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Abstract. 

The Yang-Baxter algebras (YBA) are introduced and formulated 
in a general way stressing graphical methods. Their various physical 
applications are then exposed: lattice statistical models, integrable 
field theories and factorizable S-matrices. The Bethe Ansatz (BA) 
and its generalizations provide the explicit solutions of all these mod­
els using the appropiate YBA. The six-vertex model solution is ex­
posed. YB algebras and their associated physical models are classified 
in terms of simple Lie algebras. 

It is exposed how these lattice models yield both solvable massive 
QFT and conformal models in appropiated scaling (continuous) limits 
within the lattice light-cone approach. 

The method of finite-size calculations from the BA is exposed 
as well as its applications to derive the conformal properties of inte­
grable lattice models. It is conjectured that all integrable QFT and 
conformal models follow in a scaling limit from these YB algebras. 

To conclude braid and quantum groups are derived from the 
YBA in the limit of infinite spectral parameter. 

§1. Yang-Baxter algebras 

A Yang-Baxter (YB) algebra consists of a set of operators T(0) 
called generators. They depend on the complex variable 0 ( the spectral 
parameter). Each operator T(O) acts on two vector spaces A and V. 
The best way to work with Yang-Baxter algebras is to use graphical 
notation. It is defined as follows: 

a) a line of different type is associated to each vector space (see 
Fig.I) 

b) The intersection of two lines is associated to a generator T(0) 
where 0 is the angle between the two lines.(see Fig.2). 
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-------=A,~ =V, etc. 

Fig. 1. To each type of line is associated a vector space. 

[ (A,V) .l 
Tab (0)Jal3 = 

Fig. 2. A YB generator is associated to the intersection of 
two lines. 
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Fig. 3. There is a summation over the states of internal 
lines. 

c) There is summation over all states in the vector spaces associated 
to the lines between two vertices ["internal lines"] (see Fig.3) 

Let us call I the set of all vector spaces where the YB algebra (YBA) 
generators act 

I is also the set of different types of lines. The basic equation that 
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characterizes the YBA is 

(1.1) 
T<K,1l(o - B')T<K,Jl(B)T<1,Jl(o') 

= T(I,Jl(0')T<K,Jl(o)T<K,1l(o - B') 

for all spaces V 1 ,VJ,VKE I. Eq.(1.1) is called Yang-Baxter equation 
(YBE) or triangular relation or factorization equation. It can be repre­
sented graphically as follows (Fig.4) 

G -'-... 
f 

B 

Fig. 4. The Yang-Baxter equation (general form). 

Here eq.(1.1) writes putting all indices explicitly 

(1.2) 
[T;{c:1l(o - o')Ld[Tb~,Jl(o)1a6 [T~f'Jl(o')] 6.a 

= [TJ:,J) ( B') la'Y [T1~J) ( B)] 'Y.8 [Th~I) ( B - B')] gf' 

As one sees in Fig.4 the YBE says that one can push any line through the 
intersection of other two. This is called sometimes Z-invariance since it 
leaves the partition function uilchanged [see below] [1]. Eqs.(1.1)-(1.2} 
[or Fig.4) shows the general YBE. 

The YB generator associated to the intersection of two lines of the 
same type is called an R-matrix 
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Fig. 5. The R-matrix. 

In the particular case when two of the vector spaces are identical, 
say V 1 = yK = A and VJ = V, one can rewrite eqs. (1.1)-(1.2) as [2] 

(1.3) R(B - B')[T(B) © T(B')] = [T(B') © T(B)]R(B - B') 

where 
and T(B) = r(I,Jl(e). 

In eq.(1.3) an operator product in the space V is understood. The © 
means tensor product of the space A multiplied by itself. R acts in A©A 
as a matrix. The R-matrix associated to the space V0 of lowest dimen­
sionality in I as called the fundamental R-matrix. The fundamental 
R-matrix characterizes the YB algebra. 

Let us see why YB algebras are connected deeply with integrable 
theory. Eq.(1.1) can be written as 

(1.4) 
r(K,J) ( B)T(I,J) ( B') 

Taking the trace of eq.(1.4) in the space yK © V 1 yields 

(1.5) TK(B)r1(B') = r1(B')rK(B) 

where we use the cyclic property of the trace and 

Here an operatorial product in the space VJ is understood. We denote 
by r1( B) and TK( 0) the transfer matrices 

a 

(1.8) rK(B) = TrvK [T(B)(K,J)] = I: ri~·J\B). 
A 
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r1(8) and rK(0) are operators acting on VJ. They form a set of families 
of commuting transfer matrices 

(1.9) [rr( 0), 1"K( 0')] = 0, \/0,0' EC, VI,K EI. 

Moreover, series expanding in 0 yields an infinite number of commuting 
operators acting on V 1 . 

(1.10) Vn,m 2: 0, VI,K EI. 

Here ct are the expansion coefficients of r1(8) or logr 1 (0) in powers of 
0. The existence of an infinite number of commuting operators is the 
necessary condition to have a quantum integrable system with an infinite 
number of degrees of freedom. Actually, only in the thermodynamic limit 
this number of degrees of freedom is attained. 

Since the operators r1( 0) are mutually commuting for all 0 and V 1, 
one can expect to be able to diagonalize all of them simultaneously. This 
is actually possible. Moreover, the eigenvectors and eigenvalues can be 
constructed using the YB algebra itself. This is probably the main 
application of YBA. They permit to built eigenvectors and eigenvalues 
of all r1( 0) and operators ct derived from them in a purely algebraic 
framework. 

A specially important YB equation follows when the three vector 
spaces in eq.(1.1) are equal: V1 =VJ= yK = A. One finds 

(1.11) 
[1 ® R(0 - 0')][R(0) ® 1)[1 ® R(0')] 

= [R(O') ® 1)[1 ® R(0)][R(0 - 0') ® 1). 

In explicit notation this reads 

This equation can be depicted as 
We see that eq.(1.11) or (1.12) is a system of q6 equations (q = 

dimA) with q4 unknowns {the functions R:~(O), 1 ::::; a, b, c, d::::; q). 
That is, one finds a heavily over~determined set of equations. The ex­
istence of a solution is clearly a necessary condition to have a YBA. 
Actually it is also a sufficient condition since one can define a YB gen­
erator acting on A ® A as 

(1.13) 

It obeys 

(1.14) 

[ (A,A)] Rbd( 0) 
tab(II) cd = ca • 

R(0 - 0')[t(A,A) '°" t(A,A)] - [t(A,A) '°" t<A,A)]R(0 - 0') 
(11) '<Y (11') - (11') '<Y (11) ' 
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Fig. 6. The YBE for the R-matrix. 

which just follows by rewriting eq.(1.12) with the help of eq.(1.13). 
The most remarkable fact in integrable theories is that eqs.(1.11) or 

(1.12) do admit a rich set of non-trivial solutions. Actually each solu­
tion exhibits some invariance which probably explains its very existence. 
That is, thanks to the presence of an invariance the number of actual 
independent equations is largely reduce from q6 • 

A YB algebra is invariant [see eq.(1.3)] under a transformation g E 9 
in A 

(1.15) 

provided [16] 

(1.16) 

More generally 

[g ® g, R(0)] = 0, V0 EC, Vg E Q. 

(1.17) [gr® 9J,r(I,J)(0)] = o, 

where gr and 9J are the representation of g E 9 acting on the vector 
spaces V 1 and VJ respectively. For an infinitesimal transformation 

gr=l+ie:Sr, 

where c « 1 and Sr and SJ are the generators representation in V 1 and 
VJ respectively. Hence eq.(1.17) yields 

(1.18) [Sr,T(I,J)(0)] + [SJ,T(I,J)(0)] = 0. 
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There exists a direct connecion between the kind of symmetry group 
g of the YBA and the functional dependence on 0. This connection is 
displayed in table I. 

g : symmetry group 

discrete: Zq 

TABLE I 

continuous abelian: U(l)q 

continuous non-abelian: U(q), O(q) 

0 - dependence in Rabcd(0) 

elliptic 

trigonometric or hyperbolic 

rational 

Table I Correspondence between the symmetry group of 
the Yang-Baxter algebras and the functional de­
pendence of their generators on the spectral pa­
rameter 0. 

Another important invariance of YB algebras is the shift invariance. 
That is, if T( 0) is a YB generator, so it is 

T(0 - a:) 

with fixed a:. A look to eq.(1.3) shows that this is true since R depends 
on the difference 0 - 0', a must be the same so it drops. 

Let us now discuss the most important property of YBA: the repro­
duction property. It can be stated as follows: if t( 0) obeys a YBA [as 
eq.(1.3)] with horizontal space A and vertical V, so does 

q 

(1.19) 
r!f1(0) = L taa1 (0) ® ta1a2(0) ® ... ® taN-1b(0), 

a1·"aN-1=l 

q =dim A 

with the same R-matrix. The auxiliary space for r(N) is also A, the 
vertical one being 

N 

VN =@Vi. 
i=l 
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e-e' 

Fig. 7. The YBE for the YB generator (1.19). 

The easiest way to prove that (1.19) fulfils eq.(1.3) is graphically. As de­
picted in Fig. 7, eq.(1.19) follows by pushing a solid line N times through 
Fig.2-type vertices 

For N = 2 eq.(1.19) can be considered as a way of multiplying YB 
generators yielding new YB generators. This can be called a coproduct 
and shows that we have a Hopf algebra. More generally, if the YB 
generators are invariant under a group g [eq.(1.15)-(1.17)] we have as 
generator in A 18) vN, 

(1.20) 
q 

r!:1(0, a, g) = I: 

It obeys the YB eq.(1.3) for any fixed transformations g = (g1 , ... , 9N) 

and q. = ( a1, ... , aN ). 

There exists in addition, another coproduct multiplying the gener­
ators from right to left 

r!:1(0, a, h) = 
q 

(1.21) L [h1t(0 - a1)]a1bl l8l [h2t(0 - a2)]a2 a1 l8l 
a1···aN-1=l 

• • • 18) [hNt( 0 - aN )]aaN_1 · 

That is, T(0, q., !],) obeys the same YBA [eq.(1.3)] as t(0) does. 
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As we see, YBA are not Lie algebras since the sum of two generators 
T(0) is not a YB generator. However, one finds for the YBA the analo­
gous for most of the features of Lie algebras. The YBE (1.12) plays the 
role of the Jacobi identity in Lie algebras. The fundamental R-matrix 
being the analogue of the structure constants. There exists for YBA an 
"adjoint representation" [eq.(1.13)] provided by the R-matrix. We also 
have a "Cartan algebra" formed by the commuting transfer matrices 
r1(0) [eq.(1.7)]. A representation theory for YBA has been developed. 
That is, the construction ofT(0) for different spaces (A,V) given a fun­
damental R-matrix [2]. 

Actually there exist more general commuting transfer matrices than 
(1.7). It follows from eqs. (1.1) and (1.17) that the following operators 
on VJ: 

commute 

(1.23) V0,0' EC, Vg E Q. 

Notice in eq.(1.23) that the transformation g E g is the same in both 
transfer matrices. 

It is legitimate to call T(0,f!., ~) [eq.(1.20)] a gauge transformation 

of T(0) [eq.(1.19)]. We apply in eq.(1.20) a group symmetry transfor­
mation (gi, ai) that depends upon the site. This is a one-dimensional 
local gauge transformation on the lattice. Actually, a YB generator 
gauge transformed under g can be related with the untransformed one 
as follows [3] 

N N 

(1.24) r!f 1(0,g) = II a; 1r1:1(0) II GiJcb 
i=l i=l 

where h; 1 and hi here act on the i-th vertical space with 

i 

Gi = II Yi 
j=l 

and 
N 

J= II9e· 
e=l 

Let us show that the YB algebra (1.1) is invariant under the replace­
ment 

r<1,J>(0) - r( 1,J>(0f 

where T means transpose in both V and A spaces. That is 
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Taking the transpose of eq.(1.1) on V 1 , VJ and yK yields 

(1.25) 
[T(I,J)(0')f[T(K,J)(0)f[T(I,Jl(0 - 0')f 

= [T(K,Il(0 - 0')f [T(K,J)(0)f[T(I,J)(0')]T. 

This coincides with eq.(1.1) with the left and right members exchanged. 
Therefore, if T( 0) obeys a YB algebra, so does T( 0)T. Very often 

T(0f = T(0). 

Let us now prove that the YBE (1.12) guarantees that the product 
of the operators Tab( 0) acting in Vis associative. That is, the constraints 
imposed by eq.(1.3) on the products of Tab(0) are not in general com­
patible with associativity unless eq.(1.12) holds. There are in general 
two inequivalent ways to relate 

with 

(Here® means tensor product in A). 
That is, 

(123) -t (213) -t (231) -t (321) 

or 
(123) -t (132) -t (312) -t (321). 

Both must lead to the same result. One finds in this way the condition 

(1.26) 
s;;1 si;1 s;-;1 [T(01) ® T( 02) ® T( 03)]S23S13S12 

= s;-;1si; 1s;-;1[T(01) ®T(02) ® T(03)]S12S13S23, 

where the matrices Rij (i,j = 1, 2, 3, i -=I-j) act in the space A1 ® A 2 ® 
A3. Sij equals PR( 0i - 0i) in the space Ai® Ai and it is the unit matrix 

in the space Ak, j =I-k =I-i. That is st;~~:·2 a, = R~;~2
1 (01 - 02 )8~!-We 

denote by P the matrix 

(1.27) P ed ,;:d,;:c 
ab = UaUb· 

It follows from eq.(1.26) that 

(1.28) [S23S13S12s;-;1 s:;/s-;;/' T(01) ® T(02) ® T(03)] = 0. 
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But, the YBE (1.12) implies for Sij that 

(1.29) 

and hence eq.(1.28) is identically satisfied. Reciprocally one can derive 
the YBE (1.29) by requiring the associativity of the product of operators 
Tab· 

When 0 = 0' eq.(1.3) naturally suggests that R(O) is a multiple of 
the unit matrix in A@A. When this happens the corresponding R-matrix 
is called regular. That is 

(1.30) R(O) = cl 

where c is a numerical constant and 1 the unit operator. This property 
can be represented graphically as follows ( cf. Fig.5) 

b 

(1.31) ~~(e) = c 8tict 8 ac = a1 L d 

C 

This property plays a key role in the theory of integrable models. 
First it implies that the transfer matrices r( 0) built from R-matrices 
are generating functionals of local lattice operators. That is, those r(0) 
following from eq.(1.19) when r(0) is given by eq.(1.13) (see eqs.(2.12)­
(2.13)). 

Secondly, the unitarity properties ofT(0) follows from eq.(1.3O). Let 
us consider the YB equation (1.1) when a) V 1 = A, VJ= vK = V and 
b) V 1 = V, VJ= vK =A.This gives respectively 

(1.32) 
f 

f 
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and 

b 
C a e' b 

(1.33) = 

a 

d d 

Now, if we set () = 0 in (1.32) and (1.33), we find using eq.(1.30) for 
RA(()) and Rv(0), 

(1.34) 

Here, 

(1.35) 

M!'J ( 0)8a-y = 8513M':/ ( -0) 

M':f (0)8bc = 8adM;-f (-0). 

Eq.(1.34) shows that 

(1.36) 

where p(-0) = p(O) is a c~number function. Eq.(1.35) is actually an 
operator product on two vector spaces A and V. Keeping in mind this 
double matrix product, we find 

(1.37) T(O)T(-0) = p(O)l 

where 1 stands for the unit operator in V © A. We have found that all 
YB generators possess an inverse provided their R-matrix is regular in 
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the same of eq.(1.30). That is 

-1 ( 1 T 0) = p(0) T(-0) 

fulfils 

(1.38) T(0)T- 1(0) = T- 1 (0)T(0) = 1. 

The antipode generator is defined by 

(1.39) 

where t means transpose in A. That is 

(L4o) 

The antipode is an automorphism of the YB algebra. It follows from 
eqs.(1.3) and (1.38) that 

(1.41) 

The YB algebra in therefore a Hopf algebra with antipode. Since the 
coproduct [eq.(1.19) for N = 2] is non-commutative as well as the usual 
product of T( 0), we have a non-commutative and non-cocommutative 
Hopf algebra. 

§2. Physical realizations of Yang-Baxter algebras 

In this section we shall describe YB algebras in two-dimensional sta­
tistical models, field theories and S-matrices. We associate in Section 
I a vector space V 1 to each type of lines and a YB generator T(I,J)(0) 
to a pair of lines (I, J) intersecting with an angle 0. This can be imme­
diately applied to a two-dimensional lattice of lines [Fig.8] intersecting 
at the sites. The vector spaces describe the possible local states of the 
bonds and the t( 0) describe the statistical weights of the different link 
configurations. 

That is the matrix element [tab(0)]a,a defines the probability for the 
local configuration depicted in Fig.9. The product of the local weights 
over all sites in the lattice yields the probability for such configuration 
of the whole system. Finally summing over all possible configurations 
gives the partition function Z. When periodic boundary conditions are 
used in both horizontal and vertical directions, Z expresses as 

(2.1) 
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3 --l--+-----------lr---t--
2 --1--1--------------

1 2 N-1 N 

Fig. 8. A N x M two dimensional lattice. The local states 
of horizontal (vertical) bonds belong to the vector 
space A (V). 

a 

Fig. 9. The local statistical weights w(a,Blab) depend on 
the states of the four bonds joining at a vertex. 

Actually eq.(2.1) holds irrespective of the YB equations. 
The transfer matrices TgA(B) [16] [eq.(1.22)] correspond to twisted 

boundary conditions. That is when the operators at sites N + I and 1 
are related by the transformation g: 

(2.2) 

Here g acts in the appropriate representation of g. Then r9 A ( 0) is the 
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transfer matrix. If we also impose twisted b.c. in the vertical direction 
with a twist hv, Z writes 

(2.3) 

Eqs.(2.1) and (2.3) show how important is the knowledge of the 

eigenvalues of T( 0). Actually, just the largest eigenvalue Ar:lx( 0) gives 
the free energy in the thermodynamic limit 

(2.4) 
f = - lim NIM log Z 

N,M-->oo 

_ . 1 [N] 
- - Inn N log AMAX· 

N-->oo 

(The dependence on the b.c. drops in the N = M = oo limit). 
The lattice model here described is called a vertex model. It is ho­

mogeneous but not isotropic since horizontal and vertical lines are of 
different nature. One can even generalize these integrable vertex models 
taking lines at arbitrary intersection angles [49]. Also taking inhomo­
geneous weights g.,hyt(0 - a., - /3y) that depend upon the horizontal 
x and the vertical y coordinates. Moreover, one could take the lattice 
lines from all possible vector spaces V 1 E I at will. All these models are 
integrable and solvable although inhomogeneous and anisotropic. 

Let us now study the transfer matrices T( 0) as generating functionals 
of commuting local operators on the lattice. This is the case for R-matrix 
models (where A = V) when R is a regular R-matrix [eq.(1.30)]. We 
find from eqs.(1.13) and (1.30)-(1.31) 

(2.5) 

Then for a N-site transfer matrix as defined by (1.7) and (1.19) 

N 

(2.6) T(O}~f,} = CN IT ba,b;+ 1 , 

i=l 

a=(a1,a2,--·,aN), b=(b1,b2, ... ,bN) 

where bN+i = b1 . The operator in the rhs of (2.6) is just the lattice unit 
shift operator to the right. Therefore, we can write the momentum as 

(2.7) 

Let us now show that the logarithmic derivative of T[N] ( 0) at 0 = 0 gives 
an operator coupling nearest neighbors. 
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Using eq.(1.31), T!f 1(o)cld and r[Nl(O)cld can be drawn as follows 

(2.8) 

[NJ 
(2.9) 't (O)cld = 

"'"' 
d d d d 

I 2 3 N 
Similarly, 

(2.10) ( [NJ -1) 
't (0) = 

cld 
"'"' 

Now, if we compute ftr[Nl(O) from eq.(1.19) we obtain N terms, 

each one containing ftt(h)(0), 1 :Sh :SN and the others tCZ) (l =/-h) not 
derived. Hence, setting 0 = 0 yields 

N 1 2 3 N-1 

(2.11) . [NJ 
't (0) 

2 3 4 N 

N I 2 3 N-1 

+~Y-1~ ~ 
2 3 4 N 

I 2 3 N-1 N 

+ ... + Y-1 ~ Y-1 
2 3 4 N I 

Here 
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stands for .R(O). 
It is now very simply to perform the product rlNl(o)- 1rlNl(O) just 

combining eqs.(2.10) and (2.11) with the result 

K K+l N 

( [NJ -1) . [NJ LN 
't (0) 't (0) = 

cld 
K=l I 41 I 

K K+l N 

N 

L 
K=l 

K K+l 

X 
K K+l 

Therefore r[Nl(o)- 1r!Nl(o) is a sum of terms each one acting as an 
operator on two neighboring sites. Now, putting all factors 

(2.12) 
N 

- {) [NJ I - " H - 80 log T ( 0) ll=O - L..., hn,n+l, 
n=l 

where the matrix elements of h reads 

(2.13) 

More generally the n-th derivative of log r( 0) at 0 = 0 is an operator 
that couple n + 1 neighboring sites [47]. 

The operator H can be interpreted as a one-dimensional quan­
tum hamiltonian. It is an operator coupling neighboring q-component 
"spins". The word spins only applies, rigorously speaking, when the fun­
damental R-matrix corresponds to the six or eight vertex model. That 
is, the underlying Lie algebra in A1 and we have true SU(2) spins. Oth­
erwise one finds SU(q) spins, O(q) spins, etc. Eq.(2.12) suggest that 0 
may be the imaginary time variale. This possibility has not been fully 
explored yet. Anyway it must be noticed that r( 0) -:fi e8H. 

The next physical application or interpretation of YB algebras is 
two-dimensional S-matrix theory [4]. In this context the lines in figs. 
1-6 describe the world-lines of particles propagating in two-dimensional 
Minkowski space-time. The vector spaces V 1 associated to them describe 
the Hilbert space of internal states of the particles. The variable 0 
corresponds to the rapitidy ( velocity = tanh 0). We recall that the 
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energy and momentum of a particle of mass m writes in two-dimensions 
as 

(2.14) E = mcosh0, 

p = msinh0. 

The matrix elements of the YB operators T( 0) correspond to the two­
body S-matrix amplitudes as the intersection of two world-line trajec­
tories suggests ( cf. Fig.2) 

(2.15) r 
time 

Here 0 = 01 - 02 = 0~ - 0~ stands for the relative rapidity of the 
particles. l01o:,02 a) describes their initial state and l0~--y,0~b) their final 
one. 

The S-matrix theories associated to YB algebras are those of fac­
torizable scattering. That is, 

I) There is no particle production. The number of particles of each 
type in the initial and final states coincide. The set of initial and final 
particle momenta coincide (particles can exchange their momenta during 
the collisions). 

II) The N-particle S-matrix is expressed as a product of N(N -1)/2 
two-particle S-matrices as if the process of N-particle scattering were 
reduced to a sequence of pair collisions. 

Integrable quantum field theories in two dimensions provide explicit 
realizations of such S-matrices [3,4,6]. 

In those theories the basic object is the two-body scattering matrix, 
since all amplitudes write as appropriate products of two body ampli­
tudes. 

The YBE (1.2) ensures that one obtains the same N-body S-matrix 
irrespective of the temporal order of the pair interactions. This is im­
mediately visualized graphically (Fig.IO) since a change of the ordering 
means pushing lines through intersections keeping the angles ( the kine­
matics) fixed. 

The lack of particle production and the factorization can be under­
stood as a consequence of the existence of extra conserved charges when 
a underlying QFT is available. That is, conservation laws besides the 
usual ones ( energy, momentum, electric charge, isospin, ... ) . Usually the 
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Fig. 10. The YBE allows to displace parallely any line. 
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presence of one extra law (local or non-local) is enough to forbid particle 
production and enforce factorization of two body amplitudes [5]. 

Although we are giving two different interpretations to YB operators 
the physical requirements are clearly different for vertex weights and for 
S-matrix amplitudes. Boltzmann weights are usually real and positive 
since they express probabilities. However, a vertex model where some 
weights are negative or complex may be also interesting. 

S-matrix elements can be complex but they must be meromorphic 
functions of O due to the general principles of scattering theory [4,48]. 
Moreover space-time symmetries impose the following requirements: 

(2.16)Time-reversal invariance: S(O) = S(Of or s;f (0) = s~i(o), 

(2.17)Parity inversion invariance: s:f (0) = sfca(O), 

(S(O) = PS(O)P when V = A). 

In addition unless there are sources or sinks of particles S must be 
unitary 

(2.18) S(O)S(O)t = 1. 

Moreover, it must obey real analyticity 

(2.19) S(O*)* = S(-0). 

The unitarity follows from the YBE if time reversal and real analicity 
hold. We find from eqs.(1.37) for T(O) = R(O) [eq.(1.13)] and (2.15) 

S(O)S(-0) = p(O)l, 

where 1 is the unit operator in A@V. Then using eqs.(2.16), (2.19) and 
{2.20) yields the unitarity relation (2.18) if one absorbs a factor Jp(ij 
in the definition of S( 0). 
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In particle theory one has in addition the crossing invariance. It 
says that the amplitudes of the process 

(2.21) 

and 

(2.21) 

a+f3-c+8 

(where iJ, b means antiparticles of /3 and 8) are related by appropriate 
analytic continuations in 0. Crossing yields using eqs.(2.14)-(2.15) 

(2.22) 

in a real basis of particle states and with a special normalization of 0 
such that eq.(2.14) holds. In general crossing symmetry requires 

(2.23) S( 0)t1 = (1 ® W)S(-0 - 'Tl )(1 ® w- 1 ), 

where t1 means transpose in the first horizontal space, W is a constant 
matrix and 'Tl a parameter that depends on the model. 

The P and T symmetries {2.16)-(2.17} have a precise counterpart in 
the vertex language. T-invariance of the S-matrix implies invariance of 
the vertex weights under simultaneous up-down and left-right exchange. 
P-invariance means invariance of the weights under reflection over a 
line at +45° from the horizontal axis. Crossing implies that a left-right 
exchange in the vertices is equivalent to make 0 - -'Tl - 0 on the spectral 
parameter. Lack of any of these invariances can be interpreted as the 
presence of an external field in the vertex language. 

The correspondence between an integrable vertex model and a fac­
torizable S-matrix can be pushed even further as one sees from refs. [46]. 
That is, eqs.(1.2} and {2.15} define 8(0) up to a c-number normalization 
p(0) that can be fixed by requiring unitarity [eq.(2.18}] and analyticity 
[eq.(2.19}]. It happens that these S-matrix requirements leads to a nor­
malization that makes the free energy equal to zero for the corresponding 
vertex model in the thermodynamic limit. In other words they define 
a normalization p( 0) where Z = 1 at N = oo. Therefore, if one starts 
from a given normalization of the weights, this factor p( 0} is just the 
partition function per site, or [46] 

{2.24} ! = -log p(0). 

It may be noticed that the partition function [eq.(2.1}] in the 8-matrix 
language will be the trace of the S-matrix describing the scattering of 
N particles, all with rapidity 0 by M particles at rest. 
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§3. The six vertex model and its descendants 

The six vertex model corresponds to the trigonometric and hyper­
bolic solutions of the YBE (1.11) for q = 2; that is 

(3.1) (
a(O,,) 0 0 

R(O) = 0 c(-y) b(O) 
0 b(O) c( ,) 
0 0 0 

We have here three different regimes, 
I) a(0, 1 ) = sinh(,- 0), b(O) = sinhO, c(,) = sinh 1 , 1 > 0 > 0 in the 

antiferroelectric regime. 
II) a(0, 1) = sin(,- 0), b(O) = sin 0, c(,) = sin,, 1r > 1 > 0 > 0 in the 

trigonometric regime. This regime is critical (gapless). 
III) a(0, 1} = sinh(O +,), b(O) = sinhO, c('Y) = sinh 1 , 0 > 0,'Y > 0 in 

the ferroelectric regime. 
The parameter I describes the anisotropy of the model. The char­

acter of regimes I, II and III will be clear from the ground state and 
excitations obtained below. This model enjoys the following symmetry 
group g [in the sense of eq.(1.15)] 

(3.2) 

That is g = U(l) © Z2. When 1 = 0 this group enlarges to SU(2). This 
point corresponds to a Kosterlitz-Thouless type transition as we will see 
below from the explicit solution. 

It is called six vertex model, since the non-zero elements of the R­
matrix, eq.(3.1) define six allowed configurations. The integrable eight­
vertex model will not be considered here [1]. The state of a bond in 
the six-vertex (and eight-vertex) models is usually characterized by the 
sense of an arrow. This corresponds here to the values 1 or 2 of the 
vertical and horizontal indices. In Fig.11 the allowed configurations and 
their respective statistical weights are depicted. 

It must be recalled that the trigonometric regime of the six-vertex 
model (II) describes the critical ( zero gap) limit of the eight-vertex model 
[1]. As it will be clear from the solution one describes a critical line when 
1 varies from Oto 1r. As an S-matrix eq.(3.1) for regime II describes the 
scattering of a particle and its antiparticle with a conserved U(l) charge 
[4]. The crossing symmetry (2.23) writes here 

[P R(O)]t1 = (1 © u)R(-0 - 1 )(1 © u) 
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where 
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++++ 
11 22 R11 = R22 = a(0,y) 

21 12 
R12 = Rz1 = b(0) 

++ 
12 21 

R12= R21 = C (y) 

Fig. 11. Allowed configurations in the six-vertex model and 
their statistical weights (see eq.(3.1)). 

(0 -1) . 
U = l Q = -ZUy 

The one-dimensional quantum hamiltonian associated to the six-vertex 
model is the XXZ hamiltonian. One finds from eqs.(2.12)-(2.13) and 
(3.1) 

Then 

1 
h = -2-.-[cos, + U.,@ u., +Uy@ Uy - COS1Uz@ Uz]. 

sm, 

The YB generators read here (for one site) 

(3.3) tn(B) = (a(Bo,,) O ) 
b(B) ' 

t22(0) = (b(OB) 0 ) 
a(B,,) 
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The YB generator Tab( 0) follows from eq.(1.19) where one inserts the 
tab(O) given by eq.(3.3). One can then set 

{3.4) T[Nl(O) = (A(O) B(O)) 
C(0) D(0) 

The YB algebra defined by the R-matrix (3.1) yields some number of 

bilinear algebraic relations between the T!: 1 ( 0). Let us just write down 
the more useful ones for the subsequent derivations 

A(0)B(0') = g(0' - 0)B(0')A(0) - h(0' - 0)B(0)A(0') 

(3.5) D(0)B(0') = g(0 - 0')B(O')D(O) - h(0 - 0')B(0)D(0') 

[C(0), B(0')] = [A(0')D(0) - A(O)D(0')]h(0 - 0') 

(3.6) B(0)B(0') = B(O')B(O), 

where g(O) = a(O,-y)/b(O) and b(O) = c('Y)/b(O). 
Let us now proceed to construct the exact eigenvectors and eigen­

values of 

(3.7) 

using the algebraic Bethe Ansatz [7]. We shall assume N to be even. 
One notices that the ferromagnetic state 

is an eigenvector of A( 0) and D( 0) 

(3.9) 

In addition 

(3.10) 

A(O)Jn) = a(O,-y)Nln) 

D(O)Jn) = b(O)Nln). 

C(O)Jn) = 0 

whereas B(O)Jn) is non-zero and not proportional to Jn). The algebraic 
Bethe ansatz consist in looking for eigenvectors of r( 0) with the form 

(3.11) t/;(01, ... , Or)= B(01)B(02) · · · B(Or)Jn). 

Here, the complex number 01 , ••. , Br will be determined by requiring 
that 1/;(01 , •.. , Br) is an eigenvector of r( 0). 
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In order to do that one applies A(0) + D(0) to the r.h.s. of eq.(3.11) 
and pushes A(0) + D(0) through the B(Bi) with the help of eqs.(3.5). 
After using eqs.(3.5) r times, A(B) and D(0) reach In) where their action 
is known from eqs.(3.9). These operations produced a lot of terms. 
Let us first write down explicitely those generated by the first term in 
eqs.(3.5): 

(3.12) 

r 

A(B)'lj!(~) = II g(Bj - 0)a(0,,)N B(01) · · · B(Br)ln) 
j=l 

+ unwanted terms 

= A+(0)'1j!(01, ... , Br)+ unwanted terms 

~= (01, ... , Br), 

and an analogous formula for D(B)'lj!. 
The remaining terms are called "unwanted" since they are not pro­

portional to 'lj!( 0) and hence they must finally cancel in order to get an 
eigenvector of r(0). 

Now, let us concentrate in terms containing the vector 

They originate when the second term in eq.(3.5) is used to express 
A( 0)B( 01 ) and the first term for the rest when A( 01 )) is pushed through 
B(0i)(2 ~ j ~ r). Hence, one finds 

r 

= -h(01 - 0) II g(Bj - 01)a(B1,,)N B(0)B(02) · .. B(Br)ln) 
j=2 

(3.13) +other types of terms. 

It is now very easy to determine the remaining coefficients since 
'lj!(01, ... ,Br) is asymmetric function of 01 , ... , Br due to eq.(3.6). There­
fore one can permute 01 by Bi in eq.(3.13) with the result 

r 

(3.14) A(B)'lj!(~) = A+(B, ~)'lj!(~) + II At(B, ~)1Pk(0, ~) 
k=l 

where 

r 

(3.15) "Pk(B, ~) = B(B) II B(Bj)ln) 
j=l 
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and 

r 

(3.16) At(O,~) = h(O- Od)a(Ok,'Y)N IIg(Ot - Ok)-
l=t 

One analogously finds 

r 

(3.17) D(O)'lj;(~) = A_(o, ~)'lj;(~) + II A",;(o, ~). 
k=1 

r 

(3.18) A-,;(O,~) = h(Ok - O)b(Ok)N II g(Ok - Ot)-
l=1 

Now, in order to get an eigenvector of r(O) we must require 

(3.19) 1 ~ k ~ r. 

This yields a set of r algebraic equation in Ok (1 ~ k ~ r) usually called 
Bethe Ansatz equations (BAE), 

[sinh(>.; + i,/2)] N = _ IIr sinh(>.; - >.k + i,) 
sinh(>.; - i,/2) k=I sinh(>.; - >.k - i,) 

(3.20) regime II, 

[sin(>.;+ i, /2)] N = _ IIr sin(>.; - >.k + i,) 
sin(>.; - i,/2) k=I sin(>.; - >.k - i,) 

regime I and III. 

Here we have introduced >.; = i( O; + 'Y /2), for regime III and >.; = 
-i(O; - -y/2), for regimes I and II, 1 ~ j ~ r. It should be noticed 
that the O dependence drops in the eigenvalue eqs.(3.20). This could be 
expected since the commutativity of r( 0) for different O suggests that 
its eigenvectors can be chosen 0-dependent. Once the >.; are found by 
solving eqs.(3.20) the eigenvalue A(O) ofr(O) follows from eqs.(3.14) and 
(3.17) as 

r 

(3.21) A+(O,~) = a(O,,y) IIg(O; - 0), 
i=1 

r 

A_(O,~) = b(O,-y) 11 g(O - O;). 
i=1 
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We can assume I Re>. 1 I :S 7r / 2 in regimes I and III, whereas - oo < 
Re>.1 < +oo for regime II. The r.h.s. of eq.(3.21) would seem to have 
poles at B = +i>.1 + 1 /2. However the corresponding residues identically 
vanish due to eqs.(3.20). Actually one can use this property as a short­
cut to derive the BAE when the construction of the explicit eigenvectors 
is more involved. 

It is convenient to take logarithms of eqs.(3.20). One finds 

r 

(3.22) N ¢>(>.;, 1 /2) =I:</>(>.; - >.k, 1) + 21rl;, 1 ::S; i :::'. r, 
k=l 

where 

(3.23) ..!.(). ) = . 1 sinh(>. + io:) 
"' 'o: i og sinh(>. + io:) regime III 

..!.(' ) .1 sin(>.+ io:) 
"' ,.., o: = i og . . 

sm(>. + io:) 
regime I and III 

and I; E Z + 1/2. The numbers Ii, ... , Ir characterize the eigenstate. 
The cut of the logarithm in eq.(3.23) is taken such that </>(x, >.) is a 
continuous function for real s a monotonically increasing function and 
we choose </>( 0, a) = 7r. For large N and I BI < 1 / 2 the first term in 
eq.(3.21) dominates. Therefore, one can set 

(3.24) 
1 

fN(B, 1) = - N logA(B, 1 ) 
N~l 

. r 

= ~I:¢(>.j+iB, 1/2)+o(e-ciN), 
j=l 

with c1 > 0 (Here we have normalized the weight a( B, 1 ) to unit). 

When 1 = 7r /2 in regime II eqs.(3.22) decouple from each other. In 
this case the model reduces to free fermions [1]. 

Let us analyze in the different regimes which is the ground state. 
That is the eigenvector of r( B) with maximum modulus eigenvalue. It 
follows from eq.(3.21) that A+ dominates for large N and fixed r when 
0 < 0 < 1 /2. It is then enough to compute Aq = a(B,,)-N A+(B,1). Let 
us consider one pseudoparticle over IO), that is r = l. Eqs.(3.20)-(3.21) 
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are easily solved with the result 

sinh0 - eiq sinh(0 ± 1 ) 
sinh(, =f 0) ± eiq sinh 0 

regime I: upper sign, regime III: lower sign 

A = sin 0 - eiq sin( 0 + 1) 
q sin(, - 0) + eiq sin 0 · 

regime II 
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Here q = 21rl / N (1 ::; l :::; N) stands for the momentum of the pseu­
doparticle. A simple calculation shows that 

jAqJ2 > 1 for 0 > 0 regime I 

jAqJ2 > 1 for 0 > 0 and 1 < 0 < 27r regime II 

jAqj2 < 1 for 0 > 0 and all q regime III 

Since A+ decreases in regime III by adding pseudoparticles, Jn) is the 
ground state [8]. This is indeed a ferroelectric regime and eq.(3.11) de­
scribes here states with r spin waves interacting non-trivially. In regimes 
I and II we have the opposite behavior and the ground state follows by 
filling Jn) with pseudoparticles. The most regular filling is obtained for 
r = N/2 and 

as follows analyzing eq.(3.22) (see Section IV for more details). More­
over, excitations around this antiferroelectric state decrease IA+ I as it 
is shown below [eq.(3.57)]. Analogous conclusions for the states follows 
from the spectrum of the XX Z Hamiltonian [eq.(2.9)] (See ref. [18]) for 
a rigorous discussion). For excited states the sequence Ii exhibits jumps 
for some values of j 

Nh 

(3.25) Ij+1 - Ij = 1 + L Ojjh · 

h=l 

The values of A associated with these missing half-integers are called 
holes and denoted 0h. The momentum can be defined in terms of the 
logarithm of rlNl(o) since this is the unit shift operator [see eq.(2.7)] 

(3.26) 
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We get from eq.(3.21) for its eigenvalues 

r 

(3.27) 1'N = L ¢(>..j, 'Y /2), 
j=l 

where we choose c such that PN vanishes for the reference state In). 
We find using eqs.(3.22) and (3.27) and the fact that ¢(>..,-y) is an odd 
function of >.. 

(3.28) 

This formula allows to compute PN directly from the half-integers Ii 
characterizing the state. It shows that the PN of excited states differs 
in multiples of 21r / N of that of the ground state which can be set equal 
to zero by appropriately choosing Ji. 

In the QFT associated to vertex models, the vacuum (ground state) 
corresponds precisely to the antiferroelectric ground state. Let us con­
centrate on this state and excitations around it from now on. The op­
erators B( Oi) play here the role of creation operators of excitations over 
the bare vacuum In). That is pseudo-particles or "bare" particles. The 
antiferroelectric ground state is the analog of the filled Dirac sea for free 
fermions. However, the pseudoparticles are here not fr.ee, they interact 
through two-body interactions. The functions ¢( Ai - Aj, 'Y) describe the 
two-body phase-shift associated to such interactions. 

The BAE (3.20) can be rewritten as 

(3.29) expi(N¢(>..i,'"Y/2)- L¢(>..i - >..k,'Y)] = 1. 
k#j 

The first term in the exponent, N¢(>..i,'Y/2) is just the momentum of 
the j-th pseudoparticle times the number of sites. That is the phase for 
a free particle moving around this ring of length N. The second term 
can be interpreted as the phase shifts induced in the wave function of 
the j-th pseudoparticle by the (pair) interaction with the rest of them. 
In other words eq.(3.29) ensures the periodicity of the "wave function" 
when turning aroung the ring. This interpretation of the BAE extends 
for more general models (3]. · 

As it is clear, one can easily solve eqs.(3.20) analytically for small r 
and N. For large N the number of roots is very large but they become 
closer and closer in the real axis so one can define a continuous density 
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in the N = oo limit 

{3.30) Poo(>.1) = lim (>. l ).. ) N--+oo N i+l - j 

Once this function is calculated the different physical magnitudes can 
be computed by quadratures. That is 

1 r J {3.31) Ji-!!, NL J(>.1) = d)..j(>.)poo(>.). 
j=l 

For example the free energy reads from eq.(3.24) 

{3.32) f(8, 1 ) = lim fN(8, 1 ) =if d>.p00 (>.)ef>(>. + i8, 1 /2). N--+oo 

It is useful to introduce the function [9] 

{3.33) 
1 r 

ZN(>.)= 211" [</J(>.,,/2) - ~ if>(>. - )..1, 1 )]. 
1=1 

This function is continuous and monotonically increasing for real >.. At 
the real roots of the BA eqs.(3.20) 

{3.34) 

At the hole positions Oh 

{3.35) 

For large N, neighboring BA roots are very close and we have 

( ) dzN ZN(Ai+i) - ZN(Ai) 1 + °Lf!1 Dii,. 
3"36 dA ,..., Ai+i - Ai = N(Ai+i - Ai)' 

where we used eq.(3.25). Now, in the N = oo limit using eq.(3.30) 

(3.37) 

Also, using eq.(3.30) and {3.31) 

Zoo(A) = 2~ [</J(A,,/2)- J dµ</J(A - µ,,)Poo(µ) 

1 
- N L {</>(A - {1, 'Y) + c.c.}]. 

I 
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Now, combining this with eq.(3.36) yields a linear integral equation for 
O'co(A) 

1 Idµ (3.38) O'co(,\) = 2,,r'f/(.\,,/2) - 27r q/(,\ - µ,,)O'co(µ) 

1 ~[ I I - ] x 2 N~ ¢>(>.-'1,,)+</>(>.-(1,1). 
11' I 

We denoted in eq,(3,38) by (1, (1 the complex roots (Im (1 > 0). They 
always appear in conjugate pairs. In the limiting case 1 = 0 (regime I 
or II) one has 

(3.39) 
. >.+io: 

¢>(>.,a)= zlog -,-.-, 1 = 0. 
A - ia. 

The linear integral equations (3.38) can be easily solved by Fourier 
integrals ( or Fourier series for regime I). In order to do that one needs 
the following Fourier representations of </>( >., a): 

(3.40) 
+= 

<t>(>-,a.)=11'+2>--i I: 
m=-oo,mfO 

e2im>.-2lmla 
---, \>.\ < a 

m 

regimes I and IL 

(3.41) "'(' ) = r+= dk . (k')sinh[(11-/2 - a.)k] 
'I' -",a 11' + }_00 k sm "' sinh[k7r/2] ' 

regimes II. 

r+oo dk 
(3.42) ¢>(>.,a.)=11'+ }_= ksin(k>.)e-lkal, (,=0case). 

The solution of eq.(3.38) reads 

(3.43) 

O"~(>.) corresponds to the ground state. One finds 

v 1 e2im.>.. K(k) 2K). . 
(3.44) u=(>.) = 2 L h( ) = - 2 dn {-, k), regime I 

71' mEZ COS m, 71' 71' 
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Here K'(k)/K(k) = 1/1r. 

(3.45) o-~(>.) = 2 lh >,, 1 = 0 
cos 7r 

!+(X) dk eikA 1 
(3.46) lTV (>.) = --- = ---, 

(X) -(X) 47r cosh ;1- 21 cosh( ~A) 
regime II. 

o-h(>.) in eq.(3.43) stands for the hole contribution to the density of real 
roots. One finds o-h(>.) = ½ :E:=1 p(>. - 0h), where 

(3.47) (>.) = ! 2 ,f--cos(2m>.) 
p 2 + L,.; e2m-r + 1 

m=l 

regime I, 

(3.48) ( ') = ! r(X) cos(k>.)e-k/2 dk 0 
P " 2 } 0 cos(k/2) ' 1 = ' 

(3.49)p(>.)= r(X) cos(k>.)sinh[k(1r/2-1)l d\ 
} 0 cosh(k 1 /2)sinh[k(1r- 1 )/2] 2 

regime II. 

The complex root contribution uc(>.) can be found in refs. [9],[10]. 
It must be noticed that Ph(>.) the hole contribution top(>.) is minus 

the resolvent kernel R(>.) of the integral equation (3.38), defined by 

(3.50) 

That is, 

Therefore, 

R(>.) + J dµ </>'(>. - µ)R(>.) = <5(>.). 
21r 

!+(X) dµ (. 1 ) K 
(3.51) z~(>.) = - -(X) 21rR(>. - µ)</> µ, 2 + 2;, 

where K-y a >.-dependent constant. Eqs.(3.51) holds in regime II where 

r 
K-y = 2(1- ~)" 

The densities (3.44)-(3.46) allow an easy calculation of the eigenval­
ues of r(O) in the N = oo limit using eq.(3.31). One finds for example 
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for the free energy per site 

~ e-m-r sinh(2m0) 
(3.52) /(0,,) = 0 + L., - h( ) , 

m=l m cos m1 
regime I, 

(3.53) !( 0) = ("'0 dx e_., sinh(2x0), 1 = 0, 
lo x cosh(x) 

(3.54) /(0, ,) = { 00 dx sinh(2x0) s~[x(1r - ,)l, 
lo x cosh(x,) smh(x1r) 

regime IL 

It must be noticed that eq.(3.54) also gives logssG(i1r0/,) here 5sG(¢) 
is the soliton-soliton S-matrix in the sine-Gordon model as a function 
of the physical rapidity <p. 

The excited states eigenvalues of r( ) have the following structure 
for large N due to eq.(3.43) 

(3.55) Aexc(0) = Ao(0)e-ig(B) [1 + O(e-c 1 N)], 

where .\0 (0) in the ground state eigenvalue and g(0) is of order N° for 
N ~ 1. A look to eqs.(3.32) and (3.51) shows that the hole eigenvalues 
are given by 

N,. 

(3.56) g(0) = 21r I:z~(0h +i0) = Lg(0,0h)-
h=l h 

Using now eq.(3.37) and eq.(3.46) yields in regime II 

(3.57) 

This is clearly a gapless regime since g(0, -oo) = 0. Moreover je-ig(B)I < 
1 for O < 0 < 1 . This shows that our identification of the ground state 
is correct since any deviation from it decreases the eigenvalue of r(0). 

Interesting complex roots appear for f < , < 1r in regime II. They 
appear in strings of length n, where n may be :::; .r:,, -1 and [x] stands 
for integer part of x, 

(3.58) Ar=u+i7r/2-i(r+l/2){1r-,), o:::;r:::; n;2 , 

and 

(3.59) A8 = u + i1r/2 - is(1r - 1 ), 0:::; s ::; n; 1, 
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where O" is the common real part of the roots. The associate eigenvalue 
of T( 0) can be shown to be [10] 

(3.60) 
sinh !!:(O" + i0) 

9n(0, O") = 2arctg . n: ( ) . 
sm 2-r 1r - 1 

Let us derive for future reference the asymptotic behaviour of 
g(0, 0h) and 9n(0, O") for iT---> -oo. Eqs.(3.57) and (3.60) yield in this 
limit 

(3.61) g(0,0h). = 2exp~(i0+0h)+o(e 2,,.i 11h), 
iii-+-= 'Y 

9n(0,0"). = -1r+4exp [~(i0+0")] sin [n1r(1r-,)] 
iii-+-= 1 21 

+ o(e21riilh). 

The coefficients in this formulae give the mass spectrum of the QFT pro­
vided by the light-cone transfer matrix approach: the massive Thirring 
model [11,12] (see Section V). 

For large N the momentum of a hole excitation at 0h writes 

(3.62) 

where we used eqs.(3.31), (3.27), (3.55) and (3.57). 
The hole states eigenvalues of T( 0) write regime I 

(3.63) 
7r 111h+,,.12 

g(0,0h) = 27rZ~(0h + i0) = 4 + lo d>..p(>..), 

-ilog{sn [2K (0h + i0)] - icn [2K (0h + i0)] }. 
7r 7r 

In this regime we have a non-zero gap given by the end-point excitations 
0h = ±1r/2, 

(3.64) 
. dn(~,k') 

g(0,1r/2)=1r+zlog ( 2K// )" 
1 - k1sn -;-, k' 

This gap vanishes for 1 ---> o+ as 

(3.65) 

Therefore the six-vertex model is critical (gapless) for regime II and 
massive for regime I. 
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Eq.(1.18) gives for the six-vertex model symmetry (3.2) (rotations 
around z) 

(3.66) [A(O), Sz] = [D(O), Sz] = 0, 
[Sz, B(O)] = -B(O), [Sz, C(O)] = C(O), 

where Sz = ½ 1::'=1 u; acts in the vertical space. Therefore B(O) (C(O)) 
lowers (raises) the z-component of the spin in one unit. 

In particular we find that the state (3.11) is an eigenvectors of Sz 

(3.67) 

This concludes our exposition of the Bethe Ansatz solution of the six­
vertex model. A more general Bethe Ansatz construction provides the 
eigenvectors of the eight-vertex model [7,13]. It has been shown recently 
that these eight-vertex eigenvectors become the six-vertex eigenvectors 
in the limit where the eight-vertex weights become those of the six-vertex 
model [14]. 

The Bethe Ansatz has been also generalized for multi-state vertex 
models. That is when dim A and/ or dim V is larger than two. The 
resulting construction is a set of nested Bethe Ansatz. It is reviewed in 
ref. [3]. 

§4. Finite-size correctios from the Bethe-ansatz and confor­
mal invariance 

As we see in previous sections the Bethe Ansatz provides the exact 
eigenvalues and eigenvectors of an integrable model from the resolution 
of a system of coupled algebraic equations. A typical and relevant ex­
ample is given by eqs.(3.20) (the six-vertex model). As we have seen, 
the explicit solution of the BAE in the N = oo limit is straightforward. 
The density of roots follows from a linear integral equation [eq.(3.38)] 
explicitly solvable by Fourier transformation. However, the analytic res­
olution of the BAE for a finite number of sites is a formidable task as 
soon as N is not very small. 

A systematic procedure for computing finite size corrections for in­
tegrable theories was proposed in ref. [9]. This method as well as sub­
sequent improvements will be reported in this section. 

We treat here the finite size corrections in the six-vertex model both 
in the zero gap and non-zero gap regimes. The generalization to multi­
state models can he find in ref. [15]. 
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Let us consider the generalized transfer matrix r9 (0) (16] considered 
in Section 2. For the six-vertex model we can take 

( 4.1) ( 
eia O ) 

g = 0 e-ia . 

Then, 

(4.2) r 0 (0) = eia A(B) + e-ia D(0). 

As discussed in Section 2, describes boundary conditions where the spins 
at the sites N + 1 and 1 are related by a rotation g. That is 

(4.3) 

The BA construction of the eigenvectors from Section 3 applies with 
minor changes to the BAE and eigenvalue expressions. We have now as 
BAE instead of eq.(3.22) (16] 

r 

(4.4) N</)(>.i,-Y/2) = 2a + L ¢(>.i - Ak,'Y) + 21rh 
k=l 

The respective eigenvalue of expresses as 

(4.5) 

where A±(B) are given by eqs.(3.21). As we know the first term dom­
inates in eq.( 4.5) for JOI < 'Y /2. The N = oo limit is a independent. 
Therefore the results of Section 3 hold also here. Let us consider the 
finite size corrections 

(4.6) LN(B) = _NI logA 0 (0) + lim Nl logAa(B). 
N-+oo 

Obviously L 00 (0) = 0. Using eqs.(3.21) and (3.31) we can recast LN(B) 
in a more convenient form to study the large (but finite) N regime 

LN(B) = -i I:¢(>.+ i0,-y/2) - ~ + ! t <t>(>.; + iO, f) 
( 4.7) = - ~ + i I: d>.¢(>. + i0, 'Y /2) (uN(>.) - <Too(>.)) 

+!I: d>.¢(>. + iB,-y/2) x 

1 M 1 N,. 

x {NL 8(>. - Ak) + N L 8(>. - Oh) - O'N(>.) }. 
k=l h=l 
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Here A = 1r /2 for regime I and A = +oo for regime II, we have used 
eq.(3.37) and 

(4.8) 

where 

(4.9) 
1 2a 1 M 

ZN(.X)=-(¢,(.X,,/2)- N - NL¢>(,\-,\k,'Y)) 
21r kl 

The ,\i(l ~ i ~ M) are here the real roots of eq.(4.4). The function 
ZN (A) fulfils 

( 4.10) 

as in Section III, eqs.(3.34)-(3.35). Notice that the phase a drops in 
the N = oo limit and hence u00 (.X) also obeys eq.(3.38). Let us now 
study the function uN(.X) - u00 (.X). Subtraction of eqs.(3.38) and the 
derivative of ( 4.9) yields 

(4.11) J_A dµ 
UN(A) - Uoo(A) + -2 ¢,'(,\ - µ,,)(uN(µ) - Uoo(µ)) 

-A 7r 

J_A dµ 
= - 2 ¢,'(.X - µ, ,)SN(µ), 

-A 7r 

where 

( 4.12) 
l M l Nh 

SN(µ) = N L 6(µ - Ai)+ NL 6(µ - Oh) - UN(µ). 
i=l h=l 

eq.(4.11) is to be considered as a linear integral equation for uN(.X) -
u 00 (.X) with the r.h.s. as inhomogeneous term. Solving it with the help 
of the resolvent (3.50 ) yields 

( 4.13) J_A dµ 
UN(,\) - Uoo(A) = - -p(,\ - µ)SN(µ). 

-A 7r 

Inserting eq.(4.13) in eq.(4.7) and using eq.(3.51) gives 

(4.14) LN(8) = i !~ d,\SN(µ}(21rzN(,\ + i8) + K.y(.X)) - ~. 
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The constant K.y{A) is given by 

( 4.15) 'Y 
K-y{A) = 2{1 - ,/1r)' 

7r r>-+t 
K-y{A) = 4 + Jo dµp(µ), 

603 

where p().) is given by eq.(3.47). The calculation of large but finite N 
effects involve the evaluation for large N of expressions like 

( 4.16) 

where /().) is explicitly known. Notice that / 00 = 0. 
It is convenient to change in eq.( 4.16) to the integration variable 

ZN(.~) as defined by eq.(4.9). Using eqs.(4.8) and {4.10) yields 

where 

AN(z) is the inverse function of the monotonous function ZN(A). We 
choose 

k + 1/2 
Zk = N , 1 ::; k ::; M + Nh. 

By Fourier expanding the periodic 8(z) with period p, one gets 

l M+N-,. +oo 
N L 8(z - Zk) = L (-l)8e21ri.sN._ 

k=l s=-oo 

Inserting this formula in eq.( 4.17) gives [9] 

( 4.18) IN= L (-1) 8 TNs, 
.sEZ,s,=O 

where 
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Expressions ( 4.18) and ( 4.19) are exact for all values of N. Now we can 
proceed to obtain their asymptotic behavior for large N. The procedure 
is different depending if we are in the massive regime I or in the massless 
one (regime II). In the former case the roots Ai lie in a finite interval 
[-1r /2, 1r /2] for all N. When the gap vanishes the BAE roots are not 
anymore bounded. The root density (3.46) (valid for N = oo ) permits 
to estimate that the largest roots are at A = ±A± with 

(4.20) 'Y A± ~ - log N +fl±, 
N-+= 1l" 

where /h = 0(1) for N -+ oo. The dominant finite size corrections to 
physical quantities depend on the value of /3±-Therefore, more infor­
mation than that contained in the N = oo densities is needed. 

Let us start by the massive case A = 1r /2. In eq.( 4.18) we have a sum 
of Tn with argument n = N s always much larger than one (in absolute 
value) since jsjgl. Therefore, we can try to evaluate Tn from eq.(4.19) 
by stationary point methods since n only appears in the exponent. We 
need to find the points Ao where 

( 4.21) 

Moreover, the dominant large N behavior follows by replacing Tn by 
r::· where 

(4.22) 

and 

(4.23) ( , as) dz= (, as) 
(T = "o = dA "o = 0. 

The solutions of eq.( 4.23) are exactly calculable from eq.(3.44) with the 
result 

( 4.24) , as 1l" i'Y 
"O = -+-2 2 

mod (1r,h), 

where -If;= (1 - k')/k is the modulus associated with the nome e- 2 -r. 

In particular [50] 

(4.25) 
= 1 + e-2-y(2n+2) 2 = 2e- 7 / 2 II ( 1 + e-2-y(2n+l)) · 

n=O 
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We see that O < k1 < 1 for oo > , > 0. The same is true for the second 
derivative at >.0 since 

The infinite product (4.25) is slowly convergent for small 1. Apply­
ing the Poisson summation formul to log k1 yields 

w 2 ( 1) r IIOO 1 - e--:Y m+2 2 

V k1 = ( -~<m+1l) . 
m=O 1 + e ., 2 

Then, for , --+ o+, 

(4.26) 

we find a typical Kosterlitz-Thouless behavior. Hence, Tn is exponen­
tially small for large n 

( 4.27) 

and the series ( 4.18) is dominated by the terms with s = ± 1. This result 
holds for any expression with the form (4.16). We find for the finite size 
corrections to the free energy with a= 0 [eq.(4.14)], calculations [9] 

271'½ N 2 00 e-m-y 
( 4.28)LN(0) = - V2k'Nk 1 I (I+ log k + '°' --tanh m, 

K 2k'N 2 !::i_ m 

[ 2K0 2K0 ] [ 1] - log dn(-;-, k') - k'cn(-;-, k1) } 1 + O{ N) + o(kf). 

Further results are reported in refs. [9]. In summary, finite size correc­

tions appear as an asymptotic series in (positive) powers of kf 12. When 
, (regime I) tends too+, k1 --+ 1- and this expansion ceases to be useful. 
For small , these asymptotic formulae hold for regime I provided 

(4.29) 
71'2 

N ~ exp 21 or 
71'2 

logN > -. -2, 
This is related to the vanishing of the mass gap [eq.(3.65)] when,--+ o+. 

Let us now turn to the gapless regime. In this case, one can try to 
use the stationary point method as before. It follows that ( 4.21) only 
has infinite solutions (i.e. Ao = ±oo ) for 0-00 (.X) given by eqs.(3.45)­
(3.46). In other words the integrals in eq.(4.19) are dominated by their 
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end-points of integration (A= oo) for large n. It is possible to evaluate 
in this way the integral in eq.(4.19) with the result that the T;':' have 
for large n an asymptotic expansion in powers of 1/n. In this way the 
finite size corrections to the free energy result for o: = 0: 

(4.30) 
1r • 1r0 1 

LN(0) = --sm- + o(-). 
6N2 i N2 

However for the study of excited states and the o: ;/ 0 case is 
more effective to analyse IN in the following way [17]. Let ±A± be 
the largest real roots and assume that there are no holes within the in­
terval [-A_, A+J . We assume also no complex roots for the moment. 
In this way their energy will be as small as possible. The motivation 
to study the finite size corrections to such lower states comes from con­
formal invariance. Since the model is here gapless one expects to find 
conformal invariant behavior in this regime. 

As before, we study an expression of the form of eq.( 4.16) (now with 
A=oo) 

where eq.( 4.17) was used. The sums in the r.h.s. of eq.( 4.31) can be 
approximated for N » 1 using Euler-Maclaurin type formulae: 

1 1 [ /'(A+) /'(-A_)] 
(4.32)JN = 2N [f(A+) + f(-A_)] + 12N 2 O"N(A+) - uN(-A_) 

1A 1 
- -A d>..f(>.)uN(>.), [0(>. - A+)+ 0(->. - A_)] + o( N 2 ). 

We shall apply this approximation both to eq.(4.13) determining uN(>.) 
and to eq.(4.14) expressing LN(0). eq.(4.13) gives 

O"N(>.)-ucx,(>.) = f dµuN(µ)p_(_>._-_µ_) 
jA+<µ<-A- 7r 

( 4.33) 
1 

27rN [p(>. - A+)+ p(>. + A_)] 

+-- --------- +o -1 [p'(>. - A+) p'(>. + A_)] ( 1 ) 
12N 2 O"N(A+) O"N(-A_) N 2 • 

The relevant information about the finite size corrections to the lowest 
states comes from the regions around>.= A+ and>.= -A_ [eq.(4.2O)]. 
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It is then useful to define 

( 4.34) x(t) = a-N(t + A+), 

and the Fourier transforms 

1+00 
X±(w) = -oo dteiwte(±t)x(t),(4.35) 

which are analytic functions of w in ± Im w > 0. The contributions 
from the region around A = -A_ are treated analogously and added at 
the end. 

Fourier transforming eq. ( 4.33) yields a Riemann-Hilbert (RH) prob­
lem for X(w): 

( 4.36) X_(w) + R(w)X+(w) = e-iwA+u(w) 

1 , iw 1 - .R(w) 
+ 2N[-l + R(w)] - 12N 2 <TN(A+). 

That is, we find an equation relating the functions X+(w) and X_(w) 
which are analytic for Imw > 0 and Imw < 0 respectively. Here R(w) and 
u( w) are the Fourier transform of the resolvent ( 3.50) and the vacuum 
density of roots (3.46) 

(4.37) 
, ( ) sinh wt 

R w = --~-~---, 
2sinh [ w(,r2-,)] cosh w2,r 

' ( ) 1 O"W ----- 2cosh w,r. 
2 

In eq.(4.36) we only consider terms coming from A"' A+, we also 
neglect contributions of order e- 21rA+h and smaller. 

In order to solve the RH problem (6.36) one starts to factorize R(w) 
as 

( 4.38) 

where G±(w) are analytic functins in± Im w > 0. The explicit form of 
G±(w) known in terms off functions [18] but we shall not need it here. 
It will be enough to notice that 

( 4.39) G+(w) = G_(-w). 

Therefore 

( 4.40) G+(0) 2 = .R(o)-1 = 2(1 - 1 ). 
7f 
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In addition, we have an integral representation that follows from 
eq.(4.38) and Cauchy theorem 

+ ' 
1 G ( ) _ 1 = dw log R( w) 
og ± z - =i= -2 . , 

-ex, 7l'Z W - Z 
±Imz > 0.(4.41) 

Expanding eq. ( 4 .41) for large z yields 

-1 g g2 l 
G+(w) =1--+-++o(-) (w---+oo), 

w 2w2 w3 
( 4.42) 

where g is a numerical constant. As we shall see below it cancels in 
physical results. Now using eq.(4.38) the RH problem (4.36) can be 
written as 

( 4.43) 

where the function Q±(w) are holomorphic in ±Imw > 0 and fulfil 

{4.44) Q+(w) + Q_(w) = e-iwA+G+(w)u(w). 

eq.(4.43) tells us that p(w) is an entire function of w. It yields in addition 
the solution of our RH problem as 

{4.45) X+(w) = G+(w) [P(w) + Q+(w)] + 2~ [1 + 6Nu~{A+)] · 

P(w) is obtained by letting in eq.(4.43) and using X+(oo) = 0. We find 

( 4.46) P(w) = -2~ (1 + 6!:N(x~)]. 
In addition, eqs.( 4.37) and eq.( 4.44) give 

( 4.47) 
i e-1rA+/-r i11' - •wA+ 

Q+(w) = - . / G+(-) + o(e -r ). 
")' W + Z11' ")' ")' 

Contour integration and eq.( 4.35) yield 

{4.48) j +=dw 
uN(A+) = -· X+(w) = -i lim wX+(w). 

7r' W-+00 -ex, 
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Combining eq.( 4.43) and eq.( 4.48), we find 

N - ~A+ i1r ig [ ig ] 
(4.49) N(J'N(A+)=-e -r G+(-)+- 1- (A)· 

, , 2 12N(J'N + 

Up to now, we have not specified the physical state. That is, we must 
choose the integers Ii (and IiJ in the BA eqs.(3.22) or equivalently in 
eq.( 4.4). In the present case this information enters in the RH solution 
through the value of 

(4.50) 

and the analogous contribution from >..,....., -A_. We find from eq.( 4.9) 

( 4.51) 
r 1 1 r a 

ZN(oo) = 1- - - -(- - -) - -, 
N 1r 2 N N1r 

, 1 r a 
ZN(-oo) = -(- - -)- -

1r 2 N N1r' 

where we used [see eq.(3.23)] the formulae 

( 4.52) ¢(+00,0:) = 2(1r - a), ¢(-oo, a) = 2a, 

valid for O < a < 7f /2. 
The value of ZN(A+) is related to the half-integer associated to the 

last positive root. For the ground state we have a monotonous sequence 
of N/2 half-integers running from 1/2 till (N - 1)/2. Therefore 

(4.53) 
1 1 

ZN(A+) = 2 - 2N' 

1 
ZN(-A_) = 2N (no holes). 

Now, if we put h+ holes beyond A+ and h_ before -A_, a shift in the 
sequence Ii is produced and we find 

( 4.54) 
r 1 h+ 

ZN(A+) = 1- - - - - -
N 2N N 

( ) 1 h_ 
ZN -A = -+-. - 2N N 

The total number of real roots is given by 
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Combining this with eq.(4.54) yields 

( 4.54a) r=(N-h+-h_)/2. 

Since we assumed N to be even, this shows that the total number of 
holes must also be even. 

Then eqs.(4.50)-(4.51) and (4.54) yield 

( 4.55) 
1 1s h+ a 

X+(O) = - - -+- - -
2N 1rN N N1r 

where S = N /2 - r = ( h+ + h_) /2 is the spin of the state ( the eigenvalue 

of Sz =½~;;=la-~)-From eq.(4.45), (4.46), (4.47) and (4.55) we finally 
get 

(4.56) e-~G+(i1r) = ~ [1- ig ] + 1rh+ - 18 - a. 
1 2N 6NaN(A+) Na+(O) 

Let us apply this approximation scheme to the finite size corrections 
LN(B). We find from eqs.(4.14) and (4.32) 

LN(B) = 21ri f dAaN(A)z~(A + i0)-
1A+<µ<-L 

( 4.57) ~ [z~(A+ + i0) + z~(-A_ + i0)] 

_ _!!!,__ [a~(A+ + i0) _ a~(-A_ + i0)] _ ia + o( ~) 
6N 2 aN(A+) aN(-A_) N N 2 • 

Now, we can approximate the integrals here as 

(4.58) 21ri /+oo d.X.aN(.X.)z~(.X. + i0) = i1rX+(O) 
}A+ 

,,,s ~ i1r 21rA+ 
-2ie_-:Y_-, X+(-)+o(e---), 

'Y 'Y 

where eqs.(3.57), (4.34) and (4.35) were used. From eqs.(4.45)-(4.47), 
( 4.49), ( 4.56) and ( 4.58) we derive the final expressions for LN(B) at large 
N. Let us first write the result for the ground state (h+ = h_ = S = 0) 

(4.59) LN (0) = -- sm - 1 - --,--- + o - . G.S. 1r . ( 1r0) [ 6o:2 
] ( 1 ) 

6N 2 1 11'(11'-7) N 2 

The contributions from contained in eq.( 4.59) follow by a procedure 
analogous to eqs.(4.34)-(4.58). 
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We see that eq.(4.59) reproduces eq.(4.30) when o: = 0. Let us now 
compare with the conformal theory predictions. For periodic boundary 
conditions one expects a leading finite size correction equal to 

(4.60) 
1rC 

6N 2 

where c is the central charge. However, one cannot blindly identify 
eqs.( 4.59) and ( 4.60). For large distances one expects rotational invari­
ance in the gapless regime. This invariance can be seen in the spectrum 
of low energy excitations is derived in Section III. In the present context 
the hamiltonian can be identified with 

(4.61) 1t = -Relogr(O), 

whereas the momentum is given by eq.(3.26). The low-lying eigenvalues 
of H and P follow from eqs.(3.57) and (3.62) 

• 1r0 
e: ~ psm -, 

'Y 
( 4.62) 

~ 
p = 2e.., , 

This shows that we must renormalize the energy by the "speed of sound", 
sin( 1r0 h) in order to recover an ultra-relativistic dispersion law and 
hence rotational invariance for large distances (Large compared with 
the lattice spacing). After this renormalization 

(4.63) LG.S.(0) = _l_LG.S.(0) = _ _!!_ (1- 60:2 ] • 
N sin -n:(J N 6N 2 1r(1r - 1) 

'Y 

It must be noticed that eq.( 4.63) does not mean that c -:j:. 1. 
Eq.( 4.60) only holds for periodic boundary conditions and not for twisted 
ones. The twisted b.c. affect the finite size corrections but not c which 
is equal to one in this case. Actually eq.(4.63) is an example of an uni­
versal formula that can be derived by conformal theory methods [45). 
Let us define the twist using a conformal operator g9(z)lz=o· That is 

If !::,,.0 is the conformal dimension of g9(z), we can prove in general 
[45] that 

(4.64) 
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In the case of eq. ( 4.63) 

is the conformal dimension of the operator exp(io:u 3 ). This can be 
checked by a direct calculation in the six-vertex model. 

Let us now consider the low lying excited states with h± holes near 
±oo. We find after some computations from eqs.(4.55)-(4.58) and their 
analogous for the contributions around >. = -A_ 

(4.65) Lexc(B) _ 7r . 1r8 + i1r { -,~a (h+ - 7 - ;/ 
N - ---sin- -- e -r 

6N 2 1 2N 2 1 - ~ 

(h 'YS c,)2 
i~8 - - _i_::;, + -

- e---=,-- n: 1. n: } + higher orders, 
1-

,r: 

where we disregard multiples of 21ri. 
For the six-vertex model (a= 0), eqs.(4.59) and (4.65) can be re­

casted as [17,21] 

Gs 27r [ - 1r8 - 1r8] (4.66) L'}Jc(B) - LN· ·(0) = N 2 (~+~)sin 7 + i(~ - ~) cos 7 , 

where 

( 4.67) 
1 (h - ~) 2 

~ = - + 1r: 

4 1- 1. ' 
1r: 

Eq.(4.66) fits with conformal theory predictions [19]. It may be 
considered as a proof of the conformal invariance of the six-vertex model 
giving in addition the conformal weights ~ and ~ of the low-lying states 
of it and central charge equal to one. The same results hold for the 
Heisenberg XX Z chain [20]. 

For a= 1 the critical Potts model properties follow from eqs.(4.64)­
(4.65) [17,21]. 

Eqs.( 4.67) give the conformal dimensions of primary fields. Actually 
some complex roots are present in these states besides the holes near 
±oo. Otherwise one finds secondary fields with conformal dimensions 

~+K,~+K, 

where Kand k are positive integers [21]. 
The method exposed in this section has been applied to other models 

and other types of boundary conditions. We want to mention: 
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a) the XX Z chain, the critical Ashkin-Teller model and the critical 
q-states Potts chain with free boundaries [22]. 

b) the critical 0( n) model 
c) the half-filled Hubbard chain [24]. 
d) the four states Potts model. In this case the finite size corrections 

contain logarithms of the size [25]. 
e) the XX Z chain and the one-dimensional Bose gas in external 

fields are treated in refs. (26]. 
Moreover, the present methods has been generalized to nested Bethe 

Ansatz system [15]. In this way the central charge and conformal di­
mensions of the model exposed in refs. (3,27] were found as well as for 
vertex models associated to all simply laced Lie algebras g [15]. We find 

( 4.68) c = rankQ 

that gives c = q - 1 for the model q(2q - 1) vertex of ref. [3,27]. That 
is, each stage of the nested Bethe Ansatz contributes in one unit to c. 
The conformal weights turn to be (15] 

( 4.69) D. = 8(1 ~ .1.) f (ht-1s1)(M- 1)z,1,(h~+ - ;':s1,), 
,r 1,1'=1 7r 

and a similar formula for 6. with h1 instead of ht. Here hf are the 
number of holes near ±oo in the l-th branch, S1 the l-th spin of the 
state [3], M the Cartan matrix of the underlying Lie Algebra. For the 
simply laced Lie algebras 

(4.70) M;1 = 6;1 + sign(a;, a1). 

In particular for Aq-l [see ref. [3]] 

M;1 = 26;1 - 6;,1+1 - '5;,1-1, 

Once more D. and 6. vary continuoulsy with 'Y· In particular when 
'Y = 1r/(m + 1), m = q + 1,q + 2, one recovers the conformal weights 
of theories possessing extended Virasoro invariance {W-algebras) (28]. 
More precisely one must consider the RSOS version of these multistate 
vertex models (29]. 

In this way the central charge takes the values 

C = ( q - 1) (1 - q( q + l) ] , m gq + 1. 
m{m+ 1) 

These integrable lattice models provide explicit realizations of the ex­
tended Virasoro algebra through their long-range behaviour. T~ey may 
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be a very useful framework to uncover the physical meaning of the ex­
tended conformal symmetries. 

The fusion technique produces new YB generators from known ones. 
In the S-matrix language, one produces in this way the S-matrix of com­
posite (bound states) particles from the S-matrices of their constituants. 
New integrable vertex models follow in this way. In ref. [11] we propose 
the following formula for the central charge of these models: 

xdim9 

X + g 
( 4.71) c= 

Here x is the number of fundamental spaces V = A fused and g the 
dual Coxeter number of g. It must be stressed that eq.(4.71) does not 
follow from any Sugawara type construction but just from the Bethe 
Ansatz solution. For x = l and simply laced g we recover eq.(4.68) 

In the present review we only consider the dominant corrections for 
large N. From the sub dominant ones one identifies irrelevant operators 
of the models [20]. In addition one sees that these subdominant powers 
of N- 1 coincide with the previously computed conformal dimensions 
plus positive integers. That is secondary conformal fields. 

In the rational limit 'Y ____. 0 besides powers corrections, logarithmic 
corrections emerge as one could expect. These logarithmic corrections 
has been also computed with the methods here exposed [20,22]. 

It must be remarked that all central charges and conformal weights 
are independent of the spectral parameter 0. Moreover the phase tran­
sitions in vertex models are associated to changes in 'Y or in the elliptic 
modulus k. Therefore 0 plays the role of an irrelevant parameter in 
integrable statistical models. 

§5. The light-cone lattice approach 

This approach starts by discretizing the two-dimensional Minkowski 
space-time in light-cone coordinates X± = x ± t. Space time is thus 
approximated by a diagonal lattice. This discretization scheme turns to 
be an useful regularization method for integrable quantum field theories 
since they become naturally connected with integrable vertex models in 
their scaling limit [11]. 

The sites in the light-cone lattice (Fig.12) are considered as world 
events. Each site (event) is joined by light-like links to its four nearest 
neighbours along x+ and x_. These diagonal links are possible world 
lines for the propagation upwards in time of "bare" massless particles. 
Particles on right-oriented (R) and left-oriented (L) links are called re­
spectively right and left-movers. 
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'L 
X 

Fig. 12. Discretized Minkowski space-time. Sites are world 
events joined by world lines of the bare particle 
propagation. 
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One then associates microscopic amplitudes to each site (world 
event) where two oppositely oriented world lines cross. These ampli­
tudes describe the different processes that can take place, and must 
verify general invariance properties like unitarity. 

Let us start for the simplest case where each link describes only two 
different configurations. We assume that these two cases correspond 
to the presence or absence of a bare fermion without internal degrees 
of freedom. In general, there can be 16 different amplitudes per site 
corresponding to the 16 configurations (occupied/empty) of the four 
links joining there. Only U ( 1) invariant microscopic amplitudes will be 
considered here such that the number of particles is conserved at each 
site. U(l) transformations act on the link states by 

(5.1) 

where jO) = (empty) and jl) = (occupied). Therefore, there are only 
six non-zero amplitudes as depicted in Fig.13. The correspondence with 
the general (non-symmetric) six-vertex model is evident. 

Of course, space-time translational invariance implies that the am­
plitudes are the same in all sites of the lattice. It is natural ( and causes 
no loss of generality) to set the nothing-to-nothing amplitude to be 1. 
Unitarity then requires 

(5.2) nnt = 1, 

While w3 and w4 are naturally interpreted as amplitudes for free prop-
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xxxxxx 
I = Io) = I empty) t = I 1) = I occupied ) 

Fig. 13. The six non-zero microscopic transition ampli­
tudes. They coincide with the weights of Fig.11. 

agation (being therefore related to kinetic energies in the continuum 
limit), w5 and w6 play the role of mass terms since they couple right and 
left movers. 

Symmetry under parity transformation holds if 

(5.3} W3 = W4 = b, W5 = W6 = C. 

This corresponds now to an integrable six vertex model. Unitarity now 
reads 

(5.4} lbl2 + lcl2 = 1, be+ be= O. 

One can organize these microscopic amplitudes at a site into a 4 x 4 
unitarity "bare" S-matrix 

(5.5) (
1 0 0 0) 

a.f3_o.f3_ 0cb0 
Ro., /3' - a' X /3' - 0 b C O ' 

0 0 0 w 

where w = w2 and o:, /3, o:', {3' take the values O or 1 for empty or 
occupied links like in eq.(5.1}. 

The amplitude for a global process, from a given state at t = to to 
another given state at a later time, is obtained by summing over the 
amplitudes of all allowed vertex configurations compatible with initial 
and final conditions and with boundary conditions. Each of these is 
given by a product of microscopic amplitudes Wi· It clearly corresponds 
to the sum over all possible paths of an arbitrary, but constant in time 
number of particles. At any instant, a particle can move to the left or to 
the right at the speed of light. We are thus dealing with a discretization 
of Feynman path integral for fermions. 
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It is convenient to parametrize band c following the constraints (5.4) 
as 

sinh8 
b = b( 8, 1 ) = . h( O . ) , 

Sill -q 

(5.6) sinh, 
c=c(B,,)= . h(O . )' 

Sill -z 1 

0 < 8 < oo, 0 < 'Y < 1r. 

This makes (5.5) identical with the six-vertex model R-matrix (3.1) up 
to an overall factor sh( 8 - h) and a redefinition of 8 ----+ i8 when w = 1. 
Actually w i 1 corresponds to a six-vertex model in an external field. 

Let us now describe the operator formalism for the light-cone ap­
proach [11]. The unit evolution operators in the light-cone direction (R 
or L) are given by simply juxtaposition of the microscopic S-matrices 
(5.5) at the same horizontal level. That is 

(5.7) 

(5.8) 

Here N is assumed to be even and O:j+N = O:j- Notice that there are no 
summations in eqs.(5. 7)-(5.8). One can now define the two light-cone 
lattice evolution generators as 

(5.9) 
2i 

H+P= -logUR(B), 
a 
2i 

H- P = -logUL(B), 
a 

where H and P stand for lattice hamiltonian and momentum and a is 
the latttice spacing. 

Eq.(5.9) is extremely suggestive since it provides a lattice version 
of field-theoretic H and P in terms of lattice vertex transfer matrices 
UR and UL· The natural question is now to find the eigenvectors of 
them. It will be shown now that this is possible using the techniques 
of Sections III and IV ( and their generalizations) provided R( B) verifies 
the YB algebra (1.12) [11]. 

Let us consider the row-to-row transfer matrix r!Nl(O, £!,) of eq.(1.20) 

[with g1 = ... = 9N = 1] with the particular choice of inhomogeneities 
( recall N = even) 

(5.10) O:j = (-1/+10, 
·+1 ~=(B,-0, ... ,(-1) 1 8, ... ,0,-8). 
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It then follow from eqs.(1.20) and (1.3) using eq.(1.12) that 

( 5.11) 

(5.12) 

r(0, ~) = UL(0), 

r(-0,~) = UR(0)t. 

Let us check (5.12). Setting (5.10) in (1.13)-(1.20) yields 

(5.13) r(0, 0_ )~_' 1-. = "'""' 8°'~ 8f!2 R(0)°';.Bs · · · 8°''r.-i 8.6N R(0)a'r,,6i 
~ ~ ~ ,61 °'l fJ2a2 .6N-l °'N-1 fJNOCN 

fJ1 , ... ,,6N 

N/2 I I 

= II R(0):~~:~~~~ = UL(0)~,I~· 
j=l 

after using eq.(1.12) repeatedly. 
The key relations (5.9), (5.11)-(5.12) connect the lattice H and P 

with the row-to-row transfer matrices whose eigenvectors and eigenval­
ues can be constructed by the algebraic Bethe Ansatz developed in Sec­
tions III and IV. The light-cone or diagonal-to-diagonal transfer matrices 
resulted to be particular cases of the inhomogeneous row-to-row transfer 
matrices. The commutativity property (1.9) gives in addition 

(5.14) [r(,\,~),UL(0)] = 0, 

[r(.\, ~), uk(B)] = o, 

[UL(0), Uh(0)] = 0. 

One can consider the infinite sequence of commuting operators (1 < 
K < oo) 

(5.15) 

They all commute with UL(v), Uh(v) and with each other. 
Let us now consider the continuum limit a -+ 0 of the lattice models 

through eq.(5.9). The ground state of r(.\, 0) corresponds just to the 
physical vacuum (filled Dirac sea) of the QFT defined by H and P. 
The particle states follow from the lowest excitations. Since a factor 
a- 1 appears in H ± P [see eq.(5.9)] only gapless models yield finite 
energy states in the scaling limit. Moreover, in order to compute the 
energy and momentum in the scaling limit it is enough to know the 
eigenvalues of r(±0, ~) close to the bottom of the spectrum. The low-

lying excitations are associated to holes and complex solutions with large 
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(real) rapidity. Moreover, their eigenvalues normalized to the vacuum 
ones [as in eq.(3.55)] are independent of the inhomogeneities. 

Let us start by the fermion model ( with w = 1) associated to the 
six-vertex models (eqs.(5.1)-(5.6)). The excitation spectrum is given in 
Section III in terms of the function g(O) (eqs.(3.55)-(3.57)). Combining 
eq.(3.57) with (5.9) yields 

(5.16) ± _ g(=i=i11) 
€ p - =i=---, 11 E R. 

a 

Let us start by a hole excitation. One find for large 11 from eq.(3.55) 
and (3.61) 

(5.17) 11-+ +oo 

after discarding an irrelevant 1r. (It does not contribute to the eigenvalue 
of r(O) since the holes appear always by pairs). One finds a relativistic 
spectrum provided 11 -+ oo when a -+ 0 keeping fixed the renormalized 
mass 

(5.18) 

The dispersion law results 

(5.19) 

4 -= m=-e ., . 
a 

1rOh 
f=mcosh-, 

'Y 

inh 1rOh 
p=ms -. 

'Y 

So, 7rllhh is the physical rapidity of the particle [see eq.(2.14)]. Besides 
these holes that are identified with the fermions of the massive Thirring 
model [11,12] one finds the string solutions (3.49)-(3.52). They provide 
relativistic particles in the same scaling limit (5.18) with masses 

(5.20) mn=2msin{~~(1r--y)}, 1::;n::; [1r:-y]-1, 

as follows from eqs.(5.16) and (3.61). This set of particles are fermion­
antifermion bound states. They relate semiclassically to the breather of 
sine-Gordon as the fermions (or holes) (5.19) correspond to sine-Gordon 
solitons. 

The preceding exposition of the light-cone lattice method applies 
to all gapless vertex models. In ref. [15] the models with rational R­
matrices associated to simple Lie algebras are analysed. The model of 
section IV is also considered in its gapless regime. 
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Within this light-cone approach it is possible to construct explicitly 
the canonical bare fields on the lattice and to show that in the scaling 
limit (5.18) the massive Thirring model emerges [11]. 

One introduces lattices fermion fields V'R,n and V'L,n· They are as­
sociated to the links stemming upwards from each site at a fixed time 
(see Fig.14). 

~~ L,n n R,n 

Fig. 14. Fermion lattice operators associated to the links 
stemming upwards from each site. 

They satisfy usual anticommutation rules 

(5.21) {'1/JA,n,V'B,m} = 0, A,B = R,L, 

{'1/JA,n, '1/J1,m} = DnmDAB, 1 ::.; n, m::.; N. 

1/JR,n and 1/JL,n can be assembled in a two-component spinors. In this 
representation obviously diagonal since chiral rotations act locally on 
the 'I/J's. 

'). .,, -i.i..,, 1PR,n-. e' 1PR,n, '+'L,n-. e '+'L,n· 

These lattice fermions are quite different from Kogut-Susskind fermions. 
In our case the species doubling is avoided thanks to the non-locality 
(on the lattice) of the hamiltonian (5.9). To simplify the notation we 
write 

(5.22) 1PR,n = 1P2n, 'fPL,n = 1P2n-l, 1 ::_; n ::_; N, 

so that eq.(5.21) is replaced by 

(5.23) { 1Pn, 1Pm} = O, { 1Pn, '1/JI,.} = Dnm• 

Consider now the bilocal, unitary, even operators 

(5.24) Rnm = 1 + bKnm + (c - l)K!m + (w -1)'1/Jl'I/Jn'I/JI,.1/Jm, 

where 

(5.25) 
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and b, c and w are given by eq.(5.2) and (5.6). The matrix elements 
Rnm in the bare representation I f!.) read 

N 

(5.26) IT 
j=I,jfn,m 

fja; 
a'.' , 

where as usual 

n1 n2 10 ... 1 ... 1 .. 

with n1 < n2 < ... < nM. 
The second quantized representation (5.24)-(5.26) for R allows to 

write the light-cone transfer matrix U R(v) in second-quantized language 
using eqs.(5.7)-(5.8). Now it is easy matter to derive the lattice equa­
tions of motion for the fermion operators 1/Jn and '1/Jt. One finds [11] 

(5.27) UR1/}2n-2Uk = UL1/}2nUi = R2n-I,2n1/J2n-IR!n-I,2n> 

UR1/}2n-1Uk = UL1/}2n+1Ui = R2n-I,2n1/J2nR!n_I,2n· 

This equation hold for any form of the 4 x 4 R-matrix. Inserting now in 
(5.27) the explicit form (5.24)-(5.25) yields 

(5.28) 

These second quantized field equations are perfectly defined on the lat­
tice. The bare continuum limit a - 0 is rather subtle. The detailed 
proof of ref. [11] shows that it leads to the continuum MTM provided 
the lattice parameters b and c scale as 

(5.29) b = eiµ[l + O(a 2 )], c = -im 0 aeiµ[l + O(a 2 )]. 
a~o a~o 

Notice that this bare limit is different from the renormalized one 
[eq.(5.18)]. Here µ and m0 are fixed parameters that characterize the 
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bare scaling limit. The lattice fermion operators leads to the continuum 
ones '1/JR(x), "PL(x) in the following way 

(5.30) 

x = na and O < ~ < 1/2 is a fixed number whose precise value is 
irrelevant in the limit. Then the continuum hamiltonian and momentum 
follow from 

(5.31) 

where Q is the bare U(l) charge 

(5.32) Q = 1L dx('I/Jh'I/JR + "Pi"PL) 

where L = Na. 
Notice that lim UR = lim UL = eiµ.Q -I-1. After some calculations 

(11] it can be shown that 

and 

(5.33) 

where 

and g = -2ctg(µ-µo), w = e2iP.o, 'Yt = -iuy, 'Yo= u.,, 'Y5 = O'z-

That is we find the massive Thirring model (MTM) in the scaling 
limit (5.29). Eqs.(5.30)-(5.33) give the bare operators and eq.(5.29) de­
fines the bare scaling limit. This is different to the renormalized scaling 
limit giving the physical sector of the Fock space (eq.(5.18)]. Both the 
particle spectrum and the physical S-matrices follow rigorously in the 
renormalized limit computed by this light-cone approach. The bare limit 
(5.30)-(5.33) tells us which model one is actually solving. We use the 
word "rigorous" since we solve in this approach a lattice model exactly, 
then we take the infinite volume limit and finally the a - 0 (scaling) 
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limit. In other words, here one solves (exactly) a model with both UV 
and volume cutoffs and then lets the cutoffs to infinity in a precise way. 
This is clearly much better than the coordinate Bethe-Ansatz (CBA) 
where the UV cutoff is introduced after the obtention of the solution. 
For the MTM and the chiral Gross-Neveu model the results of the CBA 
coincide with the light-cone approach for on-shell magnitudes. Hence 
the CBA works well in these cases. This is not the case for the multifla­
vor Chiral fermion model treated in ref. [30] by CBA. As it is shown in 
ref. [11] the results of ref. [30] are not correct. 

Starting from richer vertex models than the six-vertex a large set of 
QFTs arises [11]. Let us first summarize the integrable vertex models 
classification in terms of simple Lie Algebras. 

A deep connection exists between integrable theories and simple Lie 
algebras [31]. It is possible to associate an integrable vertex model to 
each representation of a simple Lie algebra. These rational models are 
invariant under the corresponding Lie group (}, since this R-matrix obeys 

(5.34) [R(0), g 0 g] = 0. 

Moreover, the structure of their BAE looks like the one of their respec­
tive Dynkin diagram. It must be noticed that a proof that these BAE 
lead to the eigenvectors and eigenvalues of the transfer matrix has been 
explicited only for a subset of models: those associated to U(N) (see 
Section IV), Sp(2N) [32c], and S0(2N) [33] and some others. However, 
these statements are extremely likely to hold for all semisimple Lie alge­
bras. Moreover, the whole structure of the BAE deforms in a very simple 
and suggestive way for the trigonometric/hyperbolic models where the 
symmetry contracts to the Cartan subalgebra of (}. 

Let us describe the BAE for the trigonometric models. The deriva­
tion of these equations (for a subset of Lie algebras) are in Section IV 
and refs.[32,33]. The eigenvalues of the transfer matrix can be written as 
a sum of terms. The dominant one in the infinite volume limit ( N --. oo) 
is 

(5.35) 

.Xw{B{~U)}) = 

IT IT fi sinh[i(0 - Ba)+ .xt) - i,(wa,ak)] 

a=l k=l ik=l sinh[i(0 - Ba)+ A}~)+ i,(wa, ak)]' 

for 0 in the vicinity of 0 = O, IOI< Bo. Here 01,02, .. ,,0N are given 
numbers describing inhomogeneities of the lattice as discussed in Section 
II [1,16]. The Wa are fundamental weights and ak are the simple roots 
of(} whose rank is r. (a, (3) stands for the usual inner product in root 
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space. The )..ik(k) (1 :'S: jk:::; Pi, 1:::; k:::; r) are solutions of the nested 
BAE (NBAE): 

r Pk sinh [A (_i) - .A (_k) + i,v(a · a )] II II Ji ]k I i, k 

. h['(i) ,(k) . ( )] 
k=l ik=l Sln /\j; - /\jk - Z'Y a;, Ctk 

(5.36) 
__ ITN sinh[A}'.) - 00 + h(wa, a;)] 
- . h [' ( i) 0 . ( )] ' a=l Sln /\j; - a - i 1 Wa, a; 

1:::; ji:::; Pi, 1 :::; i:::; r. 

Here the upper indices ( i) label the steps in the NBA. Each step is 
associated to a simple root a;. The structure of eq.(5.36) coincides 
with the respective Dynkin diagram: when two roots, say a1 and a;, 

are orthogonal, their associated parameters >-.;'.) and >-.;!) (1 :::; ii :::; Pt, 

1 :::; j; :::; p;) are not directly coupled through (5.36) since (a;, a1) = 0. 
It must be noticed that due to the orthogonality of fundamental weights 
and simple roots [34] 

(5.37) 

The normalization of the simple roots can be absorbed as a multiplicative 
factor on the Aj.{ i). 

Taking the logarithm of eq.(5.36) leads, in the homogeneous case 
(0a = 0) to 

(5.38) 

r Pk 

= '°' '°' A..(A(i) - >,.(k) ,v(a· a )) + 27!"(_i) 
~ ~ 'f' Ji Jh ' I i, k Ji ) 

k=l ik=l 

1 :'S: J; :::; p;, 1 :::; i :::; r, 

where the Ij;(i) are half-odd integers and </J(z,a) is given by eq.(3.36). 
Actually eqs.(5.38) also hold in the rational and hyperbolic cases using 
the appropiate expression for </J(z, a) [eq.(3.39) or (3.41) respectively]. 
In the thermodynamic limit eq.(5.38) yields for any g a system of linear 
integral equations for the root densities analogous to eq.(3.38) for the 
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six-vertex model 

r JA l 
O"j(,\) - ~ -A dµK 11(.\- µ)a-1(µ) = 211"¢'(.\,1 (wa,O:j)) 

(5.39) 
N(') 

-~ iJt K11(.\ - 0~1)) 
l=l h=l 

., 
where 

(5.40) 

or in Fourier space 

(5.41) 

(5.42) 

(5.43) 

K11(w) = -sgn[(o: 1, o:1)]e-lw(a;,a,)I, (rational case), 

A·()- [(. )]sinh[w(f- 1 (0:1,0:1))] 
K 31 w - -sgn O:n 0:1 . ( ) , 

smh wt 
( trigonometric case), 

, e2 Im,( a; ,a,) I 
K 11(m) = 2sgn[(o:1,o:z)]----, 

m 
m E Z, m =f. 0, 

k 11(0) = 2, 

(hyperbolic case), 

where sgn(0) = 0. 
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The resolvent of the integral equation (5.39) follows as the inverse 
of the r x r matrix 

(5.44) 

This is not a formidable inversion problem since it is a sparse ma­
trix[51] whose characteristic diagram is precisely the Dynkin diagram of 
Q. Explicit formulae for Rj1(x) can be derived for each Lie algebra Q. 
We find for Aq-I the result in ref. [3]. For Dn see refs. [33] and [35]. 
For E 6 , E1 and E 8 , R11 can be calculated explicitly by hand. For non­
simply laced Lie algebras, the ground state is formed by complex roots 
and hence this treatment needs to be generalized. This is also the case 
for non-fundamental representations of Q. That is, the models obtained 
by fusion. 
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Eqs.(4.74)-(4.82) ofref. [3] valid for Aq-l, easily generalize for any 
simple-laced Lie algebra . In order to study the scaling limit we need 
the excitation eigenvalues g1(0, 0h)- They write 

(5.45) 
r A 

g1(0,0h) = ~lA d>.Rj1(>.-0h)</J(>.+i0, 1wk)-

In the trigonometric (gapless) regime this can be recasted as [15] 

(5.46) ~ 1+= dw sinh[w (f - ,wk)] eiw(th+i0) ([1- k]-1) 
L.,, iw sinh ( w1r) lk' 
k=l -oo 2 

where we used eqs.(3.41), (5.44) and (4.72) of ref. [3]. As before 
[eqs.(5.17)-(5.19 )] only the large i0 behavior is relevant for the scal­
ing limit. Eq.(5.46) tells us that this behavior is determined by the 
zeros of det[l - K(x)] closer to the real axis. These values are clearly l 
independent. One finds from eq.(5.46) by the residue method [31] 

g(0,0h)= 

(5.4 7) mi exp [=t=~(Bh + iB)] {1 + o(e-1°51) }, iB-. ±oo, ,1r ' 
where 8 > 0. The parameters K and m1 are given in Table II. 

TABLE II 

Lie Algebra Dynkin's diagram 

An -•--•--•-· · · -•----e 
1 2 3 4 n-1 n 

Bn -•--•--•-···-•=>• 
1 2 3 4 n-1 n 

Cn -•--•--•-···-<==-
1 2 3 4 n-1 n 
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o-

r -·--·-·. ·-·--·-1 2 3 n - 3 n - 2 o+ 

6 

___ r __ _ 
1 2 3 4 5 

7 

r -·--·--·--·-1 2 3 4 5 6 

8 

Es 
r -·--·--·--·--·-1 2 3 4 5 6 7 

F4 -•=>----
1 2 3 4 

K, 

21r/(n + 1) 
1r /(2n - 1) 

1r/(n + 1) 
1r/(n -1) 

mk 

sin(1rk/(n + 1)), 1 ~ k ~ n 
sin(1rk/(2n - 1)), 1::; k::; n -1 
mn = 1/2 
sin(1rk/2(n + 1)), 1 :S k :'.Sn 
sin(1rk/2(n -1)), 1 ~ k :Sn - 2 
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m± = 1/2 
m1 = ms = m6/2 = ./3/2 
m2 = m4 = (3 + ./3)/2 
ma= (3 + ,,/3)/v'2 
(*) 
(*) 
(*) 
(*) 

(*) These values can be extracted from refs. (15) and (31). 

Table II Integrable QFT associated to trigonometric Yang­
Baxter algebras in the light-cone approach. We 
indicate the underlying Lie algebra Q, the respec­
tive scale parameter 1,, (it coincides with the one­
loop beta function) and the corresponding mass 
spectrum. 

1,, is just 21r times the length squared of the shortest simple root in the 
normalization where (34] 

B(Ea,E-a) = -1 

and B ( x, y) is the Killing form. 
Light-cone evolution operators can be defined through eqs.(5.7)­

(5.9) for any R-matrix. Let us see that a relativistic dispersion law 
arises from any excitation spectrum as given by eq.(5.47). Let us call 
Ez(<p) and pz(<p) the eigenvalues of Hand P, respectively. Eqs.(5.9) and 
(5.47) yield 

{5.48b) 

It is then natural to define the scaling limit according to 

{5.49) a ---4 0, iO ---4 oo, 
e-iK.9/-r 

µ= -- fixed 
1ra7 

is the renormalised or physical mass scale and the particle mass spectrum 
of these integrable QFTs is given by 

(5.50) M1 =µm 1• 
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We recognize in eq.(5.48) "'0hh as the physical particle rapidity. 

This is a very general way of constructing integrable QFTs. The 
operators H and P given by eq.(5.9) are well defined on the lattice as 
well as all the higher conserved charges. In the continuum limit a --, 0, 
they provide the energy and momentum of a relativistic invariant QFT, 
as long as the spectrum of the initial vertex model is gapless. This is 
usually the case for rational or trigonometric weights. In addition to the 
particle spectrum , the S-matrix is exactly calculable from the BAE by 
standard methods [1,36]. 

As it was the case for the MTM, the evolution operators UR and 
UL are much simpler than H and P on the lattice. This was exploited 
before [eqs.(5.27)-(5.28)] to obtain the lattice field equations for the 
fermionic fields of the MTM regularized by the lattice. An analogous 
local construction would be very interesting to obtain in the general 
case of a Lie algebra 9. We present here a lattice construction for the 
current operators for all rational models discussed before. The H and P 
are always given by eqs.(5.7) and (5.9). The renormalized scaling limit 
(5.49) yields the mass spectrum (5.50) [see Table II]. Now the R-matrix 
for all rational models has the asymptotic behavior 

(5.51) 
1r+.X 1 

R( 0) = p [ 1 + -.0- + o( 02 ) ] ' 
(J--,oo l 

where A is a numerical constant, the exchange operator P was defined 
in eq.(1.27) and 

dimG 

(5.52) II= L Ta®T"'. 
a=l 

We then introduce the lattice operator 

(5.53) r;: = 1 ® .. · 0 T"' 0 .. · ® 1. 
n-th 

Using eqs.(5.7)-(5.8),(5.51) and (5.52) and the Lie Algebra commutators 

we can show that the r;: obey the local equations of motion on the 
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lattice 

URTfn-2Uk = ULTfnUl 

(5.54) a 2i fa /3 T,"Y { 1 ) = T2n + 7i /3"YT2n-1 2n + O 92 ' 

U RT:-.,_1 Uk = U LTfn+1 Ul 

a 2i a /3 "Y { 1 ) = T2n-1 - 7i f /3"YT2n-1 T2n + O 92 ' 

The bare scaling limit is now defined as a --+ 0, 0--+ 0, x = na fixed. We 
get 

(5.55) 

where 

(5.56) 

8,_.J,.°'(x) = 0, 

8oJf(x) - 81Jo(x) + ig/°'13,.,[Jf ,Jf] = 0, 

JR(x) = ~BT:.,, 
ga 

Jf(x) = ~ 0T:-.,_1, 
ga 

Therefore we have a lattice version of the g-algebra currents J;: ( x) as­
sociated to an exactly solvable discretization of the field theoretic mod­
els. These equations (5.55) characterize the currents in the non-abelian 
Thirring model associated to the group g. This theory, also called Chiral 
Gross-Neveu model, has as Lagrangian, 

(5.57) - . - g - a - /3 C - up /J,jJ - 4(tfry,_.T t/J)(tfry,_.T t/J)Ka/3· 

Here 1/; transforms under the irreducible representation p of g, T°' are 
the g-generators in that representation and Ka/3 is proportional to the 
inverse of the Killing form. Actually the H and P constructed from 
eqs.(5. 7)-(5.9) with the R-matrix (5.57) describe the zero-chirality sector 
of the model (5.57) and we can identify 

(5.58) 

The field theoretic models discussed up to here correspond to fi­
nite dimensional V and A. Namely, a finite dimensional vector space at 
each link in the light-cone lattice. This is clearly appropiate for fermion 
or parafermion fields. Since there exists infinite dimensional representa­
tions of YB algebras, also bosonic QFTs may be described in this frame­
work. The infinite spin representation of the SU(2) invariant R-matrix 
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{rational limit of the six-vertex model) relates to the 8U(2) principal 
chiral model {PCM) as it is investigated in ref. [39]. For arbitrary spin 
8, this R-matrix writes[37] 

{5.59) 
R 0 _ r(28 + 1 + iO)r(J + 1 - iO) 

l2( ) - r{28 + 1 - iO)r(J + 1 + iO)' 

where the operator J is defined by 

(5.60) J(J + 1) = 28(8 + 1) + 281 ® 82. 

81 and 82 are spin 8 operators acting on the spaces A and V respec­
tively [{Si)2 = (82 ) 2 = 8(8 + 1) ]. The light-cone hamiltonian {5.7)­
(5.9) provides particle states that yield all particle masses and 8-matrix 
amplitudes for the PCM letting 8 = oo. However, this His not the full 
hamiltonian of the PCM as it is proven in refs. [38] and [39]. There is 
a very simple explanation for this, the physical particle states for this 
model transform under the group 8U(2)L@8U(2)n and from the present 
construction only left or right operators can be obtained. Therefore all 
states obtained in this way are left ( or right) singlets. The detailed 
counting of states in ref. [39] is confirmed by the simple proof of ref. 
[38]. 

The lattice current construction, eqs.(5.53)-(5.56) also applies to the 
PCM. For large 0 the R-matrix (5.59) admits a semiclassical expansion 
of the type (5.51). Therefore, the whole constructin holds. It must be 
noticed that we get only one conserved and curvatureless current: either 
the 8U(2)L or the 8U(2)n. 

This whole cosntruction generalizes to the SU(N) PCM. It also 
applies for Chiral fermion models and PCM with one anisotropy axis 
(trigonometric YB algebras) [52]. 

§6. Braid groups and quantum groups from Yang-Baxter al­
gebras 

Let us see first how braid groups follow from trigonometric/ 
hyperbolic YBA. In the limit 0 - ±oo {±ioo) the hyperbolic/ 
trigonometric generators behave as e±KB ( e=FKiB) times a well defined 
operator (K being a constant). Since such exponential factor can be 
absorbed in T( 0) respecting the YBE, we can in general assume that 
the limit 

{6.1) lim T(O) = T±, 
8-+'foo('fioo) 
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is finite and non-trivial for hyperbqlic (trigonometric) YB generators. 
These limiting operators can be graphically represented as follows 

X X 
T+ 

Letting O --+ ±00,8 1 --+ ±oo with O - 01 --+ ±oo in the hyperbolic 
regime of eq.(1.1) yields 

(6.2) Td,K,I)Td,K,J)Tf 'J) = Tf ,J)Td,K,J)Td,K,I). 

In addition eq.(1.37) tells us that T+ and T_ are inverses of each other 

(6.3) - - - (I,J) T+T- -T_T+ -1, T± =T± . 

A factor .Jii(0) has been absorbed in the definition ofT(0) as in eq.(6.1). 
If one considers R-matrices instead of general YB operators 

T(I,J)(O), eqs.(6.2)-(6.3) read 

(6.4) 

(6.5) 

R23R12R23 _ R12R23R12 
± ± ±- ± ± ±• 

R+R- = R_R+ = 1, 

where now V 1 = VJ = VK = A, R12 = R © 1, R 23 = 1 ©Rand 
R -T(A,A) 

±- ± . 
The matrices R+ and R_ give a representation of a braid group in 

the following way. Let us consider the operators Xi( 0) acting in the 
tensor product of n auxiliary spaces A [40] 

(6.6) 

That is 

(6.7) 

Xi(0) =1 ©···© R(O) ©···© 1, 1 $; i $; n-1 
1 (i,i+l) n 

n 

II ,:b~ 
Ua~• 

They fulfil the relations 

(6.8) [Xi(O), X;(O')] = 0 if Ii - ilg2, 
Xi(0)Xi+1(0 + 01)Xi(0 1) = Xi+1(01)Xi(0 + 01)Xi+1(0), 
Xi( O)Xi(-0) = 1. 
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that follow from eqs.(1.11) and ( 6.6)-( 6. 7). These operators are clearly 
of "light-cone" type. They are closely related to the light-cone evolution 
operators discussed in Section V. We find 

U+ = X1X3 .. ·XN-1, 

u_ = X2X4 ·· ·XN, 

where [11] (see eqs.(5.7)-(5.8)) 

UR= V+V = vu_ 
uL = u+v+ = v+u_. 

Here V (Vt) is the shift operator affecting one-half translation to 
the right (to the left) [11]. In the 0 = oo limit we get 

(6.9) b-;1 = lim Xi(0) 
0->-00 

These bi (1 :::; i :::; n) precisely obey the relations of the n-braid group 
generators [41] 

(6.10) bibi+lbi = bi+lbibi+l, 

bibj = b1bi, Ii - ilg2. 

Let us briefly recall the notion of a braid group. Braids are formed 
when n points in a straight line are connected by n lines with other n 
points on a parallel line as shown in Fig.15. 

2 3 4 n-2 n-1 n 

Fig. 15. A braid from Bn. 

When the lines connecting the points have no intersections, the braid 
is called trivial. A general n-braid is obtained from the trivial one apply­
ing succesively the operations bi and/ or the inverses b-;1 (1 :::; i :::; n -1 ). 
The operations bi and bi-l are depicted in fig.16. 
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1 2 i-1 i i+l i+2 n 

b· I 

2 i-1 i+l i+2 n 

1 2 i-1 i+l i+2 n 

1 2 i-1 i i+l i+2 n 

Fig. 16. The elementary operations b; and b;1 from the 
braid group Bn, 

Then each topologically equivalent class of braids is identified with 
an element in Bn, Eq.(6.10) shows that the 0 = oo limit of hyperbolic R­
matrices provide a representation of Bn. This connection between YBZF 
algebras and braid groups revealed recently very fruitful to obtain knot 
invariants and link polynomials [42,43]. 

The exchange of points in the n-point conformal blocks forming 
the conformal invariant correlation functions yields a representation of a 
braid group (6.10) [44]. We want to remark that the R-matrix associated 
to such braid groups defines a lattice statistical model whose critical 
behavior is described precisely by the conformal theory yielding this 
braid group. 

Let us now discuss the quantum groups. They are related to trigono­
metric/hyperbolic YBA in the 0 = oo limit (as the braid groups). 

Let us start by the six-vertex case, where [eq.(3.4)] 

( A(O) B(O)) 
T(O) = C(O) D(O) . 
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In the 0 = oo limit, these operators yield for regime I [16] 

A( 0) = YN e±-yS, [1 + o(y- 2 )], 
0--->±CX) 

(6.11) D(0) = yNe'f-Y8,[l+o(y- 2)], 
0--->±cx, 

B(0) = yN- 1(sinh 1 )J_[l + o(y- 1)], 
0--->-CX) 

where y = ±½exp[±(0 +1 /2)] for 0--> ±oo, Sz = ½ ~a(o'a)z, 

(6.12) 
k=l l5'j<k k<j5'N 

In addition, 

K ± follow from J ± changing 1 --, - 1 . Inserting this limiting behavior 
in the YBA equations (3.5)-(3.6) yield 

(6.13) 

(6.14) 

e-Y8• J± = e±-r J±e-rs,, 

[J J ] = sinh(2 1 Sz) 
+, - sinh 1 · 

Eqs.(6.13) are actually equivalent to eq.(3.65) for 0 = ±oo 

(6.15) 

Eqs.(6.14)-(6.15) for J+, J_ and Sz define a deformation of the angular 
momentum [SU(2)] algebra, since in the isotropic limit ('Y --, 0) one 

recovers the usual SU(2) commutators. This is called the su{j,)-y quan­
tum group. Analogous results follow in regimes II and III. In regime II 
1 is replaced by h with I E R. The operators K+, K_ and Bz obey the 
same algebra with J+, J_ and Sz. In regime II these representations 
are complex conjugate of each other. 

It is possible to relate the operators J± with the usual spin operators 
S±, S3 obeying 

( 6.16) 
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Inserting the ansatz 

(6.17) J+ = S+f(,, S3, S), L = f(,, S3, S), S_, 

in eqs.(6.14)-(6.15) yields the recursion relation 

( 6.18) 

where S(S + 1) = (S+S- + S_S+)/2 + (S3)2 , as usual. This has as 
solution [54] 

(6.19) 
1 

f(µ,S3,S) = -. -
sm 1 

sin[,(S - S3)] sin[,(S +Sa+ l)] 
(S - S3)(S - S3 + 1) 

The quadratic ("Casimir") operator commuting with J and S3 writes 
here 

(6.20) C = !(J_J+ + J+L) + c~s, sin2 (,S3). 
2 sm 1 

This deformation of S2 has the value 

(6.21) C = sin[(S + l)'Y] sin(S 1 ). 
sin2 1 

In summary eqs.(6.17)-(6.19) explicitly display the SU{2)7 quantum 
group generators in terms of the usual SU(2) generators S, S3. 

Here we restricted ourselves to the ",-deformation" of the SU(2) 
algebra. The ,-deformations of all simple Lie algebra are known [53]. 
They are also connected with the O = oo limit of YBA[3]. 
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