Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 9–24

A Tripling Symbol for Central Extensions of Algebraic Number Fields

Hiroshi Suzuki

Let K/k be a finite abelian extension of a finite algebraic number field and M be a Galois extension of k which contains K. Denote by $\hat{K}_{M/k}$ and $K_{M/k}^*$ the maximal central extension of K/k in M and the genus field of K/k in M. Since K/k is abelian, $K_{M/k}^*$ coincides with the maximal abelian extension of k in M. In general, the Galois group $G(\hat{K}_{M/k}/K_{M/k}^*)$ is isomorphic to a quotient group of the dual $M(G) = H^{-3}(G, \mathbb{Z})$ of the Schur multiplier $H^2(G, \mathbb{Q}/\mathbb{Z})$ of G. If M is enough large, $G(\hat{K}_{M/k}/K_{M/k}^*)$ is isomorphic to M(G). In such a case, we call M abundant for K/k.

Furuta [2] gives a prime decomposition symbol $[d_1, d_2, p]$ which indicates the decomposition in $\hat{K}_{M/k}/K_{M/k}^*$ of a prime p which is degree 1 in $K_{M/k}^*$, where k = Q, $K = Q(\sqrt{d_1}, \sqrt{d_2})$ and M is a ray class field of K which is abundant for K/k. Also it proves the inversion formula $[p_1, p_2, p_3] = [p_1, p_3, p_2]$ except only a case.

Akagawa [1] extended this symbol to $(x, y, z)_n$ for any kummerian bicyclic extension $K = k(\sqrt[n]{x}, \sqrt[n]{y})$ over any base field k with serveral conditions which make $(x, y, z)_n$ and $(x, z, y)_n$ defined and the inversion formula $(x, y, z)_n(x, z, y)_n = 1$ be true. This contains the proof of the excepted case of Furuta [2].

In this paper, we extend the symbol [,] as a character of the number knot modulo m of K/k with m being a Scholz conductor of K/k which is defined in Heider [4]. The character is defined by using the inverse map $H^{-1}(G, C_K) \cong H^{-3}(G, Z)$ (of Tate's isomorphism), which is obtained by translating the norm residue map of Furuta [3], which is written in ideal theoretic, into idele theoretic. In our definition, the extension K/k may be any bicyclic extension $K=k_{\chi_1} \cdot k_{\chi_2}$ with χ_1, χ_2 being global characters. But the symbol is of type (χ_1, χ_2, c) , where c is contained in the number knot. So we can consider the inversion formula only in the case, we put $(a, b, c)_n = (\chi_a^{(n)}, \chi_b^{(n)}, c)$ and calculate $(a, b, c)_n + (a, c, b)_n$ (which are written additively in this paper). We approach this result to a necessary and sufficient condition of the inversion formula $(a, b, c)_n + (a, c, b)_n = 0$, by

Received March 20, 1985.

representing explicitly the components of $(a, b, c)_n + (a, c, b)_n$ at the primes \mathfrak{p} of k where $k_{\mathfrak{p}}(\sqrt[n]{a}, \sqrt[n]{b})$ and $k_{\mathfrak{p}}(\sqrt[n]{a}, \sqrt[n]{c})$ are of degree $\leq n$ or \mathfrak{p} not dividing n (Theorem 1 and Corollary 1). This gives the explicit value of $(a, b, c)_n + (a, c, b)_n$ when $k_{\mathfrak{p}}(\sqrt[n]{a})$, $k_{\mathfrak{p}}(\sqrt[n]{b})$ and $k_{\mathfrak{p}}(\sqrt[n]{c})$ are tamely ramified. For the components dividing n, it is difficult to write down them explicitly in general. So we calculate it only in the case $k = \mathbf{Q}$ and n = 2. (Theorem 2)

In the final section, we compare this symbol with the one [,] defined in Furuta [2]. But the comparison with the one in Akagawa [1] becomes too cumbersome, and it is so delicate that we omit it with saying here that they are essentially the same.

§ 1. Homomorphisms $\varphi_{K/k}$ and $\psi_{K/k}$

For an algebraic number field F, we denote by F^{\times} , J_F and C_F the multiplicative group of F, the group of ideles and idele classes of F. For an integral divisor m of F, we denote the ray modulo m of J_F and F^{\times} by $J_F(m)$ and $F^{\times}(m)$.

For a finite group G, let I_G be the augmentation ideal of the group ring Z[G]. For a finite extension K/k, let $N_{K/k}$ be the norm map.

Let K be a finite abelian extension of a finite algebraic number field k with group G. When G is abelian, the Pontrjagin dual $M(G) = H^{-3}(G, \mathbb{Z})$ of the Schur multiplier of G is isomorphic to the exterior product $\Lambda(G) = G \wedge G$ ($=G \otimes G / \langle g \otimes g; g \in G \rangle$). Let $\xi(\sigma, \tau)$ be the canonical 2-cocycle of K/k and take a transversal $\{u_{\sigma}; \sigma \in G\}$ of G in the Weil group $G_{K,k}$ of K/k. We define an isomorphism $\varphi_{K/k}$ from $\Lambda(G)$ to $N_{K/k}^{-1}(1)/I_G C_K = H^{-1}(G, C_K)$ by

$$\varphi_{K/k}(\sigma \wedge \tau) \equiv u_{\sigma}^{-1} u_{\tau}^{-1} u_{\sigma} u_{\tau}$$
$$\equiv \xi(\sigma, \tau) \xi(\tau, \sigma)^{-1} \mod I_{\sigma} C_{\kappa}.$$

Let α be an epimorphism and M be the Galois extension corresponding to Ker α . Then α determines an epimorphism $\Lambda(\alpha): \Lambda(G) \rightarrow \Lambda(H)$ naturally, and it gives a commutative diagram

Since G is abelian, it can be decomposed into cyclic groups G_i as $G=G_1$ $\times \cdots \times G_r$ such that $|G_j|$ divides $|G_i|$ for i < j. Let K_i be the Galois extension of k corresponding to $G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_r$ with group G_i , and put $K_{ij} = K_i \cdot K_j$ and $G_{ij} = G_i \times G_j$. Then the above diagram implies

Proposition 1. Let F/k be a finite cyclic extension with group $G(F/k) = \langle \sigma \rangle$, and L/k be a finite abelian extension containing F with group H. Then

$$N_{L/k}^{-1}(1)/N_{L/F}^{-1}(1)I_{H}C_{L} \cong C_{F}/C_{k} \cdot N_{L/F}C_{L} \cong G(F'/F),$$

where F' is the abelian extension of F corresponding to $C_k \cdot N_{L/F}C_L$ and contained in L. For each $A \in N_{L/k}^{-1}(1)$, taking $b \in C_F$ so that $b^{\sigma-1} = N_{L/F}A$, the above isomorphism $N_{L/k}^{-1}(1)/N_{L/F}^{-1}(1) \cong G(F'/F)$ is given by $A \mod N_{L/F}^{-1}(1)$ $I_H C_L \mapsto (b, F'/F)$, where (, F'/F) is the global norm residue symbol for F'/F.

Proof. $N_{L/F}(N_{L/k}^{-1}(1)) = N_{F/k}^{-1}(1) = C_F^{\sigma-1} \text{ and } N_{L/F}(I_HC_L) = N_{L/F}C_L^{\sigma-1} \text{ are}$ immediate. Since the kernel of $\sigma - 1: C_F \rightarrow C_F^{\sigma-1}$ is C_K , naturally $N_{L/k}^{-1}(1)/N_{L/F}^{-1}(1)I_HC_L \cong C_F^{\sigma-1}/N_{L/F}C_L^{\sigma-1} \cong C_F/C_k \cdot N_{L/F}C_L$. So the proposition implied.

Put now $L = K_{ij}$ and $F = K_i$, then $N_{L/F}^{-1}(1)I_HC_L = I_{G_{ij}} \cdot C_{K_{ij}}$. If we compare the degrees, $F' = K_{ij}$ is clear. So the above proposition gives an isomorphism

$$\psi_{K_{ij}/k} \colon N_{K_{ij}/k}^{-1}(1)/I_{G_{ij}}C_{K_j} \cong G(K_{ij}/K_i) \cong G(K_i/k) \cong \Lambda(G_{ij})$$

by using a fixed generator σ_i . For $A \in N_{K_{ij}/k}^{-1}(1)$, take $b \in C_{K_i}$ such that $N_{K_{ij}/K_i}A = b^{\sigma^{-1}}$, then

$$\psi_{K_{ij}/k}(A \mod I_{G_{ij}}C_{K_{ij}}) = \sigma_i \wedge (N_{K_{ij}/k}b, K_j/k).$$

Now we define $\psi_{K/k} \colon N_{K/k}^{-1}(1)/I_G C_K \cong \Lambda(G)$ by

$$\psi_{K/k}(A \mod I_G C_K) = \sum_{i < j} \psi_{K_{ij}/k}(N_{K/K_{ij}}A \mod I_{G_{ij}}C_{K_{ij}})$$

for $A \in N_{K/k}^{-1}(1)$. Then the following proposition shows

$$\psi_{K/k} = \varphi_{K/k}^{-1}.$$

Proposition 2. $\psi_{K_{ij}/k}(\varphi_{K_{ij}/k}(\sigma_i \wedge \sigma_j)) = \sigma_i \wedge \sigma_j.$

Proof. Put $G'_{K_{ij},k} = G(K_{ij}/k)$ and let $\varphi_{K_{ij},k} \colon G_{K_{ij},k} \to G'_{K_{ij},k}$ be the

natural epimorphism of Weil groups. Denote by $V_{K_i,k}: G_{K_i,k} \rightarrow C_k$ and $V_{K_{ij},K_i}: G_{K_{ij},K_i} \rightarrow C_{K_i}$ the group transfers from $G_{K_{i,k}}$ to C_{K_i} and from G_{K_{ij},K_i} to $C_{K_{ij}}$ respectively. Put $H = \varphi_{K_{ij,k}}^{-1}(G'_{K_{ij},K_i})$ and let $\lambda: G_{K_{ij,k}} \rightarrow G_{K_{ij,k}}/H^c$ be the canonical epimorphism modulo the topological commutator H^c of H. Moreover let $\eta: G_{K_{ij,k}}/H^c \cong G_{K_{i,k}}$ be the natural isomorphism of Weil groups.

Take a transversal u_{σ} ; $\sigma \in G_{ij}$ of G_{ij} in $G_{K_{ij},k}$. Then

$$\varphi_{K_{ij}/k}(\sigma_i \wedge \sigma_j) \equiv u_{\sigma_i}^{-1} u_{\sigma_j}^{-1} u_{\sigma_i} u_{\sigma_j}$$
$$\equiv u_{\sigma_i} u_{\sigma_j} u_{\sigma_i}^{-1} u_{\sigma_j}^{-1} \mod I_{G_{ij}} C_{K_{ij}}.$$
$$N_{K_{ij}/K_i}(u_{\sigma_i} u_{\sigma_j} u_{\sigma_i}^{-1} u_{\sigma_j}^{-1}) = V_{K,K_i}(u_{\sigma_i} u_{\sigma_j} u_{\sigma_i}^{-1} u_{\sigma_j}^{-1})$$
$$= \eta \circ \lambda(u_{\sigma_i} u_{\sigma_j} u_{\sigma_i}^{-1} u_{\sigma_j}^{-1})$$
$$= \eta \circ \lambda(u_{\sigma_i}) \eta \circ \lambda(u_{\sigma_j}) \eta \circ \lambda(u_{\sigma_i})^{-1} \eta \circ \lambda(u_{\sigma_j})^{-1}$$
$$= \eta \circ \lambda(u_{\sigma_i})^{\sigma_i - 1}$$

because $\eta \circ \lambda(u_{\sigma_i}) \in C_{\kappa_i}$ and $\eta \circ \lambda(u_{\sigma_i})$ is a representative of σ_i in $G_{\kappa_i,k}$.

So we can take the element $b \in C_{K_i}$ in the definition of $\psi_{K_ij/k}(\varphi_{K_ij/k}(\sigma_i \wedge \sigma_j))$ so that $b = \eta \circ \lambda(u_{\sigma_j})$.

Now we have the following commutative diagram, denoting by res the restriction maps and $\bar{\sigma}_j = \varphi_{K,k}(u_{\sigma_j})$ a prolongation of σ_j to $G'_{K_{ij},k}$:

$$\begin{array}{c} u_{\sigma_{j}} \longrightarrow b \longmapsto \rightarrow N_{K_{i}/k} b \longmapsto \langle N_{K_{i}/k} b, K_{i}/k \rangle \longmapsto \psi_{K_{ij}/k} (\varphi_{K_{ij}/k} (\sigma_{i} \land \sigma_{j})) \\ \\ \int G_{K_{ij,k}} \longrightarrow G_{K_{i,k}} \longrightarrow C_{k} \longrightarrow G(K_{j}/k) \longrightarrow \Lambda(G) \\ \downarrow \varphi_{K_{ij,k}} \downarrow \varphi_{K_{i,k}} \downarrow \varphi_{k,k} & \| & \| \\ G'_{K_{ij,k}} \xrightarrow{\text{res}} G'_{K_{i,k}} \xrightarrow{\text{res}} G'_{j} \longrightarrow \sigma_{j} \rightarrow \Lambda(G) \\ \hline \sigma_{j} \longmapsto \overline{\sigma}_{j} | k^{ab} \longmapsto \overline{\sigma}_{j} | k^{ab} \longmapsto \sigma_{j} |_{K_{j}} = \sigma_{j} \longmapsto \sigma_{i} \land \sigma_{j}$$

Since the above diagram is commutative, we have

$$\psi_{K_{ij}/k}(\varphi_{K_{ij}/k}(\sigma_i \wedge \sigma_j)) = \sigma_i \wedge \sigma_j$$

§ 2. Tripling (a, b, c)

For a G-invariant integral divisor m of K, we call it a Scholz-conductor of K/k, when the mapping $H^2(G, J_K(\mathfrak{m})) \rightarrow H^2(G, C_K)$ induced by $J_K(\mathfrak{m}) \rightarrow J_K \rightarrow C_K$ is zero mapping (See Heider [4]). Since $J_K = J_K(\mathfrak{m}) \cdot K^{\times}, N_{K/k}^{-1}(1)/I_G C_K = N_{K/k}^{-1}(k^{\times})/k^{\times}I_G J_K \cong J_K(\mathfrak{m}) \cap N_{K/k}^{-1}(k^{\times})/K^{\times}(\mathfrak{m})I_G J_K(\mathfrak{m})$. And the condition that m is a Scholz-conductor is equivalent to $J_K(\mathfrak{m}) \cap N_{K/k}^{-1}(k^{\times})/K^{\times}(\mathfrak{m})I_G J_K(\mathfrak{m}) \cong N_{K/k}J_K(\mathfrak{m}) \cap k^{\times}/N_{K/k}K^{\times}(\mathfrak{m})$ by means of the norm map $N_{K/k}$. Now let χ_1 and χ_2 be global characters of J_k (i.e. Ker $\chi_i \supset k^{\times}$) such that ord χ_2 divides ord χ_1 , and $K_i = k_{\chi_i}$ be the cyclic extensions of k corresponding to Ker χ_i . For $\chi_i: J_k \longrightarrow G(K_i/k) \cong (1/\text{ord } \chi_i) \mathbb{Z}/\mathbb{Z}$, we take $\sigma_i \in G(K_i/k)$ whose image is $(1/\text{ord } \chi_i) \mod \mathbb{Z}$ (i=1, 2). Put $K = K_1 \cdot K_2$.

When $K_1 \cap K_2 = k$, we connect the mapping ψ of Section 1 with the above isomorphism. Namely, for $c \in N_{K/k}J_K(\mathfrak{m}) \cap k^{\times}$, taking $\mathfrak{C} \in J_K(\mathfrak{m})$ and $C \in K_1^{\times}$ with $N_{K/k}\mathfrak{C} = c$ and $N_{K_1/k}C = c$, put $(\chi_1, \chi_2, c) = \chi_2(N_{K_1/k}c)$, where $c \in J_{K_1}$ with $c^{\sigma_1 - 1} = C^{-1} \cdot N_{K/K_1}\mathfrak{C}$. It gives

$$N_{K/k}J_{K}(\mathfrak{m})\cap k^{\times}/N_{K/k}K^{\times}(\mathfrak{m})\cong \frac{1}{|M(G)|}Z/Z\subseteq Q/Z,$$

and the image c_0 of $\varphi_{K/k}(\sigma_1 \wedge \sigma_2)$ by $N_{K/k}^{-1}(1)/I_G C_K \cong N_{K/k} J_K(\mathfrak{m}) \cap k^{\times}/N_{K/k} K^{\times}(\mathfrak{m})$ corresponds to $(1/|M(G)|) \mod \mathbb{Z}$.

Definition. When $K_1 \cap K_2 = k$, we put

$$(\chi_1, \chi_2, c) = \chi_2(N_{K_1/k}c)$$
 for $c \in N_{K/k}J_K(\mathfrak{m}) \cap k^{\times}$.

Remark. As far as the symbol (χ_1, χ_2, c) is defined, its value is independent on m. Scholz-conductor has the smallest element, so we use it throughout in the following. Instead of $J_K(m)$, we can use any *G*-invariant closed subgroup \tilde{J} of J_K such that $H^{-1}(G, \tilde{J}) \rightarrow H^{-1}(G, C_K)$ is zero mapping. But if we used \tilde{J} , the value (χ_1, χ_2, c) should depend on the choice of \tilde{J} . So we don't use this \tilde{J} for the simplicity.

The following proposition implies immediately from the definition.

Proposition 3. i) Let χ'_2 be another global character such that ord χ'_2 divides ord χ_1 . When (χ_1, χ_2, c) , (χ_1, χ_2, c) and $(\chi_1, \chi_2 + \chi'_2, c)$ are all defined, it holds

$$(\chi_1, \chi_2 + \chi'_2, c) = (\chi_1, \chi_2, c) + (\chi_1, \chi'_2, c).$$

ii) If ord $\chi_1 = \text{ord } \chi_2$ and (χ_1, χ_2, c) is defined, then (χ_2, χ_1, c) is also defined and

$$(\chi_1, \chi_2, c) + (\chi_2, \chi_1, c) = 0.$$

When k contains a primitive root ζ_n of 1 (fix it throughout this section), each a of k defines the Kummer character χ_a of degree n.

Definition. Assume $k \ni \zeta_n$. When $a, b \in k^{\times}$ satisfy ord $\chi_a | \text{ord } \chi_b$ and $k_{\chi_a} \cap k_{\chi_b} = k$, we put

$$(a, b, c)_n = (\chi_a, \chi_b, c)$$

for $c \in N_{k_{\chi_a}k_{\chi_b}/k} J_{k_{\chi_a}k_{\chi_b}}(\mathfrak{m}) \cap k^{\times}$ where \mathfrak{m} is the Scholz-conductor of $k_{\chi_a}k_{\chi_b}/k$.

Let $\left(\frac{\alpha_{\mathfrak{p}}, \beta_{\mathfrak{p}}}{\mathfrak{p}}\right)$ be the Hilbert symbol and $\omega_n: \langle \zeta_n \rangle \rightarrow (1/n) \mathbb{Z}/\mathbb{Z} \subseteq \mathbb{Q}/\mathbb{Z}$ be the homomorphism given by $\zeta_n \mapsto (1/n) \mod \mathbb{Z}$. Then $(\alpha, \beta)_{k,n} = \sum_{\mathfrak{p}} \omega_n \left(\frac{\alpha_{\mathfrak{p}}, \beta_{\mathfrak{p}}}{\mathfrak{p}}\right)$ gives the Kummer pairing for $\alpha, \beta \in J_k$, where \mathfrak{p} runs over all the prime divisors of k and $\alpha_{\mathfrak{p}}, \beta_{\mathfrak{p}}$ are the \mathfrak{p} -components of α, β respectively.

For each $c \in N_{k\chi_a k\chi_b / k} J_{k\chi_a k\chi_b}(\mathfrak{m}) \cap k^{\times}$, taking $\mathfrak{C} \in J_{k\chi_a k\chi_b}(\mathfrak{m})$, $C \in k_{\chi_a}$ and $c \in J_{k\chi_a}$ such that $N_{k\chi_a k\chi_b / k} \mathfrak{C} = N_{k\chi_a / k} C = c$ and $c^{\sigma_a - 1} = C^{-1} \cdot N_{k\chi_a k\chi_b / k\chi_a} \mathfrak{C}$, we get $(a, b, c)_n = \chi_b(N_{k\chi_a / k} c) = (N_{k\chi_a / k} c, b)_{k,n}$, where σ_a is the element of $G(k_{\chi_a}/k)$ whose image by χ_a is $(1/\text{ord } \chi_a) \mod \mathbb{Z}$.

In the following, we consider only the case ord $\chi_a = n$ for the simplicity and we write σ instead of σ_a . Put $K_1 = k_{\chi_a}$, $K_2 = k_{\chi_b}$, $K_3 = k_{\chi_c}$, $K = K_1 K_2$ and $K' = K_1 K_3$.

Proposition 4. Assume $(a, b, c)_n$ and $(a, c, b)_n$ are defined with the Scholz-conductors \mathfrak{m} and \mathfrak{m}' respectively. Take $\mathfrak{C} \in J_K(\mathfrak{m})$ and $\mathfrak{B} \in J_{K'}(\mathfrak{m}')$ such that $N_{K/k}\mathfrak{C} = c$ and $N_{K'/k}\mathfrak{B} = b$, and put $\delta = (n-1)\sigma + (n-2)\sigma^2 + \cdots + \sigma^{n-1} \in \mathbb{Z}/n\mathbb{Z}[G(K_1/k)]$. Then

$$(a, b, c)_n + (a, c, b)_n = (N_{K'/K_1} \mathfrak{B}^{\delta}, N_{K/K_1} \mathfrak{S})_{K_1, n}$$

Proof. Take the element $C, B \in K_1^{\times}$ and $c, b \in J_{K_1}$ so that $N_{K_1/k}C = c$, $N_{K_1/k}B = b, c^{\sigma-1} = C^{-1}N_{K/K_1} \mathfrak{C}$ and $b^{\sigma-1} = B^{-1} \cdot N_{K/K_1} \mathfrak{B}$. Then

$$(a, b, c)_n = (N_{K_1/k}c, b)_{k,n} = (c, b)_{K_1,n}.$$

Since $\delta(1-\sigma^{-1})=1+\sigma+\cdots+\sigma^{n-1}$ in $\mathbb{Z}/n\mathbb{Z}[(G(K_1/k)]]$,

$$(\mathfrak{c}, b)_{K_1,n} = (\mathfrak{c}, (B^{-\delta})^{\sigma^{-1}-1})_{K_1,n}.$$

Moreover

 $(\mathfrak{c}, (B^{-\delta})^{\sigma^{-1-1}})_{K_1,n} = (\mathfrak{c}^{\sigma^{-1}}, B^{-\delta})_{K_1,n}$

owing to $(\alpha^{\sigma}, \beta^{\sigma})_{K_{1},n} = (\alpha, \beta)_{K_{1},n} (\alpha, \beta \in J_{K_{1}})$. As $B^{-\delta}$ and $C^{-1} \in K_{1}^{\times}$, we have

$$(\mathfrak{c}^{\sigma-1}, B^{-\delta})_{K_1,n} = (N_{K/K_1}\mathfrak{S}, B^{-\delta})_{K_1,n}.$$

Now it follows from $B = N_{K'/K_1} \mathfrak{B} \cdot \mathfrak{b}^{1-\sigma}$ that

$$(N_{K/K_{1}}\mathfrak{G}, B^{-\delta})_{K_{1,n}} = (N_{K/K_{1}}\mathfrak{G}, \mathfrak{b}^{-\delta \cdot (1-\sigma)})_{K_{1,n}} + (N_{K/K_{1}}\mathfrak{G}, N_{K'/K_{1}}\mathfrak{B}^{-\delta})_{K_{1,n}} \\ = (N_{K/K_{1}}\mathfrak{G}, N_{K_{1/k}}\mathfrak{b})_{K_{1,n}} + (N_{K'/K_{1}}\mathfrak{B}^{\delta}, N_{H/K_{1}}\mathfrak{G})_{K_{1,n}}$$

14

$$=(c, N_{K_{1}/k}b)_{k,n} + (N_{K'/K_{1}}\mathfrak{B}^{\delta} + N_{K/K_{1}}\mathfrak{S})_{K_{1,n}}$$

= -(a, c, b)_{n} + (N_{K'/K_{1}}\mathfrak{B}^{\delta}, N_{K/K_{1}}\mathfrak{S})_{K_{1,n}},

and the proposition is proved.

It is a problem when the inversion formula $(a, b, c)_n + (a, c, b)_n = 0$ holds. We shall treat it in the following section.

§ 3. Inversion formula

When $n = \prod_{i} p_{i}^{m_{i}}$ where p_{i} are prime numbers,

$$(a, b, c)_{p_i^{m_i}} = \frac{n}{p_i^{m_i}} (a, b, c)_n$$
 with $\zeta_{p_i^{m_i}} = \zeta_n^{n/p_i^{m_i}}$.

So it is enough to consider only when n is a prime power p^m .

We assume $(a, b, c)_n$ and $(a, c, b)_n$ are defined. Then $\left(\frac{a, b}{\mathfrak{p}}\right)_n = \left(\frac{a, c}{\mathfrak{p}}\right)_n = \left(\frac{b, c}{\mathfrak{p}}\right)_n = 1$ are every prime \mathfrak{p} of k. When this is the case, we call that a, b, c are orthogonal (See Akagawa [1]). As in the previous section, let ord $\chi_a = n, K_1 = k_{\chi_a}, K_2 = k_{\chi_b}, K_3 = k_{\chi_c}, K = K_1 K_2$ and $K' = K_1 K_3$. For each prime divisor \mathfrak{p} of k, take prime divisors \mathfrak{P}_1 , \mathfrak{P} and \mathfrak{P}' of \mathfrak{p} in K_1 , K and K' satisfying $\mathfrak{P}|\mathfrak{P}_1$ and $\mathfrak{P}'|\mathfrak{P}_1$. When $\mathfrak{P}^e||\mathfrak{m}$, put $K_{\mathfrak{P}}^{(\mathfrak{m})} = U_{\mathfrak{P}}^{(e)}$ for $e \ge 1$ and $K_{\mathfrak{P}}^{(\mathfrak{m})} = K_{\mathfrak{P}}$ for e = 0.

Take $\mathfrak{S}_{\mathfrak{P}} \in K_{\mathfrak{P}}^{(\mathfrak{m})}$ and $\mathfrak{B}_{\mathfrak{P}'} \in K_{\mathfrak{P}'}^{\prime(\mathfrak{m}')}$ so that $N_{K_{\mathfrak{P}}/k_{\mathfrak{P}}}\mathfrak{S}_{\mathfrak{P}} = c$ and $N_{K_{\mathfrak{P}}'/k_{\mathfrak{P}}}\mathfrak{B}_{\mathfrak{P}'}$ = b. Then we can take $\mathfrak{S} \in J_{K}(\mathfrak{m})$ and $\mathfrak{B} \in J_{K'}(\mathfrak{m}')$ in Proposition 4 with components 1 except $\mathfrak{S}_{\mathfrak{P}}$ and $\mathfrak{B}_{\mathfrak{P}'}$ at \mathfrak{P} and \mathfrak{P}' for each \mathfrak{p} , respectively.

Put $n_{\mathfrak{p}} = [K_{1_{\mathfrak{P}_{1}}}: k_{\mathfrak{p}}]$ and let $\delta(n_{\mathfrak{p}}) = \sum_{i=1}^{n_{\mathfrak{p}}-1} (n/n_{\mathfrak{p}})(n_{\mathfrak{p}}-i)\sigma^{(n/n_{\mathfrak{p}})i}$ (of course $\delta(1)=0$). Now we consider the components of $(N_{K'/K_{1}}B^{\delta}, N_{K/K_{1}}\mathfrak{S})_{K_{1},n}$ in order to estimate the value $(a, b, c)_{n} + (a, c, b)_{n}$ by Proposition 4. The components at the prime divisors of \mathfrak{p} are 1 except at \mathfrak{P}_{1} , and the component at \mathfrak{P}_{1} is

$$\omega_n\left(\frac{N_{K_{\mathfrak{P}}'/K_{1_{\mathfrak{P}}_{1}}}\mathfrak{B}_{\mathfrak{P}'}^{\mathfrak{s}(n_{\mathfrak{P}})}, N_{K_{\mathfrak{P}}'K_{1_{\mathfrak{P}}_{1}}}\mathfrak{S}_{\mathfrak{P}}}{\mathfrak{P}_{1}}\right) = \omega_n\left(\frac{N_{K_{\mathfrak{P}}'K_{1_{\mathfrak{P}}_{1}}}\mathfrak{S}^{\mathfrak{s}(n_{\mathfrak{P}})}, N_{K_{\mathfrak{P}}'K_{1_{\mathfrak{P}}_{1}}}\mathfrak{B}_{\mathfrak{P}'}}{\mathfrak{P}_{1}}\right).$$

The equality is immediate from $(\alpha^{\sigma n/n_p}, \beta^{\sigma n/n_p}/P_1) = (\alpha, \beta/P_1)$ for $\alpha, \beta \in K_{1_{\frac{n}{p_1}}}$, we denote this component by γ_p .

For infinite, $\mathfrak{p}, n_{\mathfrak{p}} = 1$ or 2. When $n_{\mathfrak{p}} = 2$, \mathfrak{P}_1 is complex and the Hilbert symbol is trivial. In case of $n_{\mathfrak{p}} = 1$, the above term is 0 since $\delta(n_{\mathfrak{p}}) = 0$.

We consider the component $\gamma_{\mathfrak{p}}$ at finite \mathfrak{p} under the condition $[K_{\mathfrak{P}}: k_{\mathfrak{p}}] \leq n$ and $[K'_{\mathfrak{p}'}: k_{\mathfrak{p}}] \leq n$. Then the homomorphism $\Lambda(G(K_{\mathfrak{P}}/k_{\mathfrak{p}})) \rightarrow \Lambda(G)$ in-

duced by the inclusion $G(K_{\mathfrak{g}}/k_{\mathfrak{p}}) \rightarrow G$ is zero mapping and $\mathfrak{P} \setminus \mathfrak{m}$ for every $\mathfrak{P}|\mathfrak{p}$. So $K_{\mathfrak{g}}^{(\mathfrak{m})} = K_{\mathfrak{g}}$ and $K'_{\mathfrak{g}'}^{(\mathfrak{m}')} = K'_{\mathfrak{g}}$. If ${}^{n_{\mathfrak{p}}}\sqrt{b} \notin K_{1\mathfrak{g}_{1}}$ then $[K_{\mathfrak{g}}: k_{\mathfrak{p}}] > n$, which contradicts. Hence $K_{1_{\mathfrak{g}_{1}}}$ contains ${}^{n_{\mathfrak{p}}}\sqrt{b}$ and ${}^{n_{\mathfrak{p}}}\sqrt{c}$.

At first we assume $p \neq 2$. Then, since $\left(\frac{{}^{n_p}\sqrt{c}, b}{\mathfrak{P}_1}\right) = \left(\frac{c, b}{\mathfrak{P}}\right) = 1$, ${}^{n_p}\sqrt{c} \in N_{K\mathfrak{P}/K_1\mathfrak{P}_1}K_{\mathfrak{P}}$ and we can set $N_{K\mathfrak{P}/k_p}\mathfrak{S}_{\mathfrak{P}} = {}^{n_p}\sqrt{c}$. When ${}^{n_p}\sqrt{c}{}^{\sigma(n/n_p)} = \zeta_n^u (u \in \mathbb{Z}/n\mathbb{Z})$, we have ${}^{n_p}\sqrt{c}{}^{\delta(n_p)} = \zeta_n^{-(1/6)un(n_p-1)} \cdot c^{(n/n_p)(n_p-1)/2} \in k_p$ and

$$\gamma_{\mathfrak{p}} = \omega_n \bigg(\frac{\binom{n_{\mathfrak{p}}}{c} \delta(n_{\mathfrak{p}})}{\mathfrak{p}} \bigg) = \omega_n \bigg(\frac{\zeta_n^{-(1/6)un(n_{\mathfrak{p}}-1)(2n_{\mathfrak{p}}-1)}}{\mathfrak{P}} \bigg).$$

The last term is equal to zero when $p \neq 3$ or $n_n < n$.

Let p=3, $n_{\mathfrak{p}}=n$ and $\zeta_{\mathfrak{s}}=\zeta_n^{n/3}$. Then there exist $b_{\mathfrak{p}}$ and $c_{\mathfrak{p}}$ in $\mathbb{Z}/n\mathbb{Z}$ such that $b\equiv a^{b\mathfrak{p}} \mod k_{\mathfrak{p}}^n$ and $c\equiv a^{c\mathfrak{p}} \mod k_{\mathfrak{p}}^n$. Of course $u=c_{\mathfrak{p}}$ and

$$\gamma_{\mathfrak{p}} = \omega_n \left(\frac{\zeta_{\mathfrak{s}^{\mathfrak{p}}}^{\mathfrak{c}_{\mathfrak{p}}}, a^{b_{\mathfrak{p}}}}{\mathfrak{p}} \right) = c_{\mathfrak{p}} \cdot b_{\mathfrak{p}} \omega_n \left(\frac{\zeta_{\mathfrak{s}^{\mathfrak{s}}}, a}{\mathfrak{p}} \right).$$

If $p \downarrow 3$, then evidently $\Upsilon_{\mathfrak{p}} = w_{\mathfrak{p}}(a)w_{\mathfrak{p}}(b)w_{\mathfrak{p}}(c)\omega_n(\zeta_3/\mathfrak{p})$, where $w_{\mathfrak{p}}$ is the normalized additive valuation of $k_{\mathfrak{p}}$.

Now we assume p=2, $[K_{\mathfrak{P}}:k_{\mathfrak{p}}] \leq n$ and $[K'_{\mathfrak{P}'}:k_{\mathfrak{p}}] \leq n$. If $c \in k_{\mathfrak{p}}^2$, we can set $N_{K\mathfrak{P}/k_{\mathfrak{p}}} \mathfrak{C}_{\mathfrak{P}} = n_{\mathfrak{p}} \sqrt{c}$ and $n_{\mathfrak{p}} \sqrt{c} \sigma^{(n_{\mathfrak{p}})} = \sqrt{c} (n_{\mathfrak{p}}-1)n/n_{\mathfrak{p}} \in k_{\mathfrak{p}}$. So

$$\Upsilon_{\mathfrak{p}} = \frac{n}{n_{\mathfrak{p}}} \omega_n \left(\frac{\sqrt{c}, b}{\mathfrak{p}} \right).$$

If $b \in k_{\mu}^2$, then similarly

$$\Upsilon_{\mathfrak{p}} = \frac{n}{n_{\mathfrak{p}}} \omega_n \left(\frac{\sqrt{b}, c}{\mathfrak{p}} \right).$$

If $n_{\mathfrak{p}} < n$ and $c \notin k_{\mathfrak{p}}^2$, we can set $N_{K_{\mathfrak{p}}/k_{\mathfrak{P}}} \mathfrak{S}_{\mathfrak{p}} = \zeta_n^{n/2n_{\mathfrak{p}}} n_{\mathfrak{p}} \sqrt{c}$ and $(\zeta_n^{n/2n_{\mathfrak{p}}} n_{\mathfrak{p}} \sqrt{c})^{\delta(n_{\mathfrak{p}})} = (-1)^{n/2n_{\mathfrak{p}}} c^{(n_{\mathfrak{p}}-1)n/2n_{\mathfrak{p}}} \in k_{\mathfrak{p}}$. Then

$$\gamma_{\mathfrak{p}} = \frac{n}{2n_{\mathfrak{p}}}(n-1)\omega_n\left(\frac{-1, b}{\mathfrak{p}}\right).$$

If $b \notin k_{\mathfrak{p}}^2$, $c \notin k_{\mathfrak{p}}^2$ and $n_{\mathfrak{p}} = n$, then there exist $b_{\mathfrak{p}}$, $c_{\mathfrak{p}} \in \mathbb{Z}/n\mathbb{Z}$; $u, v \in k_{\mathfrak{p}}$ such that $b = a^{b_{\mathfrak{p}}}u^n$, $c = a^{c_{\mathfrak{p}}}v^n$. Take an element $\alpha \in K_{1_{\mathfrak{p}_1}}$ such that $N_{K_{1_{\mathfrak{p}_1}}/k_{\mathfrak{p}}}\alpha = -1$. Then

$$\Upsilon_{\mathfrak{p}} = \omega_n \bigg(\frac{(\alpha \cdot {}^{n_{\mathfrak{p}}} \sqrt{a})^{b_{\mathfrak{p}}\delta} u^{(n-1)n/2}, (\alpha \cdot {}^{n_{\mathfrak{p}}} \sqrt{a})^{c_{\mathfrak{p}}} v}{\mathfrak{P}_1} \bigg).$$

Since

$$\begin{pmatrix} \underline{\alpha^{b_{\mathfrak{p}^{\delta}}, \ n_{\mathfrak{p}}\sqrt{a^{c_{\mathfrak{p}}}}}_{\mathfrak{P}_{1}} \end{pmatrix} = \begin{pmatrix} \underline{\alpha^{b_{\mathfrak{p}}, \ n_{\mathfrak{p}}\sqrt{a^{-c_{\mathfrak{p}^{\delta}}}}}_{\mathfrak{P}_{1}} \end{pmatrix} \\ = \begin{pmatrix} \underline{\alpha^{c_{\mathfrak{p}}, \ n_{\mathfrak{p}}\sqrt{a^{-b_{\mathfrak{p}^{\delta}}}}}_{\mathfrak{P}_{1}} \end{pmatrix} = \begin{pmatrix} \frac{n_{\mathfrak{p}}\sqrt{a^{b_{\mathfrak{p}^{\delta}}}, \ \alpha^{c_{\mathfrak{p}}}}}{\mathfrak{P}_{1}} \end{pmatrix}$$

and $\alpha^2 = \beta^{\sigma-1}$ for some $\beta \in K_{1_{\mathfrak{p}_1}}$, we have

$$\begin{split} \left(\frac{\alpha^{b_{\mathfrak{p}}\delta, \ n_{\mathfrak{p}}}\sqrt{a^{c_{\mathfrak{p}}}}}{\mathfrak{P}_{1}}\right) \cdot \left(\frac{n_{\mathfrak{p}}\sqrt{a^{b_{\mathfrak{p}}\delta, \ n_{\mathfrak{p}}}\sqrt{a^{c_{\mathfrak{p}}}}}{\mathfrak{P}_{1}}\right) = \left(\frac{(\alpha^{2})^{b_{\mathfrak{p}}\delta, \ n_{\mathfrak{p}}}\sqrt{a^{c_{\mathfrak{p}}}}}{\mathfrak{P}_{1}}\right) \\ = \left(\frac{\beta^{(\sigma^{-1})\delta \cdot b_{\mathfrak{p}}, \ n_{\mathfrak{p}}}\sqrt{a^{c_{\mathfrak{p}}}}}{\mathfrak{P}_{1}}\right) = \left(\frac{N_{K_{1\mathfrak{P}_{1}/k_{\mathfrak{p}}}}\beta^{b_{\mathfrak{p}}}, \ (-a)^{c_{\mathfrak{p}}}}{\mathfrak{P}_{1}}\right) \\ = \left(\frac{N_{K_{1\mathfrak{P}_{1}/k_{\mathfrak{p}}}}\beta, -1}}{\mathfrak{P}_{1}}\right)^{b_{\mathfrak{p}}c_{\mathfrak{p}}} \left(\frac{\alpha^{2}, \alpha}{\mathfrak{P}_{1}}\right)^{b_{\mathfrak{p}}c_{\mathfrak{p}}}}{\mathfrak{P}_{1}} \\ = \left(\frac{-1, \alpha}{\mathfrak{P}_{1}}\right)^{2b_{\mathfrak{p}}c_{\mathfrak{p}}} = 1. \end{split}$$

Next we calculate $b_{\mathfrak{p}} \cdot c_{\mathfrak{p}} \omega_n \left(\frac{\alpha, \delta \alpha}{\mathfrak{P}_1}\right)$. Take $\alpha \in k_{\mathfrak{p}}(\sqrt{a})$ such that $N_{k\mathfrak{p}(\sqrt{a})/k\mathfrak{p}}$ $\cdot \alpha = \zeta_n$. Then $N_{K_1\mathfrak{P}_1/k\mathfrak{p}}\alpha = \zeta_n^{n/2} = -1$. So we can use this α . Now $\alpha^{\delta} = \alpha^{((n-1)+\dots+1)\delta}\alpha^{(n-2)+\dots+0} = \alpha^{(n/2)\sigma}\alpha^{(n/2)((n/2)-1)} = (\alpha^{\sigma+1})^{(n/2)\sigma}\alpha^{-n/2} = \zeta_n^{(n/2)\sigma}\alpha^{-n/2} = (-1)^{n/2}\alpha^{-n/2} = (-\alpha)^{-n/2}$. So

$$b_{\mathfrak{p}} \cdot c_{\mathfrak{p}} \omega_n \left(\frac{\alpha^{\delta}, \alpha}{\mathfrak{P}_1} \right) = b_{\mathfrak{p}} c_{\mathfrak{p}} \omega_n \left(\frac{(-\alpha)^{-n/2}, \alpha}{\mathfrak{P}_1} \right) = 0 \quad \text{and} \quad \mathcal{T}_{\mathfrak{p}} = \omega_n \left(\frac{u^{c_{\mathfrak{p}}} v^{b_{\mathfrak{p}}}, a^{n/2}}{\mathfrak{p}} \right).$$

Theorem 1. We assume $[K_{\mathfrak{P}}: k_{\mathfrak{p}}] \leq n$ and $[K'_{\mathfrak{P}}: k_{\mathfrak{p}}] \leq n$. Then $\gamma_{\mathfrak{p}}$ has following values:

- i) $\gamma_{p} = 0$ for infinite \mathfrak{p} .
- ii) $\gamma_p = 0$ if $p \neq 2, 3$.

iii) When $n_{\mathfrak{p}} (=[K_{1\mathfrak{p}_{1}}:k_{\mathfrak{p}}]) < n$, $\gamma_{\mathfrak{p}} = 0$ unless p = 2 and $1 < n_{\mathfrak{p}} = n/2$. If p = 2 and $1 < n_{\mathfrak{p}} = n/2$, then $\gamma_{\mathfrak{p}} = \omega_{n} \left(\frac{-1, b}{\mathfrak{p}}\right) = \omega_{n} \left(\frac{-1, c}{\mathfrak{p}}\right)$.

iv) When $n_{\mathfrak{p}} = n$, there exist $b_{\mathfrak{p}}$ and $c_{\mathfrak{p}}$ in $\mathbb{Z}/n\mathbb{Z}$ such that $b \equiv a^{b\mathfrak{p}} \mod k_{\mathfrak{p}}^{n}$ and $c \equiv a^{c\mathfrak{p}} \mod k_{\mathfrak{p}}^{n}$. If p = 3, $\gamma_{\mathfrak{p}} = c_{\mathfrak{p}} \cdot b_{\mathfrak{p}} \omega_{n} \left(\frac{\zeta_{\mathfrak{s}}, a}{\mathfrak{p}}\right)$. If p = 2 and $b_{\mathfrak{p}}, c_{\mathfrak{p}} \equiv 0$ mod 2, then $\gamma_{\mathfrak{p}} = 0$. If p = 2 and $b_{\mathfrak{p}}$ or $c_{\mathfrak{p}} \equiv 0 \mod 2$, then

$$\Upsilon_{\mathfrak{p}} = \omega_n \left(\frac{\sqrt{b^{c_{\mathfrak{p}}} \cdot c^{b_{\mathfrak{p}}}}, a}{\mathfrak{p}} \right).$$

If $p \neq 2$ and $\mathfrak{p} \nmid p$ then orthogonality implies $[K_{\mathfrak{p}}: k_{\mathfrak{p}}] \leq n$ and $[K'_{\mathfrak{p}}: k_{\mathfrak{p}}] \leq n$. $\leq n$. When p = 2 and $\mathfrak{p} \nmid p$, $[K_{\mathfrak{p}}: k_{\mathfrak{p}}] \leq n$ unless $w_{\mathfrak{p}}(a) \equiv w_{\mathfrak{p}}(b) \equiv 1 \mod 2$ and $k_{\mathfrak{p}} \not = \zeta_{2n}$. If p = 2, $w_p(a) \equiv w_p(b) \equiv 1 \mod 2$ and $k_{\mathfrak{p}} \not = \zeta_n$, then $[K_{\mathfrak{p}}: k_p] = 2n$ and $K_{\mathfrak{p}}^{(m)} = U_{\mathfrak{p}}^{(1)} = (U_{\mathfrak{p}}^{(1)})^n$, so $\gamma_p = 0$.

Corollary 1. Assume $\mathfrak{p} \nmid p$. Then $\gamma_{\mathfrak{p}} = 0$ expect the following four cases. i) If p = 3, $k_{\mathfrak{p}} \not = \zeta_{\mathfrak{sn}}$ and $w_{\mathfrak{p}}(a)w_{\mathfrak{p}}(b)w_{\mathfrak{p}}(c) \equiv 0 \mod 3$, then

$$\Upsilon_{\mathfrak{p}} = W_{\mathfrak{p}}(a)W_{\mathfrak{p}}(b)W_{\mathfrak{p}}(c)\omega_{n}\left(\frac{\zeta_{\mathfrak{z}}}{\mathfrak{p}}\right).$$

ii) If p=2, $1 < n_p = n/2$, $k_p \notin \zeta_{2n}$ and $w_p(b)w_p(c) \equiv 1 \mod 2$, then

 $\gamma_{\mathfrak{p}} = \frac{1}{2} \mod Z.$

iii) If
$$p=2$$
 and $n_{\mathfrak{p}}=[K_{\mathfrak{P}}:k_{\mathfrak{p}}]=[K'_{\mathfrak{P}'}:k_{\mathfrak{p}}]=n$ and $k_{\mathfrak{p}} \ni \zeta_{\mathfrak{q}}$, then

$$\begin{split} & \mathcal{T}_{\mathfrak{p}} = \frac{[k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{c})]}{[k_{\mathfrak{p}}(^{2n}\sqrt{b}, ^{2n}\sqrt{a}) : k_{\mathfrak{p}}(^{2n}\sqrt{a})]} + \frac{[k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{b})]}{[k_{\mathfrak{p}}(^{2n}\sqrt{c}, ^{2n}\sqrt{a}) : k_{\mathfrak{p}}(^{2n}\sqrt{a})]} \mod \mathbb{Z}. \\ & \text{iv)} \quad If \ p = n = n_{\mathfrak{p}} = [K_{\mathfrak{B}} : k_{\mathfrak{p}}] = [K'_{\mathfrak{B}} : k_{\mathfrak{p}}] = 2 \ and \ k_{\mathfrak{p}} \neq \zeta_{4}, \ then \\ & \mathcal{T}_{\mathfrak{p}} = \frac{[k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{c})]w_{\mathfrak{p}}(b) + [k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{b})]w_{\mathfrak{p}}(c)}{4} \mod \mathbb{Z}. \end{split}$$

Proof. $\gamma_{\mathfrak{p}}=0$ except i), ii), iii) and iv) is already proved. i) and ii) is evident from Theorem 1. At first we consider the case iii). If $k_{\mathfrak{p}} \ni \zeta_{2n}$ and $w_{\mathfrak{p}}(a) \equiv 1 \mod 2$, then $[K_{\mathfrak{P}}: k_{\mathfrak{p}}] = [K'_{\mathfrak{P}'}: k_{\mathfrak{p}}] = n$ shows b and c are contained in $k^2_{\mathfrak{p}}$ and $\gamma_{\mathfrak{p}}=0$. Hence above equation holds. So we may assume $k_{\mathfrak{p}} \ni \zeta_{2n}$ or $w_{\mathfrak{p}}(a) \equiv 0 \mod 2$. Then $k_{\mathfrak{p}}(\sqrt{a}) \ni \zeta_{2n}$, and $k_{\mathfrak{p}}({}^{2n}\sqrt{b}, {}^{2n}\sqrt{a})$, $k_{\mathfrak{p}}({}^{2n}\sqrt{c}, {}^{2n}\sqrt{a})$ are uniquely determined. Since $k_{\mathfrak{p}} \ni \zeta_4$, $k_{\mathfrak{p}}({}^{2n}\sqrt{a})$ is a cyclic extension of cegree 2n. Put $b = a^{b_{\mathfrak{p}}u^n}$ and $c = a^{c_{\mathfrak{p}}v^n}$. Then

$$\Upsilon_{\mathfrak{p}} = \omega_n \left(\frac{u^{c_{\mathfrak{p}}} v^{b_{\mathfrak{p}}}, a^{n/2}}{\mathfrak{p}} \right).$$

So it is sufficient to show

$$\omega_n\left(\frac{u, a^{n/2}}{p}\right) = \frac{1}{\left[k_{\mathfrak{p}}(^{2n}\sqrt{b}, ^{2n}\sqrt{a}): k_{\mathfrak{p}}(^{2n}\sqrt{a})\right]} \mod \mathbb{Z}$$

and

$$\omega_n\left(\frac{v, a^{n/2}}{\mathfrak{p}}\right) = \frac{1}{[k_{\mathfrak{p}}({}^{2n}\sqrt{c}, {}^{2n}\sqrt{a}): k_{\mathfrak{p}}({}^{2n}\sqrt{a})]} \mod \mathbb{Z}.$$

These terms take values in 0 and $\frac{1}{2} \mod Z$, and

$$\omega_n\left(\frac{u, a^{n/2}}{\mathfrak{p}}\right) = 1 \iff k_{\mathfrak{p}}(\sqrt{u}) \subset k_{\mathfrak{p}}(\sqrt{a})$$
$$\iff k_{\mathfrak{p}}(\sqrt{u}) \subset k_{\mathfrak{p}}(^{2n}\sqrt{a})$$
$$\iff k_{\mathfrak{p}}(^{2n}\sqrt{b}) \subset k_{\mathfrak{p}}(^{2n}\sqrt{a})$$

show the first equality. The second equality is all the same.

Next we consider the case iv). If $w_{\mathfrak{p}}(a) \equiv 1 \mod 2$ then b and c are in $k_{\mathfrak{p}}^2$ and $\gamma_{\mathfrak{p}}=0$. We assume $w_{\mathfrak{p}}(a)\equiv 0 \mod 2$. Then $a\equiv -1 \mod k_{\mathfrak{p}}^2$. Put $=ab^{\mathfrak{dp}}u^2$ and $c=a^{c_{\mathfrak{p}}}v^2$.

$$\begin{split} & \tilde{\gamma}_{\mathfrak{p}} = \omega_{\mathfrak{n}} \left(\frac{u^{c_{\mathfrak{p}}} v^{b_{\mathfrak{p}}}, -1}{\mathfrak{p}} \right) = \frac{1}{2} w_{\mathfrak{p}} (u^{c_{\mathfrak{p}}} v^{b_{\mathfrak{p}}}) \mod Z. \\ & 2w_{\mathfrak{p}} (u^{c_{\mathfrak{p}}} v^{b_{\mathfrak{p}}}) = w_{\mathfrak{p}} (u^{2c_{\mathfrak{p}}} v^{2b_{\mathfrak{p}}}) \\ & \equiv w_{\mathfrak{p}} ((a^{b_{\mathfrak{p}}} u^{2})^{c_{\mathfrak{p}}} (a^{c_{\mathfrak{p}}} v^{2})^{b_{\mathfrak{p}}}) \\ & \equiv w_{\mathfrak{p}} (b^{c_{\mathfrak{p}}} c^{b_{\mathfrak{p}}}) \\ & \equiv c_{\mathfrak{p}} w_{\mathfrak{p}} (b) + b_{\mathfrak{p}} w_{\mathfrak{p}} (c) \\ & \equiv [k_{\mathfrak{p}} (\sqrt{a}) : k_{\mathfrak{p}} (\sqrt{c})] w_{\mathfrak{p}} (b) + [k_{\mathfrak{p}} (\sqrt{a}) : k_{\mathfrak{p}} (\sqrt{c})] w_{\mathfrak{p}} (c) \mod 4 \end{split}$$

shows iv).

Especially if K_1 , K_2 and K_3 are tame, then all the components are calculated.

Corollary 2. Assume K_1 , K_2 and K_3 are all tame. When p=2, let

$$P_{1} = \{\mathfrak{p}: \text{ finite prime of } k \mid k_{\mathfrak{p}} \ni \zeta_{4}, k_{\mathfrak{p}}^{2} \ni a \equiv c \mod k_{\mathfrak{p}}^{2} \\, k_{\mathfrak{p}}^{(2n}\sqrt{b}) \subset k_{\mathfrak{p}}^{(2n}\sqrt{a}), \mathfrak{p} \nmid 2\}, \\P_{2} = \{\mathfrak{p}: \text{ finite prime of } k \mid k_{\mathfrak{p}} \ni \zeta_{4}, k_{\mathfrak{p}}^{2} \ni a \equiv b \mod k_{\mathfrak{p}}^{2} \\, k_{\mathfrak{p}}^{(2n}\sqrt{c}) \subset k_{\mathfrak{p}}^{(2n}\sqrt{a}), \mathfrak{p} \restriction 2\}, \end{cases}$$

and if n > 2 then put

 $P_{3} = \{ \mathfrak{p}: \text{ finite prime of } k \mid k_{\mathfrak{p}}^{2} \ni a \notin k_{\mathfrak{p}}^{4}, w_{\mathfrak{p}}(b) \cdot w_{\mathfrak{p}}(c) = 1 \mod 2, \ \mathfrak{p} \nmid 2 \}.$ Then

$$(a, b, c)_n + (a, c, b)_n = 0$$
 if $p \neq 2, 3$.

If p=3

$$(a, b, c)_n + (a, c, b)_n = \sum_{\mathfrak{p}; \text{ finite}\mathfrak{p}} w_{\mathfrak{p}}(a) w_{\mathfrak{p}}(b) w_{\mathfrak{p}}(c) \omega_n \left(\frac{\zeta_s}{\mathfrak{p}}\right).$$

If p=2 and n>2,

$$(a, b, c)_{n} + (a, c, b)_{n}$$

$$= \sum_{\mathfrak{p} \mid p} \frac{[k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{b})]w_{\mathfrak{p}}(c) + [k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{c})]w_{\mathfrak{p}}(b)}{2n}$$

$$+ \frac{1}{2}(*P_{1} + *P_{2} + *P_{3}) \mod \mathbb{Z}.$$

If p = 2

$$(a, b, c)_{\mathfrak{n}} + (a, b, c)_{\mathfrak{n}}$$

$$= \sum_{\mathfrak{p}} \frac{[k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{b})]w_{\mathfrak{p}}(c) + [k_{\mathfrak{p}}(\sqrt{a}) : k_{\mathfrak{p}}(\sqrt{c})]w_{\mathfrak{p}}(b)}{4}$$

$$+ \frac{1}{2}({}^{*}P_{1} + {}^{*}P_{2}) \mod \mathbb{Z}$$

where \mathfrak{p} runs over all the finite prime of k which divides p or satisfies $k_{\mathfrak{p}} \not \equiv \zeta_4$, $a \notin k_{\mathfrak{p}}^2$ and $w_{\mathfrak{p}}(a) \equiv 0 \mod 2$.

At \mathfrak{p} dividing p, if $[K_{\mathfrak{P}}: k_{\mathfrak{p}}]$ or $[K'_{\mathfrak{P}'}: k_{\mathfrak{p}}] > n$, it is difficult to determine $\gamma_{\mathfrak{p}}$ explicitly, because we must determine the minimal Scholz-conductor or take the elements $N_{K'_{\mathfrak{P}'}/K_{1\mathfrak{P}_{1}}}\mathfrak{B}_{\mathfrak{P}'}$ and $N_{K_{\mathfrak{p}/K_{1\mathfrak{P}_{1}}}}\mathfrak{S}_{\mathfrak{P}}$ of $K_{1\mathfrak{P}_{1}}$ which have norms b and c to $k_{\mathfrak{p}}$ and are contained in the smallest i_{b} -th and i_{c} -th unit group $U_{\mathfrak{P}_{1}}^{(i_{b})}$ and $U_{\mathfrak{P}_{1}}^{(i_{c})}$ respectively.

So we calculate it in Section 5 only when k = Q (of course n = 2).

§ 4. Inversion formula over Q

We calculate γ_2 in the case of k = Q, when $K_{\mathfrak{P}}$ or $K'_{\mathfrak{P}'}$ is bicyclic over Q_2 . Then there are 22 cases by separating *a*, *b* and *c* modulo Q_2^2 .

$$\begin{split} \mathbf{I}_{a} \cdot & a \equiv -1, \ b \equiv 5, \ c \equiv 5 \\ \mathbf{I}_{b} \cdot & a \equiv -1 \\ b \equiv 1, \ c \equiv 5 \\ \mathbf{I}_{c} \cdot & a \equiv -5, \ b \equiv 5, \ c \equiv 5 \\ \mathbf{I}_{d} \cdot & a \equiv -5 \\ \mathbf{I}_{e} \cdot & a \equiv -5 \\ \mathbf{I}_{e} \cdot & a \equiv 5 \\ \mathbf{I}_{e} \cdot & a \equiv 5 \\ \mathbf{I}_{e} \cdot & a \equiv 5 \\ \mathbf{I}_{e} -1, \ c \equiv 5 \\ \mathbf{I}_{e} -1, \ c \equiv 1 \\ \mathbf{I}_{f} \cdot & a \equiv 5 \\ \mathbf{I}_{e} -1, \ c \equiv -1 \\ \mathbf{I}_{e} -1, \ c \equiv -$$

20

Tripling Symbol

$\mathbf{I}_{g}.$	$a \equiv 5$	$ \begin{cases} b \equiv -5, \\ c \end{cases} $	$c \equiv 5$
		$b\equiv 5,$	$c \equiv -5$
I_h .	$a{\equiv}5$	$b \equiv -5$,	$c \equiv 1$
		$b \equiv 1,$	$c \equiv -5$
II_a .	$a \equiv -1$	$\int b \equiv 2,$	$c \equiv 1$
		$b\equiv 1,$	$c{\equiv}2$
II _b .	$a\equiv 2$	$\int b \equiv -1$,	$c \equiv 1$
		$b \equiv 1,$	$c \equiv -1$
III _a .	$a \equiv -1$	$b \equiv 2.5$,	$c \equiv 1$
		$b \equiv 1,$	$c \equiv 2 \cdot 5$
III,.	$a \equiv 2.5$	$\int b \equiv -1,$	$c \equiv 1$
		$b \equiv 1,$	$c \equiv -1$
IV _a .	$a \equiv -5$	$b \equiv -2,$	$c \equiv 1$
		$b \equiv 1,$	$c \equiv -2$
IV_{h} .	$a \equiv -2$	$b \equiv -5$,	$c \equiv 1$
Ū		$b \equiv 1,$	$c \equiv -5$
V_a .	$a \equiv -5$	$b \equiv -2.5$	$c \equiv 1$
		$b \equiv 1,$	$c \equiv -2 \cdot 5$
V _b .	$a \equiv -2 \cdot 5$	$5 \int b \equiv -5,$	$c \equiv 1$
-		$b \equiv 1,$	$c \equiv -5$
VI _a .	$a\equiv 2$	$b \equiv -2,$	$c \equiv 1$
-		$b \equiv 1,$	$c \equiv -2$
VI _b .	$a \equiv -2$	$b\equiv 2,$	$c \equiv 1$
•		$b \equiv 1,$	$c\equiv 2$
VII _a .	$a \equiv -2$	$b \equiv -2.5$	$c \equiv 1$
_		$b \equiv 1,$	$c \equiv -2.5$
VII _b .	$a \equiv -2 \cdot 5$	$5b \equiv -2$	$c \equiv 1$
·		$b \equiv 1,$	$c \equiv -2$
VIII _a .	$a \equiv 2.5$	$b \equiv -2.5$,	$c \equiv 1$
3		$b \equiv 1,$	$c \equiv -2.5$
VIII ₂ .	$a \equiv -2 \cdot 5$	$b \equiv 2.5$	$c \equiv 1$
5		$b \equiv 1,$	$c \equiv 2.5$
		-	

Here, when two conditions contained in a case like I_b , we consider only the upper one, because of exchanging b and c. In case of $VI_a \cdots VIII_b$,

$$\gamma_2 = \frac{w_2(c-1)}{16} \mod \mathbf{Z}.$$

In case of I_e , I_g ,

$$\tilde{r}_2 = \frac{w_2(b)}{4} \mod Z.$$

Otherwise $\gamma_2 = 0$.

Theorem 2. Assume k = Q and both $(a, b, c)_2$ and $(a, c, b)_2$ are defined. Put

$$P_{1} = \{p: \text{ prime number} \equiv 1 \mod 4 \mid \mathbf{Q}_{p}^{2} \ni a \equiv c \mod \mathbf{Q}_{p}^{2}, Q_{p}(\sqrt{a}) \triangleleft \mathbf{Q}_{p}(\sqrt{a}) \triangleleft \mathbf{Q}_{p}(\sqrt{a})\}, \\P_{2} = \{p: \text{ prime number} \equiv 1 \mod 4 \mid \mathbf{Q}_{p}^{2} \ni a \equiv c \mod \mathbf{Q}_{p}^{2}, Q_{p}(\sqrt{a}) \triangleleft \mathbf{Q}_{p}(\sqrt{a}) \triangleleft \mathbf{Q}_{p}(\sqrt{a})\}, \\P_{2} = \{p: \text{ prime number} \equiv 3 \mod 4 \mid \mathbf{Q}_{p}^{2} \ni a \equiv c \mod \mathbf{Q}_{p}^{2}, Q_{p}(\sqrt{a}) \triangleleft \mathbf{Q}_{p}(\sqrt{a})\}, \\P_{2} = \{p: \text{ prime number} \equiv 3 \mod 4 \mid \mathbf{Q}_{p}^{2} = 1 \mod \mathbf{Q}_{p}^{2}\}$$

$$P = \{p: \text{ prime number} \equiv 3 \mod 4 \mid a \equiv -1 \mod Q_{\mathfrak{p}}^2\}.$$

Then

$$(a, b, c)_{2} + (a, c, b)_{2} = \sum_{p \in P} \frac{[k_{p}(\sqrt{a}) : k_{p}(\sqrt{b})]w_{p}(c) + [k_{p}(\sqrt{a}) : k_{p}(\sqrt{c})]w_{p}(b)}{4} + \frac{1}{2}({}^{*}P_{1} + {}^{*}P_{2}) + \gamma_{2} \mod \mathbb{Z},$$

where γ_2 takes value as follows:

 $\Upsilon_2 = \frac{1}{2}$ when in the upper cases of VI_a , VI_b , VII_a , VII_b , VII_a , VII_b , $VIII_a$, $VIII_b$ with $b \equiv 9 \mod 8$, and when in the lower cases of VI_a , \cdots , $VIII_b$ with $c \equiv 9 \mod 8$, and when in the upper cases of I_e , I_g with $w_p(b) \equiv 2 \mod 4$, and when in the lower cases of I_e , I_g with $w_p(c) \equiv 2 \mod 4$,

$$\begin{aligned} &\mathcal{T}_2 = \omega_2 \left(\frac{\sqrt{c}, b}{2} \right) & \text{if } \mathbf{Q}_2^2 \ni a \equiv b \mod \mathbf{Q}_2^2 \quad \text{and} \quad c \in \mathbf{Q}_2^2, \\ &\mathcal{T}_2 = \omega_2 \left(\frac{c, \sqrt{b}}{2} \right) & \text{if } \mathbf{Q}_2^2 \ni a \equiv c \mod \mathbf{Q}_2^2 \quad \text{and} \quad b \in \mathbf{Q}_2^2, \\ &\mathcal{T}_2 = \omega_2 \left(\frac{a, \sqrt{bc}}{2} \right) & \text{if } \mathbf{Q}_2^2 \ni a \equiv b \equiv c \mod \mathbf{Q}_2^2, \\ &\mathcal{T}_2 = 0 & \text{otherwise.} \end{aligned}$$

Tripling Symbol

§ 5. About the prime decomposition symbol in Furuta [2]

We assume that m is abundant for K/k, i.e. the ray class field $H_{\kappa}(m)$ modulo m over K is abundant for K/k. Put $\hat{K}(m) = \hat{K}_{H_{\kappa}(m)/k}$ and $K^*(m) = K^*_{H_{\kappa}(m)/k}$. The other notations are the same as the beginning of Section 2.

Moreover let $I_{K'(\mathfrak{m})}^{\mathfrak{m}}$ be the group of ideals of $K^*(\mathfrak{m})$ which are prime to \mathfrak{m} . Taking representatives S_{σ_1} and S_{σ_2} of σ_1 and σ_2 in $G(\hat{K}(\mathfrak{m})/k)$, define an isomorphism

$$\chi: G(\hat{K}(\mathfrak{m})/K^*(\mathfrak{m})) \cong \frac{1}{\operatorname{ord} \chi_2} \mathbb{Z}/\mathbb{Z}$$

by $S_{\sigma_1}^{-1}S_{\sigma_2}^{-1}S_{\sigma_1}S_{\sigma_2} \mapsto (1/\text{ord } \chi_2) \mod \mathbb{Z}$, where of course $S_{\sigma_1}^{-1}S_{\sigma_2}^{-1}S_{\sigma_1}S_{\sigma_2} = (\varphi_{K/k}(\sigma_1 \wedge \sigma_2), \hat{K}(\mathfrak{m})/k).$

Definition. For each $q \in N_{K^*(\mathfrak{m})/k} I^{\mathfrak{m}}_{K^*(\mathfrak{m})}$, take an element $\mathfrak{Q} \in I^{\mathfrak{m}}_{K^*(\mathfrak{m})}$ such that $N_{K^*(\mathfrak{m})/k} \mathfrak{Q} = \mathfrak{q}$. Then we define

$$[\chi_1, \chi_2, \mathfrak{q}] = \chi \left(\frac{\hat{K}(\mathfrak{m})/K^*(\mathfrak{m})}{\mathfrak{Q}} \right),$$

where $\left(\frac{\hat{K}(\mathfrak{m})/K^*(\mathfrak{m})}{2}\right)$ is the Artin symbol.

Remark. If $[\chi_1, \chi_2, q]$ is defined modulo m, then there exists an element $q \in k^{\times}$ such that q = (q) and (χ_1, χ_2, q) is defined modulo m. For any such q, $[\chi_1, \chi_2, q] = (\chi_1, \chi_2, q)$. However even though q = (q) and (χ_1, χ_2, q) is defined, if (χ_1, χ_2, q) is not defined modulo m, the values (χ_1, χ_2, q) and $[\chi_1, \chi_2, q]$ may not be equal.

Especially in the case that $k = \mathbf{Q}$ and n = 2, $\mathfrak{m} \cdot \mathfrak{p}_{\infty}$ is abundant for K/k, where \mathfrak{m} is the maximal Scholz-conductor of K/k, and \mathfrak{p}_{∞} is the product of all the real primes of K if \mathfrak{m} contains no infinite primes, otherwise $\mathfrak{p}_{\infty} = 1$. Since any finite prime divisor of \mathfrak{m} is ramified in $\hat{K}(\mathfrak{m})/K^*(\mathfrak{m})$, if the prime decomposition symbol $[d_1, d_2, a]$ of Furuta [2] is defined, then $(d_1, d_2, |a|)_2$ is defined and

$$[d_1, d_2, a] = (-1)^{(d_1, d_2, |a|)_2}.$$

So Theorem 2 contains the following

Corollary. Assume that d_1 , d_2 and $d_3 \in \mathbb{Z}$ are relatively prime and d_2 , $d_3 > 0$. If the symbol $[d_1, d_2, d_3]$ and $[d_1, d_3, d_2]$ of Furuta [2] are defined, then

$$[d_1, d_2, d_3] = [d_1, d_3, d_2].$$

H. Suzuki

References

- [1] Y. Akagawa, A tripling on the algebraic number field, Osaka J. Math., 23 (1986), 151-179.
- Y. Furuta, A prime decomposition symbol for a non-abelian central extension which is abelian over a bicyclic biquadratic field, Nagoya Math. J., 79 (1980), 79-109.
- [3] —, A norm residue map for central extensions of an algebraic number field, Nagoya Math. J., 93 (1984).
- [4] F.-P. Heider, Strahlknoten and Geschlechterkörper mod m, J. reine angew. Math., 320 (1980), 52-67.

Department of Mathematics Tokyo Metropolitan University Fukasawa, Setagaya-ku Tokyo 158, Japan