and x = 
_tx E Alt2m• We take a k-form (GL2m(k), p, Alt2m(k)). The relative 
invariant f(x) = Pf(x) (= the Pfaffian of x). 
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(3) (GL1 xS02m,A1®A1,Afj2m) withm22. 

Here S02m = {A E SL2m/ AKA = K} with K = [ 0 Im] 
Im O 

so that f(x) = x 1xm+I + · · · + XmX2m is the relative invariant. Let 
G be the image of GL1 x S02m by p = A1 ® A1 in GL2m, and put 
Gk= G n GL2m(k). We take a k-form (Gk, k2m). For any A E P, put 

g(A) = p( v)., ( ~Im ~I )). 
fi m 

Then g(A) is in Gk and f(g(A)x) = Af(x). 
Hence, with the SO2m(k)-homogeneity of f- 1 (1), we have Yk = Gk-~ 

with~= e1 +em+l· The isotropy subgroup Gt;. of G at~ is S02m-l· Note 
that p(-l, ~ I2m) = l. Since S02m-l is connected, we have YA = GA -~ 
( cf. Theorem 1-8). 

(3)' (GL1 x Spin7 ,A1 ® (the spin rep.), V(8)) 
We identify V(8) with Af f 8 by the standard base 

Let G be the image of GL1 x Spin7 in GLs by A1 ® (the spin rep.) 
and put Gk= GnGL8 (k). We take a k-form (Gk, k8 ). Since the relative 
invariant is a quadratic form, we have G C G0(8). By p.13 in (Igusa 
[2]), one sees that Yk =Gk· ( We have YA= GA·~ (see Igusa [4]). 

(3)" (GL1 x Spin9 , A1 ® A1, V(16)) 
Everything is similar as (3)'. In this case,we have G C G0(16). 

(4) (Spm x GL2r, A1 ® A1, M2m,2r) (m 2 2r) 
We take k-form 

The relative invariant f(x) = Pf(txJx). 

(5) (GL1 x E6,A1,.J(27)) 
.J(27) is the totality of 3 x 3 hermitian matrices over the octonion 

algebra, and the relative invariant f(x) is their determinant. The image 
G of GL1 x E 6 by A1 ® A1 is Sim(!) and Gk is transitive on Yk (see 
p.15 in (Igusa [2]). 

(6) (Spin10 xGL2, (a half-spin rep.) ®A1, V(16) ® V(2)) 
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Let G be the image of Spin10 xGL2 in GL32. We identify V(l6) 
with Af f 16 by the standard basis 

{1, eie1(1 ~ i < j ~ 5), e~(l ~ k ~ 5)}, 

and put Gk= GL32 (k) n G. Put Si(.\)= A- 1 + (.\ - .\-1 )eiei+5 (see 
p.1002 in (Igusa [l])). For any a E P, put g(a) = (s1(.\) · · · s5(.\), .\I2) 
with A =4 ,la. Then we have g(a) E Gk and f(g(a)x) = af(x). Since 
J- 1 (1) is Spin10 -homogeneous, we can say that~ = Gk·~ and YA = 
GA·~ for 

(6)' (GL1 x Spin10 , A1 ®(A+ A), V(16) EB V(16)) where A is the 
( even) half-spin representation. 

In particular, we have Yk =Gk·~ and YA= GA - ~ for (6). 

(7) (GL7 , A3 , V(35)) 
Let G be the image of G L7 under A3 in G £35. For any local field 

k -1- R, Yk is Gk-homogeneous and YR= GR· 6 LJ GR· 6- However we 
have #(GA \YA)< +oo. The relative invariant f(x) is of degree 7. 

In this case, we have Za = TZm by (Igusa [4]). 

Theorem 1-8. Assume that a universally transitive regular P. V. 
(G, V) defined over k satisfies the two conditions: 

(1) Yk =Gk· 'f) 
(2) the isotropy subgroup Gr, is connected. 
Then we have Za = TZm· 

Proof. By (2), every GA-orbit in YA contains a point of Yk (see 
(p.14 in Igusa [4]). Then, by (1), we have YA = GA · 'f). Hence by 
Proposition 1-2, we obtain our result. Q.E.D. 

§3. Simple P.V.'s with #(GA \YA)< +oo 

Assume that #(GA \YA)< +oo for a simple P.V. (C, p, V) with G = 
p(G). Then for almost all places v of k, Yv must be Gv-transitive. Such 
non-irreducible regular simple P.V.'s with a semisimple generic isotropy 
subgroup H = p(Gtc,) (~ E Yk) are given as follows. (see (T. Kimura, 
S. Kasai and H. Hosokawa [8])). 

(1) (GL1 x SLn, A1 ® A1 + 1 ® Ai) with H = SLn. 

n 

(2) 
~ 

(GLn, A1 EB··· EB Ai) with H = {1}. 

(3) (GL1 x GLn, Pn + 1 ® A1) with H = {1}, where Pn(g)x = 
Ax(diag(a1, ···,an)) for g = (a1, ···an, A) E GL1 X GLn and XE Mn. 
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(4) (GL1 x Spn,A1 EB (A1 +Ai)) with H = Spn-1 

(5) (GL1 x GL2rn, 1 ® A2 + A1 ®(Ai*)+ Ai*))) with H = Spm-1-

(6) (GL2m+1, A2 EB A1) with H = Spm. 

(7) (GLf x GL2m+1, A2 EB A1 EB (A1 EB A1)<*l) with H = Spm-1, 
where GLf acts on A1 EB (A1 EB Ai)(*) as scalar multiplications. Here 
(A1 EB Ai)<*l stands for A1 EB A1 or its dual (A1 EB Ai)*). 

(8) (GLi x Spinn, (a half-spin rep.) EB(vector rep.)) (n = 8, 10) 
with H = (G2) for n = 8 and H = Spin7 for n = 10. 

(9) (GL1 x Spin10 , A1 ®(A+ A)) with H = (G2), where A is the 
even half-spin representation. 

We shall check each of them. 

(1) We take a k-form (GL1(k) x SLn(k), A1 ®A1 + 1 ®Ai, kn EB kn). 
Then Yk =Gk· ( with ( = (e1,e1) and G1;. ~ SLn-1(k). 

n ,.----. 
(2) For (GLn(k), A1 EB··· EB A1, Mn(k)), we have Yk =Gk· In and 

H = {l}. 

(3) We take a k-form 

and put (=(In/ (1, · · ·, 1)). Then Yk =Gk· ( and G1;. = {1}. 

(4) Let G be the image of GL1 x Spn in GL4n by p = A1 ®(A1 +Ai), 
and put Gk= G n GL4n(k). For any a E P, put 

( foin O ) 
g(a) = (ya, 0 _1 I ). 

y'a n 

Then g(a) E Gk and f(g(a)x) = af(x). Since J-1(1) is Spn(k)­
transitive, we have Yk =Gk· ( with ( = (e1, en+1) and G1;. = Spn-1 (see 
p.16 in [8]). 

(5) We take a k-form 
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where A~*) implies A1 or its dual Aj'. Since the generic isotropy subgroup 
of (GL2m,A2) is exactly Spm, we have Yk =Gk· land YA= GA· l by 
(4). 

(6) Consider (GL2m+1(k),A2 EB A1,Alt2m+1(k) EB k2m+1). Then 
Yk = GL2m+1(k) · l with 

where J = [-~m 1(;'] and Ge, = Spm(k). By Theorem 1-8, we have 

Yk =Gk· land YA= GA· l for (6). 

(7) We take a k-form 

(GL2m+1(k) x GLf(k),A2 +A1 + (A1 +Ai)C*l, 

Alt2m+1(k) EB k2m+l EB k2m+l EB k2m+l) 

where GLr(k) acts on k2m+l EB k2m+l EB k2m+l as scalar multiplications. 
Then we have Yk =Gk·~ with 

and the image of the isotropy subgroup is connected. Note that (-I2m+l, 
-1, -1, -1) is in the kernel of 

(8) Since the generic isotropy subgroup of (A1 0¢)(GL1 X Spin2n) 
is ¢(Spin2n_i) where¢ is the vector representation, we have Yk =Gk·~ 
and YA= GA -~ by using the results of irreducible case. 

(9) In p.14 of (Igusa [2]), it is proved that Yk =Gk· l- One can see 
easily from p.11 of (Igusa [4]) that Ge, is connected so that YA= GA·~­

From the above observation,we obtain the following theorem. 

Theorem 2-1. For a simple regular P. V. with #(GA \YA)< +oo, 
we have Za = TZm. 

Theorem 2-2. For a simple regular P. V. with #(GA \YA)< +oo, 
we have #(Gk \Yk) =#(GA \YA) = 1 for a suitable k-form. 
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§4. 2-Simple P.V.'s of Type I with #(GA \YA)< +oo 

By (T. Kimura, S. Kasai and H. Hosokawa [8]), all non-irreducible 
regular 2-simple P.V.'s of Type I with #(GA \YA) < +oo are given as 
follows. Here we adjust the scalar multiplications so that the generic 
isotropy subgroup H = p(Ge) is semisimple. 

(1) (GL1 x GL5 x GL2, 10 A2 0 A1 + 10 Ai 01 + A10Ai01) 
with H = {1}. 

(2) (GL1 X Spn X GL2m, 1 0 A1 0 A1 + A1 0 1 0 (Ai*)+ Ai*))) 
(n > m) with H = Spn-m X Spm-l• 

(3) (Spn x GL2m+1, A1 0 A1 + A1 01) (n > m) with H = Spm x 
Spn-m-1· 

(4) (GLrxSpnxGL2m+1,A10A1+A101+10(A1+Ai)C*l) (n > m) 
with H = Spm-1 X Spn-m-1, where GLi acts on A101+10(A1 +A1)<*) 
as scalar multiplications. 

(5) (GL 1 x Spin10 xGL2, 10 (a half-spin rep.) 0A1 + A1 0 1 0 
(A1 + Ai)) with H = G2. 

(6) (GL1 x Spin10 xGLf x GL2,A10 (a half-spin rep.) 010A1 + 
101 0 (p2 + 10 Ai)) with H = G2. (See (3) in §3 for p2). 

We shall check each of them. 

(1) We take a k-form 

Its generic isotropy subgroup is exactly {1} (see (p.26-p.27 in 
T. Kimura, S. Kasai and H. Hosokawa [8]). We have Yk = Gk · (. 

(2) We shall consider ( GL1 x Spn x G L2m, 1 0 A1 0 A1 + A1 01 0 

(Ai*)+ Ai*))) 

We take a k-form of the image of p = l 0A1 0A1+A1010 (Ai*)+ 

Ai*)). 
Since GL2m-part of the generic isotropy subgroup of (Spn x GL2m, 

A1 0 A1) is Spm , it reduces to (4) in §3. 

(3) In this case, we have Ge = Spm x Spn-m-l and yk = Gk · ( 
(cf. p.102 in (M. Sato and T. Kimura [5])). 
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(4) ((GLf x)Spn xGL2m+1, A10A1+(A101+10(A1 +A1)<*l)(n > 
m) where GLf acts on A101+10 (A1 + A1)(*) as scalar multiplications. 
Since GL2m+i-part of the generic isotropy subgroup of (GL1 x Spn x 

G L2m+1, 1 0 A 1 0 A 1 + A 1 0 A 1 0 1) is { (: ~ ) ; A E Spm; a E G L1} , 

it reduces to (4) of §3. We have Yk = Gk·l and Gt;,= Spm-l X Spn-m-l· 
Note that (-1) 3 x (-I2n) x (-I2m+1) is in the kernel of p = A1 0A1 + 
A1 0 1 + 1 0 (A1 + A1)<*l. 

(5) (GL 1 x Spin10 xGL2, 1 0 A 0 A1 + A1 010 (A1 + A1)) with 
A= (a half-spin representation). Since the generic isotropy subgroup of 
( GL1 x GL2, A1 0 (A1 + A1)) is {(a-1, ah); a E GLi}, (5) reduces to 
(9) in §3. 

(6) Since GL2-part of the generic isotropy subgroup of ( GLi x 
GL2, P2 + 1 0 A1) is 1 (see (3) in §3) , reduces to (9) in §3. 

Theorem 3-1. For a regular 2-simple P. V. of type I with 
#(GA \YA)< +oo, we have Za = TZm. 

Theorem 3-2. For a regular 2-simple P. V. 's of type I with 
#(GA \YA) < +oo, we have #(Gk \Yk) = #(GA \YA) = 1 for a suit­
able k-form. 
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