A Tripling Symbol for Central Extensions of Algebraic Number Fields

Hiroshi Suzuki

Let K / k be a finite abelian extension of a finite algebraic number field and M be a Galois extension of k which contains K. Denote by $\hat{K}_{M / k}$ and $K_{M / k}^{*}$ the maximal central extension of K / k in M and the genus field of K / k in M. Since K / k is abelian, $K_{M / k}^{*}$ coincides with the maximal abelian extension of k in M. In general, the Galois group $G\left(\hat{K}_{M / k} / K_{M / k}^{*}\right)$ is isomorphic to a quotient group of the dual $M(G)=H^{-3}(G, Z)$ of the Schur multiplier $H^{2}(G, \boldsymbol{Q} / \boldsymbol{Z})$ of G. If M is enough large, $G\left(\hat{K}_{M / k} / K_{M / k}^{*}\right)$ is isomorphic to $M(G)$. In such a case, we call M abundant for K / k.

Furuta [2] gives a prime decomposition symbol [d_{1}, d_{2}, p] which indicates the decomposition in $\hat{K}_{M / k} / K_{M / k}^{*}$ of a prime p which is degree 1 in $K_{M / k}^{*}$, where $k=\boldsymbol{Q}, K=\boldsymbol{Q}\left(\sqrt{d_{1}}, \sqrt{\overline{d_{2}}}\right)$ and M is a ray class field of K which is abundant for K / k. Also it proves the inversion formula $\left[p_{1}, p_{2}, p_{3}\right]=$ [p_{1}, p_{3}, p_{2}] except only a case.

Akagawa [1] extended this symbol to ($x, y, z)_{n}$ for any kummerian bicyclic extension $K=k(\sqrt[n]{x}, \sqrt[n]{y})$ over any base field k with serveral conditions which make $(x, y, z)_{n}$ and $(x, z, y)_{n}$ defined and the inversion formula $(x, y, z)_{n}(x, z, y)_{n}=1$ be true. This contains the proof of the excepted case of Furuta [2].

In this paper, we extend the symbol [, ,] as a character of the number knot modulo \mathfrak{m} of K / k with \mathfrak{m} being a Scholz conductor of K / k which is defined in Heider [4]. The character is defined by using the inverse map $H^{-1}\left(G, C_{K}\right) \cong H^{-3}(G, \boldsymbol{Z})$ (of Tate's isomorphism), which is obtained by translating the norm residue map of Furuta [3], which is written in ideal theoretic, into idele theoretic. In our definition, the extension K / k may be any bicyclic extension $K=k_{\chi_{1}} \cdot k_{\chi_{2}}$ with χ_{1}, χ_{2} being global characters. But the symbol is of type (χ_{1}, χ_{2}, c), where c is contained in the number knot. So we can consider the inversion formula only in the case when χ_{1} and χ_{2} are Kummer characters $\chi_{a}^{(n)}$ and $\chi_{b}^{(n)}$. When that is the case, we put $(a, b, c)_{n}=\left(\chi_{a}^{(n)}, \chi_{b}^{(n)}, c\right)$ and calculate $(a, b, c)_{n}+(a, c, b)_{n}$ (which are written additively in this paper). We approach this result to a necessary and sufficient condition of the inversion formula $(a, b, c)_{n}+(a, c, b)_{n}=0$, by

[^0]representing explicitly the components of $(a, b, c)_{n}+(a, c, b)_{n}$ at the primes \mathfrak{p} of k where $k_{p}(\sqrt[n]{a}, \sqrt[n]{b})$ and $k_{\mathfrak{p}}(\sqrt[n]{a}, \sqrt[n]{c})$ are of degree $\leqq n$ or \mathfrak{p} not dividing n (Theorem 1 and Corollary 1). This gives the explicit value of $(a, b, c)_{n}+(a, c, b)_{n}$ when $k_{p}(\sqrt[n]{a}), k_{p}(\sqrt[n]{b})$ and $k_{p}(\sqrt[n]{c})$ are tamely ramified. For the components dividing n, it is difficult to write down them explicitly in general. So we calculate it only in the case $k=\boldsymbol{Q}$ and $n=2$. (Theorem 2)

In the final section, we compare this symbol with the one [, ,] defined in Furuta [2]. But the comparison with the one in Akagawa [1] becomes too cumbersome, and it is so delicate that we omit it with saying here that they are essentially the same.

§ 1. Homomorphisms $\varphi_{K / k}$ and $\psi_{K / k}$

For an algebraic number field F, we denote by F^{\times}, J_{F} and C_{F} the multiplicative group of F, the group of ideles and idele classes of F. For an integral divisor \mathfrak{m} of F, we denote the ray modulo \mathfrak{m} of J_{F} and F^{\times}by $J_{F}(\mathfrak{m})$ and $F^{\times}(\mathfrak{m})$.

For a finite group G, let I_{G} be the augmentation ideal of the group ring $Z[G]$. For a finite extension K / k, let $N_{K / k}$ be the norm map.

Let K be a finite abelian extension of a finite algebraic number field k with group G. When G is abelian, the Pontrjagin dual $M(G)=H^{-3}(G, Z)$ of the Schur multiplier of G is isomorphic to the exterior product $\Lambda(G)=$ $G \wedge G(=G \otimes G /\langle g \otimes g ; g \in G\rangle)$. Let $\xi(\sigma, \tau)$ be the canonical 2-cocycle of K / k and take a transversal $\left\{u_{\sigma} ; \sigma \in G\right\}$ of G in the Weil group $G_{K, k}$ of K / k. We define an isomorphism $\varphi_{K / k}$ from $\Lambda(G)$ to $N_{\bar{K} / k}^{-1}(1) / I_{G} C_{K}=H^{-1}\left(G, C_{K}\right)$ by

$$
\begin{aligned}
\varphi_{K / k}(\sigma \wedge \tau) & \equiv u_{\sigma}^{-1} u_{\tau}^{-1} u_{\sigma} u_{\tau} \\
& \equiv \xi(\sigma, \tau) \xi(\tau, \sigma)^{-1} \bmod I_{G} C_{K}
\end{aligned}
$$

Let α be an epimorphism and M be the Galois extension corresponding to Ker α. Then α determines an epimorphism $\Lambda(\alpha): \Lambda(G) \rightarrow \Lambda(H)$ naturally, and it gives a commutative diagram

$$
\begin{array}{cc}
\Lambda(G) \stackrel{\varphi_{K / k}}{\cong} N_{\bar{K} / k}^{-1}(1) / I_{G} C_{K} \\
\Lambda(\alpha) \lambda \| & \quad \| \text { induced by } N_{K / M} \\
\Lambda(H) \cong N_{M / k}^{-1}(1) / I_{H} C_{\mu} .
\end{array}
$$

Since G is abelian, it can be decomposed into cyclic groups G_{i} as $G=G_{1}$ $\times \cdots \times G_{r}$ such that $\left|G_{j}\right|$ divides $\left|G_{i}\right|$ for $i<j$. Let K_{i} be the Galois extension of k corresponding to $G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{r}$ with group
G_{i}, and put $K_{i j}=K_{i} \cdot K_{j}$ and $G_{i j}=G_{i} \times G_{j}$. Then the above diagram implies

$$
\begin{gathered}
\Lambda(G) \\
2 \|
\end{gathered} \stackrel{\varphi_{K / k}}{\cong} N_{\bar{K} / k}^{-1}(1) / I_{G} C_{K} \quad \text { l\| }
$$

Proposition 1. Let F / k be a finite cyclic extension with $\operatorname{group} G(F / k)$ $=\langle\sigma\rangle$, and L / k be a finite abelian extension containing F with group H. Then

$$
N_{L / k}^{-1}(1) / N_{L / F}^{-1}(1) I_{H} C_{L} \cong C_{F} / C_{k} \cdot N_{L / F} C_{L} \cong G\left(F^{\prime} / F\right)
$$

where F^{\prime} is the abelian extension of F corresponding to $C_{k} \cdot N_{L / F} C_{L}$ and contained in L. For each $A \in N_{L / k}^{-1}(1)$, taking $b \in C_{F}$ so that $b^{\sigma-1}=N_{L / F} A$, the above isomorphism $N_{L / k}^{-1}(1) / N_{L / F}^{-1}(1) \cong G\left(F^{\prime} \mid F\right)$ is given by $A \bmod N_{L / F}^{-1}(1)$ $I_{H} C_{L} \mapsto\left(b, F^{\prime} / F\right)$, where $\left(, F^{\prime} / F\right)$ is the global norm residue symbol for F^{\prime} / F.

Proof. $\quad N_{L / F}\left(N_{L / k}^{-1}(1)\right)=N_{F / k}^{-1}(1)=C_{F}^{\sigma-1}$ and $N_{L / F}\left(I_{H} C_{L}\right)=N_{L / F} C_{L}^{\sigma-1}$ are immediate. Since the kernel of $\sigma-1: C_{F} \rightarrow C_{F}^{\sigma-1}$ is C_{K}, naturally $N_{L / k}^{-1}(1) /$ $N_{L / F}^{-1}(1) I_{H} C_{L} \cong C_{F}^{a-1} / N_{L / F} C_{L}^{o-1} \cong C_{F} / C_{k} \cdot N_{L / F} C_{L}$. So the proposition implied.

Put now $L=K_{i j}$ and $F=K_{i}$, then $N_{L / F}^{-1}(1) I_{H} C_{L}=I_{G_{i j}} \cdot C_{K_{i j}}$. If we compare the degrees, $F^{\prime}=K_{i j}$ is clear. So the above proposition gives an isomorphism

$$
\psi_{K_{i j} / k}: N_{K_{i j} / k}^{-1}(1) / I_{G_{i j}} C_{K_{j}} \cong G\left(K_{i j} / K_{i}\right) \cong G\left(K_{i} / k\right) \cong \Lambda\left(G_{i j}\right)
$$

by using a fixed generator σ_{i}. For $A \in N_{K_{i j} / k}^{-1}(1)$, take $b \in C_{K_{i}}$ such that $N_{K_{i j} / K_{i}} A=b^{\sigma-1}$, then

$$
\psi_{K_{i j} / k}\left(A \bmod I_{G_{i j}} C_{K_{i j}}\right)=\sigma_{i} \wedge\left(N_{K_{i} / k} b, K_{j} / k\right)
$$

Now we define $\psi_{K / k}: N_{K / k}^{-1}(1) / I_{G} C_{K} \cong \Lambda(G)$ by

$$
\psi_{K / k}\left(A \bmod I_{G} C_{K}\right)=\sum_{i<j} \psi_{K_{i j / k}}\left(N_{K / K_{i j}} A \bmod I_{G_{i j}} C_{K_{i j}}\right)
$$

for $A \in N_{K / k}^{-1}(1)$. Then the following proposition shows

$$
\psi_{K / k}=\varphi_{K / k}^{-1}
$$

Proposition 2. $\quad \psi_{K_{i j} / k}\left(\varphi_{K_{i j / k}}\left(\sigma_{i} \wedge \sigma_{j}\right)\right)=\sigma_{i} \wedge \sigma_{j}$.
Proof. Put $G_{K_{i j}, k}^{\prime}=G\left(K_{i j} / k\right)$ and let $\varphi_{K_{i j}, k}: G_{K_{i j}, k} \rightarrow G_{K_{i j}, k}^{\prime}$ be the
natural epimorphism of Weil groups. Denote by $V_{K_{i}, k}: G_{K_{i}, k} \rightarrow C_{k}$ and $V_{K_{i j}, K_{i}}: G_{K_{i j}, K_{i}} \rightarrow C_{K_{i}}$ the group transfers from $G_{K_{i}, k}$ to $C_{K_{i}}$ and from $G_{K_{i j}, K_{i}}$ to $C_{K_{i j}}$ respectively. Put $H=\varphi_{K_{i j}, k}^{-1}\left(G_{K_{i j}, K_{i}}^{\prime}\right)$ and let $\lambda: G_{K_{i j}, k} \rightarrow$ $G_{K_{i j}, k} / H^{c}$ be the canonical epimorphism modulo the topological commutator H^{c} of H. Moreover let $\eta: G_{K_{i j}, k} / H^{c} \cong G_{K_{i}, k}$ be the natural isomorphism of Weil groups.

Take a transversal $u_{\sigma} ; \sigma \in G_{i j}$ of $G_{i j}$ in $G_{K_{i j}, k}$. Then

$$
\begin{aligned}
\varphi_{K_{i j} / k}\left(\sigma_{i}\right. & \left.\wedge \sigma_{j}\right) \\
& \equiv u_{\sigma_{i}}^{-1} u_{\sigma_{j}}^{-1} u_{\sigma_{i}} u_{\sigma_{j}} \\
& \equiv u_{\sigma_{i}} u_{\sigma_{j}} u_{\sigma_{i}}^{-1} u_{\sigma_{j}}^{-1} \bmod I_{G_{i j}} C_{K_{i j}} \\
N_{K_{i j} / K_{i}}\left(u_{\sigma_{i}} u_{\sigma_{j}} u_{\sigma_{i}}^{-1} u_{\sigma_{j}}^{-1}\right)= & V_{K, K_{i}}\left(u_{\sigma_{i}} u_{\sigma_{j}} u_{\sigma_{i}}^{-1} u_{\sigma_{j}}^{-1}\right) \\
& =\eta \circ \lambda\left(u_{\sigma_{i}} u_{\sigma_{j}} u_{\sigma_{i}}^{-1} u_{\sigma_{j}}^{-1}\right) \\
& =\eta \circ \lambda\left(u_{\sigma_{i}}\right) \eta \circ \lambda\left(u_{\sigma_{j}}\right) \eta \circ \lambda\left(u_{\sigma_{i}}\right)^{-1} \eta \circ \lambda\left(u_{\sigma_{j}}\right)^{-1} \\
& =\eta \circ \lambda\left(u_{\sigma_{j}}\right)^{\sigma_{i}-1}
\end{aligned}
$$

because $\eta \circ \lambda\left(u_{\sigma_{j}}\right) \in C_{K_{i}}$ and $\eta \circ \lambda\left(u_{\sigma_{i}}\right)$ is a representative of σ_{i} in $G_{K_{i}, k}$.
So we can take the element $b \in C_{K_{i}}$ in the definition of $\psi_{K_{i j} / k}\left(\varphi_{K_{i j} / k}\left(\sigma_{i} \wedge \sigma_{j}\right)\right)$ so that $b=\eta \circ \lambda\left(u_{\sigma_{j}}\right)$.

Now we have the following commutative diagram, denoting by res the restriction maps and $\bar{\sigma}_{j}=\varphi_{K, k}\left(u_{\sigma_{j}}\right)$ a prolongation of σ_{j} to $G_{K_{i j}, k}^{\prime}$:

Since the above diagram is commutative, we have

$$
\psi_{K_{i j} / k}\left(\varphi_{K_{i j} / k}\left(\sigma_{i} \wedge \sigma_{j}\right)\right)=\sigma_{i} \wedge \sigma_{j}
$$

§ 2. Tripling (a, b, c)

For a G-invariant integral divisor \mathfrak{m} of K, we call it a Scholz-conductor of K / k, when the mapping $H^{2}\left(G, J_{K}(\mathfrak{m})\right) \rightarrow H^{2}\left(G, C_{K}\right)$ induced by $J_{K}(\mathfrak{m}) \rightarrow$ $J_{K} \rightarrow C_{K}$ is zero mapping (See Heider [4]). Since $J_{K}=J_{K}(\mathfrak{m}) \cdot K^{\times}, N_{K / k}^{-1}(1) /$ $I_{G} C_{K}=N_{K / k}^{-1}\left(k^{\times}\right) / k^{\times} I_{G} J_{K} \cong J_{K}(\mathfrak{m}) \cap N_{K / k}^{-1}\left(k^{\times}\right) / K^{\times}(\mathfrak{m}) I_{G} J_{K}(\mathfrak{m})$. And the condition that \mathfrak{m} is a Scholz-conductor is equivalent to $J_{K}(\mathfrak{m}) \cap N_{K / k}^{-1}\left(k^{\times}\right) /$ $K^{\times}(\mathfrak{l}) I_{G} J_{K}(\mathfrak{m}) \cong N_{K / k} J_{K}(\mathfrak{m}) \cap k^{\times} / N_{K / k} K^{\times}(\mathfrak{m})$ by means of the norm map $N_{K / k}$.

Now let χ_{1} and χ_{2} be global characters of J_{k} (i.e. $\operatorname{Ker} \chi_{i} \supset k^{\times}$) such that ord χ_{2} divides ord χ_{1}, and $K_{i}=k_{x_{i}}$ be the cyclic extensions of k corresponding to Ker χ_{i}. For $\chi_{i}: J_{k} \longrightarrow G\left(K_{i} / k\right) \cong\left(1 /\right.$ ord $\left.\chi_{i}\right) Z / Z$, we take $\sigma_{i} \in$ $G\left(K_{i} / k\right)$ whose image is $\left(1 /\right.$ ord $\left.\chi_{i}\right) \bmod \boldsymbol{Z}(i=1,2)$. Put $K=K_{1} \cdot K_{2}$.

When $K_{1} \cap K_{2}=k$, we connect the mapping ψ of Section 1 with the above isomorphism. Namely, for $c \in N_{K / k} J_{K}(\mathfrak{m}) \cap k^{\times}$, taking $\mathfrak{C} \in J_{K}(\mathfrak{m})$ and $C \in K_{1}^{\times}$with $N_{K / k} \circlearrowleft=c$ and $N_{K_{1} / k} C=c$, put $\left(\chi_{1}, \chi_{2}, c\right)=\chi_{2}\left(N_{K_{1} / k} c\right)$, where $\mathfrak{c} \in J_{K_{1}}$ with $\mathfrak{c}^{\sigma_{1}-1}=C^{-1} \cdot N_{K / K_{1}}{ }^{\text {® }}$. It gives

$$
N_{K / k} J_{K}(\mathfrak{m}) \cap k^{\times} / N_{K / k} K^{\times}(\mathfrak{m}) \cong \frac{1}{|M(G)|} \boldsymbol{Z} / \boldsymbol{Z} \cong \boldsymbol{Q} / Z,
$$

and the image c_{0} of $\varphi_{K / k}\left(\sigma_{1} \wedge \sigma_{2}\right)$ by $N_{K / k}^{-1}(1) / I_{G} C_{K} \cong N_{K / k} J_{K}(\mathfrak{m}) \cap$ $k^{\times} / N_{K / k} K^{\times}(\mathfrak{m})$ corresponds to $(1 /|M(G)|) \bmod \boldsymbol{Z}$.

Definition. When $K_{1} \cap K_{2}=k$, we put

$$
\left(\chi_{1}, \chi_{2}, c\right)=\chi_{2}\left(N_{K_{1} / k} \mathrm{c}\right) \quad \text { for } \quad c \in N_{K / k} J_{K}(\mathfrak{m}) \cap k^{\times} .
$$

Remark. As far as the symbol $\left(\chi_{1}, \chi_{2}, c\right)$ is defined, its value is independent on \mathfrak{m}. Scholz-conductor has the smallest element, so we use it throughout in the following. Instead of $J_{K}(\mathfrak{m})$, we can use any G-invariant closed subgroup \tilde{J} of J_{K} such that $H^{-1}(G, \tilde{J}) \rightarrow H^{-1}\left(G, C_{K}\right)$ is zero mapping. But if we used \tilde{J}, the value $\left(\chi_{1}, \chi_{2}, c\right)$ should depend on the choice of \tilde{J}. So we don't use this \tilde{J} for the simplicity.

The following proposition implies immediately from the definition.
Proposition 3. i) Let χ_{2}^{\prime} be another global character such that ord χ_{2}^{\prime} divides ord χ_{1}. When $\left(\chi_{1}, \chi_{2}, c\right),\left(\chi_{1}, \chi_{2}, c\right)$ and $\left(\chi_{1}, \chi_{2}+\chi_{2}^{\prime}, c\right)$ are all defined, it holds

$$
\left(\chi_{1}, \chi_{2}+\chi_{2}^{\prime}, c\right)=\left(\chi_{1}, \chi_{2}, c\right)+\left(\chi_{1}, \chi_{2}^{\prime}, c\right)
$$

ii) If ord $\chi_{1}=\operatorname{ord} \chi_{2}$ and $\left(\chi_{1}, \chi_{2}, c\right)$ is defined, then $\left(\chi_{2}, \chi_{1}, c\right)$ is also defined and

$$
\left(\chi_{1}, \chi_{2}, c\right)+\left(\chi_{2}, \chi_{1}, c\right)=0
$$

When k contains a primitive root ζ_{n} of 1 (fix it throughout this section), each a of k defines the Kummer character χ_{a} of degree n.

Definition. Assume $k \ni \zeta_{n}$. When $a, b \in k^{\times}$satisfy ord $\chi_{a} \mid$ ord χ_{b} and $k_{x_{a}} \cap k_{x_{b}}=k$, we put

$$
(a, b, c)_{n}=\left(\chi_{a}, \chi_{b}, c\right)
$$

for $c \in N_{k_{x_{a}} k_{\chi_{b} / k} / J_{k_{x_{a}} k_{\chi_{b}}}}(\mathfrak{M}) \cap k^{\times}$where \mathfrak{m} is the Scholz-conductor of $k_{x_{a}} k_{\chi_{b}} / k$.
Let $\left(\frac{\alpha_{p}, \beta_{\mathfrak{p}}}{\mathfrak{p}}\right)$ be the Hilbert symbol and $\omega_{n}:\left\langle\zeta_{n}\right\rangle \rightarrow(1 / n) \boldsymbol{Z} / \boldsymbol{Z} \subseteq \boldsymbol{Q} / \boldsymbol{Z}$ be the homomorphism given by $\zeta_{n} \mapsto(1 / n) \bmod \boldsymbol{Z}$. Then $(\alpha, \beta)_{k, n}=$ $\sum_{p} \omega_{n}\left(\frac{\alpha_{p}, \beta_{p}}{\mathfrak{p}}\right)$ gives the Kummer pairing for $\alpha, \beta \in J_{k}$, where \mathfrak{p} runs over all the prime divisors of k and α_{p}, β_{p} are the \mathfrak{p}-components of α, β respectively.
 and $\mathfrak{c} \in J_{k_{x_{a}}}$ such that $N_{k_{x_{a}} k_{x_{b}} / k} \mathscr{G}=N_{k_{x_{a}} / k} C=c$ and $\mathfrak{c}^{\sigma a-1}=C^{-1} \cdot N_{k_{x_{a}} \kappa_{x_{b}} / k_{x_{a}}} \mathcal{C}^{\text {© }}$, we get $(a, b, c)_{n}=\chi_{b}\left(N_{k_{x_{a}} / k} c\right)=\left(N_{k_{x_{a}} / k} c, b\right)_{k, n}$, where σ_{a} is the element of $G\left(k_{x_{a}} / k\right)$ whose image by χ_{a} is $\left(1 / \operatorname{ord} \chi_{a}\right) \bmod \boldsymbol{Z}$.

In the following, we consider only the case ord $\chi_{a}=n$ for the simplicity and we write σ instead of σ_{a}. Put $K_{1}=k_{x_{a}}, K_{2}=k_{x_{b}}, K_{3}=k_{x_{e}}, K=K_{1} K_{2}$ and $K^{\prime}=K_{1} K_{3}$.

Proposition 4. Assume $(a, b, c)_{n}$ and $(a, c, b)_{n}$ are defined with the Scholz-conductors \mathfrak{m} and \mathfrak{m}^{\prime} respectively. Take $\mathfrak{C} \in J_{K}(\mathfrak{m})$ and $\mathfrak{B} \in J_{K^{\prime}}\left(\mathfrak{m}^{\prime}\right)$ such that $N_{K / k}\left(\Im=c\right.$ and $N_{K^{\prime} / k} \mathfrak{B}=b$, and put $\delta=(n-1) \sigma+(n-2) \sigma^{2}+\cdots+$ $\sigma^{n-1} \in \boldsymbol{Z} / n \boldsymbol{Z}\left[G\left(K_{1} / k\right)\right]$. Then

$$
(a, b, c)_{n}+(a, c, b)_{n}=\left(N_{K^{\prime} / K_{1}} \mathfrak{B}^{\mathfrak{j}}, N_{K / K_{1}}(\mathfrak{C})_{K_{1}, n} .\right.
$$

Proof. Take the element $C, B \in K_{1}^{\times}$and $\mathfrak{c}, \mathfrak{b} \in J_{K_{1}}$ so that $N_{K_{1} / k} C=c$, $N_{K_{1} / k} B=b, \mathfrak{c}^{\sigma-1}=C^{-1} N_{K / K_{1}}$ § and $b^{\sigma-1}=B^{-1} \cdot N_{K / K_{1}} \mathfrak{B}$. Then

$$
(a, b, c)_{n}=\left(N_{K_{1} / k} \mathfrak{c}, b\right)_{k, n}=(\mathfrak{c}, b)_{K_{1}, n} .
$$

Since $\delta\left(1-\sigma^{-1}\right)=1+\sigma+\cdots+\sigma^{n-1}$ in $Z / n Z\left[\left(G\left(K_{1} / k\right)\right]\right.$,

$$
(c, b)_{K_{1}, n}=\left(\mathfrak{c},\left(B^{-\delta}\right)^{\sigma-1-1}\right)_{K_{1}, n} .
$$

Moreover

$$
\left(\mathcal{c},\left(B^{-\delta}\right)^{\sigma-1-1}\right)_{K_{1}, n}=\left(\mathfrak{c}^{\sigma-1}, B^{-\delta}\right)_{K_{1}, n}
$$

owing to $\left(\alpha^{\sigma}, \beta^{\sigma}\right)_{K_{1}, n}=(\alpha, \beta)_{K_{1}, n}\left(\alpha, \beta \in J_{K_{1}}\right)$. As $B^{-\delta}$ and $C^{-1} \in K_{1}^{\times}$, we have

$$
\left(\mathcal{C}^{\sigma-1}, B^{-\delta}\right)_{K_{1}, n}=\left(N_{K / K_{1}}\left(\mathfrak{C}, B^{-\delta}\right)_{K_{1}, n} .\right.
$$

Now it follows from $B=N_{K^{\prime} / K_{1}} \mathfrak{B} \cdot \mathfrak{b}^{1-\sigma}$ that

$$
\begin{aligned}
& \left(N_{K / K_{1}}\left(\mathfrak{G}, B^{-\delta}\right)_{K_{1}, n}=\left(N_{K / K_{1}}\left(\mathfrak{G}, \mathfrak{b}^{-\delta \cdot(1-\sigma)}\right)_{K_{1}, n}+\left(N_{K / K_{1}}\left(\mathfrak{F}, N_{K^{\prime} / K_{1}} \mathfrak{B}^{-\delta}\right)_{K_{1}, n}\right.\right.\right. \\
& =\left(N_{K / K_{1}}\left(\mathfrak{C}, N_{K_{1} / k} \mathfrak{b}\right)_{K_{1}, n}+\left(N_{K^{\prime} / K_{1}} \mathfrak{B}^{\delta}, N_{H / K_{1}}(\mathfrak{G})_{K_{1}, n}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left(c, N_{K_{1 / k}} b\right)_{k, n}+\left(N_{K^{\prime} / K_{1}} \mathfrak{B}^{\delta}+N_{K / K_{1}} \mathcal{G}_{K_{K_{1}, n}}\right. \\
& =-(a, c, b)_{n}+\left(N_{K^{\prime} / K_{1}} \mathfrak{B}^{\mathfrak{B}}, N_{K / K_{1}} \mathfrak{E}_{K_{1}, n},\right.
\end{aligned}
$$

and the proposition is proved.
It is a problem when the inversion formula $(a, b, c)_{n}+(a, c, b)_{n}=0$ holds. We shall treat it in the following section.

§ 3. Inversion formula

When $n=\prod_{i} p_{2}^{m_{i}}$ where p_{i} are prime numbers,

$$
(a, b, c)_{p_{i}^{m_{i}}}=\frac{n}{p_{i}^{m_{i}}}(a, b, c)_{n} \quad \text { with } \quad \zeta_{p_{i}^{m_{i}}}=\zeta_{n}^{n / p_{i}^{m_{i}}}
$$

So it is enough to consider only when n is a prime power p^{m}.
We assume $(a, b, c)_{n}$ and $(a, c, b)_{n}$ are defined. Then $\left(\frac{a, b}{\mathfrak{p}}\right)_{n}=$ $\left(\frac{a, c}{\mathfrak{p}}\right)_{n}=\left(\frac{b, c}{\mathfrak{p}}\right)_{n}=1$ are every prime \mathfrak{p} of k. When this is the case, we call that a, b, c are orthogonal (See Akagawa [1]). As in the previous section, let ord $\chi_{a}=n, K_{1}=k_{x_{a}}, K_{2}=k_{x_{b}}, K_{3}=k_{x_{c}}, K=K_{1} K_{2}$ and $K^{\prime}=K_{1} K_{3}$. For each prime divisor \mathfrak{p} of k, take prime divisors $\mathfrak{F}_{1}, \mathfrak{F}$ and \mathfrak{B}^{\prime} of \mathfrak{p} in K_{1}, K and K^{\prime} satisfying $\mathfrak{\Re} \mid \mathfrak{F}_{1}$ and $\mathfrak{B}^{\prime} \mid \mathfrak{P}_{1}$. When $\mathfrak{P}^{e} \| \mathfrak{m}$, put $K_{\mathfrak{\Re}}^{(\mathfrak{m})}=U_{\mathfrak{\Re}}^{(e)}$ for $e \geqq 1$ and $K_{\oiint}^{(m)}=K_{\Re}$ for $e=0$.
 $=b$. Then we can take $\mathfrak{C} \in J_{K}(\mathfrak{m})$ and $\mathfrak{B} \in J_{K^{\prime}}\left(\mathfrak{m}^{\prime}\right)$ in Proposition 4 with components 1 except $\mathfrak{G}_{\mathfrak{F}}$ and $\mathfrak{B}_{\mathfrak{P}^{\prime}}$ at \mathfrak{B} and $\mathfrak{\Re}^{\prime}$ for each \mathfrak{p}, respectively.

Put $n_{p}=\left[K_{1_{1}}: k_{p}\right]$ and let $\delta\left(n_{p}\right)=\sum_{i=1}^{n_{p}-1}\left(n / n_{p}\right)\left(n_{p}-i\right) \sigma^{(n / n p) i}$ (of course $\delta(1)=0)$. Now we consider the components of ($N_{K^{\prime} / K_{1}} B^{\delta}, N_{K / K_{1}}\left(\mathcal{E}_{K_{1}, n}\right.$ in order to estimate the value $(a, b, c)_{n}+(a, c, b)_{n}$ by Proposition 4. The components at the prime divisors of \mathfrak{p} are 1 except at \mathfrak{P}_{1}, and the component at \Re_{1} is

The equality is immediate from $\left(\alpha^{\sigma n / n_{p}} \beta^{\sigma n / n_{p}} / P_{1}\right)=\left(\alpha, \beta / P_{1}\right)$ for $\alpha, \beta \in K_{1_{\mathfrak{p}_{1}}}$, we denote this component by γ_{p}.

For infinite, $\mathfrak{p}, n_{\mathfrak{p}}=1$ or 2 . When $n_{\mathfrak{p}}=2, \mathfrak{P}_{1}$ is complex and the Hilbert symbol is trivial. In case of $n_{p}=1$, the above term is 0 since $\delta\left(n_{p}\right)=0$.

We consider the component γ_{p} at finite \mathfrak{p} under the condition $\left[K_{p}: k_{p}\right]$ $\leqq n$ and $\left[K_{p^{\prime}}^{\prime}: k_{p}\right] \leqq n$. Then the homomorphism $\Lambda\left(G\left(K_{\S} / k_{p}\right)\right) \rightarrow \Lambda(G)$ in-
duced by the inclusion $G\left(K_{\mathfrak{F}} / k_{\mathfrak{p}}\right) \rightarrow G$ is zero mapping and $\mathfrak{P} \nmid \mathfrak{m}$ for every $\mathfrak{ß} \mid \mathfrak{p}$. So $K_{\mathfrak{\beta}}^{(\mathfrak{m})}=K_{\mathfrak{\beta}}$ and $K_{\mathfrak{\beta}^{\prime}\left(m^{\prime}\right)}^{\prime}=K_{\mathfrak{\beta}}^{\prime}$. If $\sqrt{n_{\mathfrak{p}}} \sqrt{b} \notin K_{\mathfrak{p}_{1}}$ then $\left[K_{\mathfrak{\beta}}: k_{\mathfrak{p}}\right]>n$, which contradicts. Hence $K_{1_{1_{1}}}$ contains ${ }^{n_{p}} \sqrt{b}$ and ${ }^{n_{p}} \sqrt{c}$.

At first we assume $p \neq 2$. Then, since $\left(\frac{n_{\mathfrak{p}} \sqrt{c}, b}{\mathfrak{B}_{1}}\right)=\left(\frac{c, b}{\mathfrak{p}}\right)=1$, $n_{\mathfrak{p}} \sqrt{c} \in N_{K_{\mathfrak{ß}} / K_{1_{1}}} K_{\mathfrak{\beta}}$ and we can set $N_{K_{\mathfrak{\beta}} / k_{\mathfrak{p}}} \mathfrak{F}_{\mathfrak{\beta}}={\sqrt{n_{\mathfrak{p}}}}^{c}$. When $\sqrt[n_{\mathfrak{p}}]{ } \sqrt{c}{ }^{\sigma\left(n / n_{\mathfrak{p}}\right)}$ $=\zeta_{n}^{u}(u \in \boldsymbol{Z} / n \boldsymbol{Z})$, we have ${ }^{n_{p}} \sqrt{c^{\partial\left(n_{p}\right)}}=\zeta_{n}^{-(1 / 6) u n\left(n_{p}-1\right)} \cdot c^{\left(n / n_{p}\right)\left(n_{p}-1\right) / 2} \in k_{p}$ and

$$
\gamma_{\mathfrak{p}}=\omega_{n}\left(\frac{n_{\mathfrak{p}} \sqrt{c^{\delta\left(n_{\mathfrak{p}}\right)}, b}}{\mathfrak{p}}\right)=\omega_{n}\left(\frac{\zeta_{n}^{-(1 / 6) u n\left(n_{\mathfrak{p}}-1\right)\left(2 n_{\mathfrak{p}}-1\right)}, b}{\mathfrak{P}}\right) .
$$

The last term is equal to zero when $p \neq 3$ or $n_{\mathrm{p}}<n$.
Let $p=3, n_{p}=n$ and $\zeta_{3}=\zeta_{n}^{n / 3}$. Then there exist b_{p} and c_{p} in $\boldsymbol{Z} / n \boldsymbol{Z}$ such that $b \equiv a^{b_{p}} \bmod k_{\mathfrak{p}}^{n}$ and $c \equiv a^{c_{p}} \bmod k_{p}^{n}$. Of course $u=c_{p}$ and

$$
\gamma_{\mathfrak{p}}=\omega_{n}\left(\frac{\zeta_{3}^{c_{p}}, a^{b_{p}}}{\mathfrak{p}}\right)=c_{\mathfrak{p}} \cdot b_{\mathfrak{p}} \omega_{n}\left(\frac{\zeta_{3}, a}{\mathfrak{p}}\right) .
$$

If $p \nmid 3$, then evidently $\gamma_{p}=w_{p}(a) w_{p}(b) w_{p}(c) \omega_{n}\left(\zeta_{3} / \mathfrak{p}\right)$, where w_{p} is the normalized additive valuation of k_{p}.

Now we assume $p=2,\left[K_{\mathfrak{p}}: k_{p}\right] \leqq n$ and $\left[K_{\mathfrak{\beta}}^{\prime}: k_{p}\right] \leqq n$. If $c \in k_{\mathfrak{p}}^{2}$, we can set $N_{K \mathfrak{\beta} / k_{\mathfrak{p}}} \mathfrak{E}_{\mathfrak{p}}=\sqrt[n_{\mathfrak{p}}]{c}$ and $n_{\mathfrak{p}} \sqrt{c^{\sigma\left(n_{\mathfrak{p}}\right)}}=\sqrt{c^{\left(n_{\mathfrak{p}}-1\right) n / n_{\mathfrak{p}}}} \in k_{\mathfrak{p}}$. So

$$
\gamma_{\mathfrak{p}}=\frac{n}{n_{\mathfrak{p}}} \omega_{n}\left(\frac{\sqrt{c}, b}{\mathfrak{p}}\right) .
$$

If $b \in k_{p}^{2}$, then similarly

$$
\gamma_{\mathfrak{p}}=\frac{n}{n_{\mathfrak{p}}} \omega_{n}\left(\frac{\sqrt{b}, c}{\mathfrak{p}}\right) .
$$

If $n_{\mathfrak{p}}<n$ and $c \notin k_{\mathfrak{p}}^{2}$, we can set $N_{K_{\mathfrak{p}} / k_{\mathfrak{B}}} \wp_{\mathfrak{p}}=\zeta_{n}^{n / 2 n_{\mathfrak{p}} n_{\mathfrak{p}}} \sqrt{c}$ and $\left(\zeta_{n}^{n / 2 n_{\mathfrak{p}} n_{\mathfrak{p}}} \sqrt{c}\right)^{\delta\left(n_{\mathfrak{p}}\right)}$ $=(-1)^{n / 2 n_{\mathfrak{p}}} c^{\left(n_{\mathfrak{p}}-1\right) n / 2 n_{\mathfrak{p}}} \in k_{\mathfrak{p}}$. Then

$$
\gamma_{\mathfrak{p}}=\frac{n}{2 n_{\mathfrak{p}}}(n-1) \omega_{n}\left(\frac{-1, b}{\mathfrak{p}}\right) .
$$

If $b \notin k_{\mathfrak{p}}^{2}, c \notin k_{p}^{2}$ and $n_{p}=n$, then there exist $b_{p}, c_{p} \in Z / n Z ; u, v \in k_{p}$ such that $b=a^{b_{p}} u^{n}, c=a^{c_{p}} v^{n}$. Take an element $\alpha \in K_{1_{\mathfrak{P}_{1}}}$ such that $N_{K_{1_{1}} / k_{p}} \alpha=-1$. Then

$$
\gamma_{\mathfrak{p}}=\omega_{n}\left(\frac{\left(\alpha \cdot n_{\mathfrak{p}} \sqrt{a}\right)^{b_{\mathfrak{p}}} u^{(n-1) n / 2},\left(\alpha \cdot \sqrt{\mathfrak{p}}^{(\bar{a})^{c_{\mathfrak{p}}}}\right)}{\Re_{1}}\right) .
$$

Since

$$
\left.\begin{array}{l}
\left(\frac{\alpha^{b_{p} \delta}, n_{\mathfrak{p}} \sqrt{a}^{c_{p}}}{\mathfrak{B}_{1}}\right)=\left(\frac{\alpha^{b_{\mathfrak{p}}}, n_{\mathfrak{p}} \sqrt{a^{-c_{p} \delta}}}{\mathfrak{R}_{1}}\right) \\
\quad=\left(\frac{\alpha^{c_{\mathfrak{p}}}, n_{p} \sqrt{a}-\bar{b}_{p \delta}}{\mathfrak{B}_{1}}\right)=\left(\frac{n_{p}}{a^{b_{p} \delta}, \alpha^{c_{p}}}\right. \\
\mathfrak{P}_{1}
\end{array}\right)
$$

and $\alpha^{2}=\beta^{\sigma-1}$ for some $\beta \in K_{1_{p_{1}}}$, we have

$$
\begin{aligned}
& \left(\frac{\alpha^{b_{p} \delta}, n^{n_{\mathfrak{p}}} \sqrt{a}^{{ }^{\mathfrak{p}}}}{\mathfrak{ß}_{1}}\right) \cdot\left(\frac{n_{\mathfrak{p}} \sqrt{a}^{b_{p} \delta}, n_{\mathfrak{p}} \sqrt{a^{c_{\mathfrak{p}}}}}{\mathfrak{P}_{1}}\right)=\left(\frac{\left(\alpha^{2}\right)^{b_{p} \delta}, n_{\mathfrak{p}} \sqrt{a^{c_{p}}}}{\mathfrak{\beta}_{1}}\right) \\
& =\left(\frac{\beta^{(\sigma-1) \delta \cdot b_{p}}, n_{p} \sqrt{a^{c_{p}}}}{\mathfrak{R}_{1}}\right)=\left(\frac{N_{K_{1 \mathcal{P}_{1}} / k_{p}} \beta^{b_{p}},(-a)^{c_{p}}}{\mathfrak{P}_{1}}\right) \\
& =\left(\frac{N_{K_{1 \mathfrak{p}_{1}}} / k_{p} \beta,-1}{\mathfrak{p}}\right)^{b_{p c_{p}}}\left(\frac{\alpha^{2}, \alpha}{\mathfrak{\beta}_{1}}\right)^{b_{p} c_{p}} \\
& =\left(\frac{-1, \alpha}{\mathfrak{P}_{1}}\right)^{2 b_{p} c p}=1 \text {. }
\end{aligned}
$$

Next we calculate $b_{p} \cdot c_{p} \omega_{n}\left(\frac{\alpha,{ }^{\delta} \alpha}{\mathfrak{\beta}_{1}}\right)$. Take $\alpha \in k_{p}(\sqrt{a})$ such that $N_{k p(\sqrt{a}) / k_{p}}$ $\cdot \alpha=\zeta_{n} . \quad$ Then $N_{K_{1 \Re_{1}} / k_{p}} \alpha=\zeta_{n}^{n / 2}=-1$. So we can use this α. Now $\alpha^{\delta}=$ $\alpha^{((n-1)+\cdots+1) \delta} \alpha^{(n-2)+\cdots+0}=\alpha^{(n / 2)^{2} \sigma} \alpha^{(n / 2)((n / 2)-1)}=\left(\alpha^{\sigma+1}\right)^{(n / 2)^{2}} \alpha^{-n / 2}=\zeta_{n}^{(n / 2)^{2}} \alpha^{-n / 2}=$ $(-1)^{n / 2} \alpha^{-n / 2}=(-\alpha)^{-n / 2} . \quad$ So

$$
b_{\mathfrak{p}} \cdot c_{\mathfrak{p}} \omega_{n}\left(\frac{\alpha^{\delta}, \alpha}{\mathfrak{R}_{1}}\right)=b_{p} c_{p} \omega_{n}\left(\frac{(-\alpha)^{-n / 2}, \alpha}{\mathfrak{R}_{1}}\right)=0 \quad \text { and } \quad r_{p}=\omega_{n}\left(\frac{u^{c_{p}} v^{b_{p}}, a^{n / 2}}{\mathfrak{p}}\right)
$$

Theorem 1. We assume $\left[K_{\mathfrak{\beta}}: k_{p}\right] \leqq n$ and $\left[K_{\mathfrak{p}^{\prime}}^{\prime}: k_{p}\right] \leqq n$. Then γ_{p} has following values:
i) $\gamma_{p}=0$ for infinite \mathfrak{p}.
ii) $\gamma_{p}=0$ if $p \neq 2,3$.
iii) When $n_{p}\left(=\left[K_{\mathfrak{1}_{1}}: k_{p}\right]\right)<n, \gamma_{p}=0$ unless $p=2$ and $1<n_{p}=n / 2$. If $p=2$ and $1<n_{\mathfrak{p}}=n / 2$, then $\gamma_{\mathfrak{p}}=\omega_{n}\left(\frac{-1, b}{\mathfrak{p}}\right)=\omega_{n}\left(\frac{-1, c}{\mathfrak{p}}\right)$.
iv) When $n_{\mathfrak{p}}=n$, there exist $b_{\mathfrak{p}}$ and $c_{\mathfrak{p}}$ in $\boldsymbol{Z} \mid n Z$ such that $b \equiv a^{b_{p}} \bmod k_{\mathfrak{p}}^{n}$ and $c \equiv a^{c_{p}} \bmod k_{p}^{n}$. If $p=3, \gamma_{p}=c_{p} \cdot b_{p} \omega_{n}\left(\frac{\zeta_{3}, a}{\mathfrak{p}}\right)$. If $p=2$ and $b_{p}, c_{p} \equiv 0$ $\bmod 2$, then $\gamma_{p}=0$. If $p=2$ and $b_{\mathfrak{p}}$ or $c_{p} \neq 0 \bmod 2$, then

$$
\gamma_{p}=\omega_{n}\left(\frac{\sqrt{b^{c_{\mathfrak{p}}} \cdot c^{b_{\mathfrak{p}}}}, a}{\mathfrak{p}}\right)
$$

If $p \neq 2$ and $\mathfrak{p} \psi p$ then orthogonality implies $\left[K_{\mathfrak{F}}: k_{p}\right] \leqq n$ and [$K_{\mathfrak{\beta}}^{\prime}: k_{p}$] $\leqq n$. When $p=2$ and $\mathfrak{p} \nmid p,\left[K_{\mathfrak{p}}: k_{p}\right] \leqq n$ unless $w_{p}(a) \equiv w_{p}(b) \equiv 1 \bmod 2$ and $k_{\mathfrak{p}} \ngtr \zeta_{2 n}$. If $p=2, w_{p}(a) \equiv w_{p}(b) \equiv 1 \bmod 2$ and $k_{p} \ngtr \zeta_{n}$, then $\left[K_{\mathfrak{\beta}}: k_{\mathfrak{p}}\right]=2 n$ and $K_{\mathfrak{\beta}}^{(\mathrm{m})}=U_{\mathfrak{\beta}}^{(1)}=\left(U_{\mathfrak{\beta}}^{(1)}\right)^{n}$, so $\gamma_{\mathfrak{p}}=0$.

Corollary 1. Assume $\mathfrak{p} \nmid p$. Then $\gamma_{p}=0$ expect the following four cases.
i) If $p=3, k_{\mathfrak{p}} \ddagger \zeta_{3 n}$ and $w_{\mathrm{p}}(a) w_{\mathrm{p}}(b) w_{\mathrm{p}}(c) \neq 0 \bmod 3$, then

$$
\gamma_{p}=w_{p}(a) w_{p}(b) w_{p}(c) \omega_{n}\left(\frac{\zeta_{3}}{\mathfrak{p}}\right) .
$$

ii) If $p=2,1<n_{p}=n / 2, k_{p} \nexists \zeta_{2 n}$ and $w_{p}(b) w_{p}(c) \equiv 1 \bmod 2$, then

$$
\gamma_{p}=\frac{1}{2} \bmod Z
$$

iii) If $p=2$ and $n_{\mathfrak{p}}=\left[K_{\mathfrak{p}}: k_{\mathfrak{p}}\right]=\left[K_{\mathfrak{\beta}}^{\prime}: k_{\mathfrak{p}}\right]=n$ and $k_{\mathfrak{p}} \ni \zeta_{4}$, then
$\gamma_{p}=\frac{\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{c})\right]}{\left.\left[k_{p}\left({ }^{(2 n} \sqrt{b},{ }^{2 n} \sqrt{a}\right): k_{p}{ }^{2 n} \sqrt{a}\right)\right]}+\frac{\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{b})\right]}{\left[k_{p}\left({ }^{2 n} \sqrt{c},{ }^{2 n} \sqrt{a}\right): k_{p}\left({ }^{2 n} \sqrt{a}\right)\right]} \bmod \boldsymbol{Z}$.
iv) If $p=n=n_{p}=\left[K_{\mathfrak{p}}: k_{\mathfrak{p}}\right]=\left[K_{\mathfrak{p}_{\prime}^{\prime}}^{\prime}: k_{p}\right]=2$ and $k_{\mathfrak{p}} \nexists \zeta_{4}$, then

$$
\gamma_{p}=\frac{\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{c})\right] w_{p}(b)+\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{b})\right] w_{p}(c)}{4} \bmod \boldsymbol{Z}
$$

Proof. $\gamma_{p}=0$ except i), ii), iii) and iv) is already proved. i) and ii) is evident from Theorem 1. At first we consider the case iii). If $k_{p} \ddagger \zeta_{2 n}$ and $w_{p}(a) \equiv 1 \bmod 2$, then $\left[K_{\mathfrak{\beta}}: k_{p}\right]=\left[K_{\mathfrak{p}}^{\prime}: k_{\mathfrak{p}}\right]=n$ shows b and c are contained in k_{p}^{2} and $\gamma_{p}=0$. Hence above equation holds. So we may assume $k_{p} \ni \zeta_{2 n}$ or $w_{p}(a) \equiv 0 \bmod 2$. Then $k_{p}(\sqrt{a}) \ni \zeta_{2 n}$, and $k_{p}\left({ }^{2 n} \sqrt{b},{ }^{2 n} \sqrt{a}\right)$, $k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{c},{ }^{2 n} \sqrt{a}\right)$ are uniquely determined. Since $k_{\mathfrak{p}} \ni \zeta_{4}, k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{a}\right)$ is a cyclic extension of cegree $2 n$. Put $b=a^{b_{p}} u^{n}$ and $c=a^{c p} v^{n}$. Then

$$
\gamma_{\mathfrak{p}}=\omega_{n}\left(\frac{u^{c_{p}} v^{b_{\mathfrak{p}}}, a^{n / 2}}{\mathfrak{p}}\right)
$$

So it is sufficient to show

$$
\omega_{n}\left(\frac{u, a^{n / 2}}{p}\right)=\frac{1}{\left.\left.\left[k_{p}{ }^{2 n} \sqrt{b},{ }^{2 n} \sqrt{a}\right): k_{p}{ }^{2 n} \sqrt{a}\right)\right]} \bmod \boldsymbol{Z}
$$

and

$$
\omega_{n}\left(\frac{v, a^{n / 2}}{\mathfrak{p}}\right)=\frac{1}{\left[k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{c},{ }^{2 n} \sqrt{a}\right): k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{a}\right)\right]} \bmod Z
$$

These terms take values in 0 and $\frac{1}{2} \bmod Z$, and

$$
\begin{aligned}
\omega_{n}\left(\frac{u, a^{n / 2}}{\mathfrak{p}}\right)=1 & \Longleftrightarrow k_{\mathrm{p}}(\sqrt{u}) \subset k_{\mathfrak{p}}(\sqrt{a}) \\
& \Longleftrightarrow k_{\mathrm{p}}(\sqrt{u}) \subset k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{a}\right) \\
& \Longleftrightarrow k_{p}\left({ }^{2 n} \sqrt{b}\right) \subset k_{\mathrm{p}}\left({ }^{2 n} \sqrt{a}\right)
\end{aligned}
$$

show the first equality. The second equality is all the same.
Next we consider the case iv). If $w_{p}(a) \equiv 1 \bmod 2$ then b and c are in k_{p}^{2} and $\gamma_{p}=0$. We assume $w_{p}(a) \equiv 0 \bmod 2$. Then $a \equiv-1 \bmod k_{p}^{2} . \quad$ Put $=a b^{b p} u^{2}$ and $c=a^{c_{p}} v^{2}$.

$$
\begin{aligned}
& r_{p}=\omega_{n}\left(\frac{u^{c_{p}} v^{b_{p}},-1}{\mathfrak{p}}\right)=\frac{1}{2} w_{p}\left(u^{c_{p}} v^{b_{p}}\right) \bmod Z \\
2 w_{p}\left(u^{c_{p}} v^{b_{p}}\right) & =w_{p}\left(u^{2 c_{p}} U^{2 b_{p}}\right) \\
& \equiv w_{p}\left(\left(a^{b_{p}} u^{2}\right)^{c_{p}}\left(a^{c_{p}} v^{2}\right)^{b_{p}}\right) \\
& \equiv w_{p}\left(b^{c_{p}} c^{b_{p}}\right) \\
& \equiv c_{\mathfrak{p}} w_{p}(b)+b_{\mathfrak{p}} w_{p}(c) \\
& \equiv\left[k_{\mathfrak{p}}(\sqrt{a}): k_{p}(\sqrt{c})\right] w_{p}(b)+\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{c})\right] w_{p}(c) \bmod 4
\end{aligned}
$$

shows iv).
Especially if K_{1}, K_{2} and K_{3} are tame, then all the components are calculated.

Corollary 2. Assume K_{1}, K_{2} and K_{3} are all tame. When $p=2$, let

$$
\begin{array}{r}
P_{1}=\left\{\mathfrak{p}: \text { finite prime of } k \mid k_{\mathfrak{p}} \ni \zeta_{4}, k_{\mathfrak{p}}^{2} \nexists a \equiv c \bmod k_{\mathfrak{p}}^{2}\right. \\
\left.\left., k_{\mathfrak{p}}{ }^{2 n} \sqrt{b}\right) \nsucceq k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{a}\right), \mathfrak{p} \nmid 2\right\}, \\
P_{2}=\left\{\mathfrak{p}: \text { finite prime of } k \mid k_{\mathfrak{p}} \ni \zeta_{4}, k_{\mathfrak{p}}^{2} \nexists a \equiv b \bmod k_{\mathfrak{p}}^{2}\right. \\
\left.\left., k_{\mathfrak{p}}{ }^{2 n} \sqrt{c}\right) \nsucceq k_{\mathfrak{p}}\left({ }^{2 n} \sqrt{a}\right), \mathfrak{p} \nmid 2\right\},
\end{array}
$$

and if $n>2$ then put
$P_{3}=\left\{\mathfrak{p}:\right.$ finite prime of $\left.k \mid k_{p}^{2} \ni a \notin k_{p}^{4}, w_{p}(b) \cdot w_{p}(c)=1 \bmod 2, \mathfrak{p} \backslash 2\right\}$.
Then

$$
(a, b, c)_{n}+(a, c, b)_{n}=0 \quad \text { if } p \neq 2,3
$$

If $p=3$

$$
(a, b, c)_{n}+(a, c, b)_{n}=\sum_{p ; \text { finite } p} w_{p}(a) w_{p}(b) w_{p}(c) \omega_{n}\left(\frac{\zeta_{3}}{\mathfrak{p}}\right)
$$

If $p=2$ and $n>2$,

$$
\begin{aligned}
& (a, b, c)_{n}+(a, c, b)_{n} \\
& =\sum_{p \mid p} \frac{\left[k_{\mathrm{p}}(\sqrt{a}): k_{\mathrm{p}}(\sqrt{b})\right] w_{\mathrm{p}}(c)+\left[k_{\mathrm{p}}(\sqrt{a}): k_{\mathrm{p}}(\sqrt{c})\right] w_{\mathrm{p}}(b)}{2 n} \\
& \quad+\frac{1}{2}\left({ }^{*} P_{1}+{ }^{\#} P_{2}+{ }^{\#} P_{3}\right) \bmod Z .
\end{aligned}
$$

If $p=2$

$$
\begin{aligned}
& (a, b, c)_{n}+(a, b, c)_{n} \\
& =\sum_{p} \frac{\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{b})\right] w_{p}(c)+\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{c})\right] w_{p}(b)}{4} \\
& \quad+\frac{1}{2}\left({ }^{\sharp} P_{1}+{ }^{\#} P_{2}\right) \bmod Z
\end{aligned}
$$

where \mathfrak{p} runs over all the finite prime of k which divides p or satisfies $k_{\mathfrak{p}} \ddagger \zeta_{4}$, $a \notin k_{p}^{2}$ and $w_{p}(a) \equiv 0 \bmod 2$.

At \mathfrak{p} dividing p, if $\left[K_{\mathfrak{p}}: k_{\mathfrak{p}}\right.$] or [$\left.K_{\mathfrak{\beta}}^{\prime}: k_{\mathfrak{p}}\right]>n$, it is difficult to determine γ_{p} explicitly, because we must determine the minimal Scholz-conductor or
 b and c to k_{p} and are contained in the smallest i_{b}-th and i_{c}-th unit group $U_{\mathfrak{\beta}_{1}}^{\left(i_{b}\right)}$ and $U_{\mathfrak{P}_{1}}^{\left(i e_{i}\right)}$ respectively.

So we calculate it in Section 5 only when $k=\boldsymbol{Q}$ (of course $n=2$).

§ 4. Inversion formula over \boldsymbol{Q}

We calculate γ_{2} in the case of $k=\boldsymbol{Q}$, when $K_{\mathfrak{F}}$ or $K_{\mathfrak{\beta}}^{\prime}$, is bicyclic over \boldsymbol{Q}_{2}. Then there are 22 cases by separating a, b and c modulo \boldsymbol{Q}_{2}^{2}.

$$
\begin{aligned}
& \mathrm{I}_{a} . \quad a \equiv-1, \quad b \equiv 5, \quad c \equiv 5 \\
& \mathrm{I}_{b} . \quad a \equiv-1 \begin{cases}b \equiv 5, & c \equiv 1 \\
b \equiv 1, & c \equiv 5\end{cases} \\
& \mathrm{I}_{c} . \quad a \equiv-5, \quad b \equiv 5, \quad c \equiv 5 \\
& \mathrm{I}_{d} . \quad a \equiv-5 \begin{cases}b \equiv 5, & c \equiv 1 \\
b \equiv 1, & c \equiv 5\end{cases} \\
& \mathrm{I}_{e} \cdot \quad a \equiv 5 \quad \begin{cases}b \equiv-1, & c \equiv 5 \\
b \equiv 5, & c \equiv-1\end{cases} \\
& \mathrm{I}_{f} . \quad a \equiv 5 \quad \begin{cases}b \equiv-1, & c \equiv 1 \\
b \equiv 1, & c \equiv-1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{g} . \quad a \equiv 5 \quad \begin{cases}b \equiv-5, & c \equiv 5 \\
b \equiv 5, & c \equiv-5\end{cases} \\
& \mathrm{I}_{h} \cdot a \equiv 5 \quad \begin{cases}b \equiv-5, & c \equiv 1 \\
b \equiv 1, & c \equiv-5\end{cases} \\
& \mathrm{II}_{a} . a \equiv-1 \quad \begin{cases}b \equiv 2, & c \equiv 1 \\
b \equiv 1, & c \equiv 2\end{cases} \\
& \mathrm{II}_{b} . \quad a \equiv 2 \quad \begin{cases}b \equiv-1, & c \equiv 1 \\
b \equiv 1, & c \equiv-1\end{cases} \\
& \mathrm{III}_{a} . a \equiv-1 \quad \begin{cases}b \equiv 2 \cdot 5, & c \equiv 1 \\
b \equiv 1, & c \equiv 2 \cdot 5\end{cases} \\
& \mathrm{III}_{b} . a \equiv 2 \cdot 5 \quad \begin{cases}b \equiv-1, & c \equiv 1 \\
b \equiv 1, & c \equiv-1\end{cases} \\
& \mathrm{IV}_{a} \cdot a \equiv-5 \quad \begin{cases}b \equiv-2, & c \equiv 1 \\
b \equiv 1, & c \equiv-2\end{cases} \\
& \mathrm{IV}_{b} . a \equiv-2 \quad \begin{cases}b \equiv-5, & c \equiv 1 \\
b \equiv 1, & c \equiv-5\end{cases} \\
& \mathrm{V}_{a} \cdot a \equiv-5 \quad \begin{cases}b \equiv-2 \cdot 5 & c \equiv 1 \\
b \equiv 1, & c \equiv-2 \cdot 5\end{cases} \\
& \mathrm{V}_{b} . a \equiv-2 \cdot 5 \begin{cases}b \equiv-5, & c \equiv 1 \\
b \equiv 1, & c \equiv-5\end{cases} \\
& \mathrm{VI}_{a} . a \equiv 2 \quad \begin{cases}b \equiv-2, & c \equiv 1 \\
b \equiv 1, & c \equiv-2\end{cases} \\
& \mathrm{VI}_{b} . a \equiv-2 \quad \begin{cases}b \equiv 2, & c \equiv 1 \\
b \equiv 1, & c \equiv 2\end{cases} \\
& \mathrm{VII}_{a} . a \equiv-2 \quad \begin{cases}b \equiv-2 \cdot 5, & c \equiv 1 \\
b \equiv 1, & c \equiv-2 \cdot 5\end{cases} \\
& \mathrm{VII}_{b} . \quad a \equiv-2 \cdot 5 \begin{cases}b \equiv-2, & c \equiv 1 \\
b \equiv 1, & c \equiv-2\end{cases} \\
& \mathrm{VIII}_{a} \cdot a \equiv 2 \cdot 5 \quad \begin{cases}b \equiv-2 \cdot 5, & c \equiv 1 \\
b \equiv 1, & c \equiv-2 \cdot 5\end{cases} \\
& \text { VIII }_{b} . \quad a \equiv-2 \cdot 5 \begin{cases}b \equiv 2 \cdot 5, & c \equiv 1 \\
b \equiv 1, & c \equiv 2 \cdot 5\end{cases}
\end{aligned}
$$

Here, when two conditions contained in a case like I_{b}, we consider only the upper one, because of exchanging b and c.

In case of $\mathrm{VI}_{a} \ldots \mathrm{VIII}_{b}$,

$$
\gamma_{2}=\frac{w_{2}(c-1)}{16} \bmod Z .
$$

In case of I_{e}, I_{g},

$$
r_{2}=\frac{w_{2}(b)}{4} \bmod Z
$$

Otherwise $\gamma_{2}=0$.
Theorem 2. Assume $k=\boldsymbol{Q}$ and both $(a, b, c)_{2}$ and $(a, c, b)_{2}$ are defined. Put

$$
\begin{aligned}
P_{1}=\{p: \text { prime number } \equiv 1 \bmod 4 & \mid \boldsymbol{Q}_{p}^{2} \nexists a \equiv c \bmod \boldsymbol{Q}_{p}^{2} \\
& \left., \boldsymbol{Q}_{p}\left({ }^{4} \sqrt{b}\right) \nsubseteq \boldsymbol{Q}_{p}\left({ }^{4} \sqrt{a}\right)\right\} \\
P_{2}=\{p: \text { prime number } \equiv 1 \bmod 4 & \mid \boldsymbol{Q}_{p}^{2} \nexists a \equiv c \bmod \boldsymbol{Q}_{p}^{2} \\
, & \left.\boldsymbol{Q}_{p}\left({ }^{4} \sqrt{c}\right) \nsubseteq \boldsymbol{Q}_{p}\left({ }^{4} \sqrt{a}\right)\right\}
\end{aligned}
$$

$$
P=\left\{p: \text { prime number } \equiv 3 \bmod 4 \mid a \equiv-1 \bmod Q_{p}^{2}\right\}
$$

Then

$$
\begin{aligned}
& (a, b, c)_{2}+(a, c, b)_{2} \\
& \quad=\sum_{p \in P} \frac{\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{b})\right] w_{p}(c)+\left[k_{p}(\sqrt{a}): k_{p}(\sqrt{c})\right] w_{p}(b)}{4}+\frac{1}{2}\left({ }^{\#} P_{1}+{ }^{\#} P_{2}\right) \\
& \quad+\gamma_{2} \bmod Z
\end{aligned}
$$

where γ_{2} takes value as follows:
$\gamma_{2}=\frac{1}{2}$ when in the upper cases of $\mathrm{VI}_{a}, \mathrm{VI}_{b}, \mathrm{VII}_{a}, \mathrm{VII}_{b}, \mathrm{VIII}_{a}, \mathrm{VIII}_{b}$ with $b \equiv 9 \bmod 8$, and when in the lower cases of $\mathrm{VI}_{a}, \cdots, \mathrm{VIII}_{b}$ with $c \equiv 9 \bmod 8$, and when in the upper cases of $\mathrm{I}_{e}, \mathrm{I}_{g}$, with $w_{p}(b) \equiv 2 \bmod 4$, and when in the lower cases of $\mathrm{I}_{e}, \mathrm{I}_{g}$ with $w_{p}(c) \equiv 2 \bmod 4$,

$$
\begin{aligned}
& \gamma_{2}=\omega_{2}\left(\frac{\sqrt{c}, b}{2}\right) \text { if } \boldsymbol{Q}_{2}^{2} \nexists a \equiv b \bmod \boldsymbol{Q}_{2}^{2} \text { and } c \in \boldsymbol{Q}_{2}^{2}, \\
& \gamma_{2}=\omega_{2}\left(\frac{c, \sqrt{b}}{2}\right) \text { if } \boldsymbol{Q}_{2}^{2} \nexists a \equiv c \bmod \boldsymbol{Q}_{2}^{2} \text { and } b \in \boldsymbol{Q}_{2}^{2}, \\
& \gamma_{2}=\omega_{2}\left(\frac{a, \sqrt{b c}}{2}\right) \text { if } \boldsymbol{Q}_{2}^{2} \nexists a \equiv b \equiv c \bmod \boldsymbol{Q}_{2}^{2}, \\
& \gamma_{2}=0 \quad \text { otherwise. }
\end{aligned}
$$

§ 5. About the prime decomposition symbol in Furuta [2]

We assume that \mathfrak{m} is abundant for K / k, i.e. the ray class field $H_{K}(\mathfrak{m})$ modulo \mathfrak{m} over K is abundant for K / k. Put $\hat{K}(\mathfrak{m})=\hat{K}_{H_{K}(\mathfrak{m}) / k}$ and $K^{*}(\mathfrak{m})$ $=K_{H_{K}(\mathrm{~m}) / k}^{*}$. The other notations are the same as the beginning of Section 2.

Moreover let $I_{K^{\prime}(\mathbf{m})}^{\mathfrak{m}}$ be the group of ideals of $K^{*}(\mathfrak{m})$ which are prime to m . Taking representatives $S_{\sigma_{1}}$ and $S_{\sigma_{2}}$ of σ_{1} and σ_{2} in $G(\hat{K}(\mathrm{~m}) / k)$, define an isomorphism

$$
\chi: G\left(\hat{K}(\mathfrak{m}) / K^{*}(\mathfrak{m})\right) \cong \frac{1}{\text { ord } \chi_{2}} \boldsymbol{Z} / \boldsymbol{Z}
$$

by $S_{\sigma_{1}}^{-1} S_{\sigma_{2}}^{-1} S_{\sigma_{1}} S_{\sigma_{2}} \mapsto\left(1 /\right.$ ord $\left.\chi_{2}\right) \bmod Z$, where of course $S_{\sigma_{1}}^{-1} S_{\sigma_{2}}^{-1} S_{\sigma_{1}} S_{\sigma_{2}}=$ $\left(\varphi_{K / k}\left(\sigma_{1} \wedge \sigma_{2}\right), \hat{K}(\mathfrak{m}) / k\right)$.

Definition. For each $\mathfrak{q} \in N_{K^{*}(\mathrm{~m}) / k} I_{K^{*}(\mathrm{~m})}^{\mathrm{m}}$, take an element $\mathfrak{Q} \in I_{K^{*}(\mathrm{~m})}^{\mathrm{m}}$ such that $N_{K^{*}(\mathbf{m}) / k} \mathfrak{Q}=\mathfrak{q}$. Then we define

$$
\left[\chi_{1}, \chi_{2}, \mathfrak{q}\right]=\chi\left(\frac{\hat{K}(\mathfrak{m}) / K^{*}(\mathfrak{m})}{\mathfrak{Q}}\right)
$$

where $\left(\frac{\hat{K}(\mathfrak{m}) / K^{*}(\mathfrak{m})}{}\right)$ is the Artin symbol.
Remark. If $\left[\chi_{1}, \chi_{2}, \mathfrak{q}\right]$ is defined modulo \mathfrak{m}, then there exists an element $q \in k^{\times}$such that $q=(q)$ and $\left(\chi_{1}, \chi_{2}, q\right)$ is defined modulo m. For any such $q,\left[\chi_{1}, \chi_{2}, q\right]=\left(\chi_{1}, \chi_{2}, q\right)$. However even though $q=(q)$ and $\left(\chi_{1}, \chi_{2}, q\right)$ is defined, if $\left(\chi_{1}, \chi_{2}, q\right)$ is not defined modulo m, the values $\left(\chi_{1}, \chi_{2}, q\right)$ and $\left[\chi_{1}, \chi_{2}, q\right]$ may not be equal.

Especially in the case that $k=\boldsymbol{Q}$ and $n=2, \mathfrak{m} \cdot \mathfrak{p}_{\infty}$ is abundant for K / k, where \mathfrak{m} is the maximal Scholz-conductor of K / k, and \mathfrak{p}_{∞} is the product of all the real primes of K if \mathfrak{m} contains no infinite primes, otherwise $\mathfrak{p}_{\infty}=1$. Since any finite prime divisor of \mathfrak{m} is ramified in $\hat{K}(\mathfrak{m}) / K^{*}(\mathfrak{m})$, if the prime decomposition symbol $\left[d_{1}, d_{2}, a\right]$ of Furuta [2] is defined, then $\left(d_{1}, d_{2},|a|\right)_{2}$ is defined and

$$
\left[d_{1}, d_{2}, a\right]=(-1)^{\left(d_{1}, d_{2},|a|\right)_{2}}
$$

So Theorem 2 contains the following
Corollary. Assume that d_{1}, d_{2} and $d_{3} \in Z$ are relatively prime and $d_{2}, d_{3}>0$. If the symbol $\left[d_{1}, d_{2}, d_{3}\right]$ and $\left[d_{1}, d_{3}, d_{2}\right]$ of Furuta [2] are defined, then

$$
\left[d_{1}, d_{2}, d_{3}\right]=\left[d_{1}, d_{3}, d_{2}\right]
$$

References

[1] Y. Akagawa, A tripling on the algebraic number field, Osaka J. Math., 23 (1986), 151-179.
[2] Y. Furuta, A prime decomposition symbol for a non-abelian central extension which is abelian over a bicyclic biquadratic field, Nagoya Math. J., 79 (1980), 79-109.
[3] - A norm residue map for central extensions of an algebraic number field, Nagoya Math. J., 93 (1984).
[4] F.-P. Heider, Strahlknoten and Geschlechterkörper mod \mathfrak{m}, J. reine angew. Math., 320 (1980), 52-67.

Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya-ku
Tokyo 158, Japan

[^0]: Received March 20, 1985.

