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Some Results on Algebraic Groups with Involutions 

T. A. Springer 

§ 1. Introduction 

Let G be a reductive linear algebraic group over the algebraically 
closed field F of characteristic not 2. Assume given an involution 8 of G, 
i.e. an automorphism (in the sense of algebraic groups) of order 2. Denote 
by K the fixed point group of 8 and by B a Borel subgroup. Then K haE 
finitely many orbits in the flag manifold GJB (first proved for F=C in [6]). 
The geometry of these orbits is of importance in the study of Harish­
Chandra modules, as is shown by the results of [11]. 

In the present paper we shall establish a number of basic elementary 
facts about these orbits or, equivalently, the double cosets BxK. 

After assembling a number of known results in n° 2, we discuss in n° 
3 twisted involutions in Weyl groups. These are needed for the description 
of double cosets given in n° 4. That section also contains a fairly explicit 
description of the double cosets as algebraic varieties. N° 5 deals with 
the open double coset and with those of codimension one. As an appli­
cation we deduce a result (5.6) about K-fixed vectors in G-modules, which 
is well-known in characteristic 0 ([4], [12]). Finally, n° 6 contains some 
information about orbit closures. Similar results have recently been found 
by Matsuki for F=C [7]. 

The results about double cosets BxK established here bear some re­
femblance to the familiar results about the Bruhat decomposition into 
double cosets BxB, but are somewhat more complicated. 

§ 2. Notations and recollections 

2.1. In the sequel, F denotes an algebraically closed field of charac­
teristic not 2. Let G be a linear algebraic group over F, provided with an 
automorphism e of order 2. Denote by g the Lie algebra of G. The 
automorphism of g induced by e will also be denoted bye. We shall 
mainly be interested in the case that G is connected and reductive, but we 
do not yet assume this. 
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In this situation we denote by K={x E GIOx=x} the group of fixed 
points of O. It is a closed subgroup of G. Further -rx=x(Ox)-t defines a 
morphism of G. We write S (or Sa) for the image -rG. G acts transitively 
on S by g*x=gx(Og)-t. 

2.2. Proposition. S is a closed subvariety of G and the map g>---,>g*e 
induces an isomorphism of affine G-varieties G/K~S. 

This is proved in [8, 2. 4] for the case that G is reductive. The same 
proof can be given in the general case. For a proof that S is closed see 
for example [9, 4.4.4]. 

2.3. According to a result of Steinberg [10, §7] there exists a O-stable 
Borel subgroup B of G and a O-stable maximal torus T contained in B. 
We shall call such a pair (T, B) a standard pair, and T a standard maximal 
torus. The unipotent radical U of B is also O-stable, and B is the semi­
direct product B = T. U. 

Next assume G to be reductive. Denote by N=NaCT) the normalizer 
of Tin G and by W =N/T the Weyl group. The root system of G with 
respect to T will be denoted by ([J. It is contained in the vector space 
V =X*(T)®zR (where X*(T) denotes the character group of T). The 
Borel group B defines a system of positive roots ([J+ C ([J and a corre­
sponding basis LI of ([J. Clearly, 0 operates on ([J and W. We denote the 
induced action also by 0 . Notice that O([J + = ([J + and that 0 permutes the 
roots of LI. 

2.4. O-stable tori and their root systems. 
More generally (still assuming G reductive), let T be any O-stable 

maximal torus, with Weyl group Wand root system ([J. Again, 0 operates 
on these and it is clear that T is standard if and only if 0 fixes a set of 
positive roots (or a basis) of ([J. 

If IX E ([J, let Xa be the one parameter additive subgroup of G defined 
by IX. This is an isomorphism of the additive group onto a closed subgroup 
Ua of G, normalized by T, such that 

txaC~)t-t =Xa(IX(t)~) (t E T, ~ E F). 

They may and shall be chosen such that 

(1) 

lies in N(=Na(T)) for all IX E ([J. In that case we have, if ~ E F*, 

(2) 
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here a V is the coroot of a, which is a one parameter multiplicative sub­
group of T. If Xa is given, then X_a is uniquely determined by requiring 
(1) or (2) to hold. Moreover, naT is the reflection Sa E W defined by a. 
We have n!=aV ( -l)=ta and n_a=tana=nata. 

We denote by Xa E g the root vector dXa (1). Then 

(t E T). 

For these facts see e.g. [9, Ch. 11]. 
Since 0 stabilizes T, it follows that there exists Ca E F* such that for 

~ E k, 

We then have OXa=caXOa, whence caCOa =1. We shall normalize the Xa. 
Several cases are possible. 

(a) Oa=t= ±a. In this case we say that a is complex (relative to 0). 
We may, by changing XOa, assume that Ca= 1. Using (1) and (2) one sees 
that then also C a= 1, from which we see that O(na)=nOa, O(n_a)=n_oa. In 
this case, let WI CW be the smallest subsystem containing a and Oa. 

2.5. Lemma. WI is either of type Al X Al or of type A z. 

Introduce a symmetric positive definite bilinear form < , > on the 
vector space Vunderlying W, which is W- and O-invariant, such that <a,a> 
=2. Clearly, a and Oa have the same length. Hence (see [2, p. 148]) if 
a + i{}a is a root, we have 1 il ::0;; 1. So if WI is not of type Al X AI> it must 
consist of the roots ±a, ±{}a, ±(a+{}a) resp. of the roots ±a, ±Oa, 
±(a-{}a). This proves the lemma. In the first case we have <a, {}a>= 
-1, in the second case <a, {}a>=1. 

(b) Next assume {}a= -a. In this case we say that a is real. 
Choose da, d_a such that d~a=c~~, dad_ a=1. Then {}(xaCda~»=x_aCd_a~), 
from which we conclude that we may again assume Ca=C_ a= 1. We now 
have O(na)=n_a=nata. 

Notice that if a is complex and a-{}a is a root, it is a real one. 

(c) Finally consider the case that {}a=a. Then we say that a is 
imaginary. We now have c;= 1. If Ca= 1 then a is compact imaginary 
and if Ca= -1 it is noncom pact imaginary. In the first case we have {}(na) 
=na, in the second case O(na)=n_a. 

2.6. Lemma. If a is complex and a + {}a E W, then a + {}a is non­
compact imaginary. 
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Let Xa and XOa={}Xa be root vectors. We may assume (using 2.5) 
that [Xa, XOaJ=Xa+8a' Then {}(Xa+Oa)=[XOa, XaJ= -Xa+Oa, whence the 
lemma. 

Notice that if T is standard, there are only complex and imaginary 
roots. 

2.7. Split tori. 

Still assume G to be reductive. A 8-stable subtorus A of G is called 
split (relative to 8 or 8-split) if 8x=x- 1 for all x E A. (In [8] and [12] 
such tori are called anisotropic. We do not use terminology, as it is too 
much in conflict with the terminology about roots adapted above, which 
is the one of[l1]). Nontrivial split tori exist [12, §IJ, so there are maximal 
ones. 

2.8. Proposition. Two maximal split tori are conjugate by an element 
ofKo. 

This is proved in [loco cit.J. As usual, KO denotes the identity com­
ponent of K. 

Let A be a maximal split torus. Fix a maximal torus T containing 
A, it is automatically 8-stable. Let r[J be the root system of T. 

A parabolic subgroup P of G is split relative to {} or 8-split (called 
anisotropic in [8] and [12]) if P and 8P are opposite, i.e. if P n 8P is a Levi 
subgroup of both P and 8P. 

Assume for simplicity G to be connected (and reductive). 

2.9. Proposition. (i) Let A be a maximal split torus. There exists 
a minimal split parabolic subgroup with Levi subgroup Za(A). The derived 
group Za(A)' is contained in K; 

(ii) Two minimal split parabolic subgroups are conjugate by an element 
ofKo. 

This is also contained in [12, § IJ. We shall obtain a description of 
minimal split parabolic subgroups in n° 5. 

We shall say that {} is split (replative to 8) or that G is 8-split if there 
is a maximal split torus which is a maximal torus of G, i.e. if there is a 
maximal torus T of G such that 8x=x- 1 for all x E T. We recall the 
following result. 

2.10. Proposition. Let G be a connected reductive group. There 
exists an automorphism 8 of G of order 2 such that (G, (}) is split. If 8' is 
another such automorphism, there is x E G such that x{}(g)x- 1=8'(xgx- 1), 

for all g E G. 
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This follows readily from the familiar results about existence of iso­
morphisms of reductive groups (see e.g. [9, Ch. 11]). 

§ 3. Twisted involution in Weyl groups 

3.1. In this section we establish some results about Weyl groups, to 
be used later. We use some familiar facts, which can be found in [2]. 

Let ([J be a reduced root system in a euclidean vector space E, with 
scalar product < ,). Assume given a system of positive roots ([J+, with 
basis.d. We denote by W the Weyl group of ([J, and we assume our scalar 
product to be W-invariant. We also assume given a linear transformation 
o of E with 02= 1, which stabilizes ([J and ([J+. Then 0 induces an auto­
morphism of W, also denoted by O. So O(w) =0 0 woO- I, if we W. If 
Sa e W is the reflection defined by a e ([J then O(sa)=SOa' The scalar prod­
uct is assumed to be O-invariant. 

A twisted involution in W (relative to 0) is an element w e W with 
O(w)=w- l • We denote by .r =5"0 the set of these elements. If O=id, 
then these are involutions of W in the ordinary sense. 

W is generated by 2 = (sa)aEJo We denote by I the length function of 
W with respect to 2. Notice that LI and 2 are stable under the actions 
ofO. 

If n is a subset of LI, it is a basis of a subsystem ([Jo, with Weyl group 
Wo. We denote its longest element by w7r. In particular, w~ is the longest 
element of W. 

Finally, :::;;; denotes the Bruhat order on W (relative to the set of 
generators 2). 

3.2. Lemma. Let w e .ro, S e 2. 
(i) Ifsw<w then either l(swO(s»=I(w)-2 or swO(s)=w and S=Sa. 

with a e LI and wOa= -a; 
(ii) Ifsw>w then either l(swO(s»=I(w)+2 or swO(s)=w and S=Sa. 

with a eLI and wOa=a. 

Assume SW<W. Then either l(swO(s»=I(w)-2 or l(swO(s»=I(w). 
Assume the second alternative and write W=SI' .. Sh' with St e 2, SI =8 
and l(w)=h. Then also W=O(Sh)' . ·O(SI)' Since SW<W, we have by the 

./'--.. 
exchange condition that SW=O(Sh)' . ·O(st)· . ·O(SI)' for some i with l:::;;;i:::;;;1. 
If i>1 then l(swO(s»<I(w). Hence swO(s)=w and (i) readily follows. 

The proof of (ii) is similar: Assume again W=SI' . 'SM with St e 2, 
I(w)=h. Then SW=SSI' . 'Sh' Either l(swO(s»=I(w)+2, or l(swO(s»< 
l(sw), in which case the exchange condition implies that swO(s) =SI ••• Sh = 
w, from which one infers (ii). 



530 T. A. Springer 

3.3. Proposition. Let wE.'To. There exists a 8-stable subset II of 
Ll and Sl> "', SIt E :z such that: 

(a) W=S1" .s"w~8(s,,)·. ·8(S1) and l(w)=I(w~)+2h; 
(b) w~a= -8afor all a E WIl ; 
(c) if s E :z and sw<w, sw=w8(s), then SS1' . 'S,,=S1' . 'S"Sa with 

a E ll. 

We prove the existence of II and (a), (b) by induction on lew), 
starting with the trivial case W= 1. Assume lew) >0. If there is S E :z 
with l(sw8(s))=I(w)-2, these statements come readily from the induction. 
By 3.2 (i), it remains to deal with the case that sw8(s)=w for all S E :z 
with SW<W. In that case let ll={aELl!w8a=-a}. Then ll=l=~, by 
3.2(i). Clearly, w8f3= -f3 for all f3 E WIl . 

If a E ll, we have w~Ilw-1a= -w~Il8a>0. Ifa E Ll-ll, then w- 1a>0 
by the definition of ll, and our assumption on w. Moreover, we then 
have w- 1a ~ 8WiI (because w8f3= -f3 for all f3 E WIl). Hence w~Ilw-1a>0 
for all a E Ll, whence W=W~Il' This implies that for a E II we have -a 
=w8a=w~Il8a=8(w~a), i.e. w~a= -8a. So 8a E ll, and II is 8-stable, 
w=w~. This proves (a) and (b). 

We finally prove (c). Let S E:Z be such that SW<W, sw8(s)=w. By 
3.2(i) we have S=Sa with a E Ll and w8a= -a. This implies that 
w~(s,,· . 'S1a)= -8(s" . . 'S1a), which shows that s,,' . 'S1a E WIl . If SS1' . 'S" 
<S1' . 'S" then sw8(s)<w, which is not the case. Hence SS1' . 'S" >S1' . 'S", 
whence f3=s,,· . 'S1a E WiI. Moreover, we have SS1' . 'S,,=S1' . ·s"sp' Now 
J(ss1···s,,)=h+1. It follows that there exist W'::S:;S1"'S" and w"::S:;sp 
such that SS1' . ·s,,=w'w", and l(w')+l(w")=h+ 1. Notice that since 
sp E WIl , we have w" E WIl . Then 

But we have w"w~=w~8(w") for all w" E WIl , in fact this is so for the 
generators Sa of WIl (a E ll) because w~a= -8a. Hence w=w'w~8(w')-1 
and l(w)=2h+l(w~)::S:;21(w')+I(w~). But l(w')::S:;h. So we must have 
W'=S1" 'S" and l(w") = I, whence (c). 

Remark. 3.3 can be generalized to Coxeter groups, leading to an 
extension and refinement of the results in [3]. 

In the course of the proof the following was established. 

3.4. Corollary. Let w E!To be such that sw8(s)=w for all S E :z with 
sw<w. Then h=Oand there is II such as in 3.3 with w=w~. 

We shall need another result of the same kind. 
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3.5. Proposition. Let w E !To be such that sw(J(s)=w for all S E :2 
with sw>w. Then w=w~w~, where ll={rx E J[w(Jrx=rx}. 

The proof of this is quite similar to that of 3.4, using 3.2 (ii) instead 
of 3.2 (i), and will be omitted. 

3.6. If WE W, denote by tJ)~ the set of rx E tJ)+ with w-1rx<0. One 
knows that rx E tJ)+ lies in tJ)~ if and only if saw<w. Also, Card (tJ)~)=I(w). 

Next let w E !To. We shall say that rx E tJ) is complex relative to w if 
w(Jrx* ±rx, and that it is real (resp. imaginary) relative to w if w(Jrx=-rx 
(resp. w(Jrx=rx). 

We write 

C~={rx E tJ)~[w(Jrx* -rx}, 

Rw={rx E tJ):, [w(Jrx= -rx}, 

C~={rx E tJ)+ -tJ)~[w(Jrx*rx}, 

Iw={rx E tJ)+-tJ)~[w(Jrx=rx}. 

We write w=w'w~(J(w')-1, where l(w)=21(w')+I(w~), as in 3.3. 

3.7. Lemma. (i) C~ is the disjoint union oftJ):" and -w(J(tJ):,,); 
(ii) Rw=w'(tJ)Jj); 
(iii) l(w'w") = l(w') + l(w") for all w" E Wa. 

In particular, Card (C~)=21(w'), Card (Rw)=I(w~)=Card (tJ)Jj). 

If rx E tJ):", then saw' <w' whence saw(J(sa)<w, so w(Jrx* -rx. Since SaW 
<w, we have rx E C~ and so tJ):"cC~,. We also have -w(J(tJ):,,)cC~. Now 
if rx E tJ):" then _(W')-IW(J(rx) = -w~(J«W')-lrx»O, since -(J«W')-Irx) E 

tJ)+ - tJ)Jj. Consequently, tJ):" n - w(J(tJ):,,) =~. Next, if rx E tJ)Jj, then w(J(w'(rx)) 
= -w'(rx), so either w'(rx) or -w'(rx) lies in Rw. But if rx E tJ)Jj and w'(rx) <0, 
then w'sa<w'. Since saw~(J(sa)=w~, we would get the contradiction W= 
w"w~(J(W")-I<W with w"=w'sa. Hence tJ):'-::Jw'(tJ)Jj). We have shown, 
in particular, that Card(tJ):')~2 Card(tJ):',)+Card(tJ)Jj)=21(w')+I(w~)= 
lew). Since Card (tJ):')=I(w), the assertions (i) and (ii) follow. The argu­
ment used to prove that w'(tJ)Jj)cR w also gives (iii) (see [10, 1.16]). 

3.8. Lemma. Let rx E tJ)+. Then rx E I w if and only if (w') -I rx is a 
root orthogonal to II which is fixed by (J and w~. 

Orthogonality is meant in the sense of our euclidean metric. Clearly, 
w(Jrx=rx if and only if .B=(W')-Irx is an eigenvector for (Jw~, for the eigen­
value 1. Since II consists of eigenvectors for the eigenvalue -1, it is 
clear that if .B is such an eigenvector it must be orthogonal to ll. But 
then w~.B=.B, hence also (J.B=.B. This proves one half of the lemma, and 
the other half is trivial. 
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3.9. Lemma. (i) lfs e J; we have Card(C:w8(S)+Card(C:~8(')= 
Card (C~) + Card (C::); 

(ii) Jfs e J;, swO(s)<w then Card (C:w8(.)=Card(C~)-2; 
(iii) lfs e J;, swO(s»w then Card(C:~8(.)=Card(C::)-2. 

(i) follows from the observation that 

2 (Card(C~)+Card (C::» = Card «])-Card {IX e (])lwOIX= ±IX}. 

To prove (ii), observe that if swO(s)<w we may take Sl=S (cf. the proof 
of 3.3) and use 3.7. Then (iii) follows from (i) and (ii). 

§ 4. Double coset decomposition 

We return to the situation of 2.1. We assume G to be reductive. We 
fix a standard pair (T, B) and use the notations of 2.3. The set S of 2.1 
is contained in S' ={x e GIOx=x- 1}, and the action (g, x)~g*x of G on S 
extends to an action of G on S', defined in the same way. In particular, 
B operates on S'. 

4.1. Lemma (i) Any B-orbit in S' meets N; 
(ii) The number of such orbits is finite. 

Let xeS' and write it, according to Bruhat's lemma, in the form 
x=unu', with u, u' e U, n e N. Then O(x)=O(u)O(n)O(u')=(u')-ln-1u-I. 
The uniqueness of the Bruhat decomposition shows that On=n- 1. Put 
w=nT, so O(w)=w- 1• As in 2.4, let Uac Ube the one parameter subgroup 
defined by IX e (])+ and denote by U w (resp. U~) the subgroup of U gener­
ated by the Ua with IX e (])+, WIX e (])+ (resp. IX e (])+, WIX tF (])+). In the 
decomposition x=unu' we may take u' e U~, and then this decomposition 
is unique. Since the product map Uw X U~~U is bijective, we can write 
(OU)-l=UIU~, with U1 e Uw, ~ e U~. Then 

(u~) -lu11n-10(u') = (u') -In-10(u1)nn-10(ui). 

Now O(Uw) = Uw- 1, whencen-10(Uw)n= Uw' The uniqueness of the Bruhat 
decomposition now shows that u' =~, and it follows that the B-orbit of x 
in S' contains O(u1)-ln. It also follows that n-10(u1)n = u11• Now t(u)= 
n-10(u)n defines an automorphism of Uw of period 2, such that t(U1)=U11• 

By a familiar result [1, p. 230] there exists Uz e U w such that U1 = t(uz)U2"l. 
But then nu1=O(uZ)nu2"\ and we see that the B-orbit of x contains n eN. 
This proves (i). To establish (ii), it suffices to prove that for any n e N n S', 
the set nTn S' intersects only finitely many B-orbits in S'. Now if t e T, 
n e Nn S' then tn e Nn S' if and only if nO(t)n-1=t-1, i.e. if and only if 



Algebraic Groups with Involutions 533 

w(J(t)=t-1, where w=nT. Also, it follows from the uniqueness part of 
Bruhat's lemma that nand tn lie in the same B-orbit on S' if and only if 
there is tl E T such that t=t1(W(J(t1))-I. Writing endomorphisms of T 
additively, we see that the number of distinct B-orbits in S' intersecting 
nT(n E Nn S') equals the order of Ker (w(J+ l)jIm (w(J-l), which is well­
known to be a finite abelian group, of exponent 2. This implies (ii). 

The group TXK acts on l:'-W={x E GIX«(JX)-1 EN}, by(t, k)x=txk- 1 

and the number of orbits of TX K in l:'-IN is finite, as a consequence of 
the proof of 4.1 (ii). Let V be the set of these orbits. If v E V, we denote 
by v EGa representative. If x E l:'-IN, n E N, then clearly nx E 7:- 1N, 
whence an action of Won V (which we write as (w, v)~w· v). 

4.2. Theorem. (i) G is the disjoint union of the double cosets BvK, 
with v E V; 

(ii) Each set BvK is a locally closed subset of G, and its closure is a 
union of similar sets. 

l:'G = S is a B-stable subset of the set S' of 3.1. Hence B has finitely 
many orbits in S, represented by elements of N n S. This implies that G 
is the union of finitely many co sets KxB, with x E 7:- 1N. If x, x' E l:'-IN 
and x' E BxK, then (x')«(Jx')-I=bx«(Jx)-I«(Jb)-1 for some bE B and the 
uniqueness part of Bruhat's lemma implies that there is t E T with 
(X')«(JX')-1 = tX«(JX)-I«(Jt)-I. It follows that the double cosets BxK are para­
metrized by the TX K-orbits in 7:-W, whence (i). Then (ii) is an immediate 
consequence of the fact that B X K, acting in the obvious way in G, has 
finitely many orbits. 

4.3. Corollary. (i) K has finitely many orbits in GjB; 
(ii) B has finitely many orbits in G j K. 

Let VE V and put T1=v-1Tv, B1=v-1Bv. Then (J(T1)=T1 and Bl is 
a Borel subgroup containing Tl (but not necessarily (J-stable). Conversely, 
if Tl is a (J-stable maximal torus we can write Tl =x-1Tx, and then clearly 
X«(JX)-1 EN, i.e. x E 7:- 1N. From these remarks one deduces readily the 
following result, due to Matsuki for F=C (see [6]). 

4.4. Corollary. There is a bijection of the set of double cosets KxB 
onto the set of K-orbits of pairs (T\> B1), where Tl is a (J-stable maximal 
torus and Bl a Borel subgroup containing T1. 

4.5. As in 3.1., let S';={w E WI(J(w)=w- 1}. We define a map 
<p: V-+~ by rp(v)=v«(Jv)-IT. This map is not necessarily surjective. For 
example, if (J(x)=axa- 1, with a E T, a2 = 1, then, denoting the conjugacy 
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class of a E G by C(a), we see that NnS=(Nn C(a))a- t, whence g>(V)= 
Nn C(a) mod T. If follows that 9'Cv) consists of involutions in Wwhich 
can be lifted to involutions in N. It is known that such a lifting is not 
always possible. 

With the notations of the proof of 4.1 (ii) we have for w E!To that 
Card so-t(w) ::;;;Card {Ker (wO+ I)jIm (wO-I)). 

4.6. Examples. (a) Let G1 be a reductive group and put G= Gt X G1, 
O{x, y)=(y, x), for (x, y) E G. Then K:::::.Gt. Denote by Tt, BI a maximal 
torus and a Borel subgroup of Gt with T t eBl" Let Wt be the Weyl group 
of Tt. We may then take T=TtXTt,B=B1xBI> W=W1XWt • It is 
easy to check that V:::::. WI and that the W-action on V is given by {WI> w2)w 
=wtw{w2)-t. 

(b) G= SL2. We put 

T= {(~ ~-t)[~ E F*, a= (~ _~)} W= -1) 

and Ox=axa- l (x E G). Then T and both Borel groups containing Tare 

O-stable and K=T. We have S={(~ ~)1~2-1)'=I} and S'=S. Now 

V has three elements v, v' and VI> represented by the elements 

(~ ~), 0) and ( 0 1) 
-1 -1 ° 

of S respectively. The generator S of Wacts by s.v=v', s.v'=v, S.Vt=V1" 
(c) G=PSL2, with the automorphism induced by the one of the 

previous example. We deduce from it that now V has two elements, on 
which Wacts trivially. 

4.7. We shall now discuss the orbits BvK in more detail. Fix v E V 
and put v{OiJ)-t=n, w=nT. Then O{w)=w- t. We write w=w'w~{w')-t 
as in 3.3. Clearly, the variety BvK is isomorphic to BxKjiJ-tBiJ n K (the 
latter group being imbedded in an obvious way). 

Assume b=tu E Band O{iJ-1biJ)=v-1biJ. Then nO{t)n-l=t, nO{u)n- t 

=U. Hence wO{t)=t, and t E Ker{wO-I):::::.Ker{w~O-I), 
It also follows that u E unnUn- t= UW - 1 (notations as in the proof of 

4.1). Now +{x)=nO{x)n- t defines an automorphism of period 2 of UW - 1 

and it is known [l, p. 230] that its group of fixed points is a connected 
subgroup of U w-l. To determine its dimension, we look at the action of 
+ on the Lie algebra of UW-I, which is spanned by the root vectors Xa 
with a E (fJ+, w-1a >0. If wOa=f:.a, i.e. if a E C:; (with the notations of3.6) 
we can assume that +{Xa)=XOa • If however wOa=a, i.e. a E Iw, then 
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'l/!{Xa)=caXa, 'I/I'(Xa)=caXa, with ca= ± 1. Denote by I~ (resp. I~) the set 
of a E Iw with ca = 1 (resp. ca = -I). These are the compact imaginary 
roots (resp. noncom pact imaginary roots) relative to v. We shall also 
write C~, C~', Rv, Iv for the sets C~, C::, R w, Iw of 3.6 and call roots 
complex ... relative to v if they are so relative to w. The roots of the 
various kinds relative to v correspond to roots of the same kinds for the 
8-stable torus v-lTv, according to 2.4. It then follows that the fixed point 
set of '1/1' in Lie (Uw -') has dimension t Card (C~')+Card (I;). 

The preceding analysis proves 

4.8. Proposition. K n V-I Bv is isomorphic to the product of 
Ker (w~8-1) and a connected unipotent group of dimension t Card (C~')+ 
Card (I;). 

4.9. Corollary. 

dim BvK=dim B +dim K -dim Ker (w~ -1) 

-t Card (C~)-Card (I~). 

The proposition can be used to obtain topological information about 
BvK and similar varieties. As an example, take F = C and consider the 
K-orbits in GIB. They are parametrized by V, let O(v) be the orbit con­
taining v-lB. Assume for simplicity that G is connected, semi-simple and 
simply connected. Then K is connected by a theorem of Steinberg [10, 
8.1]. We put T(v)=Ker(w~8-1)/Im(w~8+1), this is a finite abelian 
group of exponent 2. In this situation we have: 

4.10. Corollary. (i) The fundamental group 7rI(O(V» is an extension 
of T(v) by a quotient of 7rI(K); 

(ii) There is a bijection of the set of isomorphism classes of locally 
constant K-equivariant sheaves of one dimensional vector spaces on O(v). 
whose pullback to K is trivial, onto the character group of T(v). 
(The fundamental groups are relative to appropriate base points). 

We have O(v):::::.KIKv, where Kv=v-IBvnK. Now, K~ denoting the 
identity component of K., we have that KIK~ is a Galois covering of O(v) 
with group Ker(w~8-1)/Ker(w~8-I)O :::::.T(v). Moreover, there is an 
. exact sequence 

Hence 7r1(KIKvO) is a quotient of 7r1(K), whence (i). Then (ii) is a conse­
quence of standard results. 
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§ 5. The big cell 

Assume G to be connected and reductive. We keep the notations of 
the preceding section. It follows from 4.2 that there is a unique Vo E V 
such that BvoKis open and dense in G. We write nO=vO({}vO)-l, wo= 
,¥,(VO). In the present section we shall deduce some properties of VO and wo. 
We start with an auxiliary result. The notations are as in 4.7, with v E V 
arbitrary. We put O(v)=BvK. 

5.1. Lemma. If a E I~ n Ll (resp. a E C:,: n Ll) there is VI E V such that 
O(v)e O(v1), dim O(vl) = dim O(v) + 1 and SO(v1)=saw(resp. SO(v1)=saW{}(sa)). 

Let a E I~ n Ll. Denote by P a the parabolic subgroup generated by 
Band U_ a and by Go the subgroup generated by Ua and U_ a (which is 
isomorphic to SL2 or PSL2). If -r is as in 2.1, then Z=-r(O(v)) is an irre­
ducible closed subvariety of S=-rG. which is B-stable for the action *. 
Now Pa*Z is also closed and irreducible, because Pa/Bis a complete variety 
(by a familiar argument, see e.g. [9, p. 114, ex. (9)] for a similar result). 
We have xn{}(x)-l E Pa*Z for all x E Ga. Now 1/F(x)=n{}(x)n-1 defines an 
automorphism of Ga which is nontrivial (since a is noncompact imaginary 
we have 1/F(xa(';)=xa( -.;)). From the formulas of 2.4 one deduces that 
ir(na)=n;;l. But then there exists x EGa with x1/F(x)-I=na (see 4.6 (b) for 
the case G a = SL2, the case G a = PSL2 is similar), from which we see that 
nan E Pa*Z. But nan $ Z: all elements of Z lie in double cosets Bw' B 
with w' ~w, whereas nan E BsawB and w<saw. It follows that there is a 
unique dense B-orbit -r(O(VI)) in Pa*Z. The assertions now readily follow 
(observe that dimPa*Z=dimZ+l). 

In the case that C~' n Ll:j:(J the argument is quite similar and even a 
bit easier. If a E C~' n Ll we have nan{}(na)-l E Pa*Z and saw{}(sa) >w. We 
omit the details. 

We can now deal with vo. If II eLl denote by Pn-:JB the corre­
sponding standard parabolic subgroup (so P~=B, P4=G). 

5.2. Theorem. (i) V = VO if and only if C~' n Ll = (J, I~ n Ll = (J; 
(ii) There is a subset IIeLl such that wO=w~w~. We have w~a= 

w~ {}a for all a E II, and II eI:;',; 
(iii) (v°)-IPnVO is a minimal (}-split parabolic subgroup of G. 
It follows from 5.l that C~;nLl=(J, I;;, n Ll=(J. Next let v E Vbe 

such that C~' n Ll=(J. If w=SO(v), then w has the property of 3.5, so W= 
w~w~, as in 3.5, 

Still assuming only C~' n Ll=(J, put P=v-IPnv (II being as in 3.5). 
Then {}P n P is generated by v-lTv and the groups v-IUav with a E 

(j)n U «(/)+ n w{}(/)+), i.e. by those with a E (/), w{}a=a (as a consequence of 



Algebraic Groups with Involutions 537 

3.5). It follows that OP n P must be a Levi subgroup of P and OP, i.e. 
OP is O-split. Now P is minimal O-split if and only if the derived group 
of P n OP lies in K (as follows from [12, § 1]) i.e. if and only if v-IUavcK 
for all a E II or if and only if II cI;. Assuming this to be the case, we 
have that P K is dense in G [loco cit.]. But then P nvK is also dense and 
PnvK=BvK. Hence we must have v=vo, and we have proved the if-part 
of (i). The other part of (i) was already established, and (ii) and (iii) 
were proved in the course of the argument. 

5.3. Corollary. G is O-split if and only if WO =w~, and Oa= -w~a 
for all a E £1. 

This follows from 5.2, using that if G is split a minimal O-split 
parabolic subgroup is a Borel group. 

An example is G=SLn and OX=(lX)-I. 

5.4. Proposition. (i) If dim O(v) = dim G-1 then either SO(v)= 
sawoO(sa) with a E C~o n £1 or SO(v)=sawo with a E Rvo n £1; 

(ii) Conversely, if a E C~o n £1 (resp. a E Rvo n £1) there exists v E V with 
dim O(v) = dim G-1 and SO(v)=sawOO(sa) (resp. SO(v)=sawO). 

Assume dim O(v)=dim G-l. We cannot have C~' n £1=fj, I~ n £1=fj, 
otherwise we had v = vO, by 5.2 (i). Assume a E C~' n £1 and apply 5.1. 
We see that the element VI of 5.1 must be vO, and we conclude that SO(v) = 
sawo O(sa)' It is then also clear that a E C~o. If C~' n £1 = fj, take a E I~o n £1. 
Then 5.1 gives that SO(v)=sawo, and it is readily checked that a E Rvo n £1. 
This proves (i). To prove (ii), take v=navo if a E C~o n £1. Then a E 
C~' n £1, and the element VI of 5.1 equals vO, whence dim O(v)=dim G-l. 
Similarly, in the case that a E Rvo n £1, one takes v=xvO(OX)-I, with a 
suitable x EGa, as in the proof of 5.1 and applies again 5.1. 

5.5. As a consequence of 5.4 we can deduce a result which is weII­
known in characteristic ° (see [4, p. 79] and [12, § 3]). We shall sketch a 
proof. Assume now that G is connected and semi-simple. 

Denote by F[G] the algebra of regular functions on G. Let X be a 
rational character of T and extend it to a character of B by X(tu)=X(t) 
(for t E T, u E U). Put 

VX={fE F[G] If(xb) = X(b)f(x), x E G, b E B}. 

It is known that Vx=F{O} if and only if X lies in the set P+ of dominant 
weights (of T relative to B). So, denoting by <, ) the canonical pairing 
between characters of T and one parameter subgroups of T, we have 
<X, a);;:: ° for all a E £1. The group G acts by right translations on Vx 
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and it is well-known that if char F=O one obtains in this manner the irre­
ducible rational representation of G with highest weight X (assuming X E P+). 
The result gives a criterion for K to contain a nonzero K-fixed vector. We 
formulate it as follows. Denote by T the subgroup of T of elements fixed 
by Wo{} (where Wo is as before). 

5.6. Theorem. Assume X E P+ . There is a nonzero f E Vx fixed by 
K if and only if X(T) = 1. Such an f is unique up to a scalar. 

Iff E Vx is fixed by K, we have 

(1) (k E K, be B). 

Since Bvo K is dense in G this implies the uniqueness statement. Also, 
if t E T we have (VO)-lt(VO) E K, whence 

from which we see that the condition of the theorem is necessary. 
Assume the condition to hold. We then can define a nonzero rational 

function on G by the formula (1). Clearly, the set of points of G where 
f is defined is a union of orbits O( v) and since G is normal it suffices to 
prove that f is defined along all orbits O( v) of co dimension 1. 

Via -r, we may transfer the problem to a similar one for S=-rG. Put 
Q(v)=-r(O(v», this is a B-orbit in S, for the action of 2.1. The rational 
function f on G defines a nonzero rational function h on S such that 

We have to prove that h is defined along the orbits Q(v), with dim Q(v) = 
dimS-I. Let Q'=Q(v) be such an orbit, and put Q=Q(VO). We have 
the two cases of 5.4: either WO =saSO(v), and IX E Roo n.:1, or WO =saSO(v){}(sa) 
with IX E C~o n.:1. In the first case we have, as in the proof of 5.1, that 

where G a is as in that proof. Let U' be the unipotent radical of P a and 
T' the connected center of the Levi group of Pa containing T. Putting 
n=v({}v)-t, we write the elements of Q U Q' as 

(2) y= utgn {}(utg)-l (u E U', t E T', g EGa). 

Denote by 1ft' the automorphism gl--'>n{}(g )n-1 of G a' which has order 2. We 
then have 
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and we see that we are reduced to proving the theorem in the case of 
(Ga , 'I/F), i.e. in the case that G = SL2 or PSL2, with a (unique up 
to conjugacy) nontrivial involutorial automorphism. This is easy, and we 
leave the proof to the reader. 

In the second case (WO =sawO(sa), where w=9/(v)) we have wOa=/=a 
and saw>w. A similar argument now gives a reduction to the case of the 
groupH generated by Ga and nGan-t, which is either of type A2 or of type 
A1XA1. In the first case we have H:::::SLs, with Ox=ex)-I, or a similar 
situation in PSLs• It follows from 5.3 that we are in the situation which 
has been already dealt with. The last possibility is type Al X AI> with an 
automorphism exchanging the factors. We leave the discussion of this 
case to the reader. 

§ 6. Orbit closures 

6.1. We keep the same notations. We shall now discuss the closures 
of the orbits O(v)=BvK. Fix v E V and put v(Ov)-I=n, 9/(v)=w. So 
O(w)=w- l. We first assume, with the notations of 3.3, that w=w~. So 
II is a O-stable subset of Ll such that w~Oa= -a for a E II. Denote by 
PII-::JB the standard parabolic subgroup defined by II. Write P=V-1PIIV. 
this is a parabolic subgroup of G of type II. If Q is any parabolic sub­
group, we denote by H(Q) the derived group of Q/RuQ, this is a connected 
semi-simple group. 

6.2. Lemma. (i) P is a O-stable parabolic subgroup and H(P) is 
split, relative to the involution induced by 0; 

(ii) Conversely, if P is a parabolic subgroup of G with the properties 
of (i), then there is a O-stable subset II of Ll such that w~Oa= -afor a E II, 
and an element v E V with 9/(v)=w~ such that P=V-1PIIV. The orbit WII · v 
in V is uniquely determined by P and II. . 

As before, WII denotes the subgroup of W generated by the Sa with 
a E II. It is the Weyl group of H(PII). 

(i) is immediate. If P is as in (i), choose a O-stable maximal torus 
TI of P such that the identity component of the intersection of its image 
in P/RuP with H(P) is split, for the involution induced by 0 in H(P). 
There is a unique subset IIeLl, and x E G with P=X-1PIIX, T1=x-1Tx. 
Then X(OX)-l E P II n N, let w be its image in W. The assumption about P 
implies that wOa= -a for all a E II. Also, since X(OX)-l normalizes RuPII• 
we see that w-1a>O for all a ELI-II. It follows that we must have W= 
w~ and that II is O-stable (as in the proof of 3.3). This proves (ii), except 
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for the last point. If VI E V is another element with similar properties, 
then v11Tv i is a maximal torus of P which on account of 2.8 is conjugate 
to TI by an element of P n K. We may then assume that v11Tvi = T,. But 
then n=v1v- 1 normalizes Pa and T, hence lies in Npa(T)=NLa(T) (La 
denoting the Levi subgroup of P a containing T). This shows that VI = W· V 

for some WE Wa. Since ww~=w~O(w) for all WE Wa (this is so for the 
generators Sa of Wa, with a E II) we have SO(w· v)=w~ for all W E Wa. 

We now fix v E V with SO(v)=w~, as in 6.2. Let P be a parabolic 
subgroup with the properties of 6.2 (i). We denote its unipotent radical 
by R and we fix a O-stable Levi subgroup L of P. The morphism 1: and 
the variety So are as in 2.1. As in the proof of 5.7 write Q(v)=r{O(v)), 
this is a B-orbit in So. 

6.3. Lemma. (i) 1:P is a closed, irreducible, smooth subvariety of 
So. We have 1:P={xSiOX)-llx E R}; 

(ii) O(v) = v(1:-,(rP)) and Q(v) = {xn(Ox)-1 Ix EPa}. 

1:P is closed in G, hence in So by 2.2 (here we use 2.2 for a nonreduc­
tive group). Since 1: P is isomorphic to P / P n K (see 2.2) it is an irreducible 
and smooth variety. The last assertion of (i) is immediate from the 
definitions. 

The two statements of (ii) are equivalent, so it suffices to prove the 
second one. The set A with which we want to identify Q(v) is closed and 
irreducible by (i). Also, Q(v)cA. It then corresponds to an orbit in SL 
(for a suitable Borel group) which contains the element v-1n(Ov). But by 
5.3 this must be the open orbit in SL' It follows that Q(v) is the open 
orbit in A, whence £d(v)=A. (Another way to prove the last result would 
be to show that dim Q(v)=dimA.) 

6.4. Now consider an arbitrary element v E V. We write SO(v)=w 
in the form of 3.3: 

W=SI' . 'ShW~O(Sh)' . ·O(SI)' 

with l(w)=I(w~)+2h. We put W'=SI" 'Sh and write v'=(W')-I.V • So 
SO(v')=w~. We shall describe now the orbit closure Q(v) in So. Since 
O(V)=1:-I(Q(V)) we then also have a description of orbit closures in G and 
of closures of K-orbits in G/B (these have been studied recently over C by 
Matsuki [7]). If a E ii, we denote as before by Pa the parabolic subgroup 
generated by Band U_ a. We write Pt=Pa" where St=sa, (1 ~,i~h). 
With these notations we have: 
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Q(v') has been described in 6.3. We prove the theorem by induction 
on h, starting with h=O. Put V1=SI·V. We can then assume that 

Q(V1)=P2*· .. *P,,*Q(v'). 

So the right hand side contains Q(Vl) as an open subset. Now P1*Q(V1) 
is closed and irreducible (by an argument used before, in the proof of 5.1), 
and dim Pl*Q(vl)~dimQ(vl)+ 1. ButP1*Q(V1) contains QCv) and dimQ(v) 
= dim Q(Vl) + 1, as one readily deduces from 4.9 (notice that Card 1;= 
Card I;.). It follows that dim Q(v) = dim P1*Q(V1), from which one con­
cludes that the two sets Q(v) and P1*Q(V1) must coincide. This proves 
the theorem. 

As a first consequence of 6.5 we shall characterize the closed orbits. 

6.6. Corollary. (i) Q(v) is closed if and only if so(v) = 1; 
(ii) The closed orbits Q(v) correspond to the K-conjugacy classes of 

standard pairs (T, B) (see 2.3). 

If so(V) = 1, then putting Tl =iJ-1TiJ, Bl =iJ-1BiJ, it is clear that (Tt> B1) 
is a standard pair. Hence [8, 5.1] Bl n KO is a Borel subgroup of KO. It 
follows that KOiJ-1B is closed in G/B, whence one concludes that BiJKo 
and BiJK are closed in G, consequently Q(v) is closed in G/K~S. 

Conversely, let Q(v) be closed. With the notations of the proof of 
6.5, we must have h=O. Otherwise we had Q(Vl)CQ(V) and Q(v1)=t=Q(v), 
because dim Q(v1) <dim Q(v). So we are now in the situation of 6.3, and 
there is only one orbit QL(V) in SL' But if L is not a torus, there are at 
least two such orbits, viz. the open one and Q i1). Hence in our case 
L is a torus, i.e. n =~ and soev)= 1. We have proved (i), and (ii) now 
readily follows. G = SL2, with a nontrivial involution, provides already 
an example where there are several closed orbits. 

Theorem 6.5 can be viewed as giving an inductive description of the 
closures of the Q(v), depending on the knowledge of such closures in 
smaller groups L (except possibly for the case of the maximal orbit Q(VO), 
of course, but then Q(VO)=S). One can formalize this description a bit. 

Define a "Bruhat order" on Vby: v'~v if and only if Q(v')~Q(v). 
Let S=Sa E 1: be a generator of W. We also define (provisionally) a rela­
tion ~. on Vby: v'~. v if and only if Q(v')cPa*Q(v). Then the proof 
of 6.5 implies the following property of the Bruhat order of V. 

6.6. Corollary. Let v E V, a E C~. Then v' ~ v if and only if v' ~ 8V" 
for some v"~.v. 

This is useless if C~ =~, but then we are in the situation of 6.3. To 
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make 6.6 more concrete, we shall now describe the relation ~. in more 
detail. 

6.7. The relation ~ •. 
Let v E V and put v(Ov)-I=n, so(v)=w. Fix S=Sa E l: (a E L1). We 

shall describe Pa*Q(v). Notice that by Bruhat's lemma for the group Ga, 
we have Pa*Q(v) = Q(v) U Q', where 

with the usual notations. We distinguish several cases. 
(a)" a E C~', so l(swO(s»=I(w)+2. Then Q'=Q(s.v), as a conse­

quence of 5.1. So now v'~. v means v'=v or v'=s·v. 

(a)' a E C~. By the previous case we have 

and familiar properties of rank one groups show that Pa*Q(v)= 
Q(v) U Q(s. v). Again, v' ~. v means v' = v or v' =s· v. 

We are left with the cases where swO(s)=w. Then we proceed as 
follows. Write x E Q(v) in the form x=bxaCl;)nO(bxaCl;»-I, with b in the 
radical of the parabolic subgroup P a' and I; E F. Then 

with b' similar to b. Denote by t the involutorial automorphism of G a 

with t(g)=nO(g)n- l • We then have to study the elements of Ga of the 
form naxa(t;)t(naxaU;))-I, and we are reduced to a problem in rank one 
groups. 

(b) a E I;'. Then t=id, and v'~. v means v'=v. 
(c) a E I~. Now t(x±a(I;» = x±a( -t;), t(n±a)=n~~=aV( -I)n±a' 

An example of this case is Ga =SL2 with U.,(U_ a) the group of upper (resp. 
lower) unipotent matrices and t the inner automorphism defined by 

(~_~). A calculation, which can be carried out in SL2, shows that the 

element naxaCt;)t(naxa(t;))-1 is either ave -I) (if 1;=0) or has the form 
ynat(y)-I, with YEBnGa. There exists ZE Ga such that zt(z)-I=na. 
Then zv defines an element of V, which we denote by aa(v), and which 
is well-defined. We have so(aaCv»=s·w. Notice also that now snO(s}= 
a~( -I)n. From the preceding facts one readily deduces that now Q' = 
Q(s·v)U Q(aa(v». Hence v'~. v means now v'=v or v'=s·v or v'=aa(v). 

(d) a E Rv' We now can take t(xaCl;»=x-aCl;), t(na)=n_a=n;l. 
An example is Ga =SL2, with Ua and U_ a as before and t the inner auto-
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morphism defined by (? ~). Defining aiv) as before, we find in a similar 

manner that now v' ~ s v means either v' = v or v' =aa(v) or sa.(v). Notice 
that in this case we have s· V= v. This need not be so in the previous 
case. 

We have thus completely described ~s. This description provides an 
inductive definition of the Bruhat order on V. 

The cases just discussed are similar to the ones occurring in [5, p. 371-
372] and [11, p. 397]. It is to be expected that our description of orbits 
can be useful for the matters discussed in these papers. We shall not enter 
into these matters here. 

It should be pointed out that it is not true that v' ~ v is equivalent to 
Y'(v')~Y'(v) (for the Bruhat order on W). It is easy to give examples of 
four elements v, VI> v', vi of V such that <p(v)=<p(v,), <p(v')=<p(vi) and 
Y'(v')~<p(v), v'~v, Vi~Vl but viv!> viiv. 
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