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§ 1. Introduction 

Let H",={x,y!xZm- 1 =yZ, xyx=y} be the generalized quaternion 
group of order 2'n+l (m~2). An element of H", is uniquely expressed as 
xUy~ for 0<u<2"', v=O, 1. Let d1: H",4-S8= Sp(1) = SU(2) be the 
natural inclusion map defined by d1(x)=exp (21'ij2"'), d1(y)=j. Then H", 
acts freely on the unit sphere S4n+8 in the quaternion (n+l)-space Hn+1 
by the diagonal action (n+ l)d1 : Hm4-Sp(n+ 1). The quotient manifold 
S4n+8jH", is called the quaternionic spherical space form and is denoted by 
Nn(m). If n~O, we have the natural inclusion map Nk-l(m)cNn+lc(m), 
and denote by N~+1«m) the quotient space Nn+lt(m)jNIt-1(m). 

The purpose of this note is to study the stable homotopy types of the 
stunted quaternionic spherical space forms N~+1«m). We have 

Theorem 1.1. If N']+j(m) and N~+1«m) are of the same stable homo­
topy type, thenj=k mod 2Zn - z• 

This is proved in the way of H. Oshima [10, Theorem 8.4] (cf. [8, 
Theorem 1.1]), and is a generalization of the Oshima's result. As for the 
converse, we obtain 

Theorem 1.2. If j=k mod 22n +"'-2+<, then N']+J(m) and N~+k(m) are 
of the same stable homotopy type, where e = 1 if n is odd, and e =0 if n is 
even >0. 

This is a consequence of the results of M. F. Atiyah [2, Proposition 
2.6], H. Oshima [10, Theorem 2.1 and Proposition 8.2] and [7, Corollary 
1.7], and is also a generalization of Theorem 8.3 (iii) in [10]. 

We recall in Section 2 the representation rings RF(H",) of H"" where 
F denotes the field R of the real numbers or the field C of the complex 
numbers, according to [4], [5], [6] and [11]. In Section 3 we study Adams 
operations [1] in KF(Nn(m)). The proofs of Theorems 1.1 and 1.2 depend 
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on the orders of the canonical elements of KF(Nn(m)) (cf. [7], [9] and [10]), 
and are given in Section 4 and Section 5. 

§ 2. The representation rings Rp(Hm) 
. , , 

We first recall the complex representation ring Rc(llm) of Hm (cf. [4, 
§ 47], [11, § 1] and [5, § 3]). 

Proposition 2.1. Rc(Hm) is generated as a free abelian group by 1, a, 
b, c and dr (r= 1, 2, .. " 2m-I_I) defined below 

{
I(X)=I 

I(y)=I, 
{
a(x) = 1 

a(y)=-I, 
{
b(X) = -1 

b(y) = 1, 
{
C(X) = -1 

c(y) = -1, 

[0 (-1)'] 
dr(y)= 1 ° ' 

where (J) is a primitive 2m-th root exp (2rrij2m) of unity. The characters of 
these representations are 

where u=O, 1, "', 2m_I, v=O, 1. 

Evaluating the characters, one has the following relations. 

Proposition 2.2. aZ = b2 = C Z = 1, ab = c, drd. = dr+B+dr_ .. bdr = 
~m-l_n where do=l+a, d2m-,=b+c, d_r=dn d2m-'+r=dzm-l_r' 

Define the elements a, ft, r and Or of the reduced representation ring 
Rc(Hm) by 

Proposition 2.3. Rc(Hm) is generated as afree abelian group by a, ft, 
rand or(r= 1, 2, "', 2m-I_I) with relations: 

a2 = -2a, (32= -2(3, r=a(3+2a+2ft, aOI = -2a, 

MI = -2ft+02m-1_1-01> Or+! +Or_1 =OIOr +20r +201, 

where 02m-l=r-a, oo=a, o_r=on Ozm-1+r=02m-l_r' Thus Rc(Hm) is gen­
erated by a, ft and 01 as a ring. 



Stable Homotopy Types 313 

Let RR(Hm) be the real representation ring of Hm (cf. [11, Proposition 
1.5]). Since the complexification c: RR(Hm)---+Rc(Hm) is monomorphic, 
in what follows we identify RR(Hm) with the image in Rc(Hm) under c. 

Proposition 2.4. RR(Hm), considered as the subring C(RR(Hm» of 
Rc(Hm), is generated by 1, a, b, c, d2r (r= 1,2, .. " 2m-2_1), 2d2r +1 (r=O, 
1, ... ,2m-2_1). 

§ 3. Adams operations in RF(Hm) and KF(Nn(m» 

Let 1p}: RF(Hm)---+RF(Hm) be the Adams operation, where F=C or 
R. 

Lemma 3.1. Let i be odd. Then W~: Rc(Hm)---+Rc(Hm) is given as 
follows. For 0= 1, a, b, c e Rc(Nm), 

W~(O)=O. 

For dr e Rc(Hm) (r=l, 2, "', 2m - I -l), 

WhCdr)=dtr . 

Proof First, we prove a relation in Hm: 

(3.1.1) 

where k is any non-negative integer. This is clear for k=O. Suppose 
that this is true for k. Then 

(XUy)2(k+I)+I=(XUy)2k+I(XUY)(XUY)=X2m-'k+Uy(X"YxU)y 

=X2m-1k+ Uy2y=x2m-lk+ Ux2m- 1y =X2m-'(k+ 1)+ uy, 

since xUyxu=xu-l(xYX)XU-I=XU-lyxU-I= . .. =y. 
Second, we recall a formula due to J. F. Adams [1, Theorem 4.1 (vi)]: 

(3.1.2) X(WHO»(g)=X(O)(gi), for 0 e Rc(Hm) and g e Hm. 

For the proof of the lemma it suffices to check that in each equation, 
the characters of the two sides agree. Obvious calculations, based on 
(3.1.2), (3.1.1) and Proposition 2.1, show that 

X(W~(O»(XUyV)=X(O)(XUyV), for 0= 1, a, b, c, 

X(W~(dr»(xuyV) = X(diT)(xUyV), 

where xUyV e Hm. q.e.d. 
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Lemma 3.2. 7Jr~m+l is the identity on RF(Hm). 

Proof We first consider the case F=C. By Lemma 3.1, it remains 
only to prove that dir=dr for i=2m+1. We may assume r>O. Then, 
by Proposition 2.2, 

dzmr +r =d2m- 1 +2m- 1(2r_l) +r =d2m-l_Zm- 1(2r -l)-r 

=d2m(l_rl_r=d2m(r_ll+r=· .. =dr. 

The fact that 7Jr~+ 1 = 1 follows from the following commutative 
diagram [1, Theorem 4.1 (iv»): 

since the complexification c is monomorphic. q.e.d. 

Let 7Jr1: KF(Nn(m»-,;KF(Nn(m» be the Adams operation, where F= 
Cor R. 

Proof The result follows from the following commutative diagram: 

~F 
RAHm)---+KF(Nn(m» 

W11 W11 
RF(Hm)-!~-~KF(Nn(m», 

where ;F is the natural projection (cf. [5, § 4], [6, § 3], [11, Theorem 2.5]). 
q.e.d. 

§ 4. Proof of Theorem 1.1 

Let i: Nk-l(m)-,;Nn+k(m) be the inclusion and p: Nn+k(m)-,;N~+k(m) 
=Nn+k(m)/Nk-l(m) be the projection. Consider the Puppe exact sequence: 

KcJ(Nn+k(m»~Kcl(Nk-l(m»---+Kc(N~+k(m»~Kc(Nn+k(m». 

Using Atiyah-Hirzebruch spectral sequences, we see that Kc1(N1(m»=.Z 
and that i* is trivial. Hence p* is monomorphic on Tor (Kc(N~+k(m»). 
We prove 
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Lemma 4.1. w~m+l=(2m+l)t on Tor(Kc(S2tN~+k(m»). 

Proof. Consider the following diagram: 

Kc(Nn+k(m»~Kc(N~+k(m»~Kc(S2t N~+ k(m» 

_ 1F~1 * _ 1F~1 t. _ 1F~1 
Kc(Nn+k(m»~Kc(N~+k(m»~Kc(S2tN~+k(m», 
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where I is the Bott isomorphism. Then, by [1, Corollary 5.3], we have 
W~P=itPW~. If i=2m+l, w~m+l is the identity on Tor(Kc(N~+k(m)) 
by Lemma 3.3, since p* is monomorphic on Tor (Kc(N~+k(m»). Hence 
we have the desired result. q.e.d. 

Next, we recall the order of the canonical element of Kc(Nn(m». 
Let A be the canonical complex plane bundle over the quatemion 

projective space Hpn=S4n+3/S3, and let 'It': Nn(m)=S4n+3/H",~Hpn be 
the natural projection. Let ~c: RAH'1,)~Kc(Nn(m» be the natural pro­
jection defined in [5, § 4] and put O=~C(Ol)' Then we have 

0='lt'*A-2 

(cf. [5, Lemma 4.4]). The order #0' of Oi E Kc(Nn(m» is determined by 
H. Oshima in [10, Proposition 5.2] and by T. Mormann in [9, Chapter 2, 
Theorem 4.52] as follows. 

Proposition 4.2. #0!=22n+m+l-U (I <i<n). 

Proof of Theorem 1.1. If Nr;+J(m) is stably homotopy equivalent to 
N~+k(m), we may assume that there exists a homotopy equivalence 

g: S2tNr;+J(m)--",S2t+4j-4kN~+k(m) 

for some integer t > O. Consider the following commutative diagram: 

Kc(S2t+4j-4kN~+k(m»~Kc(S2tNrrj(m» 

1F~1 ~l 
Kc(S2t+4J-4kN~+k(m»~Kc(S2tNr;+j(m», 

where i=2"'+1. Then, by Lemma 4.1, 

and so, for any torsion element a E Kc(S2tNj+J(m», (2"'+ 1)i+2J-2ka = 
(2"'+I)ia. Now we have 
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KC(S2tNj+J(m»=.KAN'r J(m» (by Bott isomorphism) 

=.Kc«Nn(m»Jr'-l) (by Oshima [10, Theorem 2.1]) 

=.Kc(Nn(m» (by Thorn isomorphism [3, Theorem 7.2]), 

where X' denotes the Thorn complex of a vector bundle ~ over X. Hence, 
by Proposition 4.2, there is an element of order 22n +m- 1 in Kc(S2tNj+J(m». 
Therefore 

that is, (2m+1yJ-2k_1=:O mod 22n +m- 1• Set 2j-2k=u·2", where u is 
odd. Then, according to [8, Lemma 3.1], (2m+1)u'2"_I=:u.2v+m mod 
2v+m+l. Thus v+m;;:;;2n+m-1, and so v>2n-1. Hence we have 
j -k=:O mod 22n -2. q.e.d. 

§ 5. Proof of Theorem 1.2 

Let r: Kc(X)-,;-KR(X) and c: KR(X)-,;-Kc(X) be the real restriction 
and the complexification, respectively. Let I; R: RR(Hm)-,;-KR(Nn(m» be 
the natural projection defined in l6, (3.9)] (or in [11, Theorem 2.5]). Then, 
for the elements v and z of RR(Hm) defined by c- 1(20 1)=v and c- 1(oD=z 
(cf. § 2), we have 

I; Rv=r(7r* 2-2) and I;Rz=C- 1«7r* 2-2)2) 

(cf. [6, Lemma 3.10]), since 01 is self-conjugate and cr= 1 + conjugation. 
For simplicity we write v and Z instead of I; RV and I; RZ, Then, for the 
complexification c: KR(Nn(m»-,;-Kc(Nn(m», we have 

c(v) =20 and c(Z) =02. 

The orders of the canonical elements Zi and vz i of KR(Nn(m» are 
determined in [7, Theorems 1.5 and 1.6]. As a corollary, the order of v is 
determined in [7, Corollary 1.7]. 

Proposition 5.1. For v E KR(Nn(m», 

where e=I ifn is odd, e=O ifn is even>O. 

Proof of Theorem 1.2. Let v=I;Rv=r(7r*2-2) E KR(Nn(m». If 
j -k=:O mod 22n +m-2+<, then, by Proposition 5.1, J«(j-k)v)=O, where 
J: KR(Nn(m»-,;-J(Nn(m» is the J-homomorphism. Thus J(jr(7r*2-2» = 
J(kr(7r* 2-2». According to [2, Proposition 2.6], this implies that the 
Thorn complexes (Nn(m»ir.*l and (Nn(m»kr<*l are of the same stable 
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homotopy type. On the other hand, by [10, Theorem 2.1], there are 
natural homeomorphisms: 

and hence Nj+j(m) and N~+k(m) are of the same stable homotopy type. 
q.e.d. 
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