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§ 0. Introduction and statements of results

Let M be an n-dimensional C> manifold and let & be a codimension
one C"** foliation of M (r=1). It is well known that there exists always
a_one dimensional foliation of M transverse to %. Thus the following
question on the integrability of 2-plane fields comes to the front:
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230 I. Tamura

‘Does there exist a 2-dimensional foliation of M transverse to % if
& admits transverse 2-plane fields?’

Suppose that there exists a 2-dimensional C7*! foliation &’ of M
which is transverse to %, that is, at each point x € M, the leaf L, of &
through x and the leaf L, of %’ through x intersect transversely at x.
Then the set of intersections of leaves of # and %’ forms a one dimen-
sional C7*! foliation of M, denoted by & I &, each leaf of which lies on
aleaf of #. Incase M is orientable and both of % and &’ are trans-
versely orientable, the foliation & &’ consists of orbits of a non-
singular C” vector field X on M such that each vector of X is tangent to
a leaf of &#. In this context, dynamical systems on the foliation &# come
in the study of 2-dimensional foliations transverse to %#. The least
dimension of M which we are interested in is 3, and foliations # and %’
as above are both of codimension one in this case and can be treated on
the same level.

In [6] we classified codimension one foliations transverse to the Reeb
foliation %  of the solid torus by studying non-singular vector fields on
Z &, and proved Theorem A below, making use of the classification men-
tioned above.

Let k be a non-trivial fibred knot in the 3-sphere S*® and let N(k)
denote a tubular neighborhood of k. Let % be a codimension one folia-
tion of S® which is the union of the Reeb foliation of N(k) and the folia-
tion of S®—Int N(k) obtained by turbulizing the interior of each fibre of
S*—Int N(k)—S' in a collar of the boundary of N(k). For the definition
of the turbulization, see Section 4. Remark that % admits a transverse
2-plane field, since 2-plane bundles over S* are always trivial. The following
is the first result on codimension one foliations of 3-dimensional manifolds
admitting no transverse codimension one foliation (Tamura-Sato [6, The-
orem 6]):

Theorem A. Let & be the codimension one C= foliation of the 3-
sphere S*® as above. Then there does not exist any codimension one C*
Sfoliation of S* (r =2) transverse to &

Our results were developed by Nishimori [2]. He studied foliations
transverse to various codimension one foliations generalizing the Reeb
foliation and classified them. Theorem B below is a typical result on
foliations admitting no transverse foliation in [2]. Let D?—Int D?—
Int D} be a two punctured 2-disk and let

S°=(S'x D*) U ((D*—Int D} —Int D3 U DU DI X SY)

be the natural decomposition of the 3-sphere. And let %, denote the
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codimension one C* foliation of S® consisting of Reeb foliations of S*X
D?, Dix S* and Dix S, and the codimension one foliation of (D*—Int D}
—Int D) x S* formed by turbulization to the same direction as these of
Dix S' and DX S'. For the precise definition, see Section 4. Then the
following theorem holds (Nishimori [2; Theorem 5]);

Theorem B. Let %, be the codimension one C* foliation of the 3-
sphere S* as above. Then there does not exist any codimension one C”
Soliation of S® (r =2) transverse to F,.

Furthermore Nishimori proved the following interesting and beautiful
theorem in his second paper on this subject [3, Theorem 6]:

Theorem C. Let E be an orientable 3-dimensional C> manifold which
is the total space of a C> bundle over S* with one punctured torus T —
Int D? as fibre, and let & . denote the codimension one C* foliation of E
Jormed by turbulizing the interior of each fibre in a collar of 0E. Let
¢: T*—1Int D*—T*—Int D* be the monodromy map of this bundle and let

¢4 H(T*—Int D*; Z)—H(T*—Int D*; Z)

be the homomorphism induced by ¢ which is expressed by a conjugacy class
of SL(2; Z).

Then there exists a transversely orientable codimension one C" foliation
of E (r =2) transverse to &, if and only if

Trace ¢y =2.

We remark that codimension one foliations &, in Theorem B and
Z . in Theorem C admit both transverse 2-plane fields.

It was a common pattern of proofs of Theorems A, B and C that
they needed firstly to classify codimension one foliations transverse to
some specified codimension one foliations. However these classifications
are hard tasks to describe and disturb the clear understanding of the
meaning of these theorems.

The purpose of this paper is to carry on the study of non-singular
vector fields on codimension one foliations of 3-manifolds and to give
direct proofs for Theorems A, B and C so that they can reveal the obstruc-
tion to admit transverse foliations, in the frame of dynamical systems
such as the compactification of vector fields (Section 6), asymptotic ho-
mology classes (Section 7) and the bifurcation of leaves (Section 9), with-
out using any classifications.

The methods used in this paper enable us to prove the following
theorem. Since the proof is contained in that of Theorem C given in
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Sections 7 and 8, we state here the result without proof.

Theorem C’. Let E be an orientable 3-dimensional C*= manifold which
is the total space of a C> bundle over S* with the torus T* as fibre, and let
F denote the codimension one C= foliation of E whose leaves are fibres of
this bundle. Let ¢: T*—T* be the monodromy map of this bundle and let
by H(T?; Z)—~H(T*?; Z) be the induced homomorphism.

Then there exists a transversely orientable codimension one C7 foliation
of E (r =2) transverse to F if and only if

Trace ¢, =2.

As a direct consequence of the main lemma (Theorem 10.1) to prove
Theorem B, the following theorem will be obtained:

Theorem D. Every 3-dimensional C= manifold has a codimension one
C~ foliation which does not admit any codimension one C" foliation (r =2)
transverse to it.

The phenomena of geometric dynamics appeared in this study may
be considered as a new object of the study of dynamical systems.

The author thanks Koichi Yano, Toshiyuki Nishimori and Atsushi
Sato for helpful comments.

§1. Some elementary properties of non-singular vector fields on the torus

In this section we recall some properties of non-singular vector fields
on the torus by Reinhart [5] and give proofs for the convenience of

the reader.
Let Q' be a subset of the 2-dimensional euclidean space R* and let

Y’ be a non-singular continuous vector field on Q. Then, by identifying
R? and the tangent space T,(R*) of R® at y € R* naturally, a continuous
map

F(¥): @-s
is defined by
FENN=YOMNY' ()

Let Q be a subset of the torus T and let Y be a non-singular con-
tinuous vector field on Q. Then a continuous map

f(¥): 05"
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is defined as follows. Let 7#: R*—T* be a covering map such that
#p, 9)=#(p-+n, g-+m) for (p, q) ¢ R* and arbitrary integers n, m. For
apoint z € Q, let 7 e R® be a lift of z, that is #(§)=z, and let v e Ty(R®) be
the tangent vector at £ such that d#(v)=Y(z). We define

()2 =v/|v].

Obviously f(Y) is well defined and continuous. The homotopy class of
f(Y) is uniquely determined independent of the choice of covering maps
R—TE

Now let C be an oriented simple closed C” curve (r =1) on the torus
and let Y, be the unit tangent vector field on C. Then the following
lemma holds ([5, Theorem 1]):

Lemma 1.1. If C is not homologous to zero, then the degree of
Sf(Y): C—S'is zero.

Proof. We take an imbedding g,: S'—77 such that g(S")=C. Let
g,: S'—T" be an imbedding homotopic to g, such that g,(S") is the image
of a line in R* by #.

Consider the covering map

#: S'XR—-T*
corresponding to the subgroup of z,(T? generated by {g,}. Then there
exist lifts g,, §,: S'—>S'X R of g, and g;:
o=, Tofh=g.
We can take g, and g, so that
&(SHNZ(S)=9¢.

Then £(SY)U&(S") bounds an annulus in S*'X R. This implies that &,
and g, are isotopic in S* X R and, thus, g0 and g, are regularly homotopic
in T%

Let g,: S*—>T?(0<t<1) be a regular homotopy between g, and g,
and let f,: S'—>S' (0<t<1) be a continuous map defined by

110=%:0) /| % o)) ©@es

Since f; is a constant map, the degree of f; is zero. This shows that the
degree of f(Y,) is zero. Thus this lemma is proved.
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In the following homology groups H,( ) denote always the integral
homology groups unless the coefficients are specified.

The following proposition due to Reinhart [5, Corollary 3] is used in
Section 3:

Proposition 1.2. Let X be a non-singular C” vector field on the torus
(r=1). If X has no closed orbit, then the homomorphism

(f(X)y: H(T?)—~H(S")
induced by the continuous map f(X): T*—S" is a zero map.

Proof. As is well known there exists an oriented simple closed curve
C, transverse to X. Let x, be a point of C, and let ¢(z, x,) denote the
orbit of X through x,. If {¢(¢, x,); t >0} N C,=9, then the o-limit set of
o(t, x,) is a closed orbit by the Poincaré-Bendixson theorem, since the
compactification of 72— C, by adding two points is homeomorphic to the
2-sphere S® This contradicts the assumption. Thus we have

{o(t, x5); t >0} N Cy£ 9.

Therefore, as is easily verified, there exists a non-singular C” vector field
X’ on the torus obtained from X by modifying vectors near C, such that
X’ satisfies the following:

(a) f(X'): T*—S"is homotopic to f(X).
(b) The first intersection of the positive orbit {¢(t, x); t >0} with C,
is X,.

Let C, denote the oriented simple closed curve formed by the orbit of X’
through x, and let [C,] denote the homology class represented by C..
Then, by Lemma 1.1, we have

(X)) (CD=0.

Furthermore, let X, denote the unit tangent vector field on C,. Then, as
is easily verified, two maps f(X,), f(X")|C,: C,—S* are homotopic. This
implies by Lemma 1.1 that

(X)) (CD)=0.

Since [C] and [C)] generate H,(T*?), the homomorphism (f(X")),, thus
(f(X)), is a zero map. This proves the proposition.
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§2. Reeb components

Let M be an n-dimensional C> manifold with or without boundary.
A codimension ¢ C7 foliation of M is denoted by a set # of leaves. In
case M =@, we understand that, for each connected component N, of
oM, the restriction & |N,={connected components of LN N,; L € #} of
& to N, is a codimension g or g—1 C7 foliation.

In the following sections, we fix an orientation on the circle S'.

The Reeb foliation of the solid torus S*X D? is the codimension one
C~ foliation constructed by turbulizing {6} X Int D* (§ € S*) in a collar of
the boundary S'XD* (Fig. 1). In the following, a point e*% of S* is
simply denoted by 4.

S'x.D? Stx D

> B

- -

{6} xInt D* N —
turbulization

- -

- ~< -

o

In case the turbulization is taken in the minus (resp. plus) direction of
S, the Reeb foliation is called the plus Reeb foliation (resp. minus Reeb
foliation) of S*X D* and is denoted by F & (resp. #&’). (Fig. 2). The
plus Reeb foliation F# " (resp. minus Reeb foliation Z#§’) has a con-
tracting holonomy with respect to the compact leaf 7°=S"X9D? in the
minus (resp. plus) direction of S*X {x}. The leaf of F &’ obtained from
{6} X Int D* is denoted by L,. Thus F'={L,; 0 S}TU{T?.

Since the Reeb foliations F & are given objects in this paper, we
may assume that leaves of #§ have a normalized form, that is, they are
symmetric with respect to S* X {0} and {6} X D* is tangent exactly to one
leaf L, of F§ (resp. F§) at one point (4, 0) for each 6 ¢ S'.

The Reeb foliation of the annulus S* X D' is a codimension one C”
foliation (r =1) constructed by turbulizing {f} X Int D' (8 € S*) in collars
of §'x{—1} and S*Xx{1}. In case the turbulization is taken in the minus

Fig. 1.
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St

Fig. 2.

(resp. plus) direction of S*, in other words, compact leaves S*X{—1} and
S'x {1} have both contracting holonomy in the minus (resp. plus) direc-
tion of S', the Reeb foliation of S'XD' is called a plus Reeb foliation
(resp. minus Reeb foliation) and is denoted by Z & (resp. Z &) (Fig. 3).

A codimension one C7 foliation ( =1) of the annulus S*'X D! con-
structed by turbulizing {f} X Int D* (§ € S*) in collars of S* X {—1} and S* X
{1} so that the directions are different for S'X{—1} and S*X {1} is called
a slope foliation and is denoted by Z ¢ (Fig. 3). The leaf of % or F,
obtained from {f} XInt D' is denoted by L,. Then F& and Z; are
{Ly; 0 STUS'X {1}, S'x{1}}.

In this paper, plus and minus Reeb foliations Z &’ and slope folia-
tions Z g of the annulus appear as foliations formed by orbits of non-
singular vector fields which are restrictions of vector fields tangent to

5

Ny

A
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codimension one foliations of 3-dimensional manifolds. The only condi-
tion we assume for them is the following:

(2.1) Each noncompact leaf L, of plus and minus Reeb foliations
F$ of S'X D' is tangent to {f} X D' at exactly one point, say z,, and is
transverse to {#'} X D' (¢ e S*) if 6+6¢" (Fig. 3). Each noncompact leaf
L, of slope component Z s is always transverse to {#'} X D' (¢’ e S?).

A foliated C™ I-bundle of S*'X D', that is, a codimension one C”
foliation of the annulus S*XD' (r=1) whose leaves are transverse to
{6} X D* for any 4 € S*, consists of compact leaves and a countable number
of codimension one foliations isomorphic to slope components (Fig. 4).

///\\

L

The following lemma will be used in Section 3.

Lemma 2.2. Let Z beone of %, FY and F 5, and let a proper
CT imbedding

g: D'>S'x D*

with g(—1) e S*X{—1}, g(1) e S*X {1} be given. Then there exists a
proper C” imbedding

g,: D'—>S'x D'

satisfying the following conditions:

(1) &(—D=g(—D, &D)=gD).

(ii) g, is isotopic to g fixing the end points g(—1), g(1).

(iiiy (@) Incase F=F5 or Z§, the curve g(D") is transverse to
leaves of & except one leaf, say L,, and is tangent to L,, at exactly one
point z,,. L, is tangent to g(D") from the minus side (resp. plus side) in
case F =F ) (resp. 7)) (Fig. 5).
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plus side

zﬂo

2(D"

minus side

(b) Incase F =F g, the curve g(D?) is transverse to leaves of Z .

Proof. First suppose that F =G or Z§. It is obvious that a

proper imbedding

g’ D' S'X D
such that g’(D")={0} X D', satisfies the condition corresponding to the
condition (iii) for g, (Fig. 6).

By modifying this imbedding g’ in collars of S*'x{—1} and S*x {1}
as written by broken curves in Fig. 6 if necessary, we obtain an imbedding
g, with desired property.

The proof for the case & =7 g is similar. Thus this lemma is proved.

Lemma 2.3. Let Z beoneof 5, 7% and F 5, and let §: S* X D*
—S'X D' be a CT diffeomorphism. Then there exists a C™ diffeomorphism

St D!

[ o

s N\

Fig. 6.

&(D")
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£,: S'X D'—-S*x D!

satisfying the following conditions:
(i) For each point 0 € S, it holds that

go(aa - 1) =g(09 - 1), c‘?o(ﬁ, 1) =§(0, 1),

and that {6} X D' and §,|{6} X D' are isotopic fixing their end points.

(i) (@) Incase F=F or Z5, each curve ({6} XD") (@S
is transverse to leaves of & except one leaf, say L, and is tangent to L,. at
exactly one point z,,.

(b) Incase F =% s, each curve §({6} X D) (6 € S") is transverse to
leaves of Z .

Proof. We can prove this lemma by the argument used in the proof
of Lemma 2.1. The details are left to the reader.

Let T°=S'XdD* be the torus which is the boundary of the solid
torus S'X D% Recall that S* and S*=0D? are oriented. We denote by
a and B the homology classes of H,(T%) represented by the longitude
S'X {x} and the meridian {xx} X 0D*® respectively, where *x € S, x ¢ dD%

Let X be a non-singular C" vector field (* >1) on 7% Denote by &
the codimension one C7 foliation of 7® consisting of orbits of X. We
assume that # has a compact leaf, say L,,,, and that the homology class
[L.omp] Tepresented by L., with the orientation induced from X|L,,, is
ac+ b with a=0.

Let L, (4 ¢ A) denote the compact leaves of # and let U, (6 € 2) be
the connected components of 7°—|_J;., L;. Then the boundary of a con-
nected component U, consists of compact leaves, say L, and L/, where it
may happen that L,=L,. We give L, and L’ the orientations induced
from X.

For a point z € U,, the a-limit set and the -limit set of z are con-
tained in L, UL/ by the Poincaré-Bendixson theorem. Furthermore, as
is easily verified, the a-limit set of z is one of L, and L/, and the w-limit
set of z is the other. The a-limit and the w-limit sets of z do not depend
on the choice of the point z. We assume here that L, is the a-limit set
and L. is the w-limit set.

In the following we denote by P,: S'XdD*—S* the projection onto
the first factor.

If the degree of P,|L,: L,—S" (resp. P,|L,: L,~S") is |a| and the
degree of P,|L.: L,—S* (resp. P,|L,: L—S") is —|a| with respect to
orientations of L/, L, and S, then the restriction & |U, of Z to U, is
said to be a plus Reeb component (resp. minus Reeb component) of Z,
and furthermore, if the degrees of P,|L,: L,—S"* and P,|L}: L,—S" are
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Sl

Fig. 7.

plus minus slope
Reeb component Reeb component component

the same, then the restriction & | U, of & to U, is said to be a slope com-
ponent of Z (Fig. 7).
As is easily verified, there exists a C” diffeomorphism

g,:S'XD'- U,

with the following properties (i), (ii):

(i) The degree of the map P,og,: S*X {0}—S" is positive.

(ii) g, is a leaf preserving map from a plus Reeb foliation, a minus
Reeb foliation or a slope foliation of S*X D' to Z | U, according as Z | U,
is a plus Reeb component, a minus Reeb component or a slope com-
ponent.

A union of slope components and compact leaves of F is said to be
an I-bundle component if the union of the underlying space is connected.

It is obvious that the number of ¢ ¢ X such that # | U, is a plus or a
minus Reeb component is finite.

We denote the plus Reeb components and the minus Reeb com-
ponents in & by Z | K" (i=1,2,---,p) and Z|K{? (i=1,2,---,9)
respectively, where K{* and K{~ are closed subsets of 7. And thus, the
restriction of & to the closure of T*—| J?_, KV —|Jo, K consists of
a finite number of -bundle components of Z.

§ 3. Non-singular vector fields on the Reeb foliation of the solid torus

Let X be a non-singular C” vector field (r=1) on the plus Reeb
foliation F¢" of the solid torus S*x D? that is, X is a non-singular C~
vector field on S'X D? such that the vector X(z) of X at ze S*XD*? is
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tangent to the leaf L, of &% containing z.

Let z(S* X D?) be the tangent bundle of S'X D? and let 7(F &) be the
tangent bundle of &, that is to say, (%) is an orientable 2-plane
bundle over S*X D* consisting of vectors of z(S* X D? tangent to leaves

of F¢. Since the classifying space for orientable 2-plane bundles is
P>(C), o(F ) is a trivial bundle. Thus the existence of a non-singular
vector field X as above and 2-plane fields transverse to #§ is obvious.

In the following we denote by P: S' X D*—(S* X {0})—T* the projec-
tion defined by

P(x, y)=(x, y/|yD-
Thus the map P|(L,—{(4, 0)}): L,—{(8, 0)}—T" is locally diffeomorphic.

Lemma 3.1. Let f(X|T*%): T°—S" be the continuous map defined in
Section 1. Then, for a simple closed curve {§,} X 9D* in T?, we have

(f(X| T%)4([{60} X 8D°]) 0.

Proof. Consider the non-singular C" vector field X|({6,} X3D%) on
{6} x9D*. Now suppose that

(f(X] T%)([{60} X 8D =O0.

Then the map f(X| {0,} X 8D%): {6,} X dD*—S* is null homotopic. On the
other hand, for the unit tangent vector field Y, on the simple closed curve
{6,} X 8D* with a specified orientation in 77, the continuous map

J(Xo): {6} X8D*—S"

is null homotopic by Lemma 1.1. Thus two continuous maps f(X]|{f,} X
aD% and f(Y,) are homotopic.

Denote D*(r)={(x, y) € R*; ¥*+y*<r?}. Then we may assume that
{6,} X 8D*(1—e¢) is a simple closed curve of a noncompact leaf L of F &
for sufficiently small 0. Since f(X|{6,} X 9D*) and f(¥,) are homotopic,
as is easily verified, we can define a continuous family ¥, (0<7<1) of
non-singular continuous vector fields on {f,} X 3D*(1 —¢) such that Yj=
X|({6,} x3D*(1—¢)) and that Y] is a unit tangent vector field of {f,} X
oD*(1—¢), by making use of the homeomorphism P|({f,} X 3D*(1—¢)):
{6} X 0D*(1 —e)—{0,} X 3D*, where P is the projection defined above.

By considering L= R, two continuous maps

f(Yé)’ f_(Y{)‘ {00} XaDZ(I —S)——)Sl

are defined as in Section 1. These two continuous maps are homotopic.
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On the other hand, it is obvious that the degree of f(Y7}) is zero and the
degree of (Y1) is 1. This is a contradiction. Thus this lemma is proved.
The following proposition is due to Davis-Wilson [1, Corollary 4.2]:

Proposition 3.2. Let X be as above. Then the non-singular C” vector
field X| T*? on the compact leaf T* of ¥ has at least one closed orbit.

Proof. 1t follows from Lemma 3.1 that (f(X|T?), is not a zero
map. By Proposition 1.2, this implies that the C” vector field X|7* on
T? has a closed orbit. Thus this proposition is proved.

In fact X| T* has at least two closed orbits (see Lemma 3.4).

Let &, denote the one dimensional C” foliation of the solid torus
S1x D*? whose leaves are orbits of X. Then the restriction of & ; to each
leaf L of the plus Reeb foliation & § is a codimension one C” foliation
of L. By Proposition 3.2, the codimension one C” foliation & ;| T* of
T* has at least one compact leaf, say L.

Lemma 3.3. Let [L,,,,] be the homology class represented by L,,,,.
Then it holds that

[Leompl=aa+bB, a0,
where a, B are generators of H,(T*?) defined in Section 2.

Proof. Suppose that a=0, thus [L,,,,]=+p. Then, by Lemma 1.1,
(f(X]|T%),(B=0. This contradicts Lemma 3.1. Thus this lemma is
proved.

Since Z x| T* has a compact leaf L, with [L,,,]=aa+bp, a+0,
as was observed in Section 2, there exist closed subsets K{*), K{¥, ...,
KM, K&, K§9, - - -, K7 of T* such that ;| K{Y (i=1,2, ---,p)are
plus Reeb components and & | K™ (i=1, 2, ---, q) are minus Reeb
components, and that the restriction & ;|T? to the closure of 7°—
WP KD — UL, K{™ is a disjoint union of finite number of I-bundle
components.

Lemma 3.4. The number p-q is an even integer.

Proof. Two compact leaves bounding K{* or K{~ have different
directions and two compact leaves bounding a slope component have the
same direction with respect to the directions induced from X|7® This
implies that p+¢ is even.

Lemma 3.5. Let [L,,,]=acx+bB,a+0,as in Lemma3.3. Then there
exists a C" imbedding
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g: S'>T*

satisfying the following conditions (Fig. 8):
(1) The homology class [g(S")] represented by g(S*) is + B.
(i) g(S") is transverse to leaves of & x| T* except |a|(p+q) points,
say Zl,j> Zz,ja Tty Zp,j’ z;,ja Zg,j, Tty Z;,j (]:12 25 Tty IaDa SuCh that
Ziy]'eInth§+) (i=1,2,-~«,p;j=l,2,~--,|a|),
Zz{,jeIntKg-) (i=1,2,"',q;j=1,2,"',|a|),
and a leaf of F x| K(" (tesp. & x| K(™) is tangent to g(S") at z, ; (resp. z.,,;)
Sfrom the minus side (resp. plus side) of g(S).
plus side

K K

7 (7
oy

i3

8(s")

minus side

Proof. Let L,,, be a compact leaf of & | T* and let g,: S'—T* be
an imbedding such that g,(S*)={6} X8D? Then the algebraic intersection
number of L, and g,(S") is +|a]. The manifold obtained from T* by
cutting along L, is an annulus. Thus, by an argument using Schoen-
flies theorem, it follows that there exists an imbedding g,: S'—T” isotopic
to g, such that g,(S") intersects with L,, at |a| points. By a similar
argument we have an imbedding g,: S'— T isotopic to g, such that g,(S")
intersects with each compact leaf of Z x| T* at |a]| points.

Let & x| K denote one of plus Reeb components and minus Reeb
components of 7 5| 7%, where K is a closed subset of 7% Then g,(SHYNK
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consists of disjoint |a] simple curves, say g : (D', 0D")—(K,9K) i=1, 2,
--+,|al. Now we apply Lemma 2.2 to each g. Then as a union of
these simple curves, we obtain an imbedding g: S'—7? we are looking
for. Thus this lemma is proved.

For the imbedding g as in Lemma 3.5, the leaves of & x| T* at the
plus side of the curve g(S*) form a family of concentric half circles with
center z, ; near z,,; and an upper part of a family of conforcal parabolas
near z/,; (Fig. 9, (a)).

According to the condition (i) of Lemma 3.5, for a noncompact leaf
L, of F§, there exists a simple closed C™ curve C of L, situated very
close to g(S*) in S* X D% Let D denote the compact subset of L, bounded
by C which is C™ diffeomorphic to the 2-disk.

Consider the C™ vector field X|D on D. Since C is very close to
g(S"), the vectors of X|D are tangent to the boundary 8D of D at exactly
|al(p+q) points Zy,4 (=12 ---,p;j=12, .-, |aD: Z_,,;,j(l'=1, 2, .-, 9;
j=1,2, ---,la]) such that z,, (resp. z; ;) is very close to z, ; (resp. z},;)
and, furthermore, the orbits of X|D form a family of concentric half
circles with center Z, , near z, ; and an upper part of conforcal parabolas
near z ; (Fig. 9, (b)).

We define a codimension one C° foliation 4 of the double DU D of
D with |a|(p+q) singular points z,; (i=1,2, ---,p;j=1,2, ---,lal),
z,(=41L2,--+,9;j=1,2, ---,]al) by the double of the orbits of the
vector field X|D. The index of the singularity of £ at z, ; (resp. at z; ;)
is 1 (resp. —1) (Fig. 9, (¢)). Thus, since DU D is homeomorphic to the
2-sphere, we have

lal(p—g)=2.
zi ‘@ S Z 4

(a) (V] ©
Fig. 9.
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The integer p—gq is even by Lemma 3.4. Thus the following proposition
holds. (Compare with Davis-Wilson [1]).

Proposition 3.6. Let ), X, Z 4, L.y, ac+bp, p and q be as above.
Then we have

la|=1, p—gq=2.

A codimension one C” foliation & of the torus (r >1) having com-
pact leaves L, (4 € A) with the homology class [L;]==aa+b8, a=0, is said
to be normalized if the following conditions are satisfied (Fig. 10):

(i) Every L, is the image of a line in R® by the projection #: R*—T=

(i) For every noncompact leaf L of a plus or a minus Reeb com-
ponent of &, the leaf L is transverse to {6} X S* (f € S*) except one, say
{8} X S*, and is tangent to {6} X S* at exactly one point.

Vi)
V' A

0@/) ()
VY YN

Now we have the following proposition:

Proposition 3.7. Let X be a non-singular C* vector field (r =1) on T*
with a closed orbit C such that the homology class [C]=aa+ b, a0, and
let F denote the codimension one C” foliation of T* formed by orbits of X.
Then there exist a normalized codimension one C” foliation Z, of T* and a
C" diffeomorphism

g: T*T*

satisfying the following conditions:
(i) g is an isomorphism between & and Z .
(ii) g is isotopic to the identity.
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This proposition can be proved by using Lemmas 2.2, 2.3 and 3.5.
We omit the details.

§4. Non-singular vector fields on turbulized foliations % of punctured
surface bundles over the circle

Let 2,(m) denote a compact 2-dimensional C= manifold obtained
from the closed orientable surface ', of genus g by deleting m disjointly
imbedded 2-disks Dj, D%, - .-, D3,: )

5 m)=2,—\) Int D:.

Let E be a compact connected orientable 3-dimensional C~manifold with
boundary and let z: E—S" be a C* fibering over the circle S* with fibre
2 (m), where m=1. Thus E is constructed as follows. Suppose that

é: 3 (m)—3 (m)

is an orientation preserving C= diffeomorphism. Then F is a quotient
space obtained from the product space I X 2 (m) by identifying (0, y) and
(1, ¢(y)) for y e X' (m) and the projection r is the map (¢, y)=1¢ (mod 1)
fortel ye 2, (m).
The boundary 0F of E consists of disjoint union of tori, say 717, 1%,
-+, T2 Incase (D) =0oD? (i=1, 2, - - -, m), we have s=m.

Recall that an orientation is specified on the circle S*. In the follow-
ing a point ¢***’ of S*is simply denoted by § € R and the orientation of
S* is compatible with the natural orientation of R.

We choose a set of generators «,, 8, of H(T%) (k=1,2,---,s) so
that

(T T ar=ci[S"], ¢,>0,
(= TD)B: =0,

where [S'] denotes the homology class represented by .S'. Then we have
D Ce=m.

A turbulization of the base space S* in the minus or the plus direc-
tion induces a turbulization of the boundary of 7% (k=1, 2, - - -, ).

Let ¢ be a function defined on the set {1, 2, - - -, s} whose values are
1 or —1. We let %#¢ denote a codimension one C* foliation of E
obtained by turbulizing the interior of each fibre of z: E—»S* in the sign
(—e(k)) direction in a collar of a7 for k=1,2, - -, s, similarly as to
construct #$ in Section 2 (Fig. 11)..
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St .?f, i \/'-

(D= =e@)=1

Fig. 11.

Let L, (0£6<1) denote a noncompact leaf of F#: obtained from
the interior of #~'(f) by the turbulization. Then we have

Fe={Ly;0e STU{T?;k=1,2, ---, ).

Let X be a non-singular C* vector field (>=1) on the codimension
one foliation #¢ of E, thatis to say, the vector X(z) of X at ze E is
tangent to the leaf of #* containing z. Let % ; denote the one dimen-
sional C" foliation of E whose leaves are orbits of X.

Suppose that the restriction Z 4| T% of & y to T?2 has a compact leaf,
say L,. We denote by [L,] the homology class of H,(T%2) represented by
L, with the orientation induced from X. Then, if (x| 7%),([L,])#0, plus
Reeb components, minus Reeb components and slope components of
Z x| T? can be defined by using the projection «|T%: T2—S! as in the
case of the plus Reeb foliation Z# & of the solid torus (Section 3).

We define integers a,, b, p; and g, (k=1,2, - - -, 5) as follows:

(4.1) (1) Incase Z,|T% has a compact leaf, say L,, let

[Ek]zak“k +bk‘8k'

Furthermore, in case a,#0, let p, and g, denote the number of plus
Reeb components Z ;| K (i=1,2, -- -, p,) and the number of minus
Reeb components & 4| K{7 (i=1,2,---,q,) contained in F;|T; re-
spectively, and, in case a, =0 thus [L,]= 48, let p,=¢,=0.

(2) Incase & x|T% has no compact leaf, let

a,=b,=p,=q,=0.

Then the following proposition generalizing Proposition 3.6 holds
(Tamura-Sato [6; Proposition 2], Nishimori [2; Proposition 4.3]):
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Proposition 4.2. Let E, 7%, X,  x, a4, by, ¢4, Py, and q,, be as above.
Then we have

S

3 kel an] (pr— ) =22 —2g —m).
Proof. First suppose that Z ;| T? is as (4.1) (1). We take a C" im-
bedding

g S'>T2

as follows:

(i) If a,+#0, g, is an imbedding g as in Lemma 3.5 for «a,=a,
1Bk=ﬁ= a,=4a, bk=b9pk=p and 9:.=4q- _

(i) If a,=0, g, is an imbedding such that g,(S)=L,.
Then, in the case of (i), the leaves of & x|T%: are transverse to g.(S")
except |a,|(Pr+9:) POINLS Z 155 Zin g5 * * s Zk, pxs 47 Zitgs Zings s Zhoaid
(=12, -.-,]a;]), and a noncompact leaf of # ,|T% contained in the
plus Reeb component & x| K(*) (resp. minus Reeb component & »| K}
is tangent to g(S") at z, , ; (resp. atz;,,) for i=1,2, -- -, |a,| from the
minus side (resp. plus side) of g(S*) (Fig. 12).

plus side ] plus side

ek)=1 ek)=—1

- ( (=)
K;Gji) K;c,t) Kk‘:i) ch,i
minus side minus side

Fig. 12.

In the case of (ii), as is easily verified, there exists a non-singalar C*
vector field Y®) on T7% such that the map f(Y®): T°—S! is homotopic
to the map f(X|T3): T°—>S* and the vectors of Y*®|g,(S") are transverse
to g,(S"), where f(Y®) and f(X| T}) are maps defined in Section 1.

Next suppose that Z ;| T2 has no compact leaves ((4.1) (2)). Then
we let
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g, S' T3

be a C" imbedding such that g,(S?) is a connected component of the inter-
section of 7% with a fibre of z. By Proposition 1.2, the homomorphism

(f(X[T))y: H(TR)—H(S")

is a zero map. Thus, as is easily verified, there exists a non-singular con-
tinuous vector field Y on T3 such that the map f(Y®): T*—S" is
homotopic to f(X|T7%) and that the vectors of Y* |g,(S?) are transverse
to g,(S").

Now let L be a noncompact leaf of #¢. Then, as is easily verified,
we can take simple closed C” curves C{® (k=1,2, ---,5;1=1,2, - -+, ¢c})
in L such that C{® (I=1, 2, - - -, ¢,) are very close to g,(S") and that the
union of C{® (k=1,2, ---,s5;1=1,2, --.,¢,) bounds a compact subset
of L, say 2. Let us consider the vector field X|3 on X. 1In case &F 4| T3
is as (4.1) (1) and a,#0, the vectors of X|2X are transverse to C{® (I=1,
29 Tt ck) except Iak[(pk+qk) POintS Zk,i,j,l (l:'l, 23 ) pkajzla 29
«-,|ag)and z; ., (=12, ---,4,:j=1,2, - - -, |a;|) such that z, , , ,
and z; , ; , are very close to z, , ;, and z; , ; , respectively, and that the
orbits of X| 2 form a family of concentric half circles with center 2z, , ;,
(resp. an upper part of conforcal parabolas) near Z,; ;, and an upper
part of conforcal parabolas (resp. a family of concentric half circles with
center z; ,; ,) near #; . ,; , if e(k)=1 (resp. ¢(k)=—1). (Fig. 12).

We let IT be a subset of {1, 2, -. -, s} such that k ¢ I] if and only if
F 4| T% is as (4.1) (1), a,=0, or as (4.1) (2). Then by modifying the
vector field X |2 in collars ¢(C{®) of C{® for k e Il making use of the
vector field Y, we obtain a non-singular C” vector field X, on 2 with
the following properties:

(1) X E—=Usen c(CIN=X[(2—Uyen c(C{™).

(i) Vectors of X, are transverse to C{* for k e /1.

We define a codimension one C° foliation # of the double 3 U ZX of
Y with 375 i c|a.|(p+9g.) singular points z,,,, (k¢ ll,i=1,2,. -,
pka]=1’ 2’ Tt Iak]9l=13 2, ) ck)’ lec,i,j,l (k ¢ IZa l=1, 2: Tt qk,J=
1,2, ---,]ax|; 1=1,2, - - -, ¢;) by the double of the orbits of the vector
field X,. Since the indices of the singularities at z, , ;, and these at
z.5 are land —1 (resp. —1 and 1) if e(k)=1 (resp. e(k)=—1), this
proposition is proved by considering the Euler number of 2'U 2.

Now let 7: E,—>S! be a C~ fibering over S* with 3 (1)=2%,—Int D?
as fibre and an orientable 3-dimensional manifold E, as total space. Then
0FE,=T" Let« and B be generators of H,(3E,) such that

T ()=[S"], 7.(8)=0.
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Let &, denote a codimension one C” foliation % ¢ of E, for which ¢(1)=1.
Then the following proposition is a direct consequence of Proposition 4.2
([6, Proposition 2]):

Proposition 4.3. Let E,, & ., « and B be as above, and let X be a non-
singular C™ vector field (r = 1) on & .. Then the following hold:

(i) The C7 vector field X|0E, has at least one closed orbit.

(ii) The homology class represented by a closed orbit is ax+bj, a#0.

(iii) Let p and q be the numbers of plus Reeb components and minus
Reeb components in the codimension one foliation formed by the orbits of
X|0E,. Then it holds that

lal(p—q)=2(1—2g).

§ 5. Transverse foliations

Let M be an n-dimensional C* manifold and let & be a codimension
g C7 foliation of M (r=1). A codimension g’ C” foliation &#’ of M with
q-+q'<nis said to be transverse to %, denoted by F { &, if, at each
point x € M, the leaf L, of & through x and the leaf L} of &#’ through x
intersect transversely at x, that is, T,(L,)+ T,(L;)=T.(M).

Let

FONF ={Connected components of LNL'; Le &, L' e F'}.

Then & N &’ is obviously a codimension g+¢q’ C™ foliation of M.

Let D’ denote the half 2-disk {(x, y) € D*; y=0} and let &} denote
the restriction of the plus Reeb foliation F#§° of S'X D*to S'X D%. Let
Z’. denote the codimension one C= foliation of S'xD? obtained
from two copies of ) by identifying two copies of compact subsets
(S'XDi)NaD? (Fig. 13, (b)). Then & is transverse to F§ . Fy)is
called the plus half Reeb foliation of S* X D’ (Fig. 13, (a)).

F 4 and TS, below are codimension one CT ‘foliations’ of 3-dimen-
sional C> manifolds with corner. Let H denote a hexagon with vertices
Uy, Uy, -+ -, Us. Let TS, denote a codimension one C* “foliation’ of S*x H
consisting of 3 compact leaves S* X v,v;, S X U, S'XU,U; and noncom-
pact leaves such that they are of the same form and one of them is as
Fig. 14, (a). TS, is called the T'S component of type 1. Let &’ be a
codimension one C~ foliation of S* X D* consisting of T'S; and three copies
of F) by identifying S* X v,v,,, with the compact leaf of F G for i=1,
3,5. Then &’ is transverse to %’ (Fig. 14, (b)). For details, see
Tamura-Sato [6].

In a previous paper [6], the classification of codimension one C*
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foliations transverse to the Reeb foliation of the solid torus is completed.
And the classifications of codimension one C= foliations transverse to
codimension one C= foliations of 3-manifolds of more general types are
obtained by Nishimori [2].

Let E, ¢ and T? be as in Section 4. We remark that ¢ is trans-
versely orientable. Suppose that #’ is a transversely orientable codimen-
sion one C” foliation of E transverse to &% (r=2). Then F =0 F’
is the one dimensional C" foliation of F consisting of C” simple curves of
leaves of #:. For a leaf L of F*, the restriction Z|Lof Z to L is a
codimension one C” foliation of L.

Since ¢ and &’ are transversely orientable, we can give consistent
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orientations on elements of #. Let X denote the vector field on E con-
sisting of unit tangent vectors of curves belonging to #. Then X is a
non-singular C"~! vector field on E tangent to (leaves of) #:. Z consists
of orbits of X.

A C7-! vector field X on Z¢ obtained from transverse foliation &’/
as above is said to be transversely integrable.

By Propositions 3.6, 4.2 and 4.3, we have the following proposition.

Proposition 5.1. Let & =%: 0 F’ be as above.

(I) Let ay, By Gy by, ¢x, Py, and g, be as in Section 4 for F |9E.
Then the equation of Proposition 4.2 holds.

(I1) Let E, be as in Section 4 and let «, B, a, p and q be as in Section
4 for Z |0E,. Then the following hold:

(i) & |9E, has at least one compact leaf.

(i) |al(p—g)=2(1—2g).

In particular, |a|=1, p—q=2 in case E,=S'X D"

Let V={V(z); z € E} be a non-singular C"~* vector field (r=2) on
E satisfying the following conditions (Fig. 15):

(52) (i) |V(@|=1 (ze E) (with respect to a Riemannian metric
on E).

(ii) Each V(z) is tangent to the leaf of #’/ containing z.

(iii) Each V(2) is transverse to the leaf of ¢ containing z and, in
case z is contained in a noncompact leaf L, (6 € S*), ¥V (z) is towards the
minus direction of S*. (The latter condition implies that V{(z) is inward
(resp. outward) if z e T3 and e(k)=1 (resp. e(k)= —1).)

(v) da(V(2)=0ifze T2 (k=1,2,---,9).

The existence of such a C"~*! vector field V is obvious.

14 T}

© ;
L,
. -] .
\\ | e -t
. R} N
~
o ‘ - r ~
o
S b = ) ]
-"‘_

S!

e(D)=¢(3)==1 e(2)=1-1
Fig. 15.
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Let ¢(?, z) denote the integral curve of ¥ through z :¢(0, z)=z. For
two noncompact leaves L,, L, of #< (0, ¢’ € S"), we define a C” map

Dy p: Ly—L, (OO <<1)

by that @, ,(z) is the first intersection of the positive orbit {¢(?, z); £ >0}
through z with L, for ze L,. Then it is clear that @, , is a C7 dif-
feomorphism and maps each leaf of Z | L, onto a leaf of & |L,. There-
fore Z | L, and & | L,, are always isomorphic.

Now let ,, 8;,a, and b, (k=1,2, - - -, 5) be as in Section 4 for F |9E.
Suppose that a,+0 for k=1,2, ---,s. Then, by Proposition 3.7, there
exist a normalized codimension one C” foliation Z§® of T2 and a C dif-
feomorphism g®: T*—T* isotopic to the identity such that g® is an
isomorphism between Z | T and Z{* for k=1,2, ---,s.

Let

i Ti—>TE,  0=t<1,
gi®P =identity, g{¥=g®

be the isotopy for k=1,2, ---,s5. Let c¢,: T*XI—E be a sufficiently
thin collar of T3 in E such that =(c,({y} XI)=na(c(»,0)) (y e T* for
k=1,2, ---,5. Then, by realizing the isotopy g{® (0=<¢<1) in the collar
¢ (T*x D) (k=1,2, ---,5), we obtain a C” isotopy

8. E>E, 0<t<I

having the following properties:

(i) &, is the identity map.

(ii) & |Ti=g"®, k=12, ---,s.

(i) Let (8), % ={8.(L); L ¢ #’} be a codimension one C” folia-
tion of E (0=t <1). Then (8,), % is transverse to % for all .

Thus we have the following proposition:

Proposition 5.3. Let E, #¢, T: and &’ be as above. Then there
exists a C" diffeomorphism . E—E isotopic to the identity map such that,
for the codimension one C" foliation §,F' ={g(L); L' ¢ #'}, one dimen-
sional C7 foliation (F: N 8, F)|T: of T} is normalized for k=1,2, - - -, s.

§ 6. Compactification of vector fields on noncompact leaves of 5

Let z: E,—S" be a C~ fibering with one punctured surface of genus
g, 2, (1)=2,—Int D* as fibre and an orientable 3-dimensional manifold
E, as total space, and let &, be a codimension one C* foliation of E, with
e(1)=1 as in Section 4.
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Suppose that &’ is a transversely orientable codimension one C*
foliation of E, (r=2) transverse to &#,. Let X be a non-singular C"-!
vector field on &, such that the orbits of X form the one dimensional C”
foliation & =%, N &’ as in Section 5.

Furthermore let ¥ be a non-singular C"~! vector field on E, as (5.2)
and let ¢(%, z) denote the integral curve of V through z ¢ E,.

Now let f: E,—R be a C= function such that

f()>0 if zelntE,
f0=0 if zedE,.

The existence of such a function f is obvious. Define a non-singular
C7-* vector field X, on Int E; by

X, (2=f(2DX(2) (zelInt E).

Then two vector fields X|Int E; and X, have obviously the same orbits.

Let '

y: Int E;—Int E;

be a natural C” diffeomorphism which maps each noncompact leaf L,
of &, onto Int z~'(f) for 6 ¢ S', where L, is the leaf obtained from
Int z~*(6) by the turbulization.

We compactify Int E, by adding a circle S&.={p..(8); # € S'} so that
Int z~'(8) U p..(6) is the one point compactification of Int z-'(§) for each

6 e S!, and denote by E, the closed 3-dimensional C* manifold thus
obtained:

E,=IntE,USL.

Denote the orientable surface Int 7=(6) U p..(6) of genus g by (2,),. Then
by defining the map #: E;—S* by

(2 Do) =0,

E is the total space of a C= fibering over S* with 3, as fibre and # as
projection.
Let us define a homeomorphism
$: T3,
by
9o @,y ,0n7(2) z € Int z71(1),

¢(Z)z{pm(0)=pm(l> 2= p.(1),
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where @, , is the homeomorphism defined in Section 5 and we consider as
2y=Intz7'(YUp.(1) =Int z7'(0) Up..(0), 77(z) € L;, Dy 097 '(2) e Ly=
L,. Then E is the quotient space obtained from the product space X3 p
by identifying (0, y) and (1, §(»)) for y e 3.

Let ¢: 2 (1)—2 (1) be the C= diffeomorphism used to construct E,
in Section 4. Then the following proposition is obvious:

Proposition 6.1. Let ¢ and ¢ be as above. Then the following diagram
commutes:

Hl(zga))—“i*—»H,(zg(l»

H, (2 o—H (2 )
Let us define a continuous vector field X on E, by

()= {dv(Xf(n“(Z))) ze E,—S.,
0 zeSh.

Then the restriction X|(E,—S.) is a non-singular C~* vector field and
the restriction X [(Z,), is a continuous tangent vector field on (2',), for
6 e S'. Wedenote by Z, the codimension one foliation of (2',), with a
singularity p..(d) formed by the orbits of X|(Z Do Thus Z,1((Z ), —p(8)
is a codimension one C7-! foliation. Making use of the C” diffeomor-
phism @, ,: L,—L, defined in Section 5, we define a homeomorphism

éa',o: (Z‘g)ﬂ—)(z'g)ﬂ’ 0= <o<1)
by
70y p077(2) z€(2)s—p(0),
pw(al) Zzpw(a)'
It is obvious that &, , maps each leaf of Z, onto a leaf of .7 ,.
In the following we study the property of the vector field X,=X|(2 ),
on (X,), around the singular point p..(f). We take a simple closed curve

C on 9E, so that z(C)=0¢ S".
Let R_ denote the interval (— oo, 0] and let

Qse', (2) :{

R_XS'0E,
be a submersion such that
@[y} XSY=umodl (ueR),
70} x SH=C.
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Let X be the non-singular C”-' tangent vector field on R_ X S* such that
dz(X(u, p))=X (7, »)) ueR_, yeSo.

We can take a simple closed curve C, on L, (1 € S*) so that C, is very
close to 9E, and the integral curves ¢(¢, z) intersect C, for any ze C. Let
D, denote the compact subset of L, bounded by C, and let W, =L, —Int D,.
Then W, is contained in a thin collar of 9E, in E,.

It is easy to see that there exists a C” diffeomorphism

d,: R_XS'-W,

such that @,({0} X §")=C, and @,(u, ¥) € (U >0 ¢, Zo(w, 1)) N L,

Let D_=(R_XSY)U{p.} denote the one point compactification of
R_XS'. D_ is homeomorphic to the 2-disk. Let X_ be a continuous
vector field on D_ defined by

1 =
~ — X(u, z=(u,y) e R_XS!,
Fo=lTrs (u, ») (u, ») X
0 Z=P,.

The non-singular C"-! vector field X|0E, has at least one closed
orbit such that the homology class represented by it is aa+bB, a=0 by
Proposition 4.3. Thus the codimension one C* foliation & |0E, is de-
composed into plus Reeb components & |K{*, Z|K{", ---, F| KL,
minus Reeb components & |K{™, Z|K{™, - -, Z |K$ and the union
of foliated I-bundles which is the restriction of .Z onto the closure of

aEl—ij K§+)——Lq) K{-) as in Section 3.
i=1 i=1
Let K (i=1,2,---,p) and KO (i=1,2, - - -, q) be subsets of D_
defined by
Rp=2* (K() (i=1,2,--,p),
RO=#" (K ((=1,2, -+, 9).

Then the following proposition is a direct consequence of properties of
plus and minus Reeb components (Fig. 16):

Proposition 6.2. The orbits of X., on D_ are as follows:

(i) Ifzis a point of Int K¢® (i=1,2, - - -, p) near p.., then the a-
limit set and the w-limit set of z are both p.., or one of the a-limit set and
the w-limit set of z is {p..} and the orbit r (¢, z) of X. through z goes out
D_ for t—— o0 or t—>c0.
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(i) If zis a point of Int K{) (i =1, 2, - - -, q), then the orbit y(t, 2)
of X.. through z goes out D_.

(ii) If z is a point of D_—\J?., Int K —\Jo_, Int K- —{p..} near
D, then one of the a-limit set and the w-limit set of z is {p.} and the orbit
W(t, z) of X, through z goes out D_ for t—co (resp. t— —o0) if p., is the
a-limit set (resp. w-limit set) of z.

Fig. 16.

Define a map
By: D_—(Z), (0=0<1)
by
. Gyionod e R_XS,
@,(Z)={ 9,1°7 (2) z
P-(6) Z=7P..

Then it is obvious that &,: D_—®,(D_) is a homeomorphism and
Dy (R.XSY): R_XS'—(Z ),

maps each orbit of X into an orbit of X|(Z )s. Thus we have the follow-
ing proposition.

Proposition 6.3. &, maps orbits of X., around p.. to orbits of X|(Z oo
around p..(6) isomorphically for 0<6<1.

We remark that the consideration on E, in this section can be natu-
rally generalized to F as in Section 4.
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Let z, be a point of D_ which is contained in 8K{* and is near p...
Thus one of the «-limit set and the w-limit set of z, with respect to X, is
{p..}. Let [ be the simple curve of D_ with end points z, and p,, consist-
ing of a part of an orbit of X, through z, and p... Then the following
proposition important to prove Theorem C in Section 8 holds:

Proposition 6.4. If |a|=1, then for subsets &) and 1) of (= =
(2 g, we have

Go(1) > (k).

Proof. Since z, e 0K(®, we have 7(z) € 0K®. Thus 7(z,) is a
point of a compact leaf of Z, say #(z,) € L..

Since @,: D_—(Z,), maps orbits of X, to orbits of X|(Z,),, the
subsets @l(lo)——{pm(l)} and @O(lo)—{pw(l)} are contained in orbits of
X|(Z ) say () —{p.(}C Ly, D()—{p.()}CL,. Denote z,=(u,y)
e R_xS'. Then, since L, is a simple closed curve and |a|=1, we have
(u—1,y)el,. Let I denote the simple curve contained in /, whose end
points are z,=(u, y) and (u—1,y). Then, as is easily verified, @,() is
contained in @,(;)—{ p..(1)} and that & (u—1, y)=d,(z,). Thus this pro-
position is proved.

§7. Vector fields on the torus with one singular point and asymptotic
homology classes

In this section let X be a continuous vector field on the torus I*
with possibly one singular point such that X is CT for regular points
{r=1) and let ¢(z, z) denote the orbit of X through z e T*

For a point z, of T?% we can classify the w-limit set of z, as follows:

(7.1). (i) The o-limit set of z, consists of one singular point.

(ii) The orbit through z, is periodic and, thus, the w-limit set of z,
is a closed orbit.

(iii) The orbit through z, is not periodic and the w-limit set of z,
contains a regular point.

Now suppose that the w-limit set of z, is as (iii) above. Then, since
a regular point has a local section through itself, there exists a simple
closed C" curve C, transverse to X which intersects the positive semi-orbit
{o(t; z,), t =0} through z,. By the assumption that the singular point of
X is at most one, the homology class [C,] represented by C, is non-zero.

In case the positive semi-orbit through z, intersects C, at only finite
points, the o-limit set of z, is contained in 7°— C,, and thus, by applying
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the standard arguments of dynamical systems on the 2-sphere, it follows
that the w-limit set of z, is a closed orbit or a union of countable orbits
whose «-limit sets and -limit sets are the singular point.

Let #: R°—T* be a universal covering as in Section 1 and let X be a
continuous vector field on R* such that

7,()=X.

Furthermore let @ and 5 denote the homology classes represented by the
images of the x-axis and the y-axis by # respectively.

Let z, be a point of 77 such that the w-limit set of z, is not a singular
point, and let , € R* be a lift of z,, i.e. #(%)=z,. Let ¢(z, %,) denote the
orbit of X through 2, and let ¢(¢, 7)) =(%(¢), 7(¢)) be the coordinates with
respect to the x-axis and the y-axis of R®. Then the following lemma
holds:

Lemma 7.2. lim (x(¢): y(2))=4d: b,
oo

where 4 and b are real numbers and the pair (4, l;) is uniquely determined
up to positive multiples, that is to say, an equivalence class of the pairs of
real numbers such that at least one of them is non-zero by the relation
(@, b) ~ (24, 2b) for 2>0 is uniquely determined.

Proof. (1) First suppose that the orbit through z, is not closed
and the w-limit set of z, is a closed orbit, say C“. Let p, be a point of
C® and let I, denote a local section through p,. We denote the set of
intersection points of the positive semi-orbit {¢(?, z,); t =0} with /, by v,
(i=0,1,2, -..), where

Ui=90(ti, ZO), l=05 1’ 2: oty

051, <t, <ty <+ - -,
Let C® be a simple closed C° curve consisting of {o(?, z,); £, <t <t .4}
and the subset of /, bounded by v, and v,,,. Then, since the singular
point of X is at most one, the homology class [C®] represented by C®
is non-zero and, for sufficiently large i, [C¥]=[C], where [C“] is the
homology class represented by the w-limit set C of z,. This implies

that at least one of lim,_,., X(¢) and lim,_., J(¢) is ®=o00. We let [C@]=
a@+b'8. Then, for a constant r, the inequalities

a’j _réx‘(tl+])—)?(tl)§a/_]+r
bj—r _§)7(fi+j)—7(ti)§b7+r

hold for j=0, 1, 2, - - - and sufficiently large i. Thus we have
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lim (%(t): 7())=a’: b'.
t—o0

(II) In case the orbit through z, is closed, the lemma is obvious.

(III) In case the w-limit set of z, is a union of countable orbits
whose a-limit sets and w-limit sets are the singular point, this lemma is
proved by a similar argument as in (I), since only a finite number of the
closures of orbits contained in the w-limit set of z, are not homologous to
zero.

(V) Let C, be as above and suppose that {¢(t, z,); =0} intersects
C, at infinite points u,, u;, u,, - - -, Where

u,=e(t],z) i=0,1,2,---,
0 < <ep<e v e,

Let [C)]l=c’@+d’p and let ¢’m+d’p and €@+ f’p be generators of
H(T?. We take a C" curve C, in R® which is a lift of C,, i.e. #(C))=C,,
and ¢(t, 5,) € C,.  Let

6¢={(x+e'i,y+f'i);(x,y)e50} (i=i19 iz, "')’
then C, is a lift of C,, We may suppose
@1, 2) e C..

First we assume that C, (i=0, 1, +2, - - -) are parallel lines in R%.
- Let #,=¢(}, ) (i=0,1,2, ---) and let & and #’ be two points of C,
such that #(#)=#") =75, |#—i/|=+(c'¥+(d)* and that i, lies
between @, and # fori=1,2,3,4, --. (Fig. 17).

Let I/ and I’ denote half lines starting from #, and through & and
i respectively. Let us consider curves

F,={a(t, 2,); ti<t <ty ={a(t, tiy); 0t <tl—1),
Fi={g(t, &); 0<t <t]—1(},
Fy={g(t, #)); 0=t <t/ 1.

F} and F} are parallel displacements of F;, and it follows from the defini-
tion of @] and & that {@(¢, £,); t;<t <t;;} lies between F; and F,. It is
obvious that @(t;—1{, @) and @(t;—1;, @) lie in the domain between /]
and ;. Thus #,, =@}, Z,) lies in this domain. Therefore, @(t,;, £,
(m=1,2,3, ---) lie in the domain between /; and I} for i=1,2,3, -- ..
This implies that lim,_.,, (X(¢): 7(¢)) exists. ‘

Next we consider the general case. As is well known, there exists a
C" diffeomorphism
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g: 1T

isotopic to the identity such that g(C,) is the image of a line of R? by #.
Let g: R*—R® be a lift of g. Then, by the result above, lim,_, . (%(¢); 7(¢))
=lim,_, (§(x(2)): &(7(?))) exists. Thus this lemma is proved.

For a positive semi-orbit {¢(t, z,); ¢ =0} through z, whose -limit set
is not the singular point, the homology class daz—i—b:@ of H(T?; R) is called
the asymptotic homology class of it and is denoted by A*(z,), where 4, b
are real numbers in Lemma 7.2. Asymptotic homology classes are deter-
mined up to positive multiples. As is easily verified, 4*(z,) is independent
of the choice of z,, For a closed orbit, the asymptotic homology class
is one represented by the closed orbit. The asymptotic homology classes
can be similarly defined for negative semi-orbits {o(z, z,); t <0} of z,
whose a-limit set is not the singular point, which is denoted by 4-(z,).

The above definition is closely related to the rotation number in
Nishimori [3, Section 10]. For definition and properties of asymptotic
homology classes (cycles) in more general setting and references of them,
see Yano [7].

§8. Proof of Theorem C

In this section we let E, be an orientable 3-dimensional C* mainfold,
n: E,—S' a C= fibering over S* with the one punctured torus X ,(1)=
T?—1Int D* as fibre and #, a codimension one C= foliation of E; as in
Sections 4 and 6. The fibering r is constructed by an orientation preserv-
ing C> diffeomorphism ¢: 7% —Int D*->T?—Int D* and # is determined
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uniquely by the diffeomorphism up to isotopy. Furthermore, as is well
known, the isotopy class of an orientation preserving diffeomorphism ¢ is
determined by the homomorphism

¢4 H(T*—Int D)—H (T*—Int D%

induced by ¢ in this case. Let {£, ¢} be a set of generators of H(T*—
Int D%). Then ¢, is expressed by a 2 X 2 matrix <c“ c“) e SL(2; 2).
2.

Co1 G
Lemma 8.1. Let 7(F,) be the tangent 2-plane bundle of F,. Then
o(F,) is trivial and, thus, & . admits transverse 2-plane fields.

Proof. Let us consider a C* bundle =,: E,—~S"' over S' with an
orientable closed 3-dimensional C~ manifold E, as total space and the
torus as fibre. We may assume that the monodromy map ¢: T°—T?
associated to this bundle is linear with respect to the universal covering
space of 7% This implies that a non-singular linear tangent vector field
given on a fibre can be extended to a non-singular vector field tangent to
fibres of the bundle. Therefore the 2-plane bundle z* over E, tangent to
fibres is trivial.

Suppose that E,DE;-and n,| E,==. Then, for a collar ¢(T*xI) of
oF, in E,, two 2-plane bundles z*{(E,—Intc(T*XI)) and =(F,)|(E,—
Int ¢(T%x 1)) are isomorphic. Since E;,—Int ¢(T?x ) is a deformation
retract of E, and 2*|(E,—Int c(T?X 1)) is trivial, (&) is trivial. Thus
this lemma is proved.

Suppose that &’ is a transversely orientable codimension one C’
foliation of E, transverse to &, where r=2. Welet Z, X, a, p, q, @y 4,
X, E, &, @, D_and X, etc. be as in Section 6.

Lemma 8.2. laj=1, p—q=-2.
Proof. By Propositions 4.3 and 5.1, we have

lal(p—q)=—2.

Since & is transversely orientable, it follows by the same argument used
in the proof of Proposition 3.6 that p—gq is an even integer. Thus this
lemma is proved.

Let L, L,, - - -, L, be closed orbits of the C"~* vector field X |9E; on
oE, such that

(1) fj is a connected component of 3K{* for some i,

(i) I:j (=12, ---,0) (tesp. (j=w'+1,n+2, ..., n)) are towards
the minus (resp. plus) direction of S".
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Let z9 be a point of ﬁgl(fj)CD_ situated near p, (j=1,2, ---, n).
Let us consider the continuous vector field X | (2D, with one singular point
P.(1) as in Section 6 and orbits ¢(t, &,(z")) of X|(Z,), through &,(z")

€ (X)), forj=1,2, ..., n Itis obvious that the w-linit set (resp. a-limit
set) of &(z, Dy(z) is {p. (1)} for j=1,2, --.,n (resp. j=n'+1, ' +2,
ce, n)_ )

Lemma 8.3. One of the following (a), (b) holds for j=1,2, -- -, n

(a) There exists at least one orbit ¢(t, D(zM)) such that the a-limit
set and the w-limit set of it are both {p.(1)} and that the homology
class [C] represented by a simple closed curve C formed by the orbit
U wcicn $(2, &,(z)) and p..(1) is not zero.

(b) There exists at least one orbit ¢(t, D27 such that one of the
a-limit set and the w-limit set is not {p..(1)}.

Proof. Assume that the case (a) does not occur. Then, for any
orbit ¢(t, @,(z")) whose a-limit set and o-limit set are {p..(1)}, the simple
closed curve C, consisting of the -orbit and p..(1) is homologous to zero.
Thus C, bounds a 2-disk in (Z,),, say D,. Let K»=d(K®). Let N
(resp. N §7) be the subset of {1,2, -+ -, p} (resp. {1,2, - - -, g}) such that
K(”CD (resp. K- )CD,) if and only if i e Ni" (resp. i e N§7). Letp®?
(resp. q“)) denote the number of the elements of N{V (resp. N{7).
Then, by considering the vector field X|D,, we have

p(]) ___q(f) =1.

Now let C,,,C,,, - - -, C,, be the set of the simple closed curves with
the property as above and let D,,D,, ---,D,, be 2-disks in (21 such
that 6D,,=C,, (=12, ---,m) as above. Here we take C,,C,, --
C,, so that D“ﬂDh —{pw(l)} 1fz:;&z Since p—g = —2 by Lemma 8.2
and pYd—gUd=1 fori=1, 2, , m, there exist at least m+2 of K{»
(i=1,2, ---, q) such that K{ is not contained in (7, D s As is easily
verified, it follows from this consideration that one of @,(z) (j=1, 2,

.+, n), say §,(z™), is not contained in U;@lﬁj ,~ Thus, by the assump-
tion, one of the -limit set and the w-limit set of @,(z™) is not {r.(D}.
Thus this lemma is proved.

Now we prove the following theorem which is the “only if”” part of
Theorem C in Section 0, making use of asymptotic homology classes of
orbits defined in Section 7.

Theorem 8.4. Let E,, #, and ¢, be as above. If there exists a codi-
mension one C7 foliation #’' of E, (r =2) transverse to F ., then the trace
of ¢y is =2.
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Proof. First suppose that the case (a) of Lemma 8.3 occurs. Then,
by Proposition 6.4 and Lemma 8.2, the orbit ¢(t, y(z”)) of X|(Z)), is
mapped onto the orbit ¢, §,(z)) of X|(Z), by ¢. Therefore the
homology class [CP]=a& +by (a, b e Z) is invariant under ¢, :

G o)6)=0)

This shows that det (c“_l Cro )=O Thus we have
Cx Cp—1

Trace ¢y =cy 4 =2.

Next suppose that the case (b) of Lemma 8.3 occurs. Then, by
Proposition 6.4 and Lemma 8.2, the orbit ¢(t, D (z'")) of X|(Z)), is
mapped onto the orbit ¢, #,(z)) of X|(Z,), by §. This implies that
the w-limit set and the a-limit set of ¢(z, ,(z)) are mapped onto the
w-limit set and the a-limit set of ¢(, d,(z9)) by & respectively. We may
assume that the w-limit set of z* is not {p..(1)}.

In case the @-limit set of ¢(z, d,(z7)) is a closed orbit, say C,, the
homology class represented by C, is not homologous to zero by the
reason that C, cannot bound a 2-disk in (X,);. Since the homology class
[C,] is invariant under ¢,, we have Trace ¢, =2 as above.

Even in case the o limit set of ¢(z, d,(z")) is not a closed orbit, the
asymptotic homology class 4*(z”) of @(z'”) can be defined as in Section
7.

Since A*(zP)=d&+ by (4, b e R) is invariant under ¢, up to a
positive multiple 1>>0, we have

(G e))=)
Cu €/ \b b

It follows from det (gu‘z e z>=° that

21 22 T
Trace ¢y =01+ =2.

Thus this theorem is proved.

The “if”” part of Theorem C can be proved as follows. For details,
see Nishimori [3, Section 11]. Let E, be a torus bundle over S* such that
the trace of ¢, H(TH—H(T? is =2. Let 2, and 4, be the real proper
values of ¢,. Then we can define a C= vector field X on E, having the
following properties:
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(i) - The vectors of X are tangent to each fibre of #: £-—>S".

(i) The orbits of the restriction of X to each fibre (X,),=#"'(6)
consist of the images of lines of R* with the direction of the eigenvector
of 1, by the projection R*-—->T"* and one singular point.

As we constructed the vector field X on E, from the vector field X
on E,, we can conversely construct a C* vector field X on E, from X
above. Then the vector field X on E, thus obtained is transversely
integrable. ‘

Remark 8.5. If the foliation &’ of Theorem 8.4 does not contain
any non-proper leaf, then, since the orbit ¢(z, @,(z”)) in the proof of Theo-
rem 8.4 is proper, we have Trace ¢, =2.

§9. Cutting down of ends of noncompact leaves of % and bifurcation of
leaves of foliations of punctured surfaces

Let E and n: E—S" be an orientable 3-dimensional C* manifold
and a C~ fibering over the circle with fibre 2 (m) and let #: bea C~
foliation of E as in Section 4. For simplicity we assume that the C~
diffeomorphism ¢: X' (m)—2 (m) associated to = as in Section 4, maps
each connected component of 33 (m) onto itself. Thus 0E consists of m
copies of the torus 7%, T3, ---, T2.

Let &’ be a transversely orientable codimension.one C"” foliation of
E transverse to F¢ (r=2) and let F=F:NF as in Section 5. We
assume that each codimension one C7 foliation & | T% of T% is normalized
for k=1,2, - - -, m, by taking (§),.#’ instead of %’ making use of & of
Proposition 5.3, if necessary.

Let ¢'®: T*X I—E, ¢®(T* X {0}) CIE be a sufficiently thin collar of
TZ in E such that z(c®({y} X I))=n(c"(y,0)) (y e T fork=1,2, - .-, m
and let

A=E-kfﬁlc<k>(rz x[0, 1)),
T;=c<">(;’2x{1}) k=1,2, .-, m,
04=_) T}
e}
For a noncompact leaf L, of ¢ (6 € '), we denote
A,=ANL, (feSY.

Then we have A=|_J,.s: 4, and 4, is obviously diffeomorphic to 2 (m),
and furthermore, we have a C* fibering z: 4—S* with X (m) as fibre by
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defining 7(4,)=6. Denote S, ,=A4,NT;. Then we have

Ti=J Sie k=1,2,---,m.
seSt
Let 7, ={T;NL; L' e F'}. Since leaves of # are transverse to
T2, & . is a codimension one C” foliation of T4, (k=1,2, - -, m).
Let ¥ be the non-singular C7-* vector field on F as in (5.2). Then
the orbits of V give a C” diffeomorphism T5— T which is denoted by g,
fork=1,2, ---,m. The C" diffeomorphism g, is obviously an isomor-
phism between Z | T2 and #,.
Now we assume that each | T2 has at least one compact leaf, say
L), such that ‘

[Lg:}np] =a,y +bkﬁks a,#0

for k=1,2, - .., m, where [L{) ] is the homology class of H,(T3) repre-
sented by L), and «, and S, are generators of H,(T%) such that z,(8;)
=0. Then Z|T% has plus Reeb components Z |K{H (i=1,2, ---,p,)
and minus Reeb components Z | K (i=1,2, «+-, q,).

Since F | T% is normalized, & , has the following properties (Fig. 18):

(i) &, has plus Reeb components & ,|K{? (i=1,2, ---,p;) and
minus Reeb components | K7 (i=1,2, - - -, q,), where K = p, (K
and () =1, (KL2). |

(i) For each g, the simple closed curve S, , is transverse to leaves
of &, except |a,|(p;+q,) points ‘

Zoaone (=12, -, pesj=1,2, -, @),
Z-I/c,t,j,o(izla 29 DY qk;j=1’ 2: MY lakl)a

such that

Z—k,i,j,ﬂ € Int KI(C-,? (]:15 2, MY ’akl)’
Z_I,c,i,j,ﬂ e Int Kl(c,—z) UG=12, -, |a).

(iii) A leaf of 7, is tangent to Sy, at z,, ; ,(resp. z; ;. ; ,) from the
minus side (resp. plus side) of S , with respect to the orientation of S'.
Let

Ouvi= U Ziase Q= U Zie

. geS1 6e St
F=12,e0 lag! F=1,2,000,|a%]

Then Q, , and Q;,; are simple closed CT curves in Int K{*) and Int K{3
respectively.
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plus side

Fig. 18.

minus side

Let us consider the restriction & | 4, of & to A4,. It is obvious that
Z | 4, consists of C” simple curves of 4, and > ™, |a,|p, points z, ; ;. ,
for k with e(k)=1 and > 7, |a,|q, points z; ; ; , for k with e(k)= —1 such
that there exist two simple curves in & | 4, having a common point z, ; ; ,
for each z; , ,, with e(k)=1 and z, , ; , for each z, , ; , with e(k)=—1,
where we understand that L ¢ & | 4, is simple if LN Int 4, is connected
(Fig. 19). Thus Z|(Ao—U1.5 Ze,e.5.0— Uk, 1.5 Z2.1,5,0) 1S @ codimension
one C7 foliation.
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The simple curves of & |4, form a family of concentric half circles
around Z, ; ; , (resp. z; ;. ;) if e(k)=1 (resp. (k)= —1), and the simple
curves of & | 4, form an upper part of conforcal parabolas around z; ; ;,,
(resp. Zy,4,;,0) if e(k)=1 (resp. e(k)=—1) (Fig. 19).

In this sense, the point z, ; ;, (Tesp. Z;, ;¢ is said to be a plus
singular point of F |A, if e(k)=1 (resp. e(k)=—1) and the point z , ; ,
(resp. Z,.,;,0) is said to be a minus singular point of F|A, if e(k)=1
(resp. (k)= —1).

Now let W be a C" vector field on 4 satisfying the following condi-
tions (see [6, Section 3]). The existence of such W is obvious.

(9.1) (i) W is tangent to leaves of &’.
(ii) Let Q (resp. Q') denote the union of Q, , (k=1,2, ---,m,
i=1,2,---,p,) (resp. Q;, (k=1,2, ---,m;i=1,2, ---,q,)). Then

W(z)=0 ifzelUD,
W(z)+0 if zeA—Q0—0'.

That is, the singular set of Wis QU Q'.

(iii) W04 is tangent to 94.

(iv) For ze 4,—(4,N(QUQ")), W(z) is transverse to A, and
directs to the positive direction of S

(v) The vector field W near a singular point z € Q U Q is as follows
(Fig. 20):

(@) Incaseze Q. ; with (k)=1, the closure of the union of orbits
of W whose w-limit sets are {z} forms a half elliptic paraboloid with z as
the maximal point in a neighborhood of z.

(b) Incaseze Q; , with e(k)=1, there exist exactly two orbits of
W with {z} as the a-limit set, and exactly one orbit of W with {z} as the
-limit set. They are contained in T, and Int 4 near z respectively.

(¢) Incaseze @, , with (k)= —1, there exist exactly two orbits of
W with {z} as the o-limit set, and exactly one orbit of W with {z} as the
a-limit set. They are contained in T, and Int 4 near z respectively.

(d) In case ze @}, with e(k)=—1, the closure of the union of
orbits of W whose a-limit sets are {z} forms a half elliptic paraboloid with
z as the minimal point in a neighborhood of z.

A point z of Q, ; is said to be an attracting point (resp. a joining
point) of W in case e(k)=1 (resp. e(k)=—1), and a point z of Q; , is
said to be a branching point (resp. repelling point) of W in case e(k)=1
(resp. e(k)=—1).

Let @(t, z) denote the orbit of W through ze 4. In the following
we denote 4y, =Us<p<o.edo-
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attracting
. xancth

fR)=1 = —1

Fig. 20.

It follows from the conditions (iv), (v) of W that there exists a suf-
ficiently small real number ¢>0 such that there is no orbit of W|4,.
whose a-limit set and w-limit set belong both to A4,, except singular
points for any 6 e S*.

For a point z of 4,, we define a subset @[z] of 4, . as follows (Fig.
21):

(i) In case z is not a singular point of W and @(¢, z) goes through
A, . for t =0, we define

plz]={g(t, 2); 0<1<t.},

where we denote by ¢, the least positive real number such that @(z,, z) e
A0+s'

(ii) In case z is not a singular point of W and &(¢, z) approaches
to an attracting point z, of W for 7 >0 satisfying {3(?, z); 0t} C 4.,
we define

glzl={a(t, z); 01 <oo}U{z.}.

(iliy In case z is not a singular point of W and &(t, z) approaches
to a branching point or a joining point of W, say z,, for t >0 satlsfymg
{p(t, 2); 0t} C A,,., we define

olz]={a(1, 2); 0=t <oo} U {z,}
U{z’; lim @(t, )= =Zu> U @t 2y 4,.}.

t——co o <t£0

(iv) In case z is an attracting point of W, we define

plz]={z}.
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(v) In case z is a branching point or a joining point or a repelling
point, we define

alzl={z} U{z’; gljﬁ o(t, 2) =z, _wgso @(t, z) T Ay}

AB+»: A0+5

|
26 attracting
case (i) pt.
Z\@lz] | branching

-
’

A,

z z z 7 z repelling pt.
attracting pt.  branching pt. joining pt. case (V)
case (iv) case (V) case (V)
Fig. 21.

Now, for a point z of 4, and 0<s<{e, we define a subset ¥, ,(2)
of 4,., (possibly ¥, ,,,(2) =9) by

T, s,o(Z)=¢[Z] NAg. .
Furthermore, for a subset G of 4,, we define

w0+ s,ﬂ(G)= U gF0+ s,o(z)°
2€G

Then ¥, , ,: P(A))—P(A4,,,) is a correspondence, where #(4,), P(4,, )
denote the families of subsets of 4, and A,, , respectively.
Let 6, ¢ be real numbers such that §<6#’. We take a sequence of

real numbers 6,, 6,, 6,, - - -, 6, so that

0=0,<6,<6,<---<0,=¢,

]01—0i_1[<5 i=1, 2, MY n.
Recall that 6, ¢’ and 6, represent points of S* (see Section 1). We define
a correspondence

Uy ot P(A)—P(Ay)
by
wa',o(G)’:gp'o',on-l ° won—bon—ﬁ 00 wal,a(G) (GCA4y).

Then ¥, , is independent of the choice of a sequence as above.
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Let us consider the image ¥, ,(L) of a simple curve L in % |4, by
¥, o for <¢. The bifurcation phenomena occur for {¥,. (L); 06}
when ¢ varies from f to co. Although plural bifurcations of types (III),
(IV) below may occur complexly at the same A4,, we restrict here our
attention to the case where a bifurcation occurs at one point of 4,, for
simplicity. (Fig. 22).

(9.2) (1) If ¥, (L) does not contain any singular point of W for
0<6'<6,, then ¥y, (L) is a simple curve of Z |4, and ¥, ,: LT, (L)
is a C” diffeomorphism for 6 <4,.

(I1) If ¥, L) does not contain any singular point of W for
<0 <6, except exactly one attracting point z, € ¥, L) of W, then we
have

wal, 0(L_)={Z1}7 wo', o(l_f)=¢ for 6,<<¢'.

(I1) If ¥, (L) does not contain any singular point of W for 6=
¢’ <6, except exactly one branching point z, € &, ,(L) of W, then ¥, (L)
consists of two simple curves Lj, L}, of Z | A4, for §,<6 <6, such that
L}, and L. have one of two points ¥, ,(z;) as one of end points respec-
tively.

(Iv) If ¥, L) does not contain any singular point of W for §<
¢’ <6, except exactly one joining point z, € ¥y, (L) of W, then there exist
two simple curves L', L” of Z | 4,, such that L'NL" ={z}}, ¥, (LY=L’
and that the union of ¥, ,(L’) and ¥, , (L") forms a simple curve of
Z | A4, for 8,<8' <0,

(V) If z,e A, is a repelling point of W and ¥, ,(z,) does not
contain any singular point of W for <6’ <6, except z,, then ¥, ,(z)) is a
simple curve of Z | 4, for < <6,.

Remark 9.3. The bifurcation occurs when @, (L) meets one of
Qy.and Qr ;. Andif ¥y AL)N Qs (resp. Ty, «L)N Q1 #9), then
¥, L) does not meet with Q, , (resp. Q; ,) for 0<|¢ —8;|<<¢’, where
¢’ >0 is a sufficiently small real number. Thus the number of bifurcation
occurs when & varies from 6 to ¢ is finite, where 6 < co.

The following proposition shows the bifurcation of simple curves
in | A, in case e(k)=1(k=1,2, -- -, m).

Proposition 9.4. Let & | Ay, Ki), K7} and ¥, , etc. be as above. We
assume that e(k)=1 for k=1,2, ---, m.

(i) Let L be a simple curve in F | A,. Then there exists & (0<¢)
such that U, (L) is an attracting point of W if and only if the two end
points of L belong both to the same Int K.
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w OO

Ag,

N

4,

Z

case (IT) case (1) - case (IV) case (V)

Fig. 22.

(ii) Let L be a simple curve in Z |A,. Then ¥, L) consists of a
finite number of simple curves in F | Ay, say L, L®, «.. L', such that
one of the end points of L™ and one of the end points of L**" belong to the
same K7} foru=1,2, .- -, r—1.

Proof. If ¥, (L) contains a branching point for §<6” <@, then
¥,. L) consists of simple curves of & |A4,. such that one of the end
points of each simple curve belongs to some K{7. This implies that
¥, (L) cannot contain an attracting point of W. Therefore the conclu-
sion of (i) is a direct consequence of the definition of the attracting point.

The conclusion of (ii) is a direct consequence of the definition of the
branching point.

§ 10. Bifurcation of leaves of foliations of two punctured 2-disk. Proof
of Theorem B

Let 3(3) denote the 3 punctured 2-sphere, that is, the 2 punctured
2-disk, and let

02,(3)=S;USiUs;.

We specify an orientation on Xy(3) and give the boundary orientation on
St (k=0,1,2). Recall that S* is always oriented. Let «, be the homo-
logy classes of H,(S' X S3) represented by S*X {x} for k=0, 1, 2, and let 3,
(tesp. B (k=1, 2)) be the homology class of H,(S*x.S}) (resp. H,(S*X S})
represented by — ({sx} X .S7) (resp. {x*} X .S}).

Let 7: S'X 2 (3)—S' be the projection onto the first factor. Let
T:=S8'%x S} and e(k)=1 for k=0, 1, 2, and let % be the codimension
one C= foliation of S*x X'(3) as in Section 4.

Let us consider the tangent bundle ¢(&#:). Since each noncompact
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leaf L, is diffeomorphic to Int Xy(3), there exists a natural framing of the
tangent bundle 7(L,) of L, considering L,=1Int 3,(3) is a subset of R%
Thus ¢(F?2)|(S* X Int 2y(3)) is trivial. Furthermore the framing of =(L,)
induces framings of z(S* X S1) (k=0, 1,2). Thus ¢(£*) is trivial, which
implies that %3 admits transverse 2-plane fields.

The foliation #¢ admits a transverse codimension one C> foliation
F' as follows (Fig. 23). We divide X(3) into 10 pieces B, (i=1,2, - - -,
10) as in Fig. 23, and we give the plus half Reeb foliation of S*Xx D%
(Section 5) for S*XB, (i=1,2,3,4) and the TS component of S'XH
(Section 5) for S*XB, (i=5,6,7,8,9,10). The codimension one C~
foliation of S§*x 2'(3) obtained as the union of them is transverse to .
Fig. 31, (a) shows Z | 4, for F=F:N F’ and 4, as in Section 9.

Fig. 23.

Now we have the following theorem:

Theorem 10.1. Let n: S'X 2 (3)—S" and F= be as above, and let
F' be a transversely orientable codimension one CT foliation (r =2) of
St 2 (3) transverse to F*. Suppose that the one dimensional C™ foliation
F =F:NF’ formed by the intersection of leaves of F: and F' satisfies
the following assumptions:

(1) Z|(S'XS3}) has at least one compact leaf for k=1, 2.

(ii) The homology class of H\(S' X S}) represented by a compact leaf
of Z|(S'XSY) is aya,+bi By, ar#0, for k=1, 2.

(iii) It holds that

lal|(p1_q1):IaZI(P2_q2):2>

where p, and q, denote the numbers of plus Reeb components and minus
Reeb components of Z |(S* X S}) respectively for k=1, 2.

Then F | (S X S}) has at least one compact leaf and the homology class
of H(S!x S}) represented by a compact leaf of Z |(S'X S}) is +a,.
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Proof. (Step 1) Let a,, b,, p, and g, be integers defined for Z | (S* X

») as in Section 4. That is, if F[(S'XS}) does not have any compact

leaf, then a,=b,= p,=¢,=0, and if Z |(S*X St) has a compact leaf, then

the homology class of H,(S*'XSj) represented by the compact leaf is

=+ (a0, +b,B,) and the numbers of plus Reeb components and minus Reeb

components of F |(S'XS?) are p, and g, respectively. By Propositions
4.2, 5.1 and the assumption (iii), it holds that '

|ao|(Po—qo)= —6.

Therefore, since p,—gq, is even as was shown in Proposition 3.4, it
follows that Z | (S X S}) has at least one compact leaf and that

la|=1, Po—¢qy=—6 or [a]|=3, p—gy=—2.

Making use of Proposition 5.3, we may assume that & |(S'XS})
{(i=0,1,2) are normalized. Let A4 be the closed subset of S*x X ,(3)
obtained by cutting down the ends of noncompact leaves of #: as in
Section 9, and let A=|_Jse 51 44, Ag=AN L, be as in Section 9, where L,
{0 ¢ S*) are noncompact leaves of F:.

(Step 2) The restriction Z | 4, of Z to A4, (0 e S*) is a codimension
one C" foliation with |a|(po+qo) +|a:|(pi4+9)) +a:|(p.+¢,) singular
points in 94, as was shown in Section 8. (Fig. 31, (a) shows an example
of Z|4,.)

Let 94=T,U T;U T} as in Section 9, where T, is a torus imbedded in
S'x Yy (3) which bounds a collar of S'XS:(k=0,1,2). Let F,=
{connected components of T; N L'; L’ e '} asin Section 9. Then Z, is
a codimension one C” foliation of T having plus Reeb components
F. K (i=1,2, - -, p,) and minus Reeb components | K{)(i=1, 2,
-+, qy) for k=0, 1, 2, as was observed in Section 9. Let

Sto=4,NT; (k=0,1,2).
Then we have
aAo: Sé,o U Si,o U S%,o-

The intersection 94, N K} (resp. 94,N K{?) consists of |a,| connected
components, say Kt ,,(j=1,2, --,|a,]) (tesp. K,0 (G=1,2,---,
|, ]).

The numbers of the plus singular points and the minus singular
points of Z |4, in S}, are |a,|p, and |a,|q, respectively. Since |a,|q,—
la,|p,=6 as was observed in Step 1, there exists a connected arc /;, in S},
having minus singular points z_, z’ as its end points such that any other
singular point does not belong to I, (Fig. 24).
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(Step 3) Let z, e ,N3K{;);,, where z_ or z_ is belonging to K§3; .
Let L, be the simple curve of £ | 4, containing z,.

If L, N9A4,={z,}, then there exists a simple closed curve in & |4, by
the Poincaré-Bendixson theorem, which is a contradiction as is easily
shown by an argument on the Euler number and singular points using the
assumption (iii). Thus we have

LNo4,={z, z}}.

Now if z; € S}, then A4,— L, consists of two connected components,
say G, and G7, and one of the following two cases occurs (Fig. 24):

(a) Both S}, and S}, are contained in one of G, and G; (Fig. 24, (a)).

(b) Si,and S}, are separated by L, (Fig. 24, (b)).

1
SI,O

(b)

Fig. 24.

Suppose that the case (a) (resp. (b)) above occurs. We let S7,U.S3,
G, (resp. St ,CG,;). Thus G, is homeomorphic to the 2 punctured 2-
disk (resp. one punctured 2-disk), and G is homeomorphic to the 2- dlSk
(resp. one punctured 2-disk).

Let us consider the number of singular points in G,NS;, and
GiNSi, In case z{is a minus singular point, we understand that z] is a
singular point of G,N S}, (resp. GIN St and not a singular point of
GiN Sk, (resp. G, N S}, if z] is a cusp of 3G (resp. 8G,). Let p; and g,
(resp. p; and g7) denote the numbers of the plus singular points and the
minus singular points in G; N S}, (resp. G, N S} ).

Let G, UG, (resp. G,\UG?) be the double of G, (resp. G{) obtained
from two copies of G, (resp. G7) by identifying two copies of G,Nd4,
(resp. G, N34,). The double of Z |G, (resp. Z |G;) defines a codimen-
sion one C° foliation of G,U G, (resp. G;UG?) with p,+ p,+ p, or p,+ p,
(resp. pi or pi+ p,) plus singular points and §,+¢,+¢, or §;+¢, (resp. g
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or g;+¢,) minus singular points according to the case (a) or (b). Here,
in case z{ is a minus singular point, we understand that z{ is a minus singu-
lar point of G,UG, (resp. G,UG?) and not a minus singular point of
G, UG/ (resp. G,UG)) if z{ is a cusp of 9G], (resp. 3G)).

G,UG, is homeomorphic to X,(1) (resp. (1)) and G{UG] is
homeomorphic to D? (resp. 2,(1)) in the case (a) (resp. (b)). Thus, by the
assumption (iii), we have

h—ag=—17  pi—g=1
(resp. p,—q,= —3, pi—q1=—3).

It follows from pj—gi=1 (resp. p;—g;=—3) that G{NS;, must
contain at least one plus singular point (resp. three minus singular points).
This implies that L separates z_ and zZ.. Thus we have

7:<|a|go-

By the equation p,—g,= —7 (tresp. p;—g,= —3), there exists a con-
nected arc [, in G;N S}, having minus singular points as its end points
such that any other singular point does not belong to /,. Let z ¢
I,NaKS7,., for some K7, ,, and let L, be the simple curve of Z |4, con-
taining z,. Then, by the same reason as above, we have

Ez N (S%!,o N Gi)= {zz, Z;}

If z; e S} ,, then L, divides G, into two connected components, say G,
and G;. We let S} ,CG,.

Let p, and g, (resp. p; and g;) denote the numbers of plus singular
points and minus singular points in G,N S}, (resp. G;NSi,). Then, by
the same argument as above, we have

ﬁz_QZé'—"” q2<qr

Furthermore, the number of connected components of G, S5, is at most
two. Thus there exists a connected arc /, in G,N S}, having minus
singular points as its end points such that any other singular point does
not belong to I, We can take z,e[,N3KS3);, for some K{3);, and
repeat the process as above. Therefore, we can finally find a point z, of
St,, with the following property:

(10.2) Let L, be the simple curve of & |4, containing z,. Then
another end point of L, belongs to S}, or S},.

(Step 4) In the following we assume that the homology class of
H/(S*x S;) represented by a compact leaf of F|(S*XS}) is ayty+byb0
b,+0, and will show that the assumption b,5-0 yields a contradiction.

Now suppose that |a,|=1, p,—q,=—6. Let z, be a point of S},
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satisfying the condition (10.2), and let L, denote the simple curve of Z | 4,
containing z,.

Suppose that another end point z, of L, belongs to Si, Let us
consider the image of L, by ¥, when parameter s varies from 0 to 1 as in
Section 9. Since |a,|=1, we have

V(z))=2z,.

The assumption b,=0 implies that bifurcation occurs for ¥, (0<s<1).
By the uniqueness of the simple curve in £ |4,=% | A, containing z,, it
follows that ¥",(L,) contains L,, and thus, by Proposition 9.4, the point z}
belongs to one of K{7);.,, say z§ € K{3) ;.0 and ¥,(L,) consists of / simple
curves in Z | 4,=Z | 4,, say

[Oa 1_419 L_29 Tt El-l

such that, letting z, and z/ be end points of L, (s=0,1,2, --.,[—1), two
points z;_, and z, belong to the interior of one of K{7,,fors=1,2,---,
I—1. (Fig. 25).

Let C, be the simple arc connecting z,_, and z, in such a K{7,,.
Then the union of L, Cy, Ly, -+, C,_,, L,_, forms a C° curve C in A,=
A, connecting z, and ¥ (z;) (Fig. 25).

Fig. 25.

o

Let {C,, C,,, - - -, C,,} be the subset of {C,;s=1,2,..-,[—1} such
that
CS{CK§:L.31:.70,0’ i= la 2, s, U,
1=S1<S2< M <su,

and let C® (resp. C™) denote a closed C° curve in A, obtained as the
union of L,,, C,, .1, Ly;41s -+ > Ly,,,-, and an arc in K{3) ; , with end
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poxnts Zy 24y for i=1,2, ... u—1 (resp. as the union of L, , C,, .1,

-, L,_, and an arc in K{3) ,,, with end points z,, and z(=z]_;). (Fig.
26, (a))

By pushing each C, and arc.contained in K{3) ,,, slightly into the
interior of A4,, we can make C® a simple closed C° curve in Int 4, for
i=1,2,--.,u (Fig. 26, (b)). By straightening the corner, we may sup-
pose that each C» is a simple closed C” curve.

Let us suppose that 4, is a subset of R* in the natural manner, and
let D denote the closed set of R? bounded by C®®. D® is diffeomorphic
to the 2-disk (Fig. 26, (b)). Then, since b,#0, at least one of D® (z—l
2, - - -, u) contains S} ., say D" DS} .

Let Y, be a non-singular C” vector field on A4, whose orbits are
Z |4, Then, by changing Y, in a small neighborhood of C¢? near C,,
we obtain a non-singular C” vector field Y} such that C*” is a closed
orbit of Y (Fig. 27).

(a)

Fig. 26.

(b)

C.

" AT

C M

C. Fig. 27.

C (&)
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Let 2=D""N 4, and let X U2 be the double of ¥ obtained from
two copies of 2 by identifying their boundaries. Then X UJX is dif-
feomorphic to the torus or the orientable closed surface X, of genus 2
according to D7 2 S1, or D7D S7,. On the other hand the double of
Y§| Y defines a C° vector field with p, (resp. p,+ p,) plus singular points
and ¢, (resp. g,-¢,) minus singular points if D758} (resp. D7 D.S] ).
This is a contradiction.

In case |qy|=3, p,—¢,= —2, it can be proved by considering ¥
(0< s <3) that a contradiction also occurs.

The above results imply that the assumption b,5=0 yields a contradic-
tion. Thus this theorem is proved.

Now we prove Theorem B in Section 0. Let &, be as in Theorem B,
that is, & is the union of the codimension one C* foliations #: of S'X
2y3), FG of S'X D}, F& of S'xDjand FG of D*X S, and let &/
be a codimension one C" foliation (r =2) of S?® transverse to %,, where
2(3)=D*—1Int Di—Int D3

Let F=F,AF’. Consider F'|33) and Z |2 3). Then, by
Proposition 3.6, Z | (S xdD3) and & |(S* X 0D3) have compact leaves such
that homology classes represented by the compact leaves are a,a;4 5,8,
(a,#0) and a,0r, -+ by, (a,#0) respectively, and |a,|(p,—q) =2, |a.|(p.— ¢,
=2. Thus the assumptions of Theorem 10.1 are satisfied for #¢. There-
fore, by Theorem 10.1, F |(S'X0D?% has a compact leaf such that the
homology class represented by it is =+ «,.

On the other hand, by the consideration on & |(D*X S?), the homol-
ogy class represented by a compact leaf of Z |(@D*XS")is £ B,+ aja,.
This is a contradiction. Thus Theorem B is proved.

The most results on existence problem in Nishimori [2] can be proved
by the arguments as in Sections 9 and 10.

§ 11. Proof of Theorem D
Let &,: S X D*—S'X D*? denote the C= diffeomorphism defined by
h (€712, re?® V)= ("7, remivin ) (0Zx<L1,0<y<).

Then, for the 2 punctured 2-sphere 3(3)=D*—Int Di—Int Dj, we have a
decomposition of the solid torus S* X D? as follows:

STX D' =h,(S'X Z(3) U (S X DY) U h,(S* X D).

For the codimension one C= foliation #¢ of S'X2(3) as in Section 10,
we denote F{™=1{h,(L); Le #:}. Then the union of #{® and two
plus Reeb foliations F% of £,(S'X D3 and A,(S' X Dj) determines a
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codimension one C= foliation of S!'xD? which is denoted by Fi{™.
Furthermore, let % denote the codimension one C* foliation of S*X D?
=(S'Xx2,(3) U(S' XD U(S*x D2 consisting of codimension one C*
foliations %% of (S*x 2 (3)Y as in Section 10, F{™ of (S* X D} as above
and the plus Reeb foliation F§~ of (S* x D3Y (Fig. 28).

S'x D?

S'xDyy (8'X DYy

Fm

Fig. 28.

We have the following proposition:

Proposition 11.1. Let F™ be the codimension one C= foliation of
the solid torus S* X D? as above. Then, if n=+0, there does not exist any
codimension one C™ foliation (r Z=2) of S'X D? transverse to F™.

Proof. Suppose that n==0 and there exists a transversely orientable
codimension one C foliation %’ of S'X D* transverse to &% ™. Denote
F=FnF. Then F'|(S'xD? is a codimension one C* foliation
transverse to Z{™, and thus, F" ={h'(L"); L' e F'|(S'XD})} is a
codimension one CT foliation of S'XD* transverse to the codimension
one CT foliation of S*x D* consisting of codimension one foliations %
of 3y(3) and two plus Reeb foliations of S* X D} and S* X Di. Thus it fol-
lows from Theorem 10.1 (cf. Proof of Theorem B) that %< | F#”|(S* X D?)
has at least one compact leaf and that the homology class of H,(S*XdD?
represented by a compact leaf is +«, the homology class represented by
a longitude. This implies that & |3(S*X D?Y has at least one compact
leaf and the homology class represented by a compact leaf is + o, +nf,,
where «, and p, are homology classes as in Section 10.

Next let us consider Z |[(S'X2y(3)). Let ay, B> ay, by (k=0,1,2)
be as in Section 10, and let p, and ¢, be the numbers of plus Reeb com-
ponents and minus Reeb components of & |(S'XSLY for k=0,1,2.



Dynamical Systems on Foliations 281

Then, as was used in Theorem 10.1, we have

la,|(pi—q,)=—6, |a,|(p,—gq:)=2.

Therefore, by Proposition 4.2, we have

|G| (Po—q0)=2.

Thus the assumptions (i), (ii), (iii) of Theorem 10.1 are satisfied for (S* X S3)
and (S*X S}), and it follows from Theorem 10.1 that the homology class
represented by a compact leaf of Z |3(S*X D}Y should be +«,. This is
a contradiction. In case &’ is not transversely orientable, by considering
the double covering of S'X D% the same arguments work. Thus this
proposition is proved.

Now we prove Theorem D in Section 0. Let M be a 3-dimensional
C~ manifold. Then, for an imbedding g: S'X D*—>M, there exists a
codimension one C* foliation 4 of M —Intg(S'x D% with g(S'xaD?
as a compact leaf. Let #™ be the codimension one C~ foliation of
S'X D? as in Proposition 11.1, and let % be a codimension one C* folia-~
tion of M consisting of 4 and g,# ™ ={g(L); L ¢ F™} (n=£0). Then
F does not admit any transverse codimension one CT foliation (r=2)
by Proposition 11.1. Thus Theorem D is proved.

§12. Proof of Theorem A

Let k be a non-trivial fibred knot in the 3-sphere and let N(k) be a
tubular neighborhood of k. Let z: E,—S' be a C~ fibering over the
circle with X ,(1) as fibre, where E,=S°—Int N(k) and ¥ (1) is the one
punctured surface of genus g (g=1). Thus we have

S*=N(FK)UE,  N(k)=S'xD"

We specify orientations on S'X{«} and {xx}XaD* for * e 0D? xx e S™.
By the natural identification of {*x} X dD* with the base space S* of =, an
orientation on the base space S' is specified. Let & and j be generators
of H(dN(k)) represented by the longitude and the meridian with orienta-
tions as above.

Let % denote the codimension one C= foliation of S* which is the
union of the plus Reeb foliation F4 of N(k)=S'X D* and the codimen-
sion one C* foliation &, of E, as in Section 4:

F=FFPUZF..

Thus % has a unique compact leaf 6N (k)= T"
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Suppose that there exists a codimension one C” foliation %’ of S°
transverse to & (r=>2). Obviously & is transversely orientable. As is
well-known, %’ has a Reeb component by Novikov’s result [4], that is,
there exists a subset N of S* diffeomorphic to S*X D*® such that &#’|N’
is a Reeb foliation of N’. We specify an orientation of S*X {x'} (" e 6D%)
so that #’|N’ is a plus C” Reeb foliation of N’. Let «’ and § be
generators of H,(0N’) represented by S* X {+'} and {*+'} X 3D".

We let - : , '

F=FNF'.
Then, by Proposition 5.1, the following lemma holds:

Lemma 12.1. (I) (i) & |0N(k) has a compact leaf.

(ii) The homology class of H(GN(k)) represented by a compact leaf
of Z|oN(k) is +(a+bp), where |b|=2g—1.

(iii)  There exist closed subsets K,, K, - - -, K, .., K, K3, - -+, K}, of
ON(k)=0E, such that Z |K, is a plus Reeb component with respect to F$’
and a minus Reeb component with respect to F, for i=1,2, -+, q+2,
and that F | K., is a minus Reeb component with respect to F and a plus
‘Reeb component with respect to F,, for i=1, 2, - -+, q.

@D (i) Z|@N’ has a compact leaf.

(ii) The homology class of H(0N’) represented by a compact leaf of
F |0ON' is (o' +b'p).

(i) & |ON’ has plus Reeb components F | K", F | K, -+ -, F | K,
and minus Reeb components F | K(7, Z |K{™, - - -, F | K> with respect to
F'| N’

Proof. (D (i), (II) (1), (ii) and (iii) are direct consequences of Pro-
position 5.1. The homology class of H,(dN(k)) represented by a compact
leaf of & |0N(k) is +a-+bB by Proposition 5.1. Let p and g (resp. p
and g) be the numbers of plus Reeb components and minus Reeb com-
ponents of Z |dN(k)=Z |9E, with respect to F4 (resp. #,). Then, by
Proposition 5.1, we have

p—q=2, |b|(p—9=2(1—-2g).

The conclusions of (I) (ii) and (iii) follow from these equations. Thus this
lemma is proved. '

Lemma 12.2. Nk)NN'+£¢, E,N\N'+£¢.

Proof. If E,NN'=¢, then N’ is contained in Int N(k). This
implies that each leaf of Z |dN’ is compact, which contradicts Lemma
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12.1, (ID), (iii). If N(k)NN'=¢, then N’ is contained in Int E,. This
implies that each leaf of Z |dN’ is compact, which contradicts also Lemma
12.1, (I1), (iii). - Thus this lemma is proved.

Lemma 12.3. Let K be a connected component of 9N(kK)(\N'. Then
Z | K is.a plus or a minus Reeb component with respect to F5. ,

Proof.  Obviously 3K consists of two compact leaves of Z |dN(k),
say L and L. Each leaf of Z |Int K is an intersection of dN(k) and a
noncompact leaf of %#7|Int N’. If there exists a compact leaf in
F'|Int N, then there exists a compact leaf in Z | L for a noncompact
leaf L of &' |Int N’. Since L' is diffeomorphic to R? this is a contradic-
tion. Therefore there does not exist any compact leaf in & |Int K.
Furthermore, by considering the holonomy of #” with respect to aN’, it
follows that the holonomy of Z|K with respect to L and L’ having
orientations induced from S*'X{x} are both contracting or expanding.
Thus this lemma is proved. '

Lemma 12.4. Let B be a connected component of N(kYN\N’. Then
BN aN(k) is connected and & |(BNAN(k)). is a plus Reeb component with
respect to F. « : SRR

Proof Suppose that BN dN(k) consists of connected components
K, K, ---,K,. By considering the holonomyof %’ with respect to
N’ N N(k), it follows that all of Z |K,, Z |K,, - - -, # | K,, are plus Reeb
components or minus Reeb components with respect to FG.

Let L be a noncompact leaf of #¢’. Then LN B has m ends cor-
responding to K, (i =1,2, -+--,m) and & [(LN.B) is a codimension one
C7 foliation of LNB. Let 3 be a polygon obtained from LN B by
cutting down the ends of LN B as in the proofs of Propositions 3.6 and
4.2. Then & |2 is a codimension one C” foliation of 3 with m singular
points in 8X. Let U2 be the double of X obtained from two copies of
2 by identifying the two copies of the closure of 0.3 — (92 N dB). The double
of |3 determines a codimension one C7 foliation of the double JUX
with m singular points. The indices of these singular points are all 1 or
all —1 according to Z | K, (i=1, 2, - - -, m) are plus Reeb components or
minus Reeb components. X U2 is the m punctured 2-sphere. Therefore,
by considering the Euler number of X' U 2, we have

2—m=-+m.

This implies that m=1 and & | K; is a plus Reeb component. Thus this
lemma is proved.
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Let us consider N’ N E,. By Lemma 12.4, N'NE, is connected. Let
K, K,, - --, K, be connected components of N'N3E,. Then, by Lemma
12.1, (I), (iii) and Lemma 12.4, # ]Ifi (i=1,2, ---,n) are minus Reeb
components with respect to % ..

Let L’ be a noncompact leaf of %#,. Then L'\ N’ has n ends cor-
responding to K, (=12, ---,n) and Z|(L'NN’) is a codimension one
C7 foliation of L’ N’. Let 2’ be a polygon obtained from L'N N’ by
cutting down the ends of L'\ N’/ as in the proofs of Propositions 3.5 and
4.2. Then |23’ is a codimension one C” foliation of 3" with n singular
points in 827. Let 2’2" be the double of 2 obtained from two copies
of 3 by identifying the two copies of the closure of 03" —(62’ N 9N’). The
double of Z |3’ determines a codimension one C” foliation of the double
2’ U 2’ with n singular points. The indices of these singular points are all
—1, since fllf'i (i=1,2, ---,n) are minus Reeb components. 2’25’
is an n punctured surface of genus 2g’ for some g’<g. Thus, by con-
sidering the Euler number of 2" U X’, we have

2—4g’ —p= —n.

This is a contradiction. Therefore there does not exist a codimension
one C7 foliation transverse to %#. Thus Theorem A in Section O is
proved.

Remark 12.5. 1In case k is a trefoil knot, the homomorphism ¢, in-
duced from the monodromy map of the fibering n: E,—S" is given by the

matrix (_(1) %) Thus Theorem C implies Theorem A in case k is a trefoil
knot. On the contrary, in case k is a figure eight knot, the homomorphism
@4 1s given by (% i) Thus, by Theorem C, there exists a transversely

orientable codimension one C” foliation of E, transverse to %, in this
case. However, Theorem A shows that this codimension one foliation
cannot be extended to a codimension one C” foliation of S? transverse to
& in Theorem A.

§ 13. Some examples of vector fields on foliations

In this section we study vector fields on codimension one C7 folia-
tions of 3-dimensional C~ manifolds which are not transversely integrable
(rz=0.

Let E be a compact connected orientable 3-dimensional C= manifold
with boundary and let z: E—S* be a C= fibering over S* with fibre
X (m) (m=1). We fix a Riemannian metric on E. Let %% be a codi-
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mension one C~ foliation of E as in Section 4 and let L be a noncompact
leaf of <.

Let 0E ={_J;j_, T} as in Section 4 and let ¢ : T* X [—E, ¢*(T* X {0})
COE be a sufficiently thin collar of T} in E such that z(c®({y} X I))=
x(c®(y,0) fork=1,2, .- .,s5. Let p'®: ¢®(T*x[0, 1))—T"* be the pro-
jection defined by p®)(y, t)=y. Let x be a point of 72 and let x,, x,, - - -
X,, -+ - be points of ¢®({x} X[0, 1)) N L such that

>

lim x,=x.

-0

Obviously this implies that

lim p®(x,)="x,

and that there exist sufficiently small neighborhoods U, of x in T% and
U,, of x, in L (n=1,2, ---) such that p®|U, : U, —U, is a C~ dif-
feomorphism. A CT tangent vector field Y on L is said to be convergent
if, for any point x e T% (k=1,2, - - -, s) and any choice of x, and U,
(n=1,2, -..), the sequence of vector fields dp*(Y|U,,) (n=1,2, --+)
converges to a C” vector fields of U, in the C” topology. A convergent
C" tangent vector field Y on L is said to be non-singular if there exists a
positive real number ¢>>0 such that | Y(x)|>e (x € L).

Let Y be a convergent C” tangent vector field on L. Then we can
define a vector field ¥ on 6E by

Y(@)=limdp™(Y(x,) (zeT%),
where {x,} is a sequence of points of L such that lim, . x,=z. Asis
easily verified, Y is a C” tangent vector field on dE. The vector field ¥
on 9E defined as above is called the limit vector field of Y and is denoted
by lim Y. In case Y is non-singular convergent, then lim Y is non-
singular.
We have the following propositions:

Proposition 13.1. Let F be the plus Reeb foliation of the solid
torus S* X D* and let L be a noncompact leaf of . Suppose that Y is
a non-singular convergent C™ tangent vector field on L (r=1). Then the
limit vector field lim Y on S* X dD*? has the following properties:

(i) lm Y has at least one closed orbit.

(ii) Let L, be a closed orbit of lim Y and [L,,,,,] be the homology
class of H/(S' X 3D represented by L,,,. Then it holds that

[Lcomp]:aa—i"bﬁ’ a==1,
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where a and 8 are generators of H(S* X dD*) as in Section 2.

(iii) Let p and q be the numbers of the plus and the minus Reeb com-
ponents in the codimension one C” foliation of S* X 8D* formed by the orbits
of im Y. Then it holds that

p—q=2.
The proof of Proposition 13.1 is the same as that of Proposition 3.6.

Proposition 13.2. Let E and F* be as above, and let L be a non-
compact leaf of F:. Suppose that Y is a non-singular convergent C’7
tangent vector field on L (r=1). Let & denote the codimension one C*
Joliation of OE formed by the orbits of the limit vector fieldlim Y of Y, and
let a,, by, ¢y, p, and q,, be as in Section 4. Then the equation of Proposi-
tion 4.2 holds.

The proof of Proposition 13.2 is the same as that of Proposition 4.2.

Proposition 13.3. Let F$°, L and Y be as in Proposition 13.1.
Suppose that there exists a C™ vector field Y, on a neighborhood U of
S'X0D* in S'XD* tangent to F such that Y|(LNU)=Y|(LNU).
I; hen there exists a non-singular CT vector field ¥ on F such that
Y|L=Y. '

Proof. Let z(S* x D% denote the tangent bundle of S*'X D? and let 7,
denote the 2-plane bundle over S* X D* which is a subbundle of =(S* X D?)
consisting of vectors tangent to leaves of #§’. Let G be a subset of
{x} X D* such that G is diffeomorphic to dD* X I and is contained in U and
that one of the connected components of dG is a submanifold of L and
the other is a submanifold of S'xaD% (Fig.29). Let Y denote the
compact subset of L bounded by G L. We denote by W the compact
3-dimensional manifold obtained by cutting S'x D* at Y UG (Fig. 29).
Since W is homeomorphic to the 3-disk, the 2-plane bundle z{ over W
obtained from z, is trivial. Thus, by making use of a trivialization of <f,
the union of the vector fields Y| 2 and Y,|(G U S* x9D?) defines a contin-
uous map

oW —sR*—{0).

Since 7,(R*— {0})=0, this map can be extended over W. This implies the
existence of ¥ as in this proposition.

We remark that, for given two non-singular convergent C” tangent
vector fields ¥ on L and Y’ on L’ such that lim Y=Ilim ¥’, a result
similar to Proposition 13.3 holds, where L and L’ are noncompact leaves
of FH.
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Proposition 13.4. Let X (3), S'X S, @y, B (k=0,1,2), n: S*xX 2 (3)
—S"' and F: be as in Section 10, and let L be a noncompact leaf of F-.
Suppose that Y is a non-singular convergent C™ tangent vector field (r 1)
on L satisfying the following conditions (i), (i), (iii):

(i) There exists a C™ vector field Y, on a neighborhood U of OF in
E tangent to F¢ such that Y\ |(LNU)=Y|(LNU). ‘

(ii) lim Y|(S*'X S}) has at least one closed orbit for k=0, 1, 2. v

(iii) Let the homology class of H(S'X S}) represented by a compact
leaf of lim Y'|(S*' X S}) be a,o,,+ b8, and let p, and q, be the numbers of
plus and minus Reeb components of the codimension one C7 foliation of
S'x S% formed by the orbits of lim Y| (S* X S}) for k=0, 1, 2; then it holds
that a,=1 and p,—q,=2 for k=1, 2.

Then there exists a non-singular C™ vector field Y tangent to F< such
that Y| L= if and only if b,=23b,, b,=3b,.

Proof. By Proposition 13.2, we have |a,|(p,—q,)=—06. Let Vo1
and ¥}y, be two straight lines in 3(3) such that y,, y; € S%, y, € SL, y, € S}
and y,y, N yoy,=¢ (Fig. 30). )

First suppose that there exists a C” vector field Y as above. As was
mentioned in Section 10, the natural framing of the tangent bundie (L)
of a noncompact leaf L of F*: gives a trivialization of ¢«(%#:). The
framing as above induces the framings {0/04, 3/66,} of «(S*'X.S}) on S'X
{»,} and {—(3/06), 6/36,} of =(S* X S}) on §*X{y,}, where 9/0d, 6/30, and
8/06, are unit tangent vectors of S', S and Si with orientations as in
Section 10 respectively (Fig. 30).

The vector field Y] (S'X ¥,y,) defines a continuous map
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fe(x, $)=@/Vil+ 1%, v/viP+ 1Y),

where u and v are components of ¥ (x, s) with respect to the framing as
above at (x, 5s) € S*X y,»,. Since a,=1 and p,—q,=2, the degree of the
map fp|(S*'X{»:}): S'x{y}—>S* is —b,. On the other hand, since
|a,](P—d)=—6, the degree of the map fp|(S*X {33)): §*X {y}—S" is
—3b,. Obviously f3|(S*X {»,}) and f3|(S* X {»,}) are homotopic. Thus
we have b,=3b,. Similarly we have b,=3b,.

Conversely if it holds that b,==3b, and b,=3b,, then, by making use of
the argument as above, the tangent vector field (¥ U Y)|((S*X yoy) N U)
can be extended to a non-singular C™ tangent vector field of z(%#¢) on
S'X y,:, where U’ is a suitably chosen neighborhood of (S'X{y,)U
(S*X{y}) such that U’'cU. We can make a similar extension for S*X
VoYs.

The 3-dimensional C* manifold with corner obtained from S* X 2 (3)
by cutting along S'X 3,5, and S'X )}y, is homeomorphic to the solid
torus. Therefore, by the same argument as in the proof of Proposition
13.3, we have a vector field ¥ with desired properties. Thus this proposi-
tion is proved.

Now we show an example of vector fields as in Proposition 13.4.
Let Y be a C= tangent vector field on a noncompact leaf L, of &#* shown
by the vector field on A,=L,N 4 as in Fig. 31, (a) with the limit vector
field lim Y as in Fig. 31, (b), where A, is as in Section 9. Remark that
a,, by, p, and ¢q, in Proposition 13.4 are as follows:




Dynamical Systems on Foliations R 289

Fig. 31
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a,=1, by=1, a=a,=1, b,=5b,=3,
2,=0, ¢,=6, p,=p,=2, ¢q,=¢,=0.

Then Y can be extended to a C* vector field ¥ on S*x X,(3) tangent to
Z¢ as is shown in Fig. 32. This construction is due to Koichi Yano.
The following proposition is obvious (cf. [6, Theorem 7)).

Proposition 13.5. Let F be a codimension one C™ foliation of a
3-dimensional C* manifold M (r =2). Then a codimension one C" foliation
F’ of M is transverse to F if and only if there exists a non-singular C™!
vector field X on M tangent to & such that X is transverse to each leaf of F'.

Thus, by Theorem 10.1, there does not exist any codimension one C”
foliation of S X 3,(3) to which C= vector field ¥ of Fig. 32 is transverse.
Making use of the following proposition, this fact can be shown directly
as below.

Let Y be a non-singular C” vector field (»>=1) on a 3-dimensional
C= manifold M and let C be a simple closed C” curve on M. If |sin 4}
< e holds for the angle 6, formed by Y(x) and the tangent vector of C
at x for any point x € C, the simple curve C is called an e-closed orbit of Y.
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Proposition 13.6. Let Y be a non-singular CT vector field (r =2) on a
compact 3-dimensional C= manifold such that Y|dM is tangent to oM if
OM=+¢ and let {C,}(o € 2) be the set of all the closed orbits of Y. Suppose
that, for given e >0, there exists always an e-closed orbit C(g) such that C(e)
is null homotopic in M—\_J), .y C,. Then there does not exist any codimen-
sion-one C" foliation of M transverse to the one dimensional foliation F of
M formed by the orbits of Y.

Proof. Assume that there exists a codimension one C” foliation #
of M transverse to .. Then, for a sufficiently small £>>0, an ¢ closed
orbit C(e) of Y as above is transverse to #. C(¢) bounds a 2-disk
immersed in M—|_J,.s C,. Therefore, by Novikov’s result [4], there
exists S'XD? imbedded in M such that {x}XD* is contained in the
immersed 2-disk and & |(S* X D?) is the Reeb foliation. Since Y|(S* X D?)
is transverse to % |(S'x D%, there exists a closed orbit of Y|(S'X D%
which intersects the immersed 2-disk. This is a contradiction. Thus this
proposition is proved.

The original type of this proposition is due to Yano [8].

For the C~ vector field of Fig. 32, an e-closed orbit C(¢) of Y satis-
fying the conditions in Proposition 13.6 exists as is shown in Fig. 33.
(Fig. 33 shows a part of a covering of 4.) This proves the statement
above.

Fig. 33.

In the following we show the existence of a non-singular C= vector
field X on the plus Reeb foliation F§~ of the solid torus S*x D? such
that there does not exist any codimension one C7 foliation (r=2) of
S'x D* transverse to X. Let X be a C* vector field on #§ such that X| 4,
X| A, and X|(S*X S*) are as in Fig. 34. This construction is also due
to Koichi Yano. By the remark after Proposition 13.3, such a C* vector
field X exists. Suppose that there exists a codimension one C7 foliation
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(r=2) transverse to X, say #’. Let F=F"NF’'. Then Z|(S'x DY)
has a compact leaf L as in Fig. 34, (c). Consider the leaf L’ of %’ con-
taining L and the simple curves Ly=L'NA, in 4, and L,,=L"N4,,
in 4,,, (Fig. 34, (a), (b)). L, shows that

L'N(S'xaD)—LcS*X]a,, aj
and, on the other hand, L,,, shows that
L'N(S*xoD)—LcS*X|a,, ay,).
However the leaf L'N(S'XdD*)—L of & transverse to X|(S'XaD?

cannot satisfy the above implications. Thus & as above does not exist.
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