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The present article contains a short exposition of the fact that the
fundamental inequality in Takagi’s class field theory is almost a corollary
of Furtwéngler’s theorems as far as unrestricted use of idele-theoretic ter-
minology is allowed.

Let K/F be a cyclic extension of a finite degree n over an algebraic
number field of a finite degree. Denote by I, P; and C,, the idele group,
the principal idele group, and the idele class group of an algebraic number
field L, respectively. Then, Takagi’s fundamental inequality is written as
(Cp: Ng,;wCr)=n. (See e.g. [2], p. 154).

Let, on the other hand, F be an algebraic number field containing the
group g, of the /-th roots of unity with a prime number /. Then, it was
shown by Furtwingler [1] that the following two theorems hold:

Theorem ). Product formula T[,(«, /9),=1 of the norm residue
symbol (a, B/p);, where o, B € F*=F—{0}, and p runs through all places of
F.

Theorem II). Principal genus theorem H-'(Cy, Gal (K/F))=1 for an
arbitrary Kummer extension K|F of degree I, which says that Ng,,a=1 for
ae Cy entails a=b'-5 with some b e Cy, where S is a generator of the
Galois group Gal (K/F).

Furtwéngler’s theorems are fully idele-theoretic. The second theorem
was originally stated by him in the form that an element of F which is
everywhere a local norm from X is a global norm from K.

We shall show that these two theorems of Furtwingler easily yields
Takagi’s fundamental inequality.

Proposition 1. Let K/F be a cyclic extension of a finite degree over an
algebraic number field F of a finite degree, and let K’ be an intermediate field
of K|F. Assume that H'(Cy, Gal(K/K"))=1 and H(Cy., Gal(K’/F))=1.
Then, H(Cyg, Gal (K/F))=1.
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Proof. Assume Ng,a=1 with ae Cg, and put a’=g'*S**5"7,
where S is a generator of Gal (K/F) and m=(K’: F). Then, since N, x.a’
=1 by the assumption, there is an idele class b ¢ C; such that o’ =5'"5",
so that a"~%=a'"%"=p?-90-5"_ Therefore, c=ab"*" e Cp, and
Ny pe=a'b~%-5"=1. This yields ¢c=>5"-% with some &’ ¢ Cy,, and a=
b'-Sc=(bb")' -5, q.e.d.

Proposition 2. Let KD K’'DF be as in Proposition 1 and assume that
H(C,, Gal(K/F)y=1. Then, H'(Cy., Gal(K'/F))=1.

Proof. Let ae Cy, satisfy Ny, ,a=1. Then, Ny, a=1, sothat a=
b'-S with some be C, by the assumption, where S is a generator of
Gal (K/F). Put (K’: F)=m; then

18 1-8)(1 -1y __ _
b -St=pe- SISt SmT = N, ra=1.
Hence, b e Cy.. q.e.d.

These two propositions are quite elementary ones concerning merely
modules with group operation, but the next proposition requires Furt-
wingler’s Theorem II.

Proposition 3. Let F be an algebraic number field of a finite degree,
and let K'|F be a cyclic extension of a prime degree I. Then,

H(Cy., Gal (K'/F))=1.

Proof. If F contains the group p, of the /-th roots of unity, then
the proposition reduces to Furtwingler’s Theorem II.

Assume now g, is not contained in F, and assume that the proposi-
tion is true for any prime number less than /. Let F, be the field obtained
by adjoining g, to F and put K=K’F,. Then, K/F is cyclic and repeated
application of Proposition 1 shows that H-'(C,, Gal (K/F))=1. There-
fore, Proposition 2 shows that H-(Cy., Gal (K’/F))=1. Since the case
of /=2 reduces to Furtwingler’s Theorem II, the proposition is proved.

q.e.d.

Proposition 4. Let F be an algebraic number field of a finite degree,
and let K|F be a cyclic extension of a finite degree. Then,

H(Cy, Gal (K/F))=1.

Proof. This proposition follows immediately from Proposition 3
and Proposition 1. g.e.d.
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Let F be an algebraic number field of a finite degree and K/F be an
abelian extension of a finite degree. We denote then by (a, K/F) the Artin
symbol of a, where a is an ideal of F composed of prime ideals which are
unramified in K. In the present article, we mean by Artin’s law of reci-
procity for K/F the assertion that there exists a modulus m of F such that
(a, K/F)=1 whenever a=1 (mod m). If Artin’s law of reciprocity is
valid for K/F, then the map a—(a, K/F) induces a homomorphism a—
(a, K/F) from C, to Gal (K/F); this is uniquely determined by the condition
that (a, K/F)=(p, K/F), if a is represented by the idele whose p-component
is a generator of p in the p-adic field F,, and other components are 1. We
call C, 2 a—(a, K/F) e Gal (K/F) the reciprocity map; it is surjective, and
its kernel contains N,»Cg. In fact, if the former assertion is false, then
there would exist an intermediate field K’= F of K/F in which almost all
prime ideals of F split completely; therefore the Dedekind zeta function of
K’ would have a pole of order m=(K’: F)>>1. The second assertion is a
basic property of the Frobenius automorphism.

Takagi’s fundamental inequality can now be obtained as

Theorem. Let F be an algebraic number field of a finite degree, and
let K|F be a cyclic extension of a finite degree n. Then, (Cp: Ng,nCr)zn.

Proof. 1) We proceed by induction on n. Let / be a prime divisor
of n, and let K’ be the intermediate field of K/F with (K: K)=1I If K’
contains the group g, of the /-th roots of unity, then Theorem I of Furt-
wingler assures that Artin’s reciprocity law is vaild for K/K’. If K’ does
not contain s, Artin’s reciprocity holds for KL/K'L, where L is obtained
by adjoining y, to Q. So, (a, KL/K’L)=1 for an ideal a of K’L satisfy-
ing a=1 (mod m), where m is a suitable modulus of K’L. Let, in partic-
ular, a be an ideal of K’; then a basic property of the Frobenius auto-
morphism implies (a, KL/K'L)=(a, KL/K’)", where r is prime to / as a
divisor of /—1, Hence, (a, K/K")=1. Namely, the reciprocity law of Artin
holds for any cyclic extension of a prime degree /.

ii) Let now H be the kernel of the reciprocity map: Cr.—Gal (K/K")
which is certainly well-defined due to i). We have (Cg.: H)=I, and the
assumption of the induction yields (Cp: Ny.,»Cx.)={"'n. Furthermore,
Ny ya=1for a e Cy, implies a=>5b'~5 by Proposition 4, where b € Cy. and
S'is a generator of Gal (K/F); since again a basic property of the Frobenius
automorphism says (b, K/K')=(b%, K/K’), a satisfies (a, K/K')=1, i.e.,
a e H. This means the kernel of the norm map of Cy, into C; is contained
in H. Thus, we see

(Co: Ny ypH)=(Cpi Ngi g Crx )Ny )5Crrt N ypH)
=(Cp: Ngo )y Cp (Cr t HY=1"'n-I=n.
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It follows from this and from HDO N, .. Cy that (Cp: Ng,,Cr)=n. q.e.d.
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