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Introduction 

In a manuscript on mod £ representations attached to modular 
forms [26], the author introduced an exact sequence relating the mod p 
reduction of certain Shimura curves and the mod q reduction of corre
sponding classical modular curves. Here p and q are distinct primes. 
More precisely, fix a maximal order (!) in a quaternion algebra of discri
minant pq over Q. Let M be a positive integer prime to pq. Let 't' be 
the Shimura curve which classifies abelian surfaces with an action of(!), 
together with a "I'o(M)-structure." Let fl£ be the standard modular curve 
X 0 (Mpq ). These two curves are, by definition, coarse moduli schemes 
and are most familiar as curves over Q (see, for example, [28], Th. 9.6). 
However, they exist as schemes over Z : see [4, 6] for 't' and [5, 13] for fl£. 

In particular, the reductions 't' Fp and fl£ Fq of 't' and fl£, in character
istics p and q respectively, are known to be complete curves whose only 
singular points are ordinary double points. In both cases, the sets of 
singular points may be calculated in terms of the arithmetic of "the" 
rational quaternion algebra which is ramified precisely at q and oo. 
(There is one such quaternion algebra up to isomorphism.) In [26], the 
author observed that these calculations lead to the "same answer" and 
concluded that there is a 1-1 correspondence between the two sets of 
singular points. He went on to relate the arithmetic of the Jacobians of 
the two curves fl£ and 't' (cf. [14] and [10, 11]). 

The correspondence of [26] depends on several arbitrary choices. 
More precisely, [26] used Drinfeld's theorem [6] to view the Shimura 
curve 't' over Zp as the quotient of the appropriate "p-adic upper half
plane" by a discrete subgroup I' of PGLlQp)- This group is obtained by 
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choosing: (1) a rational quaternion algebra :Y'f' of discriminant q, (2) an 
Eichler order in :Y'f' of level M, and (3) an isomorphism :Y'f®QP~M(2, Qp). 
The conjugacy class of I' in PGLlQ) is independent of these choices, but 
there is no canonical way to move between two different T's. This flab
biness makes awkward the verification that the correspondence of [26] is 
compatible with the natural actions of Hecke operators Tn on fl" and on 

~-
The main conclusion of this article (Theorem 5.5, Theorem 5.3) is 

that the singular points in fl"(Fq) and ~(Fp) are canonically in bijection, 
once one chooses the algebraically closed fields Fv and Fq to be algebraic 
closures of the two residue fields Fv• and Fq. of <P. A choice of this type 
appears quite natural if one considers the related, but simpler, problem of 
comparing the singular points of fl"(F) and EC(F') when F and F' are two 
algebraic closures of Fq. These are the isomorphism classes of super
singular elliptic curves with I' 0 (M)-structures, over F and F', respectively. 
For a general prime number q, the isomorphism classes are defined only 
over the quadratic extensions of Fq in F and F', and the isomorphism 
classes cannot be identified until we choose an isomorphism between the 
two different fields Fq•· 

We also discuss the analogous problem of expressing the set of 
components of ~Fq in terms of the singular points of X 0 (Mq) in charac
teristic q. Further, we treat the generalization of these two problems, first 
indicated by Jordan and Livne, to the case where the discriminant of <P is 
of the form pqD, D being a product of an even number of distinct primes 
which are prime to pqM. For the generalization, we use a result indicated 
by Deligne-Rapoport in § 7 of the Introduction to [5]. Although this 
result is not proved in [5], it was obtained by Morita in his unpublished 
thesis [18]. It may also be established by the techniques of [3]. 

As already indicated, we compare objects in characteristics p and q 
by relating them both to quaternion arithmetic. We take a point of view 
which is borrowed from Mestre-Oesterle [17], involving what we call 
"oriented orders." As an illustration, consider the problem of classifying, 
up to isomorphism, supersingular elliptic curves over an algebraic closure 
F of Fq. 

This problem was solved by Deuring, and the solution is usually 
phrased in terms of a base point, i.e., a fixed supersingular elliptic curve 
E0 • The ring R0 = End (E0 ) is a maximal order in the rational quaternion 
algebra R 0 ®Q, which is ramified precisely at q and oo. To each super
singular elliptic curve, one associates the locally free rank-1 left R 0 -module 
Hom(E, E0 ). This association sets up a bijection between isomorphism 
classes of supersingular elliptic curves and left R 0 -modules of the indicated 
type. 
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In the variant due to Mestre and Oesterle, one dispenses with E 0 and 
associates to each E its endomorphism ring R, plus the map¢: R-F 
which gives the action of Ron the I-dimensional F-vector space Lie(E/F). 
The map ¢ takes values, necessarily, in the quadratic subfield Fq, of F. 
The pair (R, ¢) is an "oriented maximal order" in a rational quaternion 
algebra of discriminant q. Deuring's theorem may be rephrased as the 
assertion that the construction E >--+(R, ¢) induces a bijection between 
isomorphism classes of supersingular elliptic curves over F and oriented 
maximal orders of discriminant q. 

In a mild generalization, one can classify supersingular elliptic curves 
with I' 0 (Mp)-structures; the result involves "oriented Eichler orders of 
level Mp" in a quaternion algebra of discriminant q. Here, by the result 
of Deligne and Rapoport [5], the objects being classified are naturally the 
singular points off£ F· 

To complete the picture, we must relate the singular points of<(? Fp to 
oriented orders. As shown by the method of Drinfeld [6] (cf. [31], Satz 
3.10), these points are represented by those @-abelian surfaces A (furnished 
with I' 0 (M)-structures) which satisfy the following property: Let a be 
one of the two homomorphisms @=!F p• Then there is an @-stable 
subgroup H of A, isomorphic to ap, such that the homomorphism 

giving the action of(!) on H coincides with a. 

In § 4, we treat the problem of classifying such "mixed exceptional" 
objects, and show especially that they are classified by their endomorphism 
rings (viewed as oriented orders). The endomorphism rings are Eichler 
orders level Mp in a rational quaternion algebra of discriminant q, just as 
above. We recover a result which is implicit in the existing literature in 
a base-point dependent form (cf. [31], § 4). 

The proof we have given for this classification theorem is direct, and 
perhaps unnecessarily long. In essence, we remark that A is isomorphic 
to the product EX E, where E is a supersingular elliptic curve over F P' 

which we can take to be fixed. If R is the endomorphism ring of E, to 
give an action of (!) on A is then to give an (@, R)-bimodule which is 
Z-free of rank 8. Such bimodules are presumably difficult to classify in 
general, since the tensor product @ (8) R is not a hereditary ring. (Recall 
that a ring is said to be left-hereditary if all left ideals of the ring are 
projective modules.) Fortunately, the condition satisfied by A implies 
that the corresponding bimodule is "admissible" (in the sense of§ 2). We 
show in § 2 that admissible rank-8 bimodules are classified by their 
endomorphism rings, viewed as oriented orders. 
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§ 1. Local study of certain bimodules 

Let p be a prime. Let (!) be a maximal order in a quaternion 
division algebra B over Qv- Let !Y be the maximal ideal of (!) and let Fv• 
be the residue field of !Y. Let 1r be a uniformizer of !Y. We can, and do, 
assume that r:2 = p. (For background on the arithmetic of quaternion 
algebras over local fields, see for example [30], Ch. II.) 
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A classification theorem 

Recall that B@aPB is a matrix algebra (of degree 4) over Qv. Indeed, 
let' denote the involution of B for which 

x1-----+ xx' 

is the reduced norm in B. The map ' thus induces an isomorphism 
between B and its opposite algebra. Define 

µ: B@apB~Enda/B) 

by sending x@y to the composition of left multiplication by x and right 
multiplication by y'. The map µ is easily seen to be an isomorphism. 

Let 

'6'=0@z/J 

and identify '6' with its image under µ. The ring '6' is visibly contained 
in the hereditary order 

since f!Jl is a 2-sided ideal of 0. (For background on hereditary orders, see 
[25] and [2], § 1.2.) 

It is to be noted, in fact, that '6' is strictly contained in d. Indeed, 
'6' lies in the sub-order of d consisting of those <p e d which induce 
Fv,-linear endomorphisms (i.e., homotheties) on the quotients 0/f!Jl=Fv• 
and f!Jl I f!Jl2• 

Let 0 be the element ir- 1@ir of B@apB. Viewed as an element of 
Endap(B), (} lies in d, since it preserves both 0 and f!Jl. Note that 0 is an 
involution, since ir 2 = p lies in the center of B. 

Proposition 1.1. The ring d is generated by '6', together with the 
involution e. 

Proof Let W be the ring of Witt vectors over Fv,, i.e., the ring of 
integers of the unramified quadratic extension K over Qv. Let a be the 
Frobenius automorphism of W: the non-trivial automorphism of Kover 
Qv. We may view 0 explicitly as WEB Wir, where the multiplication in 0 
is such that we have 

air=ir(aa) 

for a e W. Once 0 is written this way, we have in particular an embed
ding w~0. We use this embedding to view 0 as a left W-module; it 



364 K. A. Ribet 

is a free W-module of rank 2. Define .sif+ to be the ring of W~linear 
endomorphisms of (1) which preserve !!Ji. Thus we have 

where the second intersection takes place in K@ 0PB. The ring .91+ is 
thus an Eichler order in K@ 0PB of level p. Now the map µ clearly 
induces an embedding 

l: W@zp(1)~.sif+. 

This embedding is, in fact, an isomorphism, as we verify by noting that 
both W®zp(i) and .sif+ are orders in K@ 0PB with reduced discriminant p. 

Let 81 be the ring generated by 0 and by~- We have 8'r;;.d, and 
the Proposition asserts the equality of the two rings. As we have just 
seen, we have 

We then have also 

where .si1-=0.sif+. It is clear that .91- may be described alternatively as 
the ring of a-linear endomorphisms of (1) which preserve !!Ji. Indeed, the 
elements of .si1-are certainly a-linear, since 0 is a-linear and the elements 
of .91+ are linear. On the other hand, if a is a a-linear endomorphism of 
(!) which preserves !!Ji, then 

a=fi(a)=O(fJ(a)), 

and O(a) e .91+. 
To prove the equality £11=.sil, it suffices now to show that d=.sif+ 

+ .si1-, i.e., to verify that an arbitrary element of .sit is the sum of (W-) 
linear and a-linear elements of .sit. For this, we consider the action of 
W@z,,W on .sit for which x@y sends a to the endomorphism 

(left multiplication by x) o a o (left multiplication by y). 

of (1). We have available the isomorphism 

W@zpW=WE0W 

mapping x@y to (xy, xa(y)). Via this isomorphism, we consider .sit as a 
left WE0W-module. The action of WE0W on .sit then breaks up .sit into 
the direct sum of two W-submodules. On the first submodule, x@y acts 
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as xy for all x, y e W. In particular, the actions of x ® 1 and 1 ® x 
coincide; therefore, the elements of the first submodule are W-linear. 
Similarly, the elements of the second factor are a-linear. Since every 
element of d is the sum of elements in the two submodules, we have 
completed the necessary verification. D 

An alternative proof The author is grateful to C.J. Bushnell for 
communicating a second proof of Proposition I. I. Here is a summary 
of his method: 

Let fl# again be the order generated by {} and by '??. We have fl#<:;;_ 
d. It is easy to check the equality 

(1) (fl#: '??) = p4. 

Indeed, we may choose a ZP-basis {x, y, z, t} of (I) for which {x, y, pz, pt} 
is a basis of 9. The ring '?? is then realized as the free ZP-module with 
the 16 basis vectors a®/3, where a and f3 run through our chosen basis. 
Recognizing that fl# is the Zp-module 0®0+9®9-1, we see that fl# may 
be obtained as the Zp-module '?? + p- 1L, where Lis the free ZP-module of 
rank 4 generated by x®x, x® y, y®x, and y® y. This leads to (1 ). 

We now use the standard trace form -r: u®v>--+tr(u). tr(v) on B®B, 
where "tr" denotes the reduced trace on B. For A a lattice in B®B, we 
let A be its ZP-dual: 

It is well known that 

(2) 

Comparing this with (1), we see that we have(~: fl#)= p 8• On the other 
hand, it is known that (d: d) = p8, cf. [l], Prop. 1.1 I. Since fl# <:;;_d, the 
two orders d and fl# must be equal. D 

We deduce from Proposition 1.1 a structure theorem involving free 
finite rank ZP-modules L which are furnished with left and right 0-actions, 
i.e., which are given as (0, 0)-bimodules. 

Theorem 1.2. Let L be an (0, 0)-bimodule which is free of finite rank 
over ZP. Assume that L satisfies the equality 

(3) 

Then L is isomorphic to a finite direct sum of copies of (I) and 9, regarded as 
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bimodules via the natural left- and right-multiplications of (I) on itself and on 
[JJ. 

Remark. The equality (3) is not satisfied automatically. It is an 
amusing exercise to construct examples of ((I), (l})-bimodules which are 
ZP-free of rank 8 for which (3) fails. 

Proof To give a bimodule structure on Lis to give a left action of 
the ring (l)@zp(I), since (I) is its own opposite ring. Equivalently, an ((I), (l})
bimodule is a left ~-module. Assume that L is such a module, free of 
finite rank over ZP. Then L satisfies (3) if and only if the operator (} 
(which acts a priori on L®zpQP) preserves L. Hence the bimodules L 
under considerations are at-modules, in view of Proposition I.I. 

In view of the standard theory of representations of hereditary orders 
[2, 25], all at-modules which are free of finite rank over ZP are direct 
sums of copies of the at-modules (I) and [JJ. This proves Theorem 1.2. D 

Variants 
We consider two variants of Theorem 1.2. 

Theorem 1.3. Let L and L' be bimodules as in Theorem 1.2. Then L 
and L' are isomorphic if and only if the (FP'' Fp,)-bimodules L/ [JJ L and 
L' Jg; L' are isomorphic. 

(In the statement of this "Nakayama Lemma," both actions of (I) on 
Lj[JJL factor through FP, because of equation (3). Hence Lj[JJL is naturally 
an (FP'' Fp2)-bimodule. Similarly for L'j[JJL'.) 

To deduce Theorem 1.3 from Theorem 1.2, we first remark that an 
(Fp,, Fp,)-bimodule is nothing but a left module for the ring Fp,®FpFP,. 
This latter ring is isomorphic to the direct sum FP,ffiFP, under the map 

x@y~(xy, xy), 

where y is the image of y under the non-trivial automorphism of FP, over 
Fp. Further, to give an FP,ffiFP,-module is to give a direct sum M 1(£JM2 

of Fp,-vector spaces. Hence a finite (Fp,, Fp,)-bimodule M is determined 
up to isomorphism by a pair of positive integers r and s: the dimensions 
of M 1 and M 2• (We can say that Mis of type (r, s).) 

One checks immediately that L/ g; L is of type (r, s) when 

r factors s factors 
,--"------.._ ~ 

L=(l)X · · · X(i)X [JJX · · · X [JJ. 

Now if L and' L' are given as in Theorem 1.3, then by Theorem 1.2 we 
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have 

L::::::(!}' X &'', L':::::: (!)'' X f!J''' 

for suitable integers r, s, r', s'. If L'/&'L' and L'/&'L' are isomorphic, then 

(r, s)=(r', s'), 

so that L and L' are isomorphic. 
To deduce Theorem 1.2 from Theorem 1.3, we start with L, define 

(r, s) to be the type of L/ &' L, and observe that Land (!}' X &'' have isomor
phic reductions. By Theorem 1.3, we deduce that L and (!}' X &'' are 
isomorphic. 

Theorem 1.4. Let n be a positive integer. Let f: (!)_,,.M(n, 0) be a 
homomorphism of rings satisfying 

(4) f(&')CM(n, (JJJ), 

where M(n, &') is the set of matrices in M(n, 0) whose entries lie in (JJJ. 
Then f is GL(n, 0)-conjugate to a homomorphism of the form 

(5) xl-----4diag(ai(x), · · ·, an(x)), 

where each a. is either the identity map or else the map 

(6) 

Proof Let L = (!}n. Define a right {!}-action on L by componentwise 
right-multiplication, and define a left {!}-action on L via the homomor
phism f; x e (!) acts on the column vector (u1 • • • un) e L by multiplication 
by the matrixf(x). It is easy to see that the bimodule so defined satisfies 
the condition (3). Indeed, condition ( 4) implies that we have an inclusion 
fJ'LcL(JJJ, and this leads to the equality (3) because &'Land L&' have the 
same index in L, namely p 2n. 

By Theorem 1.2, we have an isomorphism of bimodules 

r factors s factors _,.________ ____,.____ 
cp: L::::;. (!}X · · · X (!}X &'X · · · X &'. 

for suitable rands. In this isomorphism, we may replace each factor&' 
by a factor(!), provided that we twist the left action of(!) on 0. Namely, 
the map t•--nr:-1t induces an isomorphism of right {!}-modules &'::::;.0. This 
map becomes an isomorphism of bimodules if we re-define the left action 
of (!) on (!) so that x sends t e (!} to (tr-1xtr)t. Combining the two isomor
phisms, we get an isomorphism 
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where (!) acts on the right in the usual way on both copies of (!r and x e (!) 
acts on the left as follows: By matrix multiplication by f(x) on the first 
factor, and by matrix multiplication by the diagonal matrix 

r factors s factors 
~ 

diag(x, · · ·, x; 1e-1x1e, ... , 1e-1x1e) 

on the second factor. This isomorphism being (!)-linear, it is given by 
left multiplication by a matrix in GL(n, (!)). D 

Remark. Since every bimodule L as in Theorem 1.2 is isomorphic 
as a right-module to (!)n for some n, every such bimodule is given by a 
map fas in the statement of the theorem. Hence Theorem 1.4 is in fact 
equivalent to Theorem 1.2. 

Corollary 1.5. Let f be a homomorphism (!)-M(n, (!)) as in Theorem 
I.4. Suppose that there are r occurrences of the identity map ands occur
rences of the map 

in the diagonal representation off given by Theorem I .4. Then the com
mutant off((!)) in M(n, (!)) is a hereditary ring isomorphic to the intersection 

(7) End(Z;)n End(Z;E0pZt) 

in M(n, Zp). 

Proof We may assume that f is given as in (5), with the first r ai 
equal to the identity map and the next s ai equal to the map (6). For 
Z = (ziJ) a matrix in M(n, (!)), it is easy to determine the condition on the 
ziJ imposed by the equationf(x)Z=Zf(x) for all x e (!). Namely, the z 1J 
must lie in 1eZ P for all i and j such that a1 =f=-a J and in Z P for all i and j 
such that ai=ar The commutant of(!) in M(n, (!)) is thus the subring f!lt 
of M (n, (!)) consisting of matrices of this form. 

Let o now be the diagonal matrix diag (1e, .•. , 1e; I, . . · , 1) where 
there are r entries 1e ands entries 1. The ring f!/t is isomorphic to of!lto-1, 
which one recognizes as the subring (7) of M(n, Zp). This intersection is 
explicitly the subring of M(n, Zv) consisting of matrices (ciJ) for which ciJ 
is divisible by p whenever j<r and i>r. (For example, suppose n=2. 
Then (7) is all of M(2, Zv) whenever r =2, s=O or s=2, r =0. It is the 
standard Eichler order of level p in M(2, ZP) when r= 1 =s.) D 
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To restate Theorem 1.3 in the context of matrices, we define for each 
fas in Theorem 1.4 the map 

(8) 

which is induced by f (thanks to (4)). 

Theorem 1.6. Let f and f' be homomorphisms f: (!)_,,.M(n, (!)) satisfying 
(4). Assume that J and J' are GL(n, FP.)-conjugate. Then f and f' are 
GL(n, (!))-conjugate. 

Proof We may assume that/ and/' are given by diagonal maps 

x~diag(a~, ... , a~) 

of the type described. Then J and J' are given a fortiori by diagonal 
maps Fp,....,,.M(n, Fp.) whose components are either the identity map or the 
Frobenius automorphism Fp,_,,.Fp•· (The latter is induced by the map 
x~n-- 1x,r (mod 9'1).) It is clear than] and J' are conjugate if and only if 
the number of occurrences of the identity map Fp,_,,.FP. is the same for J 
and J'. This is the case if and only if the number of i for which at is the 
identity map is the same as the number of i for which a: is the identity 
map. When this condition is satisfied, f and f' are conjugate, in fact, by 
a permutation matrix in GL(n, Z). O 

§ 2. Global study of certain bimodules 

Oriented orders 
Let D be a square free positive integer. For each prime p dividing 

D, we suppose given a field FP. of cardinality p 2• Let N be a positive 
integer which is prime to D. Suppose that flJl is an Eichler order of level 
Nin a quaternion algebra over Q of discriminant D. Recall that, for 
each prime .e dividing N, the tensor product flll®Z, is the intersection of 
two maximal orders Y'i and .!/2 in flll®Q,. These orders are distinct, and 
they are unique up to permutation. (See, for example, [30], Lemma 2.4, 
page 39.) We shall refer to them as the characteristic orders of flJl at .e. 

An orientation of flJl at .e I N is a choice of one of the two character
istic orders of flJl at .e. This choice may be given, simultaneously for all 
.e IN, by an inclusion flll~flll', where flll' is a maximal order of flll®Q 
which is a characteristic order for flJl locally at each .e IN. (We say that 
flll' is a characteristic order of flll. There are 21 such orders, where t is 
the number of prime divisors of N.) An orientation of flJl at p ID, relative 
to the field Fp., is a homomorphism flll_,,.Fp•· To give such a homomor-
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phism is to give one of the two isomorphisms between FP. and the residue 
field of f/1, at p. 

An orientation of f/1, is an orientation of f/1, locally at each prime 
dividing ND. We refer to f/1, as an oriented Eichler order. It is clear 
what is meant by an isomorphism of oriented Eichler orders. 

Local isomorphism classes 
In this section, we suppose given maximal orders (!) and SI' in two 

quaternion algebras over Q. The discriminants of the rings (!) and SI' 
are thus the discriminants of the quaternion algebras (!J@Q and Y@Q, 
respectively. We assume given a field FP. for each prime p which divides 
the discriminant of either (!) or SI'. Further, we suppose that the two 
orders(!) and SI' have been oriented with respect to these fields Fp•· 

For use below, we define: 
• I to be the (possibly empty) set of prime numbers which ramify 

in each of(!) and SI'; 
• LI to be the set of primes numbers which ramify in one of(!), SI', 

but not the other: 
• D to be the product of the prime numbers in LI. 

We shall assume for convenience that Dis different from 1, i.e., that LI is 
non-empty. 

We consider((!), Y)-bimodules which satisfy a condition which glob
alizes (3). Namely, we introduce for each p e I the maximal ideals &' • 
and &' v of(!) and SI' whose residue fields have cardinality p 2• We call an 
((!), Y)-bimodule M admissible if it is free of finite rank over Zand satisfies 
the condition 

(9) &',M=M&'v for allp e I. 

Our aim is to classify admissible modules of fixed rank. 
Our assumption D> 1 easily implies that the Z-rank of Mis always 

divisible by 8. Indeed, let d be a quaternion algebra which represents 
the sum of (!J@Q and Y@Q in the Brauer group Br(Q) of Q. Because 
D> 1, dis a division algebra. If M is an ((!), Y)-bimodule, there is an 
induced action on M@Q of the tensor product 

((!J@Q)@(Y@Q)zM(2, d). 

The action of M(2, d) on M@Q breaks up M@Q into the direct sum of 
two isomorphic d-vector spaces, each of which has Q-dimen<iion divisible 
by 4. 

In our applkation, (!) will be a maxim~! order in an indefinite quater
nion algebra over Q, while SI' will be a maximal order in a definite quater-
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nion algebra over Q. Thus the two quaternion algebras will not be 
isomorphic, and our assumption D =/= 1 is automatically satisfied. In any 
case, our main applications concern the situation where the Z-rank of M 
is equal to 8. 

If Mis admissible and g is a prime, we let M 8 be the tensor product 
M®Z 8 and similarly define (!)8 and !/78• Then M, is a (0 4, !/' 8)-bimodule. 
In particular, when g = p is an element of 2, we may consider MP as an 
((!)p, (!)P)-bimodule after choosing an isomorphism (!)P-z!/'P. This bimodule 
of course satisfies the condition (3). Consequently, the isomorphism 
class of MP may be read off from that of 

Mp=M/(Mf71 s-)=M/(f71mM) 

in view of Theorem 1.3. The endomorphism ring of MP is similarly 
calculated by Corollary 1 to Theorem 1.4. In particular, this endomor
phism ring is isomorphic to a hereditary order in M(2n, Zp), where n= 
rankz(M)/8. 

On the other hand, when g $ 2, it is easy to see that the isomorphism 
class of M 8 depends only on the rank of M over Z. Indeed, suppose to 
fix ideas that g is unramified in!/', so that !/78 is isomorphic to the matrix 
algebra M(2, Z 8). The bimodule M 8 may be viewed as a left module over 

Thus, to give M 8 is to give a module over (!)8 whose rank is half that of 
M 8, i.e., 4n. On the other hand, it is standard that all (!}-modules which 
are free of finite rank over Z 8 are free over 08 • (See, for example The
orem 18.7 of [25].) We find that End(M,) is isomorphic to M(n, (!)8). In 
the typical case where g is unramified in (!) (as well as in!/'), End(M,) is 
thus isomorphic to M(2n, Z 1). 

The following results no"W follow directly. 

Proposition 2.1. Suppose that M is an admissible ((!), !/7)-bimodule 
of rank Sn. Then the Q-algebra End(M)®Q is isomorphic to the matrix 
algebra M(n, d), where d is a quaternion algebra over Q whose class in the 
Brauer group Br(Q) is · the sum of the classes of the quaternion algebras 
(!)@Q and !/'@Q. In particular, d is a matrix algebra locally at each 
prime pin 2. The ring End(M) is a hereditary order in End(M)®Q which 
is maximal locally at all primes g $ 2. 

Proposition 2.2. Let M and N be admissible bimodules of equal rank 
Sn. Then M 4 and N 8 are isomorphic (0 8, !/78)-bimodules for all g $ 2. For 
p e 2, MP and NP are isomorphic if and only if MP and NP are isomorphic 
(0/f71m, !/'Jf71 s-)-bimodules. 
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In connection with the latter proposition, it should be stressed that 
the isomorphism classes of MP and NP are each determined by a pair of 
integers (r, s) summing to 2n. Indeed, as in the discussion of Theorem 
1.3, to give an (0/f!l'e, 9'/f!l'.9')-bimodule is to give a vector space over each 
of two fields isomorphic to Fp•· 

Isomorphism classes and right modules 
Let Mbe an admissible bimodule, and pose A=End(M). For each 

admissible bimodule N which is locally isomorphic to M (in the sense 
that it becomes isomorphic to M after tensoring with Z, for all primes £), 
let 

J(N)=Hom(M, N) 

be the set of bimodule homomorphisms M-N. This abelian group is a 
right A-module under composition. It is visibly locally free of rank I in 
the sense that we have an isomorphism 

for each prime£. Indeed, if <fie e Hom(M,, N,) is an isomorphism M,~ 
N,, then <fie is a basis for J(N)z®Z, over A®zZ,. 

Theorem 2.3. The association N >--+J(N) establishes a bijection be-
tween the sets of isomorphism classes of the following objects: 

• (0, 9')-bimodules which are locally isomorphic to M; 
• Locally free rank-I right A-modules. 

Proof For J locally free of rank I over A, consider 

This tensor product has a natural bimodule structure coming from the 
actions of(!) and 9' on the second factor. Locally at each prime £, we have 
by hypothesis an isomorphism J - A; this establishes an isomorphism 
(locally) N(J)-M, which tells us that N(J) is locally isomorphic to M. 

To check that N(J(N)) is isomorphic to N, we note that the contrac
tion map 

is an isomorphism-this is clear locally. Similarly, we have 

Hence the two constructions are inverses of each other. 0 
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Eliminating base points 
We now complement Theorem 2.3 with a statement which describe3 

the set of isomorphism classes of admissible bimodules of Z-rank 8 in an 
intrinsic fashion, i.e., without demanding that a base point M be fixed as 
in Theorem 2.3. We first consider local equivalence: two bimodules M 
and N are locally isomorphic or locally equivalent if Me=Ne for all primes 
£. Assuming that M and N both have rank 8, their localizations Me 
and Ne are a priori isomorphic for all £ $ J:. Hence the local equivalence 
is the statement that we have MP=Nv for eachp e J:. 

As discussed above, the isomorphism class of Mv is determined by 
that of the (@/!!Ji,, 9'/f!Ji9')-bimodule 

which has rank 4 over FP. Every finite (@/!!Ji., 9'/f!Ji9')-bimodule is a direct 
sum of a certain number of copies of FP'' on which @j !!Ji• and 9' / tjJJ 9' act in 
the obvious way by multiplication, and a "twisted" FP'' on which @jf!Ji. 
acts in the obvious way by multiplication and 9' / !!Ji 9' acts by conjugate 
multiplication. In particular, MP is a sum of, say, rP copies of Fv, and 
(2-rv) copies of the twisted Fv•· We may restrict consideration to 
bimodules in a fixed local equivalence class by requiring, for each p e J:, 
that r P take a fixed value between O and 2. 

We suppose, then, in the following discussion that numbers rp have 
been fixed and that Mis an admissible bimodule of Z-rank 8 for which 
the modules MP have "invariant" rp. Let A be the ring of endomorphisms 
of the bimodule M. We shall show that the isomorphism class of Mis 
characterized by the isomorphism class of A as an oriented Eichler order. 

As a special case of Proposition 2.1, the endomorphism algebra 
A®Q is (up to isomorphism) that quaternion algebra d' over Q which is 
ramified precisely at the primes in LI. The ring A= End(M) is an order 
in A®Q which is maximal locally at all primes £ $ J:. At a prime p E J:, 
A is a maximal order if r v = 0 or 2 and is an Eichler order of level p if 
r P = 1. (See Corollary 1 to Theorem 1.4 and the example given at the 
end of its proof.) We may summarize this information by saying that A 
is isomorphic to an Eichler order of level N in d', where N is the product 
of those primes p E ,J; for which r P = 1. 

Let p now be a prime in LI. Then, in particular, A is maximal at p. 
There is a canonical isomorphism between the residue field of A at p and 
the field Fv•· To see this, consider the case where pis ramified in @, but 
not in 9'. Let !!Ji be the prime of@ whose residue field is FP,. The quo
tient M/f!Ji Mis then an (Fp,, 9')-bimodule, i.e., a left module over FP,®9' 
=M(2, FP2). Moreover, this quotient has rank 2 as an Fv,-vector space, 
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since M has rank 8 over z. Therefore, the action of M(2, Fp,) on M 
identifies M(2, Fp.) with a subalgebra of the algebra of FP-endomorphisms 
of M/fJM. The commutant of this subalgebra is FP,; i.e., the algebra 
of bimodule endomorphisms of M/fJM is precisely Fp•· Since A is the 
ring of bimodule endomorphisms of M, there is a natural map 

This map establishes the desired isomorphism. The set of maps 

is the first part of our orientation of A. 
The second part concerns the set S O consisting of those primes p e S 

for which r P = l. If p is such a prime, M contains a canonical submodule 
of index p2 for each of the two possible isomorphisms tY I fJ ~ ~ 51' / fJ r 

To see this, we remark again that the quotient MP of M is intrinsically 
the direct sum of two I-dimensional FP,-vector spaces corresponding to 
the two isomorphisms. The kernels of the maps from M to each of these 
two submodules are the submodules of Min question. It is easy to see 
from the description in Corollary 1 to Theorem 1.4 that the endomor
phism ring A of Mis the intersection in End(M®Q) of the endomorphism 
rings of these two submodules. These endomorphism rings are each 
Eichler orders of level N/p in End(M®Q); they are, locally at p, the two 
maximal orders whose intersection is A. To choose one of these maximal 
orders is to orient A at p. Our order A is indeed oriented at each p e S0 

because the chosen orientations furnish, in particular, isomorphisms @jfJ f/ 
~.'/'ffJ f/ for each such p. Since orders in a quaternion algebra may be 
specified locally, the local orientations of A determine a maximal order A
of A®Q which contains A. 

To summarize, we fixed a collection of integers 

where the rP satisfy 0<rP~2. We considered admissible bimodules M, 
free of rank 8, for which the various reductions MP of M have "invariants" 
r P" Each M gives rise to its endomorphism ring A, which is an Eichler 
order of level Nin a quaternion algebra of discrimiant D. Here N is the 
product of the primes in SO : those primes in S for which r P = l. The 
Eichler order A is oriented at each prime p e LI by the map Pp• It is 
oriented at each prime p e S O by the maximal order A-;2 A. It is thus 
an oriented Eichler order of level N in a quaternion algebra over Q of 
discriminant D. 
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Theorem 2.4. The map M ~A (with its orientation) induces a bijec
tion between the set of isomorphism classes of admissible the rank-8 
bimodules M with invariants r P and the set of isomorphism classes of oriented 
Eichler orders of level Nin quaternion algebras of discriminant D. 

Proof First, let Mand M' be bimodules of the type under consid
eration, and assume that they have isomorphic oriented Eichler orders A 
and A'. We must show that Mand M' are isomorphic. Let J again be 
Hom(M, M'), first considered as a right A-module. It will enough to 
show that J is trivial, i.e., free of rank 1 over A (Theorem 2.3). 

For this, we choose and fix an isomorphism of oriented Eichler 
orders A::::::A'. Via this isomorphism, J(which is a priori a (A', A)-bimodule) 
becomes a (A, A)-bimodule. It is clear that this bimodule is invertible 
([25], page 319) with inverse Hom(M', M). (Recall that Mand M' are 
isomorphic locally.) It is a fortiori sufficient to show that this bimodule 
is isomorphic to the trivial invertible bimodule A. Equivalently, we must 
show that its class in the Picard group of A ([25], page 320) is trivial. Since 
the center of A is trivial, the Picard group of A coincides with the group 
Picent A (foe. cit.). The exact sequence (37.29) in Theorem (37.28) of [25] 
therefore shows that it is sufficient to check that JP is trivial in Picent AP 
for every prime number p. 

It is known that this group is trivial for all p prime to N. D and 
cyclic of order 2 for all p dividing N-D (see [25], Theorem (37.27) and 
Exercise (39.6)). We need consider, then, only the situation for p ID and 
for p!N. 

First suppose that p divides D. Then JP is, first, a free right AP
module of rank 1, and we have naturally 

Each basis element for the right A-module JP thus defines an isomorphism 
A~:::::::AP; changing the basis changes the isomorphism by an inner auto
morphism of AP" In particular, there is a canonically defined isomor
phism between the residue fields of AP and A~, since these residue fields 
are commutative. This canonical isomorphism is, in another optic, the 
isomorphism resulting from the orientations of A and A' at p. Since our 
chosen isomorphism A'::::::: A is compatible with orientations, it induces the 
canonical isomorphism on the level of residue fields. It is easy to see 
from this that there ic; a basis element v of JP for which the associated 
isomorphism A~:::::::AP is the base extension to ZP of the chosen isomor
phism. This basis element defines the isomorphism 1~v1 of AP onto JP. 
A tautological computation now shows that this is an isomorphism of 



376 K. A. Ribet 

AP-biomodules. Hence JP is trivial in Picent Aw 
A similar computation treats the primes p dividing N. Here, again, 

each basis element of the right AP-module JP defines an isomorphism 
A~=AP. The point is that an isomorphism A~=AP is obtained from 
some basis element if and only if it is compatible with the orientations of 
AP and A~. Explicitly, AP comes equipped with a maximal order A; 
containing Ap, and similarly for A~. An isomorphism A~=AP is com
patible with the orientations if it carries A~- to its analogue A;. In 
particular, our chosen isomorphism A'= A leads by base extension to an 
isomorphism A~=AP which comes from a basis vector. Making explicit 
what this means, we again find that JP is trivial in Picent AP. 

We thus have shown that our association (bimodule) >---+ (oriented 
order) is injective, and we want to show that it is surjective. For this, we 
begin by verifying that there is at least one bimodule M of the type under 
consideration. (This does not seem to be obvious!) It is enough to carry 
out this step in the special case where all r P = 1 : the module M constructed 
in that case will have canonical submodules which exhibit all possible col
lections (rp). (These canonical submodules are defined as in the discussion 
showing that A is oriented at p when p is in J; 0 .) 

Furthermore, it is enough to construct M after a possible replacement 
of(!) and/or Y' by another maximal order having the same discriminant. 
Indeed, suppose for instance that we have constructed an(@, Y'')-bimodule 
M' with the desired properties, where Y'' has the same discriminant as Y'. 
Then we can find an (Y'', Y')-bimodule I which is locally free of rank 1 
over each of Y' and Y''. (We can first reduc-: to the case where Y' and Y'' 
are orders in the same quaternion algebra. Then the I to be found is a 
left Y''-ideal whose right order is Y'. It is classical that such ideals exist.) 
Once I is found, we can set 

Then M has a right Y'-action as well as the left @-action inherited from 
M; it is not hard to show that M is admissible and has invariants r P = I 
if M' has these properties. 

To carry out the construction, we choose a quadratic number field K 
which is ramified at all primes p e J; and which can be embedded in both 
quaternion algebras @@Q and Y'@Q. (It is enough that all primes p e t1 
ramify or stay prime in K and that K be imaginary if one of the two 
quaternion algebras is definite.) Let Ox be the integer ring of K. It is 
known that Ox can be embedded in some maximal orders in each of the 
quaternion algebras @(8) Q and Y' (8) Q. (Although this fact is presumably 
very elementary, one may be deduce it from the more precise Theorem 
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5.11 of [30].) 
For the reasons explained above, we may assume that these orders are 

in fact (f) and .9. Let us fix, then embeddings Ox~(f) and Ox=--+.9. 
Consider the tensor product 

M=(!}@ox.9, 

which has an evident((!}, .9)-bimodule structure. It is (locally) free of rank 
8 over Z, since (f) and are each locally free of rank 2 over Ox· 

Let us check that Mis admissible at each p e 2 and that its invariants 
rP are all 1. Choose a basis for the right Ox®ZP-module (f)@ZP. In 
terms of this basis, the left action of (f) ® Z P on (!}@Z P is described by a 
homomorphism 

Since p is ramified in K, the maximal ideal of (!}@ZP is generated by a 
uniformizer tr: of Ox® Zp. This shows that f(& .®Zp) consists of matrices 
whose coefficients are divisible by tr:. Therefore M is admissible at p. 
Indeed, in matrix terms the local bimodule MP is given by the composite 
off and the map on matrix rings deduced from the inclusion of Ox in .9. 
Matrices divisible by tr: map to matrices divisible by & v under this map. 

To check that the value of rP is I, we reduce the matrix maps "mod 
&." The map/becomes an embedding 

(10) 

since the residue field of K at p is the prime field Fp. After extension to 
a quadratic extension of Fp, this representation of (f)jfYJ0 .::::FP. necessarily 
becomes a direct sum of the two possible embeddings of FP. into the 
quadratic extension. In particular, the map 

(11) 

which describes the bimodule MP is the direct sum of each of the two 
possible isomorphisms (!} / & •-;:::; .9 / & v· This is another way of saying that 
rP=l. 

Knowing that bimodules M of the desired type exist, we fix one of 
them, say M 0 • Let A be the endomorphism ring of M 0 • Thus A is an 
oriented Eichler order of level N in the quaternion algebra .n" =A® Q of 
discriminant D. 

For the moment, regard A a" an Eichler order and forget that it is 
endowed with an orientation. It will be enough (in view of Theorem 2.3) 
to show that the number of isomorphism classes of locally free rank-I 
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right A modules is finite and equal to the number of types of oriented 
Eichler orders of level Nin a quaternion algebra of discriminant D. 

Let .# be the ring of finite adeles of .Yf. Similarly, let A= A® i be 
the product of the local completions of A. Then for each x=(xp) E .Yf'*, 
a locally free rank-I right A module is de fined by the intersection 

in .#. This construction sets up a 1-1 correspondence between the set of 
locally free rank-I right A-modules and the double coset space .Yf*\.Yf'*/A*, 
cf. [30], page 87. This double coset space is finite (loc. cit., Th 5.4). 

On the other hand, the (unoriented) Eichler orders of level N inside 
.Yf are in 1-1 correspondence with .Yf'*/JV(A), where JV(A) is the normal
izer of A in .#*. (To (xp) we associate the order whose completions are 
the orders xPAPx;;1.) Therefore, the isomorphism classes of Eichler orders 
of level Nin a quaternion algebra of discriminant D are represented by the 
double coset space .Yf*\.Yf'*/JV(A) (Skolem-Noether theorem). The evident 
surjection 

rr:.Yf*\.#*/A*---+.Yf*\.#*/JV(A) 

corresponds to the association which attaches to each right A-module J its 
left order. 

Remembering that A has an orientation, we can mimic the above con
struction and view adelically the set of isomorphism classes of oriented 
Eichler orders. The principal difference is that the "normalizer" of the 
oriented Eichler order AP in .Yf ® QP is the product Q; A; for each prime 
p (whereas for unoriented orders the normalizer is "twice as big" when p 
divides ND). We thus find that the set of types of oriented Eichler orders 
of level N and discriminant D is in 1-1 correspondence with the double 
coset space 

.Yf*\.#*/A*Q*. 

(Here Q is of course the ring of finite adeles of Q.) Since Q* is the product 
of Q* and the group Z*, and since the first of these factors is in .Yf* and 
the second in A*, the latter double coset space is equal to .Yf*\.Yf'*/A. D 

§ 3. Abelian surfaces in characteristic q 

The aim of this section is to giv"! a quaternionic classification of 
certain supersingular objects in finite characteristic. In order to aovid 
conflict with later notation, we call the characteristic q, rather than p. 
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We classify supersingular elliptic curves with I' 0(M)-structures, obtaining 
a variant of the usual result '( due to Deuring) in which no base point is 
fixed a priori. More generally, we classify supersingular abelian surfaces 
with an action of a maximal order R in a rational indefinite quaternion 
algebra which is split at q. The case of elliptic curves corresponds to the 
particular choice R = M(2, Z). 

Supersingular points 
Let q be a prime number. Let R be a maximal order in an indefinite 

quaternion algebra over Q whose discriminant is prime to q. (We do not 
exclude the case where R is isomorphic to M(2, Z).) Let D be the product 
of q and the discriminant of R; thus, Dis the discriminant of some definite 
quaternion algebra over Q. 

Suppose given finite fields FP, for each prime p dividing D. We 
assume that R is furnished with an orientation at each prime p dividing 
D/q, and we let F be an algebraic closure of Fq,. We consider pairs (A, t), 
where A is an abelian surface over F and t is an embedding 

In our application, we shall study only those pairs which are supersingular 
in the sense that they are isogenous to a product of two supersingular 
elliptic curves over F. Note that a well known theorem in [29], § 3 states 
that all products of n supersingular elliptic curves over F are isomorphic, 
provided that n> 1. In [29], the result is attributed to P. Deligne. The 
proof depends on Eichler's theorem to the effect that the class number of 
M(n, !!J) is 1 whenever !!J is a quaternion algebra over Q and n > 1. 

Let a(A) be Oort's invariant 

where aq is the usual group scheme aP withp=q. We have a priori: 
1. 1 <a(A)<2. 
2. The abelian variety A is isomorphic to a product of two super

singular elliptic curves if and only if a(A)=2. 
For the first statement, see [21], §2. The second statement follows from 
[23], Theorem 2 and Remark 3. 

In fact, it is clear that A is necessarily isomorphic to a product of two 
supersingular elliptic curves over F. Indeed, the F-vector space Homp(aq, A) 
is naturally a module over R@F~M(2, F). Its dimension a(A) is there
fore even. Since a(A) is a priori either 1 or 2, it follows that we have 
a(A)=2, which implies the claim. 

We wish to study the set of isomorphism clas~es of pairs (A, c) with 
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A supersingular. Before doing so, we observe that this set is independent 
of the choice of R as an oriented order. Indeed, if R' is another oriented 
maximal order of discriminant D/q, we can find an isomorphism 4>: R-.R' 
of oriented orders because of Eichler's approximation theorem ([30], Th. 
4.3, p. 81). (The Eichler condition is satisfied because R®Q is an indefinite 
quaternion algebra.) This isomorphism is unique up to inner automor
phisms of R or R'. Given a pair (A, t'), where 

t': R'=--.+Endp(A), 

we define 

by the formula t' o </>· The isomorphism class of the pair (A, t) thus defined 
does not change if we change ¢, by an inner automorphism of R. 

To study the pairs (A, t), we fix a supersingular elliptic curve E over F 
and let S=End(E). To give (A, t) is to give a homomorphism R-.M(2, S), 
or equivalently to give an (R, S)-bimodule M which is free of rank 8 over 
Z. According to a well known theorem of M. Deuring, S is a maximal 
order in a quaternion algebra of discriminant q over Q. The bimodule M 
is automatically admissible, as the discriminants D/q and q of Rand Sare 
relatively prime. By Theorem 2.4, the pairs (A, t) are thus classified by 
isomorphism classes of oriented maximal orders in quaternion algebras 
over Q of discriminant D. 

To be more precise, we note that for each (A, t), the ring End(A, t) 
=EndR(A) is a maximal order in the quaternion algebra End(A, t)®Q, 
which has discriminant D. This order is naturally oriented: 

• Let r be a prime divisor of D/q. Let m be the maximal ideal of R 
of residue characteristic r. Then R/m may be identified with Fr•, 
because of the given orientation of R. The kernel A[m] is an Fr.
vector space of dimension I. The action of End(A, t) on this vector 
space thus defines a homomorphism 

End(A, t)--?'Fr•· 

This homomorphism is an orientation of End(A, t) at r. 

• Let T be the Lie algebra of A, so that T is an F-vector space of 
dimension 2. The action of R on A induces an action of R ® F on 
T. The ring EndR(T) is easily seen to coincide with the ring F of 
homotheties of the F-vector space T. The action of End(A, e) on 
T thus defines a homomorphism 
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In view of the structure of the ring End(A, ,), this homomorphism 
must in fact take values in the subfield Fq, of F. Hence it defines 
an orientation of Etid(A, e) at the prime q. 

Theorem 2.4 then gives the following result: 

Theorem 3.1. Let R be an oriented maximal order in a quaternion 
algebra of discriminant D/q over Q. The construction 

(A, ,)~End(A, e) (with its natural orientation) 

induces a bijection between the set of isomorphism classes of supersingular 
abelian surfaces with R-action over F and the set of isomorphism classes of 
oriented maximal orders in quaternion algebras of discriminant Dover Q. 

In the special case D = q, R may be taken to be the matrix ring 
M(2, Z). To give a pair (A, e) is then to give a supersingular elliptic curve 
over F. Our theorem then becomes a famous result of M. Deuring, as 
reformulated by Mestre and Oesterle [17]. 

I' o{M)-structures 
First, fix a pair (A, e) over F for which A is supersingular. Suppose 

that M> 1 is an integer which is prime to D. A I'o(M)-structure on (A, e) 
is an R-stable subgroup C of A(F) which is isomorphic to (Z/ MZ) 2 as an 
abelian group. For each I' 0(M)-structure Con (A, e), let End(A, ,, C) be 
the subring of End(A, ,) consisting of R-endomorphisms 4 of A for which 
4 ( C) ~ C. Visibly, this ring is an order of End (A, e) ® Q which lies between 
M-End(A, e) and End(A, ,). Hence it agrees with End(A, ,) locally at 
each prime .e not dividing M. 

Let us examine the situation at .e when .e divides M. To fix ideas, we 
will first assume that M = .e• is a power of .e. Let T, be the z,~adic Tate 
module of A; this Tate module is a free left rank-1 module over the ring 

R8 =R®Z,. Choose an isomorphism R8 ~M(2, Z,), and let L=(b g)r,. 
Then the map 

induces an isomorphism Y,,::::;LffiL. To give a I' 0 (M)-structure C on 
(A,,) is to give an R-stable lattice T'~T, such that T'/T 8 is isomorphic to 
(Z/MZ)2. Such a lattice is necessarily of the form L'ffiL', where L'2L 
is a lattice in L®Q, for which L'/L is cyclic of order M. Conversely, 
given any L' with this property, the lattice L'ffiL' is a suitable T'. 
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As is well known (cf. [30], pp. 40-41), the map L' ~ End(L') es
tablishes a 1-1 correspondence between the following sets of objects: 

( i) Lattices L' in the Qi-vector space L® Q8 which contain L and 
such that L' / L is cyclic; 

(ii) Maximal orders f/ in the ring End(L)®Q,. 
Further, the map f/~f/n End(L) is injective. Indeed, as observed by 
Hijikata, if f/ 1 and f/ 2 are maximal orders in End(L)®Q" they form the 
unique unordered pair of maximal orders with intersection f/ 1 n f/ 2 ([30], 
Lemma 2.4, p. 39). Hence we have a 1-1 correspondence between lattices 
L' as in (i) and certain.orders contained in End(L). This correspondence 
is given explicitly as 

L'~End(L') n End(L). 

Now the intersections End (L ') n End(L) are Eichler orders of 
End(L)®Q,; they are more precisely those Eichler orders for which 
End(L) is one of the two characteristic orders. (Recall that, in the 
terminology we have introduced, the two characteristic orders of R 1 n Rz 
are R 1 and R2.) In the correspondence between lattices L' and Eichler 
orders with this property, it is clear that the index (L': L) coincides with 
the level of the Eichler order End(L') n End(L). Therefore, we have 

Lemma 3.2. The I' 0 (M)-structures on (A, t) are in 1-1 correspondence 
with the Eichler orders of level M=f? in End(L) for which End(L) is a 
characteristic order. 

In order to make the correspondence more canonical, we note that 
the natural operation of 

End(A, t)®Z,=EndR®ziT, 

on L=(6 g)r, serves to identify End(A, t)®Z 8 with End(L). A more 

intrinsic statement of Lemma 3.2 is that the map 

C~End(A, t, C)®Z 8 

induces a 1-1 correspondence between the set of I'.(M)-structures on (A, t) 
and the set of Eichler orders of level Min End(A, t)®Z 8 for which 

End(A, t)®Z 8 

is a characteristic order. 
In the more general situation where M is no longer necessarily a 

power of£, we invert only the primes dividing D. For each C, the ring 
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End(A, c, c)[f] 
is a Z[l/D]-order in the quaternion algebra End(A, c)@ Q, whose dis
criminant is D. We have 

Proposition 3.3. The map 

C~End(A, t, C)[-¼] 
induces a 1-1 correspondence between I'o(M)-structures on (A, t) and 
Z[l/D]-Eichler orders in End(A, t)@ Q of level M,for which End(A, t)[I/D] 
is a characteristic order. 

We now complement Theorem 3.1 with a classification of triples 
(A, t, C), where A is supersingular and where C is a I'o(M) structure on 
(A, t). (We no longer consider the pair (A, t) to be fixed.) The ring of endo
morphisms of (A, t, C) is then an Eichler order of level Min the quaternion 
algebra End(A, t)@ Q over Q of discriminant D. To see this, we can work 
locally: the statement is true at primes not dividing M because End(A, t, C) 
and End(A, t) coincide locally there, and it is true at ;,rimes not dividing 
D by Proposition 3.3. By a similar reasoning, we observe that this order 
has a natural orientation at each prime dividing its discriminant MD. 
Indeed, locally at the primes dividing D, this ring coincides with End(A, t), 
which already has a natural orientation. On the other hand, at primes 
dividing M the inclusion 

End(A, t, C)~End(A, t) 

becomes an orientation of End(A, t, C), since End(A, t) becomes a charac
teristic order of End(A, t, C) at those primes. 

Theorem 3.4. Let M be a positive integer prime to D. Let R be a 
maximal order as in the statement of Theorem 3.1. The construction 

(A, t, C)~End(A, t, C) (with its natural orientation) 

induces a bijection between the set of isomorphism classes of supersingular 
abelian surfaces over F with an R-action and a I'o(M)-structure, and the set 
of isomorphism classes of oriented Eichler orders of level M in a qu:iterni
on algebra of discriminant D over Q. 

Proof We first consider the injectivity. Assume that there is an iso
morphism of oriented orders 
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End(A, t, C)~End(A', t', C') 

for two triples (A, t, C) and (A', t', C'). Since the isomorphism respects 
the orientations, it carries End(A, t) to End(A', t'). By Theorem 3.1, the 
pairs (A, t) and (A', t') are isomorphic. Therefore, we may, and shall, 
assume that they are equal. 

This means that our initial isomorphism of oriented orders is induced 
by an automorphism of the oriented order End(A, t). However, all such 
automorphisms are inner, i.e., induced by automorphisms of (A, t). Re
placing C' by aC', for a a suitable automorphism of (A, t), we reduce to 
the case where the two orders End(A, t, C) and End(A, t, C') are equal 
inside End(A, c). By Proposition 3.3, we see that the groups C and C' are 
then equal. 

The surjectivity is similar. Given an oriented Eichler order d as in 
the statement of the theorem, we let !!!"2.d be the oriented maximal order 
which is deduced from d and its orientations at the primes dividing M. 
Using Theorem 3.1, we write !!I in the form End(A, c), for some pair (A, c). 
By Proposition 3.3, we see that dis necessarily equal to End(A, c, C) for 
some C, as required. D 

§ 4. Abelian surfaces in characteristic p 

The material in this section is a variation of Oort's theme that arbi
trary supersingular abelian surfaces in characteristic p are obtained from a 
product of two elliptic curves by dividing the product by subgroups iso
morphic to aP. This theme is developed in [9, 12, 21, 23] and in [22]. (See 
also [15] and [31] for generalizations to higher-dimensional Shimura 
varieties.) 

In this section, we again consider abelian surfaces which are furnished 
with an action of a maximal order in an indefinite quaternion algebra over 
Q. We suppose that we are in characteristic p and that the prime p 
ramifies in the maximal order we are considering, This latter assumption 
creates a situation which is quite different from that of the previous section, 
where it was explicitly assumed that the characteristic (which we called q) 
was prime to the discriminant of the maximal order R. 

Exceptional pairs 
Let p be a prime number. Let <P be a maximal order in an indefinite 

quaternion division algebra over Q. We assume that p divides the dis
criminant of <P, which we write as the product Dp. We suppose given 
finite fields Fe• for each prime number£ dividing pD, and we suppose that 
0 has been oriented relative to these fields Further, we choose an algebraic 
closure k of Fp•· 
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We consider pairs (A,,) over k, where, is an embedding 

, : m------+End(A). 

In our initial discussion, we suppose that such a pair is given and fixed. 

Lemma 4.1. The abelian variety A is supersingular. 
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Proof The proof is elementary ([6], § 4): we consider the QP-adic 
Tate module Vp(A) of A constructed withp-power division points of A(k). 
Then Vp(A) has rank at most 2 over QP. However, it is a vector space 
over the quaternion division algebra m 0 QP. Its rank is therefore a 
multiple of 4 and must accordingly be 0. D 

In contrast to the situation which we encountered in characteristic q, 
the abelian variety A in a pair (A, , ) need not be isomorphic to a product 
of two supersingular elliptic curves. To explore this phenomenon, we are 
led to study the Dieudonne module of A, cf. [23]. 

More precisely, let Jt be the contravariant Dieudonne module associ
ated to the p-divisible group of A by Oda [20], cf. [21], § 1. Thus Jt is a 
free rank-4 module over the ring W = W(k) of Witt vectors over k. This 
module is furnished with its usual operators F and V, plus an induced 
right-action of the ring m. It follows that the tensor product 

acts naturally on Jt on the right. In the following discussion, we recall 
some standard facts about mP. A convenient reference for them is the 
second chapter of [30]. 

The ring mP is the maximal order in a quaternion division algebra 
over Qw Let &1 be the maximal ideal of mp. Then mP/&1 is a finite field with 
p2 elements, which we may identify with Fp., using the given orientation 
of m. 

Consider the submodules FJt and V Jt of Jt, and let (F, V)Jt denote 
their sum. These modules contain pJt =FV Jt, so that the quotients 
Jt/FJt, Jt/V Jt, Jt/(F, V)Jt are naturally k-vector spaces. Let a(A) be 
Oort's invariant 

We have: 

1. dimiJt/FJt)=dimiJt/V J/)=2, 
2. 1 <a(A)~2. 
3. The abelian variety A is isomorphic to a product of two super

singular elliptic curves if and only if a(A)=2. 
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Indeed, the first statement is true for the Dieudonne module attached to 
every abelian surface over k, cf. [21], §1. The second and third statements 
are true because of the above lemma, cf. our discussion of supersingular 
abelian surfaces over F. 

The following definition is motivated by Drinfeld's article [6]. 

Definition. A pair (A, c) is exceptional if the action of 0/p0 on 
JI/FJI factors through the quotient FP, of 0/p0. 

Proposition 4.2. Suppose that (A, c) is exceptional. Then A is iso
morphic to a product of two supersingular elliptic curves. 

Proof The hypothesis may be restated as the inclusion Jlf!?<;;;;FJI. 
Using it twice, we obtain the chain 

from which we infer V JI <;;;;F JI. (The map Facts injectively on JI, since 
FV= VF=p on JI and since JI is a free W(k)-module.) This latter in
clusion implies the equality (F, V)JI = F JI. Since JI/ F JI has k-dimension 
2, we get a(A)=2. As mentioned above, this numerical condition is 
equivalent to the desired conclusion that A is a product of supersingular 
elliptic curves. D 

Remarks. 
• In the situation of Proposition 4.2, we have in fact F JI= V JI= 

JI f!?: all the inclusions above are equalities. 
• It is possible to construct examples of non-exceptional pairs (A, c) 

where a(A)=2. 

Pure and mixed pairs 
Let ;r be a generator of f!l, i.e., a uniformizing element of <PP" Fixing 

a splitting of the quotient map 

we view FP, as a subring of 0/p0. We have 

0/p0 =Fp,!f)Fp,-,r, 

and 

(12) 

for a e FP'' cf. [30], pp. 34-35. 
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Consider the action of the submodule FP, of (!)jp(!) on the 2-dimensional 
k-vector space 

Letting a and -r be the two embeddings FP,~k, we find a canonical de
composition of k-vector spaces fi'=fi'Jf)!i',, where 

fi',={t E !i'lat=a(a)t for all a E Fp,}, 

and where a similar definition is made for fl',. (The action of FP, on fl' 
should, strictly speaking, be written on the right, but we write it on the left 
since FP, is commutative.) 

Because of our choice of k as an algebraic closure of FP'' we are able 
to "label" a and -r so that one embedding is the inclusion FP, ~k and 
the other embedding is the conjugate of this one. We will in fact do this 
below, but it is preferable for the moment to allow a and -r to play sym
metrical roles. 

In (the English translation of) [6], the word "special" is used to denote 
situations where the t\\-o spaces fl', and fl', are each non-zero (i.e., each of 
dimension 1 ). Let us instead use the term mixed to refer to such situations 
and the term pure in the case where one of fl', and fl', is 2-dimensional 
and the other is 0. For precision, we say that (A, c) is pure of type a if L, 
is 2-dimensional and fi',=0. We say that (A, c) is pure of type -r if the 
situation is reversed. 

Thus the space of (isomorphism class of) pairs (A, c) is divided into 
three "packages": 

• The mixed pairs; 
• The pure pairs of type a; 
• The pure pairs of type -r. 

Proposition 4.3. All pure pairs are exceptional. 

Proof Indeed, suppose that (A, c) is pure. Then (12) shows that re 
maps fl', to fl', and vice versa. Since one of these is O and the other all 
of vlt/Fvlt, re must be O on fl'. D 

Classifying subgroups of A isomorphic to a P 

As will be explained below, there is a simple relation between the 
mixed and pure pairs, connected with {!}-stable subgroups of A which are 
isomorphic to the group scheme aP. Namely, suppose we consider triples 
(A, c, H), where His an {!}-stable subgroup of A which is isomorphic to aP. 
Then there is a simple 1-1 correspondence, reminiscent of the Atkin-Lehner 
involution, which maps such triples with (A, c) pure to such triples with 
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(A,,) mixed, and vice versa. The fact that there are "many more" mixed 
pairs than pure pairs is counterbalanced by the following phenomenon: 
If (A,,) is pure, then the possible subgroups H are parameterized by a 
projective line over k. On the other hand, for (A, , ) pure, there are at 
most two possible subgroups H (and always at least one). 

For a given pair (A,,), the subgroups Hof A which are isomorphic 
to aP correspond to submodules JV of .;({ satisfying 

1. (F, V).;({ c JV~.;({, 

2. dimi.;1t /JV)= 1. 

The correspondence attaches to H the Dieudonne module of the abelian 
variety A/ H, viewed as a submodule of .;({ via the map on Dieudonne 
modules induced by the canonical quotient map A-.AJH. The key point 
is simply that the Dieudonne module of aP is the I-dimensional k-vector 
space k furnished with the maps F= V=O. 

The @-stable subgroups H of A which are isomorphic to aP thus cor
respond to modules JV which satisfy 1. and 2. and which are furthermore 
@-stable. Note that we may view JV as a codimension-1 subspace of the 
k-vector space 

.;lt/(F, V).;lt=fi'/Vfi'. 

The dimension of the latter space is a (A) and thus is a priori 1 or 2. It 
follows, for instance, that there is precisely one subgroup H in case a (A)= 
1. This case, which should be thought of as the generic case, corresponds 
to the situation where A is not the product of two supersingular elliptic 
curves. 

The action of (!) on the line .;({/JV is in any case given by a homo
morphism 

w: (!)---). Endi.;lt /JV)= k. 

The homomorphism w is necessarily the composite of the quotient map 
@-.FP. with one of the two embeddings 

We say that His of type u or typer- according as the embedding giving w 
is u or r-. 

Proposition 4.4. Suppose that (A,,) is mixed. If (A,,) is exceptional, 
then A has precisely two @-stable subgroups which are isomorphic to aP. If 
(A,,) is not exceptional, then A has precisely one such subgroup. 
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Proof. As already remarked above, there is precisely one subgroup 
whenever a (A)= 1. In this case, the statement of the Proposition is cor
rect, in view of Proposition 4.2. 

Suppose now that a(A)=2, so that the aP's in A correspond to lines 
in 2?=vlt/(F, V)vlt. There are precisely two such lines which are FP.
stable, namely 2?" and 2? ,. On the other hand, it is easy to see that rr 
maps 2?, to 2?, and vice versa, because of the commutation relation be
tween rr and elements of Fp2· Thus a given line 2?, or 2?, is @-stable if 
and only if it is killed by rr. ln particular, both lines are @-stable if and 
only if rr=O on 2?. 

Suppose, finally, that a(A)=2 and that 2?" is not @-stable. Then rr 
induces an isomorphism 2?,::::;.2?,. On the other hand, 

2? ,1' 2 = p2?" =0, 

so rr must then kill 2?,, which is consequently @-stable. In other words, 
2?, is @-stable if 2?" is not @-stable. Hence there is always at least one 
subgroup of A which is @-stable and isomorphic to ap-

Proposition 4.5. Suppose that (A, c) is pure. Then all subgroups of A 
which are isomorphic to aP are (!)-stable. Such subgroups are in 1-1 cor
respondence with points of the I-dimensional projective space P(2?). 

Proof. As remarked above, (A, c) is exceptional. By Proposition 4.2, 
we have a(A) = 2, which means that the subgroups H of A which are iso
morphic to aP correspond to lines in the two-dimensional k-vector space 
2? =.,It/ F .,It. Furthermore, all such lines are @-stable. Indeed, by hy
pothesis(!) acts on 2? by homotheties, through the quotient FP. of (!)jp(!). 
An element t of this latter quotient acts by the homothety a(t) or 1:(t), 
according as (A, c) is pure of type a or 1:. D 

Proposition 4.6. In the situation of the preceding proposition, the pro
jective space P(2?) has a canonical structure over FP. In other words, there 
is an isomorphism P(2?)=P'(k) which is defined modulo the action of 
PGL(2, Fp) on P 1(k). 

Proof. We have Fvlt=vltrr. Indeed, both subspaces of .,It contain 
pvlt and have codimension 2 in .,It; on the other hand, Proposition 4.2 
shows that we have vltrrr:;;.F vlt. This circumstance enables us to define a 
p-linear automorphism of .,It as the composite 

It 1s easy to check that <ft(Fvlt)=Fvlt, using the coincidence of F vlt, V vlt, 
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and ...ltir. Hence <fa induces a p-linear automorphism ,ft of .2?. 
As is well known, the automorphism ,ft defines an FP-structure on the 

k-vector space .2?: the FP-vector space 

.2?0 ={x e .2? I ,Jtx=x} 

is a "model" for .2? over FP in the sense that the inclusion .2?0 <;;..2? induces 
an isomorphism 

fl?o(g}Fpk~fl?. 

The space .2?0 defines a model for P(.2?) over FP; the set P(.2?) may be 
viewed as the space of k-rational points of the FP-scheme P(.2?0 ). 

This model depends on the choice of the uniformizer ir of&. If we 
make another choice, we replace ,ft by ).,Jt for some). E Ft,<;;.k*, where the 
inclusion of Ft, ink* is via a or" according as (A, c) is pure of type a or 
"' A calculation shows that the space .2?0 is replaced by .2?~= µ.2?0 , where 
µ satisfies µ'-P=).. Multiplication byµ induces an isomorphism 

which is independent of the choice ofµ. Thus P(.2?0 ) is an FP-model of 
P(.2?) which is unique up to unique isomorphism. D 

Division by subgroups of A isomorphic to a P 

Suppose now that His an @-stable subgroup of (A, c) which is iso
morphic to aP. Let B be the abelian variety A/ H, and let 

j: @~End(B) 

be the homomorphism giving the induced action of@ on the quotient A/ H. 
Then we have 

Proposition 4.7. 1. If (A, t) is pure, then (B,j) is mixed. 
2. If (A, c) is mixed and His of type a, then (B,j) is pure of type "' 
3. If (A, t) is mixed and His of type "' then (B,j) is pure of type a. 

Proof Consider the descending sequence of Dieudonne modules 

where ._Al' is the submodule of .,It attached to H. The quotient Jt/p...lt is 
a 4-dimensional k-vector space, and the successive quotients in the above 
sequence are each of dimension 1. The various quotients involved all 
carry an induced k-linear action of @jp@ and therefore in particular an 
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action of the subalgebra FP. of (!)Jp(!). Hence they are naturally finitely 
generated k® Fp Fp,-modules. 

Write again 2 for .,/I/F.,/1, and set 2'=.ff/F.ff. Then we have the 
equality 

[.,///.ff]+ [21 = [F .,/1/F .ff]+ [2] 

in the Grothendieck group of finitely generated k®Fp FP.-modules. The 
key point is that F induces an isomorphism .,/1/.ff=:;.F.,/I/F.ff which is 
linear relative to FP. and p-linear relative to k. In particular, we have 

dimi2:) = dimk(2 .) + dimk(.,/1 / .ff), -dimi.,/1 /.ff). 

=dimi2.)± 1, 

where the sign is + 1 if His of type 1: and -1 if His of type <1. The three 
statements of the proposition now follow by general reasoning. D 

Beginning again with the triple (A, t, H), we now endow the pair (B,j) 
with the groupl=A[Frob]/H, where A[Frob] is the kernel of the Frobenius 
map A--+A<Pl. The subgroup I of Bis visibly {!}-stable. 

Lemma 4.8. The group I is isomorphic to aP. 

Proof From the point of view of Dieudonne modules, we must es
tablish the inclusion 

F .,/1-=i(F, V).ff, 

where .ff is as usual the submodule of .,/I associated with H. The inclusion 
F .,/1"2_F .ff is clear, as .ff is a submodule of .,II. Hence it is enough to 
show that we have F.,/12 V .ff in the case where V .ff is different from F.ff. 

The condition V .ff =/=FJV means that a(B)= 1 and implies, in par
ticular, that (B,j) is mixed. Hence (A, t) is pure, so that we have F.,/1= 
V .,II. As the inclusion V .,/12 V .,II is clear, the lemma is proved. D 

Let e now be the operator on triples (A, t, H) which maps a given 
triple (A, c, H) to (B,j, I). Then we have the formula 

(13) 8(8(A, t, H))=(A, t, H)<Pl. 

Indeed, on the level of Dieudonne modules, e replaces a pair (.,//, .ff) by 
the pair (.ff, F.,/1). A second application of e then leads to the pair 
(F.,/1, FJV). 

The map (A, c, H)-(A, t, H)<Pl induces a bijection on isomorphism 
classes of triples (A, c, H). Moreover, (A, t)>-*(A, c)<P' is easily seen to 
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map pure pairs to pure pairs and mixed pairs to mixed pairs. (More 
precisely, it maps pure pairs of type <1 to pure pairs of type -r-and vice 
versa.) We deduce the following result. 

Theorem 4.9. The restriction of e to the set of triples (A, ,, H) with 
(A, t) pure (resp. mixed) induces a 1-1 correspondence between the set of 
isomorphism classes of such triples and the set of isomorphism classes of 
triples (A,,, H) with (A, t) mixed (resp. pure). 

Describing all pairs in terms of exceptional pairs 
We now describe the mixed (or special) pairs (A,,) in terms of the 

systems ((A,,), H) where (A, t) is a pure pair and His a subgroup of A 
which is isomorphic to aP. (By Proposition 4.5, H is automatically {!}

stable.) We regard such systems as triples (A,,, H) and define B((A, ,, H)) 
as above. We let O((A, ,, H)) be the pair consisting of the first two elements 
of the triple B((A, ,, H). Thus O((A, ,, H) consists of the abelian variety 
A/ H with its induced {!}-action. 

Theorem 4.10. The map 0 induces a surjection from the set of iso
morphism classes of triples(A, ,, H) with (A, ,)pure to the set of isomorphism 
classes of pairs (A, t) with (A, t) mixed. The fiber 0- 1 (A, t) for (A, ,) mixed 
consists of either one or two elements. The fiber consists of two elem?nts if 
and only if (A, t) is exceptional (cf Proposition 4.4). 

Proof By Theorem 4.9, the fiber 0- 1(A, ,) is in 1-1 correspondence 
with the set of isomorphism classes of triples (A,,, H) obtained as H runs 
over the set of 0-stable a/sin A. As we saw in Proposition 4.4, for (A,,) 
given (and mixed), there are either one or two possible subgroups H. To 
prove our theorem, it thus suffices to check that the situation where there 
are two subgroups H leads to two distinct triples (A,,, H) (up to iso
morphism). This is indeed the case, because it is clear from the proof of 
Proposition 4.4 that one of the two subgroups is of type <1 and the other 
of type -r-(in the sense explained before the statement of Proposition 4.4). 

D 

Classifying exceptional pairs 
We now give a classification of the exceptional pairs over k, i.e., those 

pairs which are either pure, or else mixed exceptional. Our treatment is 
based on the results of § 2 concerning admissible bimodules of Z-rank 8. 

Fix a supersingular elliptic curve E over k, and let f/ = EndiE). 
According to a well known theorem of Deuring, f/ is a maximal order 
(i.e., an Eichler order of level 1) in the quaternion algebra f/® Q, which 
is of discriminant p. Let vlt(E) be the Dieudonne module of E, so that 
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.,lt(E) is a free W(k)-module of rank 2. The space .,lt(E)/F.,lt(E) is a 
k-vector space of dimension 1. The functorial action of!/' on this vector 
space is thus described by a character 

,c:!/'~k. 

Its image is necessarily the subfield FP. of k of cardinality p2• Thus !/' is 
canonically oriented. 

It "'ill be convenient in what follows to insist on our choice of k as 
an algebraic closure of the residue field FP. of 0 at p. The two embeddings 
<1 and 1: of FP. into k may consequently be "labeled": we take 

<1=the identity embedding FP,=---:,,k 

and 

1:=the conjugate embedding FP,=---:,,k. 

Further, the map ,c becomes a map !/7-.FP. and serves to identify the 
residue fields at p of the two orders 0 and !/'. (The residue field of (!) at p 
is identified with FP. via the given orientation of 0.) 

Let fYJ m and fYJ v be the maximal ideals of 0 and !/' (respectively) whose 
residue fields are isomorphic to Fp•· Then we have an isomorphism 

(14) 

Note that (14) picks out a distinguished class of isomorphisms (!J@ZP~ 
!/'@ZP: those which induce (14) on the level of residue fields. 

Let/: 0-.M(2, !/') be a homomorphism of rings. Then/ defines 

• An action t of 0 on the abelian variety A =EX E (whose endo
morphism ring is M(2, !/')); 

• An (0, !/')-bimodule M, free of rank 8 over Z: M =!/'EB!/', with 
the obvious componentwise right action of !/' and the action of 0 
given by left matrix multiplication 

x e 0: (s, t)~ f(x)-(s, t), 

in which (s, t) is regarded as a column matrix. 

This construction defines bijections among the following three sets: 

• Homomorphisms/: 0-.M(2, !/') modulo the action of GL(2, !/'); 
• Pairs (A,,) with a(A)=2, up to isomorphism; 
• Bimodules eMv, free of rank 8 over Z, up to isomorphism. 

Indeed, when a(A)=2, the abelian variety A in the pair (A, t) can be taken 
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to be EXE. The embedding, then becomes a map/ as above. Further, 
c and c' give isomorphic pairs if and only if c and ,' differ by conjugation 
by an automorphism of A. Hence the first two sets may be identified. 

For the third set, the key point is that if Mis a right .9'-module, free 
of rank n > 4 over Z, then M is free over .9'. (This well known result of 
Eichler [7] is discussed in [25], § 34 and in [9], § 2.) If M is of rank 8 over 
Z, then Mis isomorphic to .9' EB.9'. After we fix an isomorphism between 
these modules, we may write End.9'M =M(2, .9'). Thus a left @-structure 
on M is given by a map fas above. 

In the dictionary A*+ f, the Dieudonne module .A= .A(A) is given 
as the direct sum of two copies of the Dieudonne module .A(E) of E. 
The right-action of(!) on .A is given by (transpose) matrix multiplication. 
Since 

F .A(E) = .A(E)fJJ .9, 

the pair (A, e) is exceptional if and only if we have 

where M(2, fJJ .9') is the set of those matrices in M(2, .9') whose coefficients 
lie in fJJ .9'· In the language of bimodules M, this inclusion translates to the 
inclusion 

{15) 

Since Mis locally free over(!) and over .9', (15) is equivalent to the equality 
fJJ ~M = M fJJ .9'' Hence (A, , ) is exceptional if and only if M is admissible 
in the sense of § 2. 

In the notation of § 2, the set J; is the singleton set containing the 
prime p. The set LI contains those primes different from p which are 
ramified in(!). The integer D which was defined in §2 to be the product 
of those primes in LI thus coincides with the integer D defined above. We 
have 

D= disc((!)). 
p 

Since J; is a singleton set, admissible modules are described up to local 
isomorphism by a single parameter r P' which can take the three possible 
values 0, 1, 2. In the dictionary (A, t)*+M, the value rP=l clearly cor, 
responds to mixed exceptional pairs. The values rP=2 and rP=O cor
respond to the pure pairs of type a and the pure pairs of type -r, respectively. 
Finally, in the notation of § 2, the integer N (which describes the level of 
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tlie Eichler order) takes the value p for mixed exceptional pairs ·and the 
value l for pure pairs. . . . 

From this discussion and from Theorem 2.4, we get information 
about the ring End((A, e)), i.e., about the commutant of (!) in End(A), 
when (A, e) is exceptional: 

Theorem 4.11. For (A, e) pure, the ring End((A, e)) is a maximal order 
in a quaternion algebra of discriminant D. For (A, e) mixed and exceptional, 
the ring End((A, e)) is an Eichler order of level p in.a quaternion algebra of 
discriminant D. 

As a translation of Theorem 2.3, we get the following statement. 

Theorem 4.12. Let (A 0 , e0 ) be an exceptional pair. The map 

(A, t)f-----)> Hom((A 0 , e0 ), (A, t)) 

establishes a bijection betweeen the set of isomorphism classes of exceptional 
pairs (A, t) of the same "type" as (A 0 , t 0 ) (i.e., mixed, pure of type <1, pure 
of type -r) and isomorphism classes of locally free rank-I right End((A0 , e0 ))

modules. 

To have a theorem in the style of Theorem 2.4, we must translate into 
our context the canonical orientation of the order A= End (A, e ). Thus, in 
all cases we must exhibit a canonical map A-Fil• for each prime q dividing 
D, where Fq• is the residue field of(!) at q. Further, in the case where (A, t) 
is mixed (and exceptional), we must describe a canonical maximal order 
A- containing A. 

For the latter point, we recall that for (A, e) mixed exceptional, the 
abelian variety A contains precisely two subgroups which are {!}-stable and 
isomorphic to aP (Proposition 4.4). As shown by the proof of Proposition 
4.4, one of these subgroups is of type <1 and the other of type -r. Let H be 
the {!}-stable ap of type a. The operator e considered above sends (A, t, H) 
to a triple (B,j, I) where (B,j) is pure of type -r (Proposition 4.7). Because 
His the unique aP in A of type a, His stable under End((A, t)). Hence 
there is an induced map 

A=End((A, t))~End(B,j). 

Since End(B,j) is a maximal order by Theorem 4.11, this inclusion is an 
orientation of End((A, e)) at p. 

Now let q be a prime divisor of D and let (A, t) be an exceptional 
pair. Let .Pl, be the maximal ideal of(!) whose residue field is Fq•· To orient 
End((A, t)) at q, we remark that the Tate module Tq(A) of A at q is 
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naturally an 0®Zq-module. It is necessarily free of rank 1 over 0®Zq. 
In particular, the finite group Tq(A)/!J,Tq(A) is a I-dimensional Fq,-vector 
space. The natural operation of the ring End((A, e)) on Tq(A)/!!,Tq(A) is 
thus described by a canonical character 

(One can check that this definition of pq is consistent with the definition 
given in § 2 and the dictionary M ~A.) 

From Theorem 2.4, we now get the following result. 

Theorem 4.13. The constructions (A, t)>--+End((A, t)) give bijections 
between: 

• The set of isomorphism cfasses of pure pairs (A, t) of type a and the 
· set of isomorphism classes of oriented maximal orders in a quaternion 
algebra of discriminant D; 

• The set of isomorphism classes of pure pairr (A, t) of type 1: and the 
set of isomorphism classes of oriented maximal orders in a quaternion 
algebra of discriminant D; 

• The set of isomorphism classes of mixed exceptional pairs (A, e) and 
the set of isomorphism classes of oriented Eichler orders of level p in 
a quaternion algebra of discriminant D. 

Remark. Theorem 4.13 constructs in particular a canonical bijection 
between the sets of isomorphism classes of pure pairs of type a and pure 
pairs of type t". This correspondence is the Frobenius map (A, e) >--+ 

(A, t)(Pl. 

I' o(M)-structures 
Let (A, t) be given over k. Suppose that M> 1 is an integer which is 

prime to the discriminant pD of 0. A I' 0(M)-structure on (A, t) is an 0-
stable subgroup C of A (k) which is isomorphic to (Z/ MZ) 2 as an abelian 
group. As in the situation we discussed above (in the context of charac
teristic q), let End(A, t, C) be the subring of End(A, t) consisting of 0-
endomorphisms l of A for which l ( C) c C. We have results which parallel 
those in the situation already discussed. 

In particular, for each C, the ring 

End(A, e, c)[ P~ ] 

is a Z[l/pD]-order in the quaternion algebra End(A, e)®Q. (Incidentally, 
it is clear that this algebra is a quaternion algebra of discriminant D over 
Q. This follows easily from Theorem 4.9 and Theorem 4.12.) We have 
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Proposition 4.14. The map 

Cf----+.End(A, t, C)[ p~ ] 

induces a 1-1 correspondence between I'o(M)-structures on (A, t) and 
Z[I/pD]-Eichler orders in End(A, t)@ Q, of level M, for which 
End(A, t)[I/pD] is a characteristic order. 

We now classify triples (A, ,, C), where (A, t) is an exceptional pair 
and where C is a I'o(M)-structure on (A,,). There are three cases to 
consider, according to the type of (A, t) (mixed, pure of type a, pure of 
type -r). To fix ideas, we treat in detail only the case where (A,,) is mixed 
exceptional. The ring End(A, t, C) is then an Eichler order of level Mp 
in the quaternion algebra End(A, t)@ Q over Q of discriminant D. To see 
this, we can work locally: the statement is true at primes not dividing M 
by Theorem 4.11, and it is true at primes not dividing pD by Proposition 
4.14. By a similar reasoning, we observe that this order has a natural 
orientation at each prime dividing its discriminant pMD. Indeed, locally 
at the primes dividingpD, this ring coincides with End(A, ,), which already 
has a natural orientation. On the other hand, at primes dividing M the 
inclusion 

End(A, t, C)~End(A, t) 

becomes an orientation of End(A, c, C), since End(A, c) becomes a charac
teristic order of End(A, ,, C) at those primes. 

Theorem 4.15. The map 

(A,,, C)r----+End(A, ,, C) (with its natural orientation) 

induces a bijection between the set of isomorphism classes of exceptional 
mixed pairs with I'o(M)-structure and the set of isomorphism classes of 
oriented Eichler orders of level pM in a quaternion algebra over Q of dis
criminant D. 

Proof We first consider the injectivity. Assume that there is an 
isomorphism of oriented orders 

End(A, t, C)~End(A', t', C') 

for two triples (A, t, C) and (A', t', C'). Since the isomorphism respects 
the orientations, it carries End(A, t) to End(A', t'). By Theorem 4.13, the 
pairs (A, t) and (A',,') are isomorphic. Therefore, we may, and shall, 



398 K. A. Ribet 

assume that they are equal. 
This means that our initial isomorphism of oriented orders is induced 

by an automorphism of the oriented order End(A, e). However, all such 
automorphisms are inner, i.e., induced by automorphisms of (A, t). Re
placing C' by aC', for a a suitable automorphism of (A, e), we reduce to 
~he case where the two orders End(A, t, C) and End(A, e, C') are equal 
inside End(A, e). By Proposition 4.14, we see that the groups C and C' 
are then equal. 

The surjectivity is similar. Given an oriented Eichler order R as in 
the statement of the theorem, we let S-:::J R be the oriented order of level p 
which is deduced from R and its orientations at the primes dividing M. 
Using Theorem 4.13, we write Sin the from End(A, e), for some mixed 
exceptional (A, e). By Proposition 4.14, we see that R is necessarily equal 
to End(A, e, C) for some C, as required. D 

We have a similar result for pure pairs : 

Theorem 4.16. The construction 

(A, e, C)1--+End(A, e, C) (with its natural orientation) 

induces bijections between: 

• The set of isomorphism classes of pure pairs of type a, with I' o(M)
structure, and the set of isomorphism classes of oriented Eichler 
orders of level Min a quaternion algebra over Q of discriminant D. 

• The set of isomorphism classes of pure pairs of type 1:, with I' 0(M)
structure, and the set of isomorphism classes of oriented Eichler 
orders of level Min a quaternion algebra over Q of discriminant D. 

We remark that Theorem 4.10 extends in a straightforward manner 
to the case of pairs (A, t) which are furnished with I' 0(M)-structures. 
Namely, let (A, t, C) be an abelian surface with an @-action and a I'o(M)
structure. Let H be an @-stable subgroup of A which is isomorphic to aP. 
Then the @-abelian variety fJ(A, e, H) has a natural I' 0(M)-structure, 
namely the image of C in A/H. We write fJ(A, e, C, H) for the resulting 
triple. 

Theorem 4.17. The map fJ induces a surjection from the set of iso
morphism classes of systems (A, e, C, H) with (A, t) pure to the set of iso
morphism classes of pairs triples (A, t, C) with (A, t) mixed. The fiber 
o-1(A, t, C), for (A, e) mixed consists of either one or two elements. The 
fiber consists of two elements if and only if (A, t) is exceptional. 
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§ 5. Characteristic p and characteristic q 
. ' 

In this section, we suppose that .p and q are distinct prime numbers. 
We consider as above a maximal order (!) in an indefinite quaternion 
a\gebra over Q whose discriminant is a product Dp. We assume further 
that this discriminant is divisible by q, so that q ID. As in § 3, we consider 
a maximal order R in a quaternion algebra of discriminant D/q. This 
quaternion algebra may, for example, be isomorphic fo M(2, Q); in that 
case, we have D = q. 

As in the previous two sections, we wish to endow (!) and R with 
orientations. For this, we can take F,. to be the residue field of(!) at .e for 
each .e dividing Dp and give (!) its canonical orientation, consisting of the 
residue maps (!)-F,. for each .e. We assume that orientations of R have 
been chosen; these are maps R-F,. for each prime .e dividing D/q. (In the 
case D=q, there are no choices to be made.) 

We again choose k and F to be algebraic closures of FP. and Fq,, 
respectively. 

Comparison of isomorphism classes 
The results of the previous two sections can be summarized compactly 

by the following result. 

Theorem 5.1. Let M be a positive integer prime to pD. Then the 
following are in natural 1-1 correspondence: 

• Isomorphism classes of supersingular abelian surfaces over F with 
R-multiplication and a I' 0(M)-structure; 

• Isomorphism classes of (supersingular) abelian surfaces over k with 
an {!}-action which is pure of type a, and a I'o(M)-structure; 

• Isomorphism classes of (super singular) abelian surfaces over k with 
an @-action which is pure of type i-, and a I' o(M)-structure. 

Further, the following two sets are naturally in 1-1 correspondence: 

• The set of isomorphism classes of super singular abelian surfaces over 
F with R-multiplication and a I' 0 (pM)-structure; 

• The set of isomorphism classes of (surpersingular) abelian surfaces 
over k with an <!J-action which is mixed exceptional, and a I' 0 (M)
structure. 

Proof Both assertions follow immediately on comparing the state-
ments of Theorems 3.4, 4.15, and 4.16. D 

Notice that, in the statement of Theorem 5.1, no explicit reference is 
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made to the orientations of (!) and R. These orientations intervene, how
ever, in the "natural" 1-1 correspondences of the Theorem. It is easy to 
trace how these correspondences change if we change one of the orienta
tions. For example, suppose that we change the orientation of R at a 
prime f, dividing D/q. Then our correspondences between characteristic 
p and characteristic q objects are composed with the Atkin-Lehner style 
involution At-4A/A[il] on objects in characteristic p. (Here il is the maximal 
ideal of R of residue characteristic£.) 

To make a concrete example of the statements of the Theorem, let us 
consider the case where D=q and R is the matrix ring M(2, Z). To give a 
supersingular abelian surface with R-multiplication and a I' 0 (M)-structure 
is to give a supersingular elliptic curve with a I' 0 (M)-structure. Hence the 
Theorem provides a 1-1 correspondence between the set of isomorphism 
classes of supersingular elliptic curves, with I'o(M)-structures, over F and 
pure pairs (A, t) of type a over k. This correspondence 'in fact depends 
only on the orientation of(!) at the prime q, and it changes by the Frobenius 
automorphism of F if the orientation changes. It is entirely canonical, 
once one agrees to endow (!) with its canonical orientation and to choose 
F to be an algebraic closure of Fq,-

Similarly, we get a 1-1 correspondence between the set of isomorphism 
classes of supersingular elliptic curves with I'o(Mp)-structures over F and 
the set of mixed exceptional pairs (A, t) over k, with I' 0 (M)-structures. 
This correspondence depends both on the orientation at p and the orient
ation at q of (!); since these orientations are natural, the correspondence is 
again completely canonical. If we change the orientation at p, we change 
the correspondence by the Atkin-Lehner involution, relative to the prime p, 
on the set of isomorphism classes of elliptic curves with I' o(Mp )-structures. 
It is perhaps worth stressing that we could hope for no such distinguished 
correspondence if we replaced, say, F by another algebraic closure F' of 
Fq. Indeed, we would then deduce (for instance) a bijection between the 
sets of isomorphism classes of supersingular elliptic curves over F and F'. 
Such a bijection amounts (in general) to an identification of the subfields 
of order q2 of F and F'. 

We turn now to a compatibility question concerning the correspond
ences of Theorem 5.1. Suppose that (A, t, C) is given over k, where (A, t) 
is mixed exceptional and C is a I' 0 (M)-structure on (A, t). Then we may 
make pure triples from the mixed triple (A, t, C) in four ways. Indeed, as 
we have noted repeatedly, there are unique subgroups H 0 and H, of A on 
which (!) acts via a and -r, respectively. The resulting quotients A/H 0 and 
A/H, carry natural {!}-actions and I'o(M)-structures. Abusing notation 
somewhat, we will call the resulting two triples (A/H 0 , c, C) and (A/H,, c, 
C). They are respectively pure of type -r and pure of type a by Proposition 
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4.7. Applying the Frobenius automorphism <P> of k to these triples, we 
obtain two further triples (A/H., l, C)<P> and (A/H,, l, C)<P>, which are pure 
of type a and i-, respectively. They are in fact the two triples in the fiber 
0- 1(A, t, C), where (J is as in Theorem 4.17. 

Suppose that (B,j, CM, CP) is the R-abelian surface which is associated 
to (A, t, C) by Theorem 5.1. (We understand that CM and CP are I' 0 (M)
and I' 0 (p)-structures, respectively.) We deduce from (B,j, CM, Cp) two 
abelian surfaces with I' 0 (M)-structures by the standard degeneracy con
structions: 

Here, J and CM represent the R-action and I' 0 (M)-structure on B/CP which 
· come from those on B. 

Proposition 5.2. The correspondences of Theorem 5. I take (A/ H., l, C) 
and (A/H., l, C)<P> to (B,j, CM). They map the two triples (A/H., l, C) and 
(A/H., l, C)<P> to (B/Cp, J, CM). 

Proof The proof consists of .a simple tracing through of the defi
nitions. In particular, we make use necessarily of the definition we have 
given for the orientation at p of the order End(A, t, C). This definition 
is given in the discussion which precedes Theorem 4.13. D 

Bad reduction of Shimura curves 
We return to the theme of singular points on Shimura curves, which 

has not been mentioned since the Introduction. Suppose that L is a 
maximal order in an indefinite quaternion division algebra over Q. An 
L-abelian surface (over a base T) is a pair (A, t), where t is an injection 
L~Endr(A). The pair (A,,) is said to be special if the map, satisfies 
the condition 

Trace~T{,(x) I Lie(A))=Tr(x) e Q 

for all x e L, where "Tr" is the reduced trace L---+Z. This condition, 
automatic when the discriminant of L is invertible on T, was introduced 
in [6]. In characteristic p, for p a divisor of the discriminant of L, it cor
responds to the condition that (A,,) be "mixed." For n a positive integer 
which is invertible on T, a level-n structure on (A, t) is an L-isomorphism 
r: A[n]::::::L/nL, where A[n] is the kernel of multiplication ofn on A. 

Consider the functor on Z[l/n]-schemes which maps T to the set of 
isomorphism classes of special (A,,) with level-n structures. According to 
Drinfeld ([6], Proposition 4.4), this functor is representable by a projective 
I-dimensional Zll/n]-scheme f/' = f/' n, provided that n> 3. (For generali-
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zations to higher-dimensional Shimura varieties, see [31] and the summary 
in [24].) 

Assume that n is prime to the discriminant of L, and take a prime p 
dividing this discriminant. The formal completion of !/' along (p) was 
determined by Cerednik [4] and Drinfeld [6], § 4. Their result implies that 
the curve !/' n becomes a disjoint union of "degenerating curves" of the 
type considered by Mumford [19] over the completion of the ring of 
integers of the maximal unramified extension of ZP. In particular, the 
scheme !/' Fp can be expressed as a projective curve whose normalization is 
a disjoint union of rational curves, and whose only singular points are 
ordinary double points. A modular interpretation of the singular points 
and irreducible components of!/' Fp is implicit in Drinfeld's method and is 
provided (essentially in the form we need) by Zink in [31]. 

Namely, let k be an algebraic closure of FP. The singular points of 
!/'(k) are represented by those triples (A, t, r) for which (A, t) is a mixed 
exceptional pair ([31], Satz 3.10, cf. [24], 1.6). For the components, one 
has a construction which associates a rational curve in !/'k to each object 
(A, t, r) and each £-stable subgroup H=rxP of A ([31], 5.13 and 5.15). The 
set of k-rational points of this rational curve may be described as follows 
(in the langurage of§ 4): The quotient A/ H (with the induced action of L) 
is a pure L-abelian surface. This quotient has a projective line of £-stable 
subgroups isomorphic to rxp (Proposition 4.5). Dividing by these sub
groups, we obtain a series of mixed L-abelian surfaces which includes in 
particular the pair (A, t)'Pl. These mixed surfaces inherit level-n structures 
from (A, t). 

In classifying the components of !/'k, we may note that all pure L
abelian surfaces arise by dividing mixed surfaces by an rxP (Th. 4.9) and 
that all components of!/' k arise from the construction we have just sketched 
([31], 5.15). It follows that the set of components of ~k is in bijection with 
the set of isomorphism classes of pure L-abelian surfaces over k with level-n 
structures. 

Thus the singular points are representd by mixed exceptional (A, t)'s 
(with level structures), while the components correspond to pure (A, ,)'s 
(with level structures). Furthermore, the recipe we have given for associ
ating components to pure surfaces provides the following additional piece 
of information. Let (A, t) be a mixed exceptional pair, and let H 1 and H 2 

be the two £-stable subgroups of A which are isomorphic to rxP (cf. Propo
sition 4.4). Then the components corresponding to A/H 1 and A/H 2 (with 
their induced £-actions and level structures) are the two components inter
secting at the singular point (A, t )<Pl. Since all isomorpism classes of 
triples (A, ,, r) with (A, t) exceptional are defined over the subfield FP, of 
k, we may write instead that the components corresponding to the varieties 
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(A/HJ<P) are those which intersect at A. 

We apply these results to the coarse moduli scheme '6' which was 
described in the Introduction to this article. For this, we take L=(!), where 
(!) is as in § 4. We again write the discriminant of (!) as the product pD 
and let k be an algebraic closure of the residue field FP. of(!) at p. 

Let M be a positive integer prime to the discriminant of (!), and con
sider the problem of classifying {!}-abelian surfaces with a I'o(M) structure. 
This problem is "solved" by considering a multiple n> 3 of M which is 
again prime to the discriminant of (!): we divide the scheme Y n by the 
appropriate subgroup I' of ((!)jn(!))*. Let '6' then denote the indicated 
quotient, so that '6' is a curve over Z[l/n]. 

It follows from general principles ([14], Proposition 3.2) that the curve 
'6'l!'p is again a projective curve whose normalization is a disjoint union of 
rational curves, and whose only singular points are ordinary double points. 
Moreover, the components and singular points of '6' k are obtained from 
the components and singular points of Ynk by division by I'. This gives 

Theorem 5.3. The singular points of the Shimura curve '6' k represent 
the isomorphism classes of triples (A, t, CM) where (A, t) is a mixed ex
ceptional {!}-abelian surface and CM is a I' o(M)-structure on (A, t ). The 
components of '6' k are in bijection with the isomorphism classes of triples 
(A, t, CM), where (A, t) is a pure {!}-abelian surface. Further, let P be the 
singular point of '6' k parameterized by (A, t, CM). Then the two components 
meeting at P correspond to the triples (A/He, l, CM)<Pl. Here He denotes one 
of the two possible {!}-stable subgroups of A which are isomorphic to ap, 

while z and CM denote the {!}-action and I' o(M)-structure which are inherited 
by the quotient A/ He. 

In view of Theorems 4.16 and 4.15, Theorem 5.3 may be described in 
terms of quaternion arithmetic. For this, let 1%' be the set of isomorphism 
classes of oriented Eichler orders of level pM in rational quaternion algebras 
of discriminant D. (The orientations are taken relative to the residue fields 
of (!) at the various primes r dividing D.) Similarly, let "Y be the set of 
isomorphism classes of oriented orders of level M in quaternion algebras 
of discriminant D. There are two natural "degeneracy" maps 15'-::!"Y. 
The first map, t: <ff -"Y, takes the class of an oriented order d oflevel Mp 
to the class of the oriented order P,l-:::;d in d(i!)Q which is deduced from 
d together with the orientation of d at p. The second map, h: 15'-"Y, 
first changes the orientation of d at p and then applies the first map. 

Theorem 5.3 states that the set of singular points of '6' k is canonically 
the set ,ff. Secondly, the set of components is the union of two subsets "Y. 
and "Y, (the sets of pure triples of type a and type -r, respe:.:tively), each 
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of which is canonically "/". Finally (because of the orientation at p we have 
chosen for the endomorphism ring of an exceptional mixed triple) the two 
components meeting ate e Care t(e), viewed in fq and h(e), viewed in"/",. 

Consider the "quaternionic" graph <§ with the following description: 

• The set of edges of <§ is the set C. 
• The set of vertices of <§ is the set f X {l, 2}. 
• An edge e e C connects the vertices (t(e), 1) and (h(e), 2). 

The author visualizes <§ with its vertices (v, 1) to the left and its vertices 
(v, 2) to the right. Each edge connects a vertex from the left-hand group 
to a vertex from the right-hand group. (Thus <§ is a "bipartite" graph.) 
Our edges, if oriented, would presumably have their tails in the left-hand 
group and their heads in the right-hand group. This motivated the choice 
of "h" and "t" as symbols for the maps C-::tf. 

Consider the dual graph attached to the curve Ct' k, whose vertices are 
the components of Ct' k and whose edges are the singular points of Ct' k· The 
edge which corresponds to a singular point P connects the two vertices 
corresponding to the components meeting at P. 

Theorem 5.4. The dual graph attached to Ct' k is the quaternionic graph 
<§. 

Proof The Theorem is a restatement of Theorem 5.3 along the lines 
of the discussion just above. The change introduced by the statement of 
the theorem is that we number two copies off, rather than index them 
by the maps <!J-::tk. This is possible because of our choice of k as an 
algebraic closure of the residue field FP, of <!J at p. The residue map 0-
FP. defines a: 0-k, and its conjugate by the non-trivial automorphism of 
FP. gives -r. D 

We turn now to the Shimura curve fl" which was described in the 
Introduction. We again let q be a prime dividing D and let R be a maximal 
order in a quaternion algebra of discriminant D/q. Note that D/q is a 
product of an even number of primes, so that R is a maximal order in an 
indefinite rational quaternion algebra. For definiteness, we assume that 
R=M(2, Z) if D=q. We also assume that orientations of Rat the prime 
divisors D/q have been fixed; these are isomorphisms between the residue 
fields of Rand of <!J at each prime dividing D/q. For each integer N> I 
which is prime to D/q, we have a modular curve fl" 0 (N) over Q: 

• If R = M(2, Z), we let fl" 0 (N) be the classical modular curve X 0 (N). 
• If R is a maximal order in an indefinite quaterion division algebra, 

we let fl" 0 (N) be the coarse moduli scheme over Q attached to the 
problem of classifying R-abelian surfaces with a I' 0 (N)-structure. 
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We are interested in the reduction of £Co(N) at the prime number q. If q 
is prime to N, there is no problem: the curve £r:0 (N) extends naturally to a 
curve over ZcqJ• whose special fiber we will call £r:0 (N)Fq· The super
singular points on £r:0 (N)Fq are those represented by elliptic curves or R
abelian surf aces which are supersingular in the sense that they have no 
points of q-power order over an algebraic closure of Fq. As noted in § 3, 
the supersingular R-abelian surfaces are automatically products of super
singular elliptic curves. Moreover, in the case R=M(2, Z) it is equivalent 
to classify supersingular elliptic curves or supersingular R-abelian surfaces. 

Take F to be an algebraic closure of the residue field Fq. of ((J at q, as 
in § 3. Then by Theorem 3.4, we have a canonical bijection between the 
set of supersingular points on £C 0 (N) (F) and the set of isomorphism classes 
of oriented Eichler orders of level N in a quaternion algebra of discrim
inant D. Especially: 

• The set of supersingular points on £r:0 (M) is canonically the set "f/". 
• The set of supersingular points on £r:0 (Mp) is canonically the set C. 

Now consider the curve £r:0 (Nq), where q is again prime to N. In the 
case where R=M(2, Z), the curve £r:0 (Nq) has a well known model over 
Zcq> which was studied by Deligne-Rapoport [5] and by Katz-Mazur [13]. 
(See especially [5], Ch. VI, Th. 6.9.) As noted in the Introduction, an 
analogous model is available in the case where R ® Q is a division algebra 
[5, 18, 3]. The result is that the special fiber £r:0 (Nq)Fq has two irreducible 
components, each isomorphic to £r:0 (N)Fq· The curve £r:0 (Nq)F. is obtained 
from its normalization by the following construction: one attaches a 
supersingular point Pon the first copy of £r:0(N)Fq to the point p<q> on the 
second copy. The set of singular points of £r:0 (Nq)F is thus in bijection 
"with the set of isomorphism classes of oriented Eichler ordres of level Nin 
a quaternion algebra of discriminant D. In particular: 

Theorem 5.5. Let M be a positive integer prime to pD. The set of 
singular points on £r:0 (Mpq)F is in bijection with the set C. The set of 
singular points on £r:0 (Mq)F is in bijection with the set "f/". 

By combining this result with Theorem 5.3 (or Theorem 5.4), we find 
a 1-1 correspondence between the sets of singular points of £r:0 (Mpq)F. 
and of '?/k. Similarly, we find a 1-1 correspondence between the set of 
components of '??,. and the disjoint union of two copies of the set of 
singular points of £f:0 (Mq)F.- Finally, the map taking each singular point 
of '?!,. to the pair of components which cross at that point may now be 
related to the two degeneracy maps £r:0 (Mp)::';£r:0 (M) (Proposition 5.2). 
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