Remarks on the Theorems of Takagi and Furtwangler

Tomio Kubota

Dedicated to Professor Kenkichi Iwasawa on his 70th birthday

The present article contains a short exposition of the fact that the fundamental inequality in Takagi's class field theory is almost a corollary of Furtwängler's theorems as far as unrestricted use of idele-theoretic terminology is allowed.

Let K/F be a cyclic extension of a finite degree n over an algebraic number field of a finite degree. Denote by I_L , P_L and C_L , the idele group, the principal idele group, and the idele class group of an algebraic number field L, respectively. Then, Takagi's fundamental inequality is written as $(C_F: N_{K/F}C_K) \ge n$. (See e.g. [2], p. 154).

Let, on the other hand, F be an algebraic number field containing the group $\mu_{(l)}$ of the l-th roots of unity with a prime number l. Then, it was shown by Furtwängler [1] that the following two theorems hold:

Theorem I). Product formula $\prod_{\mathfrak{p}} (\alpha, \beta/\mathfrak{p})_t = 1$ of the norm residue symbol $(\alpha, \beta/\mathfrak{p})_t$, where $\alpha, \beta \in F^{\times} = F - \{0\}$, and \mathfrak{p} runs through all places of F.

Theorem II). Principal genus theorem $H^{-1}(C_K, \operatorname{Gal}(K/F)) = 1$ for an arbitrary Kummer extension K/F of degree l, which says that $N_{K/F}a = 1$ for $a \in C_K$ entails $a = b^{1-S}$ with some $b \in C_K$, where S is a generator of the Galois group $\operatorname{Gal}(K/F)$.

Furtwängler's theorems are fully idele-theoretic. The second theorem was originally stated by him in the form that an element of F which is everywhere a local norm from K is a global norm from K.

We shall show that these two theorems of Furtwängler easily yields Takagi's fundamental inequality.

Proposition 1. Let K/F be a cyclic extension of a finite degree over an algebraic number field F of a finite degree, and let K' be an intermediate field of K/F. Assume that $H^{-1}(C_K, \operatorname{Gal}(K/K')) = 1$ and $H^{-1}(C_{K'}, \operatorname{Gal}(K'/F)) = 1$. Then, $H^{-1}(C_K, \operatorname{Gal}(K/F)) = 1$.

Received October 26, 1987.

268 T. Kubota

Proof. Assume $N_{K/F}a=1$ with $a \in C_K$, and put $a'=a^{1+S+\cdots+S^{m-1}}$, where S is a generator of Gal(K/F) and m=(K':F). Then, since $N_{K/K'}a'=1$ by the assumption, there is an idele class $b \in C_K$ such that $a'=b^{1-S^m}$, so that $a'^{1-S}=a^{1-S^m}=b^{(1-S)(1-S^m)}$. Therefore, $c=ab^{-(1-S)}\in C_{K'}$, and $N_{K'/F}c=a'b^{-(1-S^m)}=1$. This yields $c=b'^{1-S}$ with some $b'\in C_{K'}$, and $a=b^{1-S}c=(bb')^{1-S}$.

Proposition 2. Let $K \supset K' \supset F$ be as in Proposition 1 and assume that $H^{-1}(C_K, \operatorname{Gal}(K/F)) = 1$. Then, $H^{-1}(C_{K'}, \operatorname{Gal}(K'/F)) = 1$.

Proof. Let $a \in C_{K'}$ satisfy $N_{K'/F}a = 1$. Then, $N_{K/F}a = 1$, so that $a = b^{1-S}$ with some $b \in C_K$ by the assumption, where S is a generator of Gal(K/F). Put (K':F) = m; then

$$b^{1-S^m} = b^{(1-S)(1+S+\cdots+S^{m-1})} = N_{K'/F}a = 1.$$

Hence, $b \in C_{K'}$. q.e.d.

These two propositions are quite elementary ones concerning merely modules with group operation, but the next proposition requires Furtwängler's Theorem II.

Proposition 3. Let F be an algebraic number field of a finite degree, and let K'/F be a cyclic extension of a prime degree l. Then,

$$H^{-1}(C_{K'}, \operatorname{Gal}(K'/F)) = 1.$$

Proof. If F contains the group $\mu_{(l)}$ of the l-th roots of unity, then the proposition reduces to Furtwängler's Theorem II.

Assume now $\mu_{(l)}$ is not contained in F, and assume that the proposition is true for any prime number less than l. Let F_1 be the field obtained by adjoining $\mu_{(l)}$ to F and put $K = K'F_1$. Then, K/F is cyclic and repeated application of Proposition 1 shows that $H^{-1}(C_K, \operatorname{Gal}(K/F)) = 1$. Therefore, Proposition 2 shows that $H^{-1}(C_K, \operatorname{Gal}(K'/F)) = 1$. Since the case of l = 2 reduces to Furtwängler's Theorem II, the proposition is proved.

q.e.d.

Proposition 4. Let F be an algebraic number field of a finite degree, and let K/F be a cyclic extension of a finite degree. Then,

$$H^{-1}(C_K, \text{Gal}(K/F)) = 1.$$

Proof. This proposition follows immediately from Proposition 3 and Proposition 1. q.e.d.

Let F be an algebraic number field of a finite degree and K/F be an abelian extension of a finite degree. We denote then by $(\alpha, K/F)$ the Artin symbol of α , where α is an ideal of F composed of prime ideals which are unramified in K. In the present article, we mean by Artin's law of reciprocity for K/F the assertion that there exists a modulus m of F such that $(\alpha, K/F) = 1$ whenever $\alpha \equiv 1 \pmod{m}$. If Artin's law of reciprocity is valid for K/F, then the map $\alpha \rightarrow (\alpha, K/F)$ induces a homomorphism $a \rightarrow$ (a, K/F) from C_F to Gal(K/F); this is uniquely determined by the condition that $(a, K/F) = (\mathfrak{p}, K/F)$, if a is represented by the idele whose \mathfrak{p} -component is a generator of $\mathfrak p$ in the $\mathfrak p$ -adic field $F_{\mathfrak p}$, and other components are 1. We call $C_K \ni a \rightarrow (a, K/F) \in Gal(K/F)$ the reciprocity map; it is surjective, and its kernel contains $N_{K/F}C_K$. In fact, if the former assertion is false, then there would exist an intermediate field $K' \neq F$ of K/F in which almost all prime ideals of F split completely; therefore the Dedekind zeta function of K' would have a pole of order m=(K';F)>1. The second assertion is a basic property of the Frobenius automorphism.

Takagi's fundamental inequality can now be obtained as

Theorem. Let F be an algebraic number field of a finite degree, and let K/F be a cyclic extension of a finite degree n. Then, $(C_F: N_{K/F}C_K) \ge n$.

- *Proof.* i) We proceed by induction on n. Let l be a prime divisor of n, and let K' be the intermediate field of K/F with (K: K') = l. If K' contains the group $\mu_{(l)}$ of the l-th roots of unity, then Theorem I of Furtwängler assures that Artin's reciprocity law is vaild for K/K'. If K' does not contain $\mu_{(l)}$, Artin's reciprocity holds for KL/K'L, where L is obtained by adjoining $\mu_{(l)}$ to Q. So, $(\alpha, KL/K'L) = 1$ for an ideal α of K'L satisfying $\alpha \equiv 1 \pmod{m}$, where m is a suitable modulus of K'L. Let, in particular, α be an ideal of K'; then a basic property of the Frobenius automorphism implies $(\alpha, KL/K'L) = (\alpha, KL/K')^r$, where r is prime to l as a divisor of l-1, Hence, $(\alpha, K/K') = 1$. Namely, the reciprocity law of Artin holds for any cyclic extension of a prime degree l.
- ii) Let now H be the kernel of the reciprocity map: $C_{K'} \rightarrow \operatorname{Gal}(K/K')$ which is certainly well-defined due to i). We have $(C_{K'}: H) = l$, and the assumption of the induction yields $(C_F: N_{K'/F}C_{K'}) \ge l^{-1}n$. Furthermore, $N_{K'/F}a = 1$ for $a \in C_{K'}$ implies $a = b^{1-S}$ by Proposition 4, where $b \in C_{K'}$ and S is a generator of $\operatorname{Gal}(K/F)$; since again a basic property of the Frobenius automorphism says $(b, K/K') = (b^S, K/K')$, a satisfies (a, K/K') = 1, i.e., $a \in H$. This means the kernel of the norm map of $C_{K'}$ into C_F is contained in H. Thus, we see

$$(C_F: N_{K'/F}H) = (C_F: N_{K'/F}C_{K'})(N_{K'/F}C_{K'}: N_{K'/F}H)$$

= $(C_F: N_{K'/F}C_{K'})(C_{K'}: H) \ge l^{-1}n \cdot l = n.$

It follows from this and from $H \supset N_{K/K}, C_K$ that $(C_F: N_{K/F}, C_K) \ge n$. q.e.d.

References

- [1] Ph. Furtwängler, Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern, I, Math. Ann., 67, (1909), 1-31, II, Math. Ann., 72, (1912), 346-386, III, Math. Ann., 74 (1913), 413-429.
- [2] G. J. Janusz, Algebraic number fields, Academic Press, New York, 1973.

Department of Mathematics, Nagoya University Chikusa-ku, Nagoya 464-01 Japan