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If E is an elliptic curve defined over an imaginary quadratic field K, 
with complex multiplication by K, and if L(E 1x, l):;t:O, then the Tate­
Shafarevich group lll(E 1x) is finite. The proof of this statement in [8] is 
complicated by the necessity of studying the !)-part of lll(E 1x) for all 
primes µ of K. In fact the above theorem grew out of an earlier weaker 
result which, because it ignores a finite set of "bad" primes of K, is 
proved much more simply. 

The purpose of the present paper is to give the original proof of this 
simpler result, Theorem I below. The proof contains the important ideas 
of the proof of Theorem A of [8], but is much clearer because many of 
the technical difficulties of [8] do not arise. Later in this section we will 
use Theorem I to obtain three examples of finite Tate-Shafarevich groups. 
This paper should be viewed as the predecessor of [8], and one would be 
well-advised to read this paper first. 

Suppose E is an elliptic curve defined over an imaginary quadratic 
field KcC, with complex multiplication by the ring of integers 0 of K. 
Fix an 0-generator Q e C x of the period lattice of a minimal model of E, 
let ,Jr denote the Hecke character of K attached to E, L(,Jr, s) the corre­
sponding Hecke £-function, and L(E 1x, s) the £-function of E over K. 
Then L(E 1x, s)=L(,Jr, s)L(f, s), L(f, 1)/Q e K, and L(E 1x, 1)=08L(,Jr, I) 
=08L(f, 1)=0. 

Theorem 1. Let E be an elliptic curve defined over an imaginary 
quadratic field K, with complex multiplication by K. Let p be a prime of 
K where E has good reduction, and which does not divide #(0x). If 
#(E(K)torsion)L{f, 1)/Q=f=.0 (mod!)), then the !)-part of lll(E 1x) is zero. In 
particular if L(f, 1):;t=O then the !)-part oflll(E 1x) is zero for all but finitely 
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many primes ,).J of K. 

Remarks. 1. As in [8], the method of proof of Theorem 1 relies 
heavily on the ideas of Coates and Wiles [3] and of Thaine [11). 

2. If Eis defined over Q, then L(E 1Q, s)=L(-i/r, s). If pis a rational 
prime greater than 2, and ,).J is any prime of K above p, then the inflation­
restriction sequence of Galois cohomology shows that the p-part of ill(E 1Q) 
is nontrivial if and only if the ,).J-part of ill(E 1 K) is nontrivial. This allows 
us to use Theorem 1 to relate ill(E 1Q) and L(E 1Q, 1). 

3. Examples ofTate~Shafarevich groups. In certain cases Theorem 1 
can be used to compute ill exactly. For example: 

A) Let Ebe the curve y2 =x 3 -x. Then ill(E 1Q)=0. 

Proof This curve has CM by Z[i], bad reduction only at (1 +i), 
#[E(Q(i)),orsionl= 8 and L(f, l)IQ = ll4. Thus Theorem 1 shows that the 
non-2-part of ill(E 1K) is trivial. Using remark 2 above it follows that the 
non-2-part of ill(E 1Q) is trivial as well, and Fermat's proof (circa 1650) 
that E(Q) is finite also shows (see [12), Chap. II, § X and Appendix IV) 
that ill(E 1Q)2 =0, so ill(E 1Q)=0. II 

B) Let Ebe the Fermat cubic x 3 -j-y3 =z 3• Then ill(E 1Q)=0. 

Proof This curve has CM by Z[(l + ,,/ - 3)12], bad reduction only 
at (./-3), #[E(Q(./-3)\ 0 rsionJ=9, and L(f, l)I.Q=ll3. Thus Theorem 1 
and remark 2 above show that ill(E 1Q)p=0 for p>3. That ill(E 1Q)2 =0 
(resp. ill(E 1Q)s=0) follows from a computation of Cassels [1] (resp. Euler 
and probably also Fermat, see [12], Chap. II, § XVI and Appendix IV). // 

C) Let E be the modular curve Xo( 49): y2 + xy = x3 - x2 - 2x - 1. Then 
ill(E 1Q)=O. 

Proof This curve has CM by Z[(l + ,,/ - 7)12], bad reduction only 

at (,,/ - 7), #[E(Q(./ - 7))torsionJ=4 and L(-if,, 1)/.Q= ll2. Thus Theorem 1 
shows that ill(E 1K)p=0 for p,p4. Gross has shown ([4] §22) that ill(E 1K)2 

=ill (E 1K)7=0 as well, so ill(E 1K)=0 and another inflation-restriction 
argument allows us to conclude that ill(E 1Q)=0. // 

4. Theorem 1 can be restated as follows: If L(E 1K, l):;t=O, then the 
only primes of K of good reduction, not dividing #(0f), which can occur in 
ill(E 1K) are the ones predicted by the Birch and Swinnerton-Dyer conjecture 
(in the refinement given in [5]). Similarly, if Eis defined over Q and has CM 
by K, it follows from Theorem 1 (see remark 2 above) that if L(E 1Q, l):;t=O, 
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then the only rational primes of good reduction not dividing #(@f) which 
can occur in Ill(E 1a) are the ones predicted by the Birch and Swinnerton­
Dyer conjecture. 

If L(f, l)=;t=O and one knows the order of Ill it is a simple matter to 
check the full Birch and Swinnerton-Dyer conjecture for E. In each of the 
three examples given above, the Birch and Swinnerton-Dyer conjecture is 
true. 

§ 1. Preliminaries 

Fix an imaginary quadratic field KcC and an elliptic curve E, de­
fined over K, with complex multiplication by the ring of integers 0 of K. 
In particular this ensures that K has class number one. Fix once and for 
all a prime j:J of K, not dividing #(@x), where E has good reduction, and 
write KP and @P for the completions of K and 0 at j:J. Let EP denote the 
subgroup of E(K) killed by j:J, and let F=K(Ep) be the extension of K 
generated by the coordinates of these points. 

Lemma 2. Over F, E has good reduction everywhere. 

Proof See for example [3], Theorem 2. The proof is an application 
of the criterion of Neron-Ogg-Shafarevich, using the fact that E has 
potentially good reduction everywhere, and that Gal (F(Ep00 )/F)c 1 +J:l@P 

is torsion-free if j:J 1 #(@x). // 

Lemma 3. F/K is a cyclic extension of degree Np-I, and p is totally 
ramified in F/K. 

Proof That Ff K is cyclic of degree dividing Nj:J-1 follows easily from 
the natural injection 

Gal (F/K)---+Aut (Ep)~(@jp)X. 

That this map is surjective and that j:J is totally ramified is proved in [3] 
Lemma 5 using the theory of formal groups, and in [10] § 3 using explicit 
formulas for complex multiplication. In either case one uses the theory 
of complex multiplication to show that if (x, y) is a nonzero point of order 
j:J on a Weierstrass model of E which is minimal at j:J, then x/y satisfies a 
polynomial over K of degree Np-1 which is an Eisenstein polynomial at j:J. 

II 
Lemma 4. E(Kp)/pE(Kp)~@jp. 

Proof By Lemma 3, E(Kp) has no j:J-torsion, and by [6], E(Kp) has 
a subgroup of finite index which is free of rank one over @P. // 
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§ 2. The descent 

For any field k we will write k for an algebraic closure of k and 
Gk=GaI(k/k). Fix a generator 1r: of the prime i, and consider the exact 
sequence 

This gives rise to a cohomology exact sequence 

( 1) O~E(K)/t,E(K)~H 1(Gx, E9)~H 1(Gx, E(K)) 9~0 

where H 1(Gx, E(K)) 9 denotes the µ-torsion in H 1(Gx, E(K)). Recall that 
the Tate-Shafarevich group Ill= Ill(E 1 x) of E over K is defined by 

Ill=ker [H1{Gx, E(K))~ EB H 1(Gv, E(K.,))] 
places 
vof K 

where G.=GaI(Kv!K.)CGx. Also define 

S{t,)=ker[H 1{Gx, E9)~EB H 1(G., E(K.,))], 
" 

S'(t,)=ker [H 1(Gx, E9)~EB H 1(G., E(K.))]. 
v;!,p 

Then S('p) is the usual Selmer group of E relative to 'p and S'(t,) is the 
larger group consisting of those cocycles which are locally trivial at all 
places different fromµ. By restricting the sequence (1) we obtain (writing 
Ill 9 for the µ-torsion in Ill) 

(2) 

We now proceed to describe the Selmer group S(t,). The major difference 
between the descent described here and, for example, the one given in [2], 
is Step 3 below, where we make use of the local condition at 'p to bound 
the size of S('p) rather than S'(t,). This is necessary when E has super­
singular reduction at µ, or when i, is anomalous for E (see [3]). 

Write G=Gal(F/K). 

Step l. Restriction to Hom (Gp, E9). 

The inflation-restriction exact sequence of Galois cohomology yields 

where r denotes the restriction map. We have H 1(G, E9)=H 2(G, E9)=0 
since the order; of G is prime to the order of E9 by Lemma 3. Also, 



Tate-Shafarevich Groups 413 

H 1(Gp, Ep)=Hom (Gp, Ep) because Gp acts trivially on EP. Therefore r 
induces an isomorphism H 1(Gx, Ep)=Hom (Gp, Ep)0 • 

Step 2. Image of S'(+i) in Hom (Gp, EP)0 • 

Let fY denote the unique prime of F above +J, and p the rational 
prime below +J. Write X=Gal(MIF), where Mis the maximal abelian 
p-extension of F unramified outside of fY. 

Proposition 5. The restriction map r of (3) induces an injection 

Proof Let c be any element of S'(+J), and q any prime of F not 
dividing +J. By Lemma 2, E1P has good reduction at q, and therefore (see 
for example the proof of Theorem 4.2 (b), Chap. X of [9]) the restriction 
of r(c) to the inertia group of q in Gp is trivial. This shows that r(S'(tJ)) 
cHom (X, Ep)0 • II 

Remark. It is not difficult to show that r induces an isomorphism 
S'(+i)=Hom (X, EP)0 (see [2] § 2) but we will not need this. 

Step 3. Image of S(+J) in Hom (X, EP)0 • 

Let (f) denote the completion of F at fY, and recall that GP= 
Gal (KPIKP). We have the following diagram in which the top row, the 
analogue of (1) for Kp, is exact: 

O--),E(Kp)lpE(Kp)--),H 1(Gp, Ep) --),H 1(Gp, E(Kµ))v--),0 

( 4) 1 
H 1(G(J), Ev)0 ---=::'..+Hom ((f)x, Ev)0 

(we have used local class field theory to identify Hom (G(J), Ev) with 
Hom ((f)x, Ev)). Write 

rp: E(Kv)ltJE(Kv)--),Hom ((f)x, Ev)0 

for the map given by (4). Explicitly, rp(x)(v) = (r - l)n- 1x, where x E 

E(Kv), v E (f)x, and r is the local Artin symbol [v, tf)abltf)]. Since the re­
striction map from H 1(Gv, Ev) to H 1(G(J), Ev) is injective (see Step 1), rp is 
injective as well. 

Let A denote the p-primary part of the ideal class group of F, and A' 
the p-part of the ideal class group of @p[lln], which we can identify with 
the quotient of A by the subgroup generated by the projection of the ideal 
class of fY into A. Let <ff' denote the group of fY-units of F, i.e. those 
elements which are units at all primes different from fY, and let D denote 
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the decomposition group of fl' in X. By class field theory we have 

(5) 

and 

( 6) Hom (D, Ev)~Hom (fbX/C', Ev)CHom ('PX; Ev), 

where C' denotes the closure of tff' in ,px. Define a subgroup SI' of 
Hom (X, Ev)0 by 

SI'={/ e Hom (X, Ev)0 : flD e image (¥1)}, 

and define a subgroup B of E(Kv)f'f)E(Kv) by 

(7) 

Theorem 6. ( i) There is a natural sequence 

o~ Hom(A', Ep)0 ~[1'~B. 

(ii) The restriction map r of (3) induces an injection 

O~S('p)~SI'. 

Proof Define a map fi: Sl'~E(Kv)f'f)E(Kv) by fi(/)=¥1- 1(1\D). By 
(6), for any f e SI', ¥1(fi(f))= flD is trivial on C', i.e. fi{f) e B. By (5) we see 

Hom (A', Ev)0 = ker [Hom (X, Ev)0 ~Hom (D, Ev)]= ker (fi). 

This proves (i). 
Proposition 5 shows that r gives an injection of S('f)) into 

Hom(X, Ev)0 • Let c be any element of S('f)) and write cv for the image of 
c in H 1(Gv, Ev)· Since c maps to O in H 1(Gv, E(Kv))v, the image of cv in 
Hom (@x, Ev) under (4) lies in the image of¥'· But (using (6)) the image 
of cv in Hom (@x, Ev) is precisely the restriction of r(c) to D. Therefore r 
maps S{'f)) into SI', and (ii) follows. // 

Remark. Using the fact that S'{tJ)~Hom (X, Ev}° (see the remark 
at the end of Step 2) the proof of Theorem 6 (ii) actually shows that S('f)) 
~SI'. 

§ 3. The reciprocity law map 

By Lemma 4 we can fix an isomorphism 

(8) 
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Proposition 7. There is a unique G-equivariant map a: <Px-EP such 
that s,,(x)(v)= l(x)o(v) for all x e E(Kp) and v e <Px. 

Proof We can define o by 

where the first miJ.p is given by sending v e <Px to s,,(. )(v) e Hom (E(Kp), Ep), 
and the second is induced by (8). (Concretely, o(v)=s,,(A-1(I))(v).) The 
uniqueness is clear. II 

Write g;"' for the maximal ideal of <P and for every n> I define 0/t 11 

= I+ (f7J "')11• Fix a uniformizing parameter u of <P. Since <PI KP is totally 
ramified (Lemma 3), for every v e 0//1 there is a unique element d(v) e (!}l'p 
satisfying v= I +d(v)u (mod u2). This map dis a homomorphism from 
0//1 to (!}l'p with kernel 0//2, called the logarithmic derivative homomorphism 
(with respect to u). 

Theorem 8. Let o be the reciprocity map of Proposition 7. Then 
ker (o) n 0//1 = 0//2. 

Proof The explicit reciprocity law of Wiles [13] says that there is a 
nonzero 1: e EP such that o(v)=d(v)1: for every v e 0//i, and the theorem 
follows immediately. As we do not need the full strength theorem, we 
give a simpler proof using the following result of Stark [IO]. 

Proposition 9. Suppose x e E(Kp) and x ~ ,!JE(Kp). Then <P(11:-1x)l<P 
is an abelian extension of conductor (f71"')2• 

Proof This is Theorem I of [IO]. The proof given there is a 
discriminant calculation using Kronecker's limit formula. I I 

Proof of Theorem 8. Recall that for any v e <Px and x e E(Kp), 
s,,(x)(v)=(r- l)11:-1x, where r is the local Artin symbol [v, (Pabl<P]. By 
Proposition 9, the image of 0//2 under the local Artin map acts trivially on 
<P(11:-1E(Kp)), so 0//2 Cker(o). If o were trivial on all of0//1, we would have 
o e Hom (<PxlO/ti, Ep)0 ~Hom (ZXµNH• Ep)0 =0. This is impossible since 
s,, is injective and therefore not identically zero. 

Thus o induces a nontrivial G-homomorphism from 0//1lo//2 to Ep, 
which must be surjective because G acts transitively on the nonzero ele­
ments of EP. Since [0//1: 0//2]= #(Ep)=N'p, this map must be injective as 
well and the theorem follows. I I 
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§ 4. Elliptic units and L( f, 1) 

Write ~ for the group of elliptic units of F, for example as defined 
in the Appendix of [8]. (If the residue characteristic of 1:) is greater than 
3 one can use the group of elliptic units defined in [3], § 5.) 

Fix an @-generator Q e ex of the period lattice of a minimal model 
of E, and let ..;, be the Hecke character of K attached to E. Define 2 = 
i(E(K)torsion)L(f, l)IQ; it is known that 2 EK. 

Recall that 1c is a generator of 1:), and d is the logarithmic derivative 
homomorphism defined in § 3. The next result, due to Coates and Wiles 
[3], provides the crucial link between the algebraic and analytic sides of 
our picture. 

Theorem 10. There is an elliptic unit~ e ~n1¥11 such that d(~)=2. 

Proof This is a computation using explicit formulas for elliptic 
units in terms of the sigma function. See [3] § 5 or [10] § 2, or for maxi­
mum generality (including the extra factor of i(E(K)torsion), which can be 
divisible by 1:) only for N1:)<7) see [8] Theorem 12.11. II 

Theorem 11. Let i5 be the reciprocity map of Proposition 7. If 2$0 
(modulo 1:)) then there is an elliptic unit~ e ~ such that o(~)::;t:0. 

Proof Let~ be an elliptic unit satisfying Theorem 10. 
1¥/1 and d(~)::;t:0, so~ t 1¥/2 and by Theorem 8, o(~)::;t:0. 

Then~ e 
I I 

Recall that p is the rational prime below 1:). Define characters of GK 
=Gal(KIK) 

w: GK--+µp-1cz; 

x: GK--+µNv-1c@; 

by ,·=,w(u) for all' E µp, a E GK 

by al)=X(a)I) for all I) E Ev, a E GK. 

If [Kv: Qp] = 2 write * for the action of the nontrivial automorphism 
of KvlQP. Define an irreducible ZP-representation p of G by 

p=X 

p=XEBX* 

if X is z;-valued, 

if X is not z;-valued. 

For any G-module M, we will denote by MP the p-eigenspace (p-isotypic 
component) of the p-adic completion fun Mlpm M of M for the action of 
G. 

Proposition 12. If 2$0 (modulo 1:)) then ~Pc/.(@x)P. 
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Proof. Suppose ~PC((J>X)P. Then o would vanish on ~P, and there­
fore also (since Hom{~, Ep)0 =Hom(~P, Ep)0 ) on all of~. By Theorem 
11 this is not the case. // 

§ 5. Proof of Theorem 1 

To control the size of the Selmer group S{,I)), by Theorem 6 it suffices 
to control Hom (A, EP)0 and B, where A is the p-primary part of the ideal 
class group of F and B is the subgroup of E(Kp)/,l)E(Kp) defined by (7). 
Write@; for the global units of F, and as in § 4 let£'= #{E{K)torslon) X 
L(i/r, l)IQ. 

Theorem 13. If £'$0 (mod ,I)) then B=0. 

Proof. Fix an elliptic unit ~ e ~cm:, satisfying Theorem 11, i.e. 
o(~)::;l=0 in EP. If x e B, then ~(x)(~)=0 by definition of B, and so l(x)o(~) 
=0 by definition of o. Therefore l(x)=0, and so x=0 in E(Kp)l+1E(Kp). II 

By Proposition 12.4 of the Appendix of [8], the group of elliptic units 
~ is contained in the group of special units of F defined in [7], so we can 
apply the results of [7] (which extend Thaine's results [11]) to study the 
ideal class group A. 

Theorem 14. If £'$0 (mod ,I)) then AP=0. 

Proof. Observe that p::;l=l by Lemma 3, and Zp[G]P is isomorphic to 
the ring of integers of the unramified extension of QP of degree dim (p). 
Write W=(@:,)P, and write p for the contragredient of p (given simply by 
p(a)= p(a- 1)). 

Case I: µpct.For p::;l=p@w. 
By Proposition 12 the image of ~P in W/WP is nontrivial. Therefore 

(since WIWP is free over the finite field (ZlpZ)[G]P) we can fix a map 

a: w~(ZlpZ)[G]P 

such that a(~P)=(ZlpZ)[G]P. Since µPct.F or p::;l=p@w we can apply 
Theorem 3.1 of [7] with the map a to conclude that AP/pAP=0, and 
therefore AP= 0. 

Case II: µPcF and p=p@w. 
Since p::;l= 1 we have p::;l=w, so µPct Wand thus Wis free over ZP[G]P. 

Therefore by Proposition 12 we can fix a map 
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such that a( ~P) = Zp[ G]P. Since p * 1 and 0; has a subgroup of finite 
index which is cyclic over Z[G], we can apply Corollary 3.7 of [7] with the 
map a to conclude that AP=0. II 

Proof of Theorem 1. Suppose 2$0 (mod p). We use the notation 
of §2; in particular .9 is the subgroup of Hom(X, Ep)G and A' the quo­
tient of A defined there. Theorem 6 shows that S(p) is isomorphic to a 
subgroup of .9, and that Y fits into an exact sequence 

o~Hom (A', Ep)G~f/~B. 

By Theorem 13, B=0, and Hom (A', Ep)0 cHom (AP, EP) is zero by Theo­
rem 14. Therefore S(p)=0. Now from the exact sequence (2) 

0~E(K)lpE(K)~S(p)~Illp~0, 

which is essentially the defintion of S(p), we conclude that Illp=O. II 

Remark. Notice that in the above proof of Theorem 1 we can also 
conclude that if 2$0 (mod p) then E(K) is finite, so we obtain a proof 
of the theorem of Coates and Wiles [3]. The major difference between 
this proof and theirs is that by controlling AP we are able to work entirely 
over the field K(Ep), while they had to use the fields K(Epn) for all n. 
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