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A Tripling Symbeol for Central Extensions
of Algebraic Number Fields

Hiroshi Suzuki

Let K/k be a finite abelian extension of a finite algebraic number field
and M be a Galois extension of k which contains K. Denote by K s and
K3, the maximal central extension of K/k in M and the genus field of
K/k in M. Since K/k is abelian, K, coincides with the maximal abelian
extension of k in M. In general, the Galois group G(I?M,k/K;,k,k) is iso-
morphic to a quotient group of the dual M(G)=H"%G, Z) of the Schur
multiplier H*(G, Q/Z) of G. If M is enough large, G(K w1l K i) 18 is0-
morphic to M(G). In such a case, we call M abundant for K/k.

Furuta [2] gives a prime decomposition symbol [d,, d,, p] which in-
dicates the decomposition in K w1/ K of a prime p which is degree 1 in
K%,., where k=0, K=0Q(+/d, , ¥d,) and ‘M is a ray class field of K which
is abundant for K/k. Also it proves the inversion formula [p,, p,, p,]=
[p1s Ps; P.] €XCept only a case.

Akagawa [1] extended this symbol to (x, y, z),, for any kummerian
bicyclic extension K=k( ¥ x, ¥ y) over any base field k with serveral
conditions which make (x, y, z), and (x; z, »), defined and the inversion
formula (x, y, 2),(x, z, ¥),=1 be true. This contains the proof of the ex-
cepted case of Furuta [2]. -

In this paper, we extend the symbol [ , » ] as a character of the
number knot modulo m of K/k with m being a Scholz conductor of K/k
which is defined in Heider [4]. The character is defined by using the in-
verse map H (G, Cr)= H %G, Z) (of Tate’s isomorphism), which is ob-
tained by translating the norm residue map of Furuta [3], which is written
in ideal theoretic, into idele theoretic. In our definition, the extension K/k
may be any bicyclic extension K=k,, - k,, with X,, X, being global characters.
But the symbol is of type (X;, %, ¢), where ¢ is contained in the number
knot. So we can consider the inversion formula only in the case when X,
and X, are Kummer characters X and X{”. When that is the case, we put
(a, b, c), =, 15, c) and calculate (a, b, ¢), +(a, ¢, b), (which are written
additively in this paper) We approach this result to a necessary and suf-
ficient condition of the inversion formula (a ‘b, c),,+(a ¢, b),=0, by
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representing explicitly the components of (a, b, ¢), +(a, c, b), at the primes
p of k where k(¥ a, ¥ b)and k(¥ a, ¥ ¢) are of degree <n or p not
dividing n (Theorem 1 and Corollary 1). This gives the explicit value of
(a, b, ¢),+(a, ¢, b), when k(¥ a), k(¥ b) and k,( ¥ c) are tamely ram-
ified. For the components dividing #, it is difficult to write down them
explicitly in general. So we calculate it only in the case k=Q and rn=2.
(Theorem 2)

In the final section, we compare this symbol with the one[ ,, ] defined
in Furuta [2]. But the comparison with the one in Akagawa [1] becomes
too cumbersome, and it is so delicate that we omit it with saymg here
that they are essentially the same.

§ 1. Homomorphisms ¢y, and vz,

For an algebraic number field F, we denote by F*, J, and C, the
multiplicative group of F, the group of ideles and idele classes of F. For
an integral divisor m of F, we denote the ray modulo m of J, and F* by
Je(m) and F*(m).

For a finite group G, let I, be the augmentation ideal of the group
ring Z[G]. For a finite extension K/k, let Ny, be the norm map.

Let K be a finite abelian extension of a finite algebraic number field k-
with group G. When G is abelian, the Pontrjagin dual M(G)=H %G, Z)
of the Schur multiplier of G is isomorphic to the exterior product A(G)=
GAG (=GRG/{g®g; ge G)). Let &, 7) be the canonical 2-cocycle of
KJ/k and take a transversal {u,; ¢ € G} of G in the Weil group G, of K/k.
We define an isomorphism g, from A(G) to Ngzji(1)/I,Cx=H (G, Cx)
by :

oxnl@ AN =u; v u,u,
=&(0, 0)&(z, 0)"' mod I;Cy.
Let « be an epimorphism and M be the Galois extension corresponding to

Ker @. Then « determines an epimorphism A(x): A(G)-+>A(H) naturally,
and it gives a commutative diagram

A(G) N 2D/ I;Cx
A(x) Ul Ul induced by Ng,,
A(H) = Nih(D/IECy.
Since G is abelian, it can be decomposed into cyclic groups VGi as G=G,

X« ++ X G, such that |G, divides |G,| for i<<j. Let K, be the Galois ex-
tension of k corresponding to G, X - - - X G,_{ X G, X - - - X G, with group
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G,, and put K;,=K,-K; and G,;=G,X G,. Then the above diagram im-
plies
Pr/x
AG) = Nga()/1,Cx
U Ul

Kij/k

14
n AG,) = H.NE:‘,/I:(I)/IGUCKU
i< 1<J

Proposition 1. Let F/k be a finite cyclic extension with group G(F[k)
={o), and L]k be a finite abelian extension containing F with group H.
Then

Ni(WINze(WyCr = Cp/ Cy- Nyyp CL = G(F'[F),

where F' is the abelian extension of F corresponding to C,-Np,C, and
contained in L. For each A € Nz;(1), taking b e Cp so that b*'=N, A,
the above isomorphism N (1)/N;(1)=G(F'[F) is given by A mod N7 /(1)
L,C,—(b, F'[F), where (, F'[F) is the global norm residue symbol for F'|F.

Proof. NL/F(NI:/Ik(l)) = NF_'/lk(l) =Cp™? and NL/F(IHCL) ZNL/FCZ—I are
immediate. Since the kernel of ¢—1: Cp—C57" is Cg, naturally Ny i(1)/
NI, Cp=Ci Ny pCi 1= Cp/Cy - N1, C1. So the proposition implied.

Put now L=K,; and F=K,, then N ()I,C,=1I;, -Cg, . If we
compare the degrees, F’=K|; is clear. So the above proposition gives an
isomorphism

'\l"K”/k : leilj/k(l)/IG“CKj = G(K’lj/Ki) = G(Ki/k) = A(G’lj)

by using a fixed generator ¢;. For A e Ng} (1), take b e Cy, such that
Ny, yxA=0b""", then

Vgi(d mod Iy, Cy V=0, \(Ng,;ib, K,/k).
Now we define g0 Nzp(1)/I;Cr= AG) by
YA mod IaCx)=;:j Vi Nix, ;A mod Iy, Cy, )
for A e Ngi(l). Then the following proposition shows
Vrse =/
Proposition 2. rg, /i(@x, (0, N\N0))=0,\a,.
Proof. Put Gk,,.,=G(K,,/k) and let @g, .: G, +—>G%,: be the



12 H. Suzuki

natural epimorphism of Weil groups. Denote by Vg, ,: G, ,—C, and
Viige: Griyxi—Cx, the group transfers from Gy, , to Cy, and from
Gy, x; t0 Cg,, respectively. Put H=o¢g; (G, x,) and let 1: G ,—
Gk,,«/H* be the canonical epimorphism modulo the topological commu-
tator H® of H. Moreover let 9: G, /H® =Gy, , be the natural isomorph-
ism of Weil groups. .

Take a transversal u,; ¢ € G;; of G,; in Gg,, .. Then

¢K{j/k(ai /\ Uj) = ua_{lua_jluv;uaj

A =u, g u; mod I, Cy, .
NK“/Ki(uatuoju;ilu;jl) = VK,K{(uvgua,ua_ilua_jl
=10 Au, 1, u;lu;) .
=10 A, )n o Au, )g o Auy,) "'y o Au,,)™
=po Z(llqj)”‘l
because o A(y,,) € Cx, and 0 A(u,,) is a representative of ¢, in Gy, .
So we can take the element be Cg, in ‘the definition of

\b'Ktj/k(SQKij/k(Ui AN Uj)) so that b =ne Z(uq)-
Now we have the following commutative diagram, denoting by res the

restriction maps and ;=g (4,,) a prolongation of o; to G%,, i

U b Nicoib: Ngibs KifK)—>V i (0: N 0 ))
}GKH”C GK;,k Cy rﬂ(Kj/k) —~ \A(G)
a

N L e

’ ’ 7 /
G,k Gk, .« G >G > A(G)

>3, k™ &, k™ 04lx, = 0;-——>0,/\0o, ‘

Since the above diagram is commutative, we have

‘I’K”/lc(SDKU/k(O'i A 0'_1)) =g,/ agy.

§2. Tripling (a, b, ¢)

For a G-invariant integral divisor m of K, we call it a Scholz-conductor
of K/k, when the mapping H*G, J(m))—H*G, Cy) induced by J.(im)—
Jx—»Cy is zero mapping (See Heider [4]). Since Jp=J(m)-K*, Ng;(1)/
I,Cp = Ny} (k)KL e = T () N N/ (k) K*(m) 1z, (1). And the con-
dition that m is a Scholz-conductor is equivalent to Jg(m) N Ng/i(k>)/
K*() L (M) = N (1) N kX[ N, K*(m) by means of the norm map
N ‘ . ‘ . -
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Now let X, and X, be global characters of J, (i.e. Ker X, Dk*) such
that ord ¥, divides ord X,, and K,=k,, be the cyclic extensions of k corre-
sponding to Ker X,. For X,: J,—>»>G(K,/k)=(1/ord X,)Z| Z, we take ¢, €
G(K,[k) whose image is (1/ord X,) mod Z (i=1, 2). Put K=K, K,.

When K, N K,=k, we connect the mapping +» of Section 1 with the
above isomorphism. Namely, for ¢ € Ny, Je(m) Nk*, taking € e J(u)
and C e K¥ with Ng,,&=cand Ng,,C=c, put (X, Xy, ¢) =Xs(Ng, /i), Where
ceJg, with ¢ '=C""-Ng,r €. Tt gives

, . . 1
Ngjd, K*|Ng K*()= ———Z|ZZ Q/Z,
&/ () N KX N K> (1) (MG /1ZS Q]
and the image ¢, of @gu(oiAdy) by Nij(D)/IgCx = Nipdx(m) N
k*| N, K*(m) corresponds to (1/|M(G)]) mod Z.

Definition. When K, N K,=k, we put
X1 Xy ) =Xo(Ngy1©) for ce NgpJx(m)NE*,

Remark. As far as the symbol (X, X,, ¢) is defined, its value is in-
dependent on m. Scholz-conductor has the smallest element, so we use it
throughout in the following. Instead of Jx(m), we can use any G-invariant
closed subgroup J of J, such that H~Y(G, J)—HY(G, Cy) is zero mapping.
But if we used J, the value (X, %, ¢) should depend on the choice of J. So
we don’t use this J for the simplicity.

The following proposition implies immediately from the definition.

Proposition 3. 1) Let X} be another global character such that ord %
divides ord X,.  When (X, X3, €), (X3, Xo, €) and (U, X, +%3, ¢) are all defined,
it holds . v

Xy Xo %3, )= (X5 Xay €) 4 (X, X3, €).

i) If ord X,=ord X, and (X,,Xs, ) is defined, then (%, X,,c) is-also
defined and

(X Xp5 )4+ (Xy, %y, €)=0.

When k contains a primitive root £, of 1 (fix it throughout this
section), each @ of k defines the Kummer character X, of degree n.

Definition. Assume k » {,. When a, b € k* satisfy ord X,|ord X, and
kz,, Nk, =k, we put

. (a, b, c)n=(xa’ xb’ C)
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for ¢ € Niy kyore Jig iz, (M) Nk where m is the Scholz-conductor of &, k,,/k.

Let (5"—3’3&;) be the Hilbert symbol and w,: {{,>—(1/n)Z/|ZS Q/Z
be the homomorphism given by {,—(1/n)mod Z. Then (a, f);,.=
hae wn<£‘£’5§’—> gives the Kummer pairing for «, 8 € J,, where p runs over

all the prime divisors of k and «,, 8, are the p-components of «, 8 res-
pectively.

For each ¢ & Ny, ke g e, (M NK*, taking € e Jy, 4,.(m), Cek,,
and ¢ e Ji, such that Ny, ., n€=N,, ,C=cand ¢*'=C"" Ny, 2, Es
we get (a, b, ¢), =Xy(Nry/x0) = (Niys2Cs B)i,n» Where g, is the element of
G(k,,/k) whose image by X, is (1/ord %,) mod Z.

In the following, we consider only the case ord %, =n for the simplicity
and we write ¢ instead of ¢,. Put K,=k,,, K;=k,,, K,=k,, K=K/K,
and K'=K/K,.

Proposition 4. Assume (a, b, ¢), and (a, ¢, b), are defined with the
Scholz-conductors m and w respectively. Take € e J(m) and B e J, K,(m)
such that Ny, & =c and N.,B8=>b, and put §=(n— l)a—i—(n Do+ .-+

d"'e ZInZ|G(K k). Then

(@, b,¢),+(a, ¢, b),=(Ngye,B’, N xyrne

Proof. Take the element C, B e Ki and ¢, b € J,, so that Ny ,C=c,
Ng,xB=b, " '=C"'Ng,r,€ and b*'=B"'. Ng,,B. Then

(@, b, 0)y=(Ng,iC; B)en=(¢, D)iyy-

Since 6(1 —g~ ) =140+ .- - +0" ' in Z/nZ[(G(K,[k)],
(¢, B)ieyn =, (B~ gy e
Moreover
(c9 (B-a)ﬂ"l—l)Kl,nz(cf—i’ B_J)nyn

owing to (&”, A7)z, =(c, B)xya(e, B € J,). As B~ and C~' e K¥, we have

Y B )y =Vg/,8&5 B~y e
Now it follows from B=Ny,,,B-b'"° that

(Ng/xi€, B )y n=(Ng/, €, b0~ Nrrnt+ Vg€, Nigoye, 87 NVkan
=Ng/x,& Neyib)gyn +Ne B’ Niyge,®xy
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=(c, NK,/kb)k,n -+ (NK'/Kx%s +NK/K1@)K1,1;
=—(a, ¢, b),+ (NK’/Kl%aa NK/K1@:)K1,1L’

and the proposition is proved.

It is a problem when the inversion formula (a, b, ¢), = (a, ¢, b), =0
holds. We shall treat it in the following section.

§ 3. Inversion formula

When n=[], p™ where p, are prime numbers,

(a, b’ C)p}" =

with Cpm; = Cn/p}'”.

So it is enough to consider only when » is a prime power p™.
We assume (a, b, ¢), and (a, c, b), are defined. Then (a,pb) =

( a;ac ) —_—( b;)c ) =1 are every prime p of k. When this is the case, we

call that a, b, ¢ are orthogonal (See Akagawa [1]). As in the previous
section, let ord X, =n, K=k, , k“, K,=k,, K=KK, and K'=KK,.
For each prime divisor p of k, take prime divisors PB,, L and P’ of p in K,
K and K’ satisfying |9, and L'|%B,. When P¢|m, put K =U for e>1
and K{" =K, for e=0.

Take €y ¢ K" and By, € K™ so that Ng,,Sg=c and N8y
=b. Then we can take € ¢ J(m) and B € J.(m’) in Proposition 4 with
components 1 except €, and By, at §$ and P’ for each p, respectively.

Put n,=[K,, : k] and let 8(m,)=2727" (n/n,)(n,—i)o™™"* (of course
0(1)=0). Now we consider the components of (Ng/x,B°, Ng/z, &g, in
order to estimate the value (a, b, ¢), +(a, ¢, b), by Proposition 4. The
components at the prime divisors of p are 1 except at 3, and the compo-
nent at %, is

3(ny)
Nigizig, v, N Kygl/Kig, Cy _ (N Kyx1g &5 N, K;B/K%SB%'
o, =w, .
B B,

The equality is immediate from (a°*/"» p**/"|P)=(a, B/P,) for a, B & Ky
we denote this component by 7,.
For infinite, p,n,=1 or 2. When n,=2, ; is complex and the Hilbert
symbol is trivial. In case of n,=1, the above term is 0 since d(r,)=0.
We consider the component 7, at finite p under the condition [Ky: &,]
<n and [K.:k])<n. Then the homomorphism A(G(Ky/k,))—A(G) in-
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duced by the inclusion G(Ky/k,)— G is zero mapping and 3\ m for every
Blp. So K§»=Ky and KF'=Ky,. If ™/p ¢ Ky, then [Ky: k]>n,
which contradicts. Hence K, contains ™,/ and ™y/ c.

At first we assume p=+2. Then, since (""«/s’Bc,b )=<c,pb ):1,
1

mJ ¢ eN M,KI%K;B and we can set Nsts Cg="2/c. When ",/ ¢ o/m
____Cz (u e Z/nZ), we have ’)‘Lv«/—cqa(‘ﬂp)____C;(I/E)u’n(np—l) . c(n/np)('nu-l)/i e kp and

T B (np«/_gﬁ(’np)’ b )_ (C; (1/6)1/»'”.('!1.‘,—1)(271;,—1)7 b)
=, Y——T"}=0, .
p

B

The last term is equal to zero when p+3 or n,<n.
Let p=3, n,=n and {,={}*. Then there exist b, and ¢, in Z/nZ

such that b=a" mod &} and c=a® mod k}. Of course u=c, and

T,,=co,,(—?)’?ab—p>—— ¢ b w,,(cs*’)a).

If pV.3, then evidently 7, =w,(@)w,(B)w,(c)w,(£s/p), where w, is the normal-
ized additive valuation of k,.
Now we assume p=2, [Kg‘Lg k)<n and [K}.: k]<n. If c e k2, we can

set Ngg/,Sg="04/ ¢ and ™,/ ¢ o™ =,/"¢c ™= ek, So

(5,

]

If b e k2, then similarly

Ty= ;n;wn (“/——%i)

If n,<nmand c ¢ k}, we can set N Kv/"ss@ =g, /¢ and (Cr/Ame e,/ ¢ ¥
=( l)n/anc(np—l)n/va e k Then

T"zzinp("_ l)a)n( “:; b )

If b ¢ k2, ¢ ¢ k2 and n,=n, then there exist b,, ¢, € Z/nZ; u, v € k, such that
b=a"u", c=a*v". Take an element « ¢ K, such that Ny, 0=—1.
1

Then

i (@ P G )
p»p— %n .
B
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Since

()= ()

()

and o= p°"! for some B e K, , we have
1

e e o
- (ﬂ"’;"”"’”, ma ) _ (NKlwl,,cuﬁb», (—a)%)
*, B

— (Nmml/k,,ﬁ, —1 )(a o )
p B
—_ 2bpe
( 1, a) L
B

‘o

B

-a=¢,. Then NKl,_B @ =Cr"=—1. So we can use this x. Now o&’=

a((’n—l)+' +1)5a(’n 2y + e +0_a(’n/2)20“(n/2)((n/2) 1)__(aa+1)(n/2)2a—7l/2 C(n/Z)2 -n/Z

(_l)n/za—n/z___(_a) n/Z SO

a . —a)" ", Uy, gt
b,-cw, (as,ga) =b,c,0, <£_9‘ZB_1£_) =0 and 7,=o, <T)

1

Next we calculate b,-c,0 ( ) Take « € k,(y/ a) such that Ny, iz,

Theorem 1. We assume [Ky: k,J<n and [Ky.: kJ<n. Then 1, has
Jollowing values:
1) 7,=0 for infinite p.
i) 7,=0ifp+2,3.
iiiy When n, (=[Km1: kD)<n, 1,=0 unless p=2 and 1 <n,=n/2. If
p=2 and 1<n,=n/2, then T,,:a),,( —;’ b >=w,,( —;’ ¢ )
iv)  When n,=n, there exist b, and ¢, in Z[nZ such that b=a" mod k'

and c=a*mod k7. If p=3, Tv=c,-bpa)n(C31’3a>. If p=2 and b,, ¢,=0
mod 2, then 1,=0. Ifp=2andb, or ¢,20 mod 2, then

I —w (Jan.cbv, a)
=\ ————r | -
b
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If p#2 and pV p then orthogonality implies [Ky: k,]<n and [Kg.: k]
<n. When p=2 and p\p, [Ky: k,]<n unless w(@)=w,(b)=1 mod 2 and
k, 38, Ifp=2, w(a@)=w,(b)= 1mod 2 and k, 5 {,, then [Ky: k,]=2n
and K =UP =(U)", so 7,=0.

Corollary 1. Assume p\p. Then1,=0 expect the following four cases.
1) Ifp=3, k, 3 {,, and w(a)w,(b)w,(c)=0 mod 3, then

r,:wp(a)»vp(b)w,(c)wu(%).

iy Ifp=2,1<n,=n/2, k, $ {;, and w(b)w,(c)=1 mod 2, then
Tp=l2' mod Z.
iy If p=2 and n,=[Ky: k,)=[K§.: kJ=n and k, 3 L,, then

e WWDEWOl RWORWE] g
0B, V@) kG D] K €, @) k@]

iv) Ifp=n=n,=[Ky: k]=[Kyg.: k=2 and k, 3 {,, then

1= Bl D OB+ Dl DI 10 7

Proof. 71,=0 except i), ii), iii) and iv) is already proved. i) and ii) is
evident from Theorem 1. At first we consider the case iii). If k, % ¢,,
and w,(a)=1 mod 2, then [Ky: k,]=[Ky.: k,]=n shows b and ¢ are con-
tained in k? and 7,=0. Hence above equation holds. So we may assume
k,>&, or w(@=0mod 2. Then k(y/a)>¢,, and k,("/B,"/a),
k,("y/ ¢,y @) are uniquely determined. Since k, 3¢, k,("y/ @) is a
cyclic extension of cegree 2n. Put b=a’u™ and c=a®v". Then

uc;;vbp an/z
szwn(——g)—’*—— .

So it is sufficient to show

u, a**® 1
ol — — __ d2Z
@ ( > ) 5, oy a) k]

and

mod Z.

(v, ar® 1
@y

P )= (oY €, oy @): k(o @)]
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These terms take values in 0 and ¥ mod Z, and

o ‘;’) —1 & k(i) Tk @)

& k(W u)Ck(my/ a)
& k("W b)Ck(" a)
show the first equality. The second equality is all the same.
Next we consider the case iv). If w,(¢)=1 mod 2 then b and ¢ are in

k; and 7,=0. We assume wy(@)=0 mod 2. Then a=—1 mod kj. Put
=ab*i* and c=a*1".

T, =0, (ﬂgb;’——i) = —;—w”(uCPU”v) mod Z.
2w, (uv®) = wv(d2°vv2bv)

=w,((a*?)(a*v?)™)

=w,(b*c)

=c,w,(b)+b,w,(c)

=[k, (v a@): k(v OB +k, (v a): k(v ¢)Iw,(c) mod 4

shows iv).

Especially if K;, K, and K, are tame, then all the components are
calculated.

Corollary 2. Assume K,, K, and K, are all tame. When p=2, let

P,={p: finite prime of k|k, >, k} % a=cmod k]
s k(P B)S k(Y a), pY2},
P,={p: finite prime of k|k, >, ki y a=b mod k;
, k(Y Sk a), pY2},
and if n>2 then put
P;={p: finite prime of k|k}>a ¢k}, w,(b) - w,(c)=1 mod 2, p{2}.
Then
(@b, 0),+(a,¢b),=0 if p#2,3.
Ifp=3

@6, (@ 6, D= 5 w(@wBw o, (%)
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If p=2 and n>?2,

(a,b,0),+(a,c, b,
k(v a): k(v B)Iw(e)+ k(v @) k(y/ c)Iwy(b)

pip 2n

+4(*P, +*P,+*Py) mod Z.

Ifp=2

(a.b,0),+(a, b, ¢c),

- k(v @): k(v B)Iw(e) +1k,(v/ a@): k(4 €)lwy(b)
0 : 4

+3(*P,+-*P,) mod Z

where p runs over all the finite prime of k which divides p or satisfies k, % {,,
a ¢ ki and w(a)=0 mod 2.

At p dividing p, if [Ky: k,] or [K%.: k,]>>n, it is difficult to determine
7, explicitly, because we must determine the minimal Scholz-conductor or
take the elements Ny, x.q By and Ny, g, € of Ky which have norms
b and ¢ to k, and are contained in the smallest 7,-th and 7,-th unit group
Ug» and Ug? respectively.

So we calculate it in Section 5 only when k= Q (of course n=2).

§ 4. Inversion formula over Q

We calculate 7, in the case of k=, when K, or K%, is bicyclic over
Q.. Then there are 22 cases by separating a, b and ¢ modulo Q3.

I,, a=—1, b=5, c¢=5
I, a= {bz , c¢=1
b=1, =5

I,.. a=-5, b=5, ¢=5
1,, a=-5 {bES, c=1
b=1, c¢=5

5



11,
11,
111,
111,
Iv,.

1v,.

VI,
VII,.
VII,.

VIII,.

VIII,.

Tripling Symbol

a=>5 {b_—_—S,
lb=5,
a=>5 {5—5,
b=1,
a=—1 {b_——;Z,
b=1,
a=2 {bE—l,
b=1,
a=—1 {bEZ 5,
b=1,
a=2.5 {bz——l,
b=1,
a=-—>5 {bE——Z,
b=1,
a=-—2 {bE—-S,
b=1,
a=->5 {bz——-2
b=1,
aE—Z-S{bE——S,
b=1,
a=2 {b:_-=——2,
b=1,
a=—2 {bz2,
b=1,
a=-—2 {bz——Z-
b=1,
aE—Z-S{bE—-Z,
b=1,
a=2-5 {b_=_—2-
b=1,
a:——2-5{b52-5,
=1

c=1
c=-—2
c=1
c=-—2-5
c=1

c=2-5

21

Here, when two conditions contained in a case like I,, we consider only
the upper one, because of exchanging b and c.
In case of VI, ... VIIIL,,
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wz(c mod Z.
16

In case of 1,, I,

7’2=-M-)%lz)~ mod Z.

Otherwise 7,=0.
Theorem 2. Assume k= Q and both (a, b, ¢), and (a, c, b), are defined.
Put
P,={p: prime number=1 mod 4|Q; » a=c mod Q;
s GV B)&Q,(Wa)}
P,={p: prime number=1 mod 4| @} % a=c mod Q?
s @V )R Q,(Va))
P={p: prime number=3 mod 4|a= —1 mod Q}}.
Then

(@ b, )+ (@, ¢, by
= 53 D R B D Wy, o

PEP

+7, mod Z,

where 1, takes value as follows:

T,=3% when in the upper cases of V1,, V1, VII,, VII,, VIII,, VIII,
with b=9 mod 8, and when in the lower cases of VI, ---, VIII, with
c¢=9 mod 8, and when in the upper cases of 1,, 1, with w,(b)=2 mod 4,
and when in the lower cases of 1,, 1, with w,(¢)=2 mod 4,

n:wz(*/—c;b> if Q2ya=bmod @ and ce Ql

72=w2<c, “‘;F) if Qiya=cmod Q} and be Qj}

T2=a)2(——‘/bc) if Q%%a=b=cmod Q;},

7.=0 otherwise.
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§ 5. About the prime decomposition symbol in Furuta [2]

We assume that m is abundant for K/k, i.e. the ray class field H(m)
modulo m over K is abundant for K/k. Put If(m):[f’,,x(m) s and K*(m)
=K% o The other notations are the same as the beginning of Section
2.

Moreover let I3, be the group of ideals of K*(m) which are prime
to m. Taking representatives S,, and S,, of ¢, and ¢, in G(K(m)/k), define
an isomorphism

X: GR(m)K*(m)=— 7]z
ord %,
by §;S;}S,,S,,—(1/ord %) mod Z, where of course S;'S;'S,.S,,=

(@1 Naw), K(m)/k). '

Definition. For each qe Ny li+m, take an element Q e Ig. .,
such that Ng.,20=q. Then we define

where (M_m) is the Artin symbol.

Remark. If [X,, %,, q] is defined modulo m, then there exists an
element ¢ € k* such that q=(q) and (X, %, ¢) is defined modulo m. For
any such g, [X, %, q]=(;, X, g). However even though q=(g) and
(X1, %y, q) is defined, if (X, %,, ¢) is not defined modulo m, the values
(X4, %, q) and [X,, X;, ¢] may not be equal.

Especially in the case that k=Q and n=2, m-.p., is abundant for
K[k, where m is the maximal Scholz-conductor of K/k, and p,, is the pro-
duct of all the real primes of K if m contains no infinite primes, otherwise
p.=1. Since any finite prime divisor of m is ramified in R(m)/K*(m), if
the prime decomposition symbol [d,, d;, ] of Furuta [2] is defined, then
(d,, dy, |a)), is defined and

[dl’ dz, a]:(_ 1)(¢1,da, labe,
So Theorem 2 contains the following

Corollary. Assume that d,, d, and d, e Z are relatively prime and
d,, d;>0. If the symbol [d,, d,, d,) and [d,, d;, d;) of Furuta [2] are defined,
then

[db dz, ds]z[dl: ds; dz]
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