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Discontinuous Invariants of Foliations 

Sbigeyuki Morita 

§ 1. Introduction 

Let~. be the linear foliation on the torus T 2=R2/Z2, whose leaves 
consist of parallel translations of the line y=cx (c e RU 00). {~.}. 
should be considered as a Co<> family of codimension one foliations on T2 
in any sense. However as is well known the global geometric property 
of ,?;". changes discontinuously with respect to the parameter c. Namely 
if ceQ U 00, then all leaves of ~. are closed, while if c ~ Q u 00, then all 
leaves of §". are dense in T2. One way to express this phenomenon by 
numerical invariants would be as follows. 

,?;". is defined by a non singular closed I-form wand we have the 
corresponding cohomology class [w] e Hl(T2; R). This cohomology class 
is well defined up to non-zero scalar and a particular choice corresponds 
to defining a: transverse orientation and a transverse invariant Riemannian 
metric. Now consider the question whether w bounds as a non singular 
closed I-form, namely whether there is a compact 3-manifold W with 
boundary T2 which has a non singular closed I-form cO such that cO 
restricts to the given w on the boundary. It is easy to see that this is the 
case if and only if ceQ U 00. Now write [w] = a[dx]+b[dy], where [dx] and 
[dy] e Hl(T2; Z) form the standard basis (c= -(a/b». Consider [W]2= 
aAb e AMR), where A~(R) denotes the 2-fold exterior power of Rover Q. 
Then it is easy to see that [W]2 does not depend on the choice of the basis 
of Hl(T2; Z) and we can say that w bounds if and only if [W]2=0. We will 
think of [W]2 as a kind of characteristic number which detects the discon­
tinuous phenomenon described above. 

It turns out that this kind of phenomenon arises whenever we are 
given real cohomology classes. Now there is a theory of characteristic 
classes of foliations and one distinctive feature of them is that they are in 
general cohomology classes which have values essentially in the reals. 
This reflects on the fact that sometimes they can vary continuously on a 
Co<> family of foliations. Now the purpose of the present paper is to 
show that the same reason gives rise to discontinuous invariants of folia-
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tions (usually in higher degrees than the ones where continuous variations 
occur), which might detect some discontinuous phenomena of foliations. 
More concretely in Section 2 we shall give a typical example of such 
invariants which is associated with the Godbillon-Vey class for codi­
mension one foliations. Then in Sections 3 and 4, we shall give the 
general definition. At present we have only a few examples of foliations 
with non-trivial discontinuous invariants. Sections 5-7 are devoted to 
them, among which Theorem 7.1 would be most interesting. 

§ 2. A homomorphism SF.Q3k'I~A~(R) 

Let :F i be a codimension q foliation on a closed oriented n-dimen­
sional manifold Mi (i= 1,2). Two foliated manifolds (MI , .fFI ) and 
(M2, SF J are said to be foliated cobordant if there is a compact oriented 
(n + 1 )-manifold W with a codimension q foliation ff on it such that 

(i) ff is transverse to a W 
(ii) a(W, ff)=(M2, SFz)+(-MI> o'?l) 

where - MI denotes MI with the opposite orientation. This defines an 
equivalence relation on the set of all diffeomorphism classes of closed 
oriented codimension q foliated n-manifolds and we have the quotient set 
o'?.Qn,q' The disjoint union induces a structure of an abelian group on 
SF.Qn,q and we call it the foliated cobordism group of codimension q 
foliated n-manifolds. 

Let A~(R) be the k-fold exterior power of Rover Q. The purpose 
of this section is to define a homomorphism 

for all k= 1,2, .. '. As stated in the Introduction, these are typical 
examples of our discontinuous invariants for k> 1. Let ofF be a codimen­
sion one foliation on a closed oriented manifold M.. Then there is 
defined the Godbilon-Vey class gv(o'?) E Ha(M; R) ([GV]). If dim M=3, 
then we obtain the so called Godbillon-Vey number 

GV(M,:F) = <[M], gv(:F) 

where [M] denotes the fundamental cycle of M. It is well known that 
this number depends only on the foliated cobordism calss of (M, o'?) and 
we have a homomorphism 

GV: SF.Qa,I--?R. 

Of course we set GV!=GV. Now we proceed to define GVk for k>1. 
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So assume that dim M = 3k. Let {Xl' ••• , xm} be a basis of H 3(M; Q). 
Then we have 

for some at E R. We define 

Proposition 2.1. The above expression is well defined. Namely it 
does not depend on the choice of the basis {Xl> ... , xm}. 

Proof Let {Yl, ... , Ym} be another basis of H 3(M; Q). Then there 
is a matrix C=(ctJ) E GL{m, Q) such that 

If we write C-I=(CiJ), then 

LetJ=g, ... ,ik }(l<il < .. . <ik<m) and J={jl>" ·,jk} (l<jl<'" 
<jk <m) be multi-indices. We write c(J, J) for the minor determinant 
of C of degree k corresponding to (J, J) and similarly for C- l • Now let 

So that 

We have 

J'= (Ji ... ·.Jf,) 

Hence 
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because c(J', I)e(!, J)=oJ'J by the Laplace's expansion theorem. Tbis 
completes the proof. 

Proposition 2.2. GV k(M, .f7) depends only on the foliated cobordism 
class of (M, .f7). 

Proof. It is enough to prove that if O(W, :F)=(M, .f7), then 
GV k(M, ~)=O. Let i: M =OW~ Wbe the inclusion and let i*: H3(W; Q) 
~H3(M; Q) be the induced homomorphism. Let {Xl> .. " x.} be a basis 
of 1m i* CH8(M; Q) and choose Yi E H3(W; Q) (i=l, .. " s) such that 
i*(Yi)=Xi, Let {Yl> .. " Y., Y.w .. " Ys+t} be a basis of H3(W; Q) such 
that Y'+I' .. " Y.+t E Ker i*. Now write 

Then by the naturality of the Godbillon-Vey class, we have 

gv(.f7)=i* gv(:F)= a1x1+ ... +a.x •. 

Then 

GV k(M,.f7)= ~ <[M], Xi,' . . xik>ai ,/\· • • !\aik 
i,<···<i. 

~ <[M], i*Yi,' .. i*Yh>ai ,!\ .. . !\aik 
i,< ... <i. 

=0. 

Combining Propositions 2.1 and 2.2, we obtain the desired homomor­
phism GV k: .f7t)8k.I~A~(R). It is clear from the definition that GV k 
factors through H 3I,(Brl ; Z), where Brl is the classifying space for 
codimension one Haefliger structures (or rl-structures) ([Hal). Namely 
there is a similar homomorphism GV k: H 3k(Brl ; Z)~A~(R) (we use the 
same letter), making the following diagram commutative 

where.11: is the natural map. Thurston [Th 1] has proved that GV1 is a 
surjection. We propose 

Conjecture 2.3. The homomorphisms 
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are surjective for all k. 

The difficulty of the problem to prove or disprove the above Con­
jecture increases as k becomes larger. The case k=2 is already extremely 
difficult. In fact even the non-triviality of GV2 is unknown. The follow­
ing problem is related to this. 

Problem 2.4. For any given a, b e R, construct a codimension one 
foliation.'? on SSXSs such that gv(ff)=(a, b) e RffiR~HS(SSXSS; R). 

Let :F t (t e R) be one of Thurston's foliations on sa such that 
GV(.'?t)=t ([Th 1]) and let rt e 7Cg{BTJ be the corresponding element. 
We have a Tt-structure ra Vrb on sav sa. The obstruction to extend 
this structure to whole of sa X SS is represented by the Whitehead product 
[r a' r b] e 7C5(BT t ) and if we can prove that it vanishes, then we could 
obtain a solution to Problem 2.4. If a and b are linearly dependent over 
Q, then [ra, rb]=o because Tsuboi [Ts] has proved that Thurston's 
examples define a direct summand RC7Cs(BT t ). However if a and bare 
linearly independent over Q, then we cannot say anything because at 
present nothing is known about the group 7C5(BTt). We shall consider 
this problem again in Section 6 from a different point of view. 

§ 3. Homology of K(R, q) 

In the preceding section we have observed that the Godbillon-Vey 
class for codimtmsion one foliations, which is a real cohomology class of 
degree 3, gives rise to various foliated cobordism invariants with values in 
A~(R) (k=2, 3, ... ) which are vector spaces over the rationals rather than 
the reals. In this section we examine homotopy theoretic background of 
this phenomenon. Thus let X be a reasonable topological space (e.g. a 
CW complex) and let a e Hq(X; R) be a cohomology class. Then there is 
defined the corresponding continuous map a: X ~K(R, q) (we use the same 
letter) such that a*(&)=a, where & e Hq(K(R, q); R) is the fundamental 
cohomology class of the Eilenberg-MacLane space K(R, q), namely it 
corresponds to the id: R~R under the isomorphism Hq(K(R, q); R)~ 
Homz(R, R). We would like to identify the induced homomorphism 
a*: H*(X; Z)~H*(K(R, q); Z) (see Theorem 3.5). To do so we first 
recall the homology of K(R, q), which should be well-known (see [Ro] for 
the case q= 1). Let S~(R) be the k-fold symmetric power of Rover Q. 
For a real number a eR, we write a for the corresponding element of 
SMR)~R. 



174 S. Morita 

Proposition 3.1. (i) If q is odd, then we have 

H,(K(R, q); z)~{:MR) 
*=0 

*=kq 

otherwise. 

(ii) If q is even, then we have 

H,(K(R, q); Z)~{!~(R) 
*=0 

*=kq 

otherwise. 

Proof Let {a i ; i E 1} be a basis of R as a vector space over Q. For 
a finite subset F of I, let QF be the vector subspace of R generated by a i 

(i E F). Then clearly R= lim QF and so 
F 

K(R, q)=lim K(QF' q). 
F 

The homology of K(Q, q) is well-known: 
If q is odd, 

If q is even, 

*=q 

otherwise. 

*=0 

*=kq 

otherwise. 

From this we can calculate H*(K(QF, q); Z) using the theorem of 
Kunneth and we obtain the desired result because 

Here we look into the above isomorphism more closely. Let 

p.: K(R, q)XK(R, q)---+K(R, q) 

be the map defining the natural H-space structure on K(R, q). Namely 
it is characterized by the property p.*(l)=lXl+lXl. (If one worries 
about the topology of K(R, q) X K(R, q), one can consider everything at 
the levels of K(QF' q)'s, because K(QF' q) can be assumed to be a coun-
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table CW complex so that K(QF' q)XK(QF' q) is also a CW complex. 
This remark applies also to the proof of the next Proposition.) This 
induces the Pontrjagin product on H*(K(R, q); Z): if U E Hp(K(R, q); Z) 
and v E Hp,(K(R, q); Z), then u*v E Hp+p,(K(R, q); Z) is defined by 
u*v=p*(uxv), where uxv is thecrossproductofu andv. For a real 
number ai E R (i E I), let Ui E HiK(R, q); Z) be the corresponding ho­
mology class. Then we can say the following 

With respect to the Pontrjagin product, H*(K(R, q); Z) is a free 
graded commutative algebra over Q generated by the elements U i (i E I). 

The isomorphisms in the statement of Proposition 3.1 are given by the 
correspondences 

Ui,*' .. *uik--*ai1 !\· .. !\aik (q: odd) 

Ui,*' .. *Uik--*ai1 · . . aik (q: even). 

Let d: K(R, q)---+K(R, q)XK(R, q) be the diagonal map. 

Proposition 3.2. 

(i) p*«uj1*", *Uik) X (uh *, .. *uj,»=Ui1*· .. *Uik*Uh *· .. *ujz' 

(ii) d*(U i1*'" *Uik) 

(
L: sgn S(uJ 8(lJ*' •• *ui8(l) X (Uit(l)* ... *uit(m,) (q: odd) 

_ s 

L: (ui ,,,) * ... *ui,,,,) X (uit (lJ*' .. *uit(m,) (q: even), 
s 

where S ={s(I), .. " s(l)}, 1 ::;;:s(l) < ... <s(/);;;'k, S U {t(1), .. " t(m)} = 
{I, .. " k} (m=k-/), 1 ;;;'t(1)<' .. <t(m);;;'k and 

( 1············k ) 
sgn S=sgn . 

s(l)· . ·s(l)t(l) . .. t(m) 

Proof (i) is clear. We prove (ii) by the induction on k. If k=:, 
clearly we have d*(u;)=u j X 1 + 1 Xu j • Next consider the following co:n­
mutative diagram: 

K(R, q)XK(R, q) ____ f'. ___ )K(R, q) 

ldXd I 
K(R, q)XK(R, q)XK(R, q)XK(R, q) Id 

llXTX1 

K(R, q)XK(R, q)XK(R, q) XK(R, q)~K(R, q)XK(R,q) 
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where T: K(R, q)XK(R, q)~K(R, q)XK(R, q) is defined by T(s, t)= 
(t, s) (s, t E K(R, q)). Now we assume q is odd and compute 

d*(Ui1*· .. *Uik+l) 

= d*P*«Ui1 * ... *ui.) X Uik+l) 

=(pX p)*(l X TX 1)*(dxd)*«ui1*· .. *ui.) XUtk+1) 

=(p X p)*(l X TX 1)*(~ sgn S(utSCl)*· .. *ut.,z,) X (Uitc1,*· .. *uitc .. ,) 
s 

X (Uik+l Xl + 1 X Uik+l)) 

X Utk+l X (uttc1, * ... *uit ,"',) Xl 

+ ~ sgn S(Utl(l,*· .. *utsez ,) X 1 X (Uitc1,*· .. *uttc .. ,) X Uik+l) 
s 

= ~ (_l)m sgn S(Uj 8(l,*· .. *Ui,CZl*Uik+l) X (uttc1 ,*· .. *uitc .. ,) 
s 
+ ~ sgn S(Ui",,*· .. *u i • cz ,) X (Uitc1 ,*· .. *uttc .. ,*Uik +1). 

s 

This proves the assertion (ii) for q odd. The case q: even is easier (just 
forget the sgn in the above computation). 

Letft: R~R (i= 1, ... , k) be an additive (in general discontinuous) 
homomorphism. We consider ft as an element of 

Proposition 3.3. 

(q: odd) 

(q: even), 

where Skis the k-th symmetric group. 

Proof We assume q is odd and use the induction on k. If k= 1, 
then the assertion is clear. Now 

<Ui,*· .. *Uik,j;· . ·f.) 

= <ut,*· .. *Uik' d*(j;· . .J.-l xf.) 

= <d*(ut,*· .. *ut.),j;· . .J.-l xf.) 

(proposition 3.2, (ii)) 

= ~ (-1)'-I<Ui1*· .. UiZ_l*UiZ+1*· .. *ui ., j; . . .J.-l)<utz,f.) 
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where S' is the permutation group of {l, .. ·,1-1,1+ 1, .. " k}. The case 
q: even is similar. 

Now for any i E I, let t£ E Hq(K(R, q); R)~Homz(R, R) be the dis­
continuous cohomology class defined by t£(ai)= 1, ti(aj)=0 U=I=i). We 
have tt(Uj)=o£j' In view of Proposition 3.3, we have 

Proposition 3.4. We have 

{-O 
<u. * ... *u· tj'" tj > . 

'1 ,., 1 • =1=0 
if g, .. " i.}=I={j1> ... ,j.} 

if {il> .. " i.}={jl> ... ,j.}. 

Therefore the cohomology classes til'" t J• detects all the elements of 
H.q(K(R, q); Z). 

Theorem 3.5. Let X be a reasonable topological space (e.g. a finite 
cw complex) and let a E Hq(X; R). We use the same letter a for the cor­
responding map X --+K(R, q). Let {XI> •. " xm} be a basis of Hq(X; Q) 
and write 

Let U E H.q(X; Z) be an element. Then we have 

{
.L: <U, Xii' . ·xi.>ai1 !\· . ·!\a£. E A~(R)~H.iK(R, q); Z) 

i,<···<i. 
( ) _ (q: odd) 

a* U - 1 
- .L: <u, X£,' . . X£.>a£l· . . a£. E SMR)~H.q(K(R, q); Z) 
k! ib···,i. 

(q: even). 

Proof Let U£ E Hq(X; Q) (i = 1, .. " m) be elements such that 

First we claim that 

This follows because 

<a*(ui), t> = <Ui, a*(t» = (u£, a> =a£. 

Next letf E Hq(K(R, q); R)~Homz(R, R) be an element. Then we have 
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Hence we obtain 
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<Ui, a*(f» = <a*(ui)'/) 

= <ai,J) 

= f(ai)' 

Now letj;, .. ''/k E Hq(K(R, q); R). Assuming that q is odd, we have 

<a*(u),j;· . fk) 

= <u, a*(j;) . .. a*(fk» 

= <u, (j;(at)xt + ... + j;(am)xm)' .. (fk(at)xt + ... + fk(am)Xm» 
= <u, L: j;(ai') .. fk(aik)x i, ... Xi.) 

L: <u i ,*' .. *Ui., j; . . fk)<U' Xi,' .. Xi.) 
iI<···<ik 

(see Proposition 3.3) 

L: <a i ,/\ ••• /\aik , j; . .. fk)<U' Xi,' . ·Xik)· 
il<···<ik 

Since elements of Hkq(K(R, q); Z) can be detected by cohomology classes 
of the formj;· .. fk E Hkq(K(R, q); R) (see Proposition 3.4), we obtain 

a*(u)= L: <u, Xi,' . . xi.)ai,/\· .. /\ai •. 
il<···<ik 

The case when q is even is similar and omitted. 
In this way, any real cohomology class a E Hq(X; R) gives rise to a 

homomorphism a*: Hkq(X; Z)---+A~(R) (or S~(R» according as q is odd 
(or even), which we would like to call discontinuous invariants arising from 
ex for k> 1. If a is a rational cohomology class, then clearly all the 
discontinuous invariants vanish. Also it is clear that the homomorphisms 
GV k: H 3k(Brt ; Z)---+A~(R) defined in Section 2 are nothing but the discon­
tinuous invariants arising from the Godbillon-Vey class gv E H 3(Br t ; R). 

§ 4. Discontinuous invariants -general framework-

In the preceding section, we have observed that any real cohomology 
class of a topological space induces discontinuous invariants, which are 
homomorphisms from the integral homology groups of the space to various 
vector spaces over Q such as A~(R) or SMR). In this section we generalize 
this procedure. More precisely we consider systems of real cohomology 
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classes instead of just one cohomology class and give the general defini­
tion of our discontinuous invariants. This is done in the framework of 
the theory of Sullivan ([Su], in particular § 8). Thus let d be a differen­
tial graded algebra (d.g.a.) over R. An d-differential system on a space 
X is a d.g.a. map d-+A*(X), where A*(X) is the set of all Coo forms on 
X. Here X is either a Coo manifold, A*(X) being its de Rham complex 
or else X is a simplicial complex, A*(X) being its Sullivan-de Rham com­
plex, namely the set of all "compatible Coo forms" on X. In any case we 
have the de Rham theorem 

H*(A*(X»~H*(X; R). 

Now let d-+A*(X) be an d-differential system on X. Then we have a 
homomorphism 

H*(d)~H*(X; R) 

which induces a system of real cohomology classes of X. There is a 
universal space Bd, called the spatial realization of d, which is defined 
to be the geometric realization of the simplicial set whose n-simplices 
consist of all d -differential systems on the standard n-simplex LIn and the 
face, degeneracy operators are defined by restrictions and pull backs of 
forms. An d-differential system on X naturally defines a classifying map 
X -+Bd and conversely any map X -+Bd induces an d-differential 
system on X well defined up to homotopy. Here two d-differential 
systems on X are said to be homotopic if there is an d -differential system 
on XXI such that the restrictions to XX{O}, XX{l} are the given ones. 
Then we have a bijection 

the set of homotopy 
classes of d -differential:::::: [X, Bd] 
systems on X 

for any reasonable X. Now one has a natural d.g.a. map d-+A*(Bd) 
and for an d -differential system on X, the following diagram clearly 
commutes 

H*(d)~H*(Bd; R) 

~1 
H*(X;R) 

where the vertical homomorphism is induced by the classifying map X -+ 

Bd. The classifying map also induces homomorphisms 
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which we call discontinuous invariants arising from the given d-differential 
system on X. The point here is that the natural map d~A*(Bd) does 
not induce isomorphism on cohomology. In fact the image of the homo­
morphism H*(d)~H*(Bd; R) consists of those cohomology classes 
which can be represented by cocycles on Ed which are continuous with 
respect to the coarse topology of Bd which is induced from the natural 
topology on COO forms. Thus to detect homology classes of Bd, we have 
to consider discontinuous cohomology classes also. This motivates the 
naming of our invariants. 

Now we apply the above construction to the case of characteristic 
classes of foliations. Thus let ff be a co dimension q foliation on a cro 
manifold M. Assume that the normal bundle of .'? is trivialized. Then 
ff is defined by certain I-forms Wi (i= 1, ... , q). The integrability condi­
tion implies that there are I-forms w~ such that 

dw i + I: w~;\ Wi = O. 

If we differentiate the above equation, we see that there are I-forms W~k 
such that 

One can continue this procedure indefinitely to obtain a system of I-forms 
{Wi; w~; W~k; W~kl; •.• } on M. It turns out that this defines an uq-structure 
on M. Here uq denotes the topological Lie algebra of formal vector 
fields on Rq and an uq-structure on M means an A:(uq)-differential 
system on it, where A:(u q ) is the d.g.a. consisting of all continuous 
cochains on uq (see [B 3D. This construction is natural so that there is 
defined a map 

Brq~BUq 

where Br q is the classifying space for co dimension q Haefliger structures 
with trivial normal bundles ([HaD and BUq denotes the spatial realization 
of A:(uq ). Sullivan [Su] asks whether this map is a homotopy equivalence 
or not. 

The cohomology of A:(uq ) was determined by Gel'fand-Fuks [GF] 
and can be described as follows. Define a d.g.a. Wq as 

Wq=E(hlO ... , hq)Q"9R[cj , ••• , cq] 

dhi=c i , degh i =2i-I 

where E denotes the exterior algebra and R denotes the polynomial 
aJgebra truncated by the ideal consisting of elements of deg> 2q. Then 
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there is a d.g.a. map 

Wq~A:(aq) 

inducing an isomorphism on cohomology. Thus we have a homomor­
phism 

which defines the so-called characteristic classes of foliations (see [BH] for 
example). There is a nice topological model for the d.g.a. Wq which is 
defined as follows. Let BUq be the classifying space for the unitary 
group Uq and let ,,: EUq~BUq be the universal Uq bundle over BUq. 
Let BU~2q) be the 2q-skeleton of BUq (with respect to the natural cell 
structure of BUq) and set Yq =,,-1(BU~2q»). Then there is a d.g.a. map 
Wq~A*(Yq) which induces an isomorphism on cohomology. 

Now in general let X be a simply connected finite simplicial complex 
and let ..It x be the minimal model of A*(X) in the sense of Sullivan [Su]. 
We call B..It x the real type of X and denote it by XR • The homotopy 
group of XR is isomorphic to ,,*(X)0R and the integral homology groups 
of X R are vector spaces over Q (see [SuD. For example it is easy to see 
that S~+l is a K(R, 2q+ 1) and hence we know H*(S~+l; Z) by Proposi­
tion 3.1. However the computation of H*(X; Z) is in general very dif­
ficult. Even the case when X = S2q seems to be non-trivial: 

Problem 4.1. Compute H *(S~ ; Z). 

S~ is the classifying space for real cohomology classes a e H 2q( ; R) 
such that a2 =0. 

Now clearly Baq is homotopy equivalent to (Yq)R and hence we 
have a map 

This induces homomorphisms 

and we call them discontinuous invariants of foliations. If q= 1, then Y1 

has the homotopy type of S3 and hence (Y1)R is a K(R, 3). In this case the 
discontinuous invariants defined above coincide with the homomorphisms 
GV k : H3k(BT1 ; Z)~A~(R)~Ha«Yl)R; Z) defined in Section 2. In 
general it is known that Yq has the homotopy type of bouquet of spheres 
and in accordance with that Hurder [Hu] has constructed many non­
trivial foliations on spheres. However at present no example of CM 
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foliations is known which is detected by essentially discontinuous in­
variants. 

Problem 4.3. Prove the non-triviality of discontinuous invariants of 
foliations. 

It is clear that the above considerations can be applied to various 
geometric structures other than the foliations. It is enough to assume 
only that there is defined a system of Coo forms (or real cohomology classes) 
in a functorial manner. For example we can consider foliated M-bundles 
or flat G-bundles where G is a Lie group. Here is a sample problem for 
the latter case. 

Problem 4.4. Let v E H3(SL2C; R) be the "volume class" (cf § 7). 
Is the homomorphism 

induced by v non-trivial? (Here we understand SL2C as a discrete group.) 

§ 5. Examples 

(I) The volume class of Riemannian foliations 
Let ff be a transversely oriented codimension q Riemannian folia­

tion on a Coo manifold M. Roughly speaking there is defined a metric 
on the normal direction to the leaves of .'? which is invariant by the 
action of the holonomy pseudo-group of ff. (See [LP] [P] for more 
precise definitions). In particular we have the volume class v(ff) E 

Hq(M; R). If we denote BRr; for the classifying space for codimension 
q transversely oriented Riemannian Haefliger structures, then we have the 
universal volume class v E Hq(BRr;; R). Clearly we have v2 =O. The­
refore by Theorem 3.5 and the results in Section 4, we have homomor­
phisms 

(q: odd) 

(q: even). 

Pasternack [P] has proved that BRr: is a K(R, 1) so that Vk is an 
isomorphism for all k. 

Conjecture 5.1. The homomorphisms V k (k= 1,2, ... ) are surjective 
for any q. 
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Let L: Rkq~Rq be a linear map of maximal rank. Then it induces 
a co dimension q Riemannian foliation on Rkq, which is invariant under 
parallel translations of Rkq. Hence taking the quotients of it with respect 
to various lattices of Rkq of maximal rank, we obtain codimension q 
Riemannian foliations on Tkq. It is likely that these examples are enough 
to prove Conjecture 5.1 at least for the case when q is odd. 

There is defined the notion of characteristic classes of Riemannian 
foliations ([LP] [Mor 1]). 

Problem 5.2. Prove the non-triviality of discontinuous invariants of 
Riemannian foliations. 

(II) Foliated SI-bundles 
Let Diff+SI be the topological group of all orientation preserving 

r-.../ 

Coo diffeomorphisms of SI and let Diff+SI be its universal covering group. 
r-.../ 

We denote Diff!SI, Diff!SI for the same groups but with the discrete 
topologies. The Godbillon-Vey class for codimension one foliations 
gives rise to cohomology classes 

r-.../ 

f3 E H3(B Diff!S1 ; R) 

(see [Mor 2] for more details). By the procedure given in Section 3, 
these cohomology classes induce discontinuous invariants. To study the 
non-triviality of them, we first consider the group DiffxR consisting of all 
Coo diffeomorphisms of R with compact supports. If we embed R in SI 
as an oriented open interval, then DiffxR is a subgroup of Diff+SI. 
Hence by restriction we have 

a E H2(BDiffiR; R). 

It is easy to see that this cohomology class is well defined independent of 
the choice of the embedding ReS I • Now for any kEN, choose k 
mutually disjoint oriented open intervals Ui (i= 1, .. " k) of R. These 
define an injective homomorphism DiffxRX··· XDiffxR~DiffxR and 
hence a map 

k times 
j: BDiffiRX'" XBDiffkR~BDiffkR. 

Let a: BDiffiR~K(R, 2) be the map defined by the cohomology class 
a. Then it is easy to see that the following diagram is homotopy 
commutative: 
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BDiffkR X ... X BDiffkR~BDiffkR 
lax ... xa A la 

K(R, 2) X ... X K(R, 2) ~ K(R, 2) 

where A is a map characterized by 

Ie i 

A*(t) = .L: 1 X··· XtX··· Xl. 
i=l 

Now it can be shown that the induced homomorphism 

is surjective (cf. Proposition 3.2, (i)). From this and the fact that 

a*: H 2(BDiffkR; Z)~R 

is a surjection (see [Th 1] [Ma] and Theorem 6.5 below) we conclude 

Proposition 5.3. The homomorphisms 

are all surjective. 

Corollary 5.4. There are surjections 

H 2k(B Diff! Sl ; Z)~S~(R)~O 
r--.../ 

H 2k + 1(BDiff!Sl; Z)~S~-l(R)@R~O (k= 1,2, ... ) 
r--.../ 

H 2k(BDiff!Sl; Z)~S~(R)~O. 

Proof The first and the third homomorphisms are discontinuous 
invariants arising from the cohomology class a and their surjectivity 
follows directly from Proposition 5.3. The second surjection is induced 
from the homomorphism 

which is defined by the discontinuous invariants arising from a and ~. 

§ 6. The Godbillon-Vey class (real case) 

In Section 2 we have defined a homomorphism 
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and proposed the problem to prove the surjectivity of it. In this section 
we relate it with another problem about the homology of BDiff.k R. 
Recall that we denote rt E 7C3(Br1)=7C3(Br l ) for the element corresponding 
to Thurston's co dimension one foliation :Pt on S3 such that gv(sz:'t)= 
t E H3(S3; R) ~ R. We would like to know whether the Whitehead 
product [r a' r b] vanishes in 7C5(Br I) or not when a and b are linearly 
independent over Q. 

Now in general let X be a simply connected topological space. We 
have a natural isomorphism 7Cp+I(X)~7Cp(QX) for any p. For an element 
a E 7Cp+I(X), we write a E 7t"p(QX) for the corresponding element under the 
above isomorphism. Let p: QXX QX-?-QX be the map defined by the 
composition of loops. This induces the Pontrjagin product on the 
homology H*(QX; Z): if U E Hp(QX; Z), v E Hq(QX; Z), then a homology 
class u*v E Hp+q(QX; Z) is defined to be u*v=p*(uxv), where uxv is 
the cross product of U and v. Let';: 7t"p(QX) -?- Hp(QX; Z) be the 
Hurewicz homomorphism. The following is well known. 

Proposition 6.1. For any simply connected topological space X, the 
kernel of the Hurewicz homomorphism ';-: 7t"p(QX)-?-Hp(QX; Z) is a torsion 
group for any p. 

There is a close relation between the Whitehead products on the 
homotopy group of a simply connected space and the Pontrjagin products 
on the homology group of its loop space as the following theorem 
indicates. 

Theorem 6.2 (Samelson [SaD. Let X be a simply connected topological 
space and let a E 7t"p+I(X), 13 E 7t"q+l(X) so that we have [a, 13] E 7t"p+q+I(X), 
Let a E 7t"p(QX), P E 7t"q(QX), [a,f3] E 7t"p+q(QX) be the corresponding ele­
ments. Then we have 

Combining Proposition 6.1 and Theorem 6.2, we obtain 

Proposition 6.3. Let X be a simply connected topological space. If 
the Pontrjagin products on H*(QX; Q) is graded commutative, then all the 
Whitehead products in 7t"*(X) have finite orders. 

Now we go back to our problem. We are concerned with the ele­
ment [r a' r b] E 7t"5(Brl) or equivalently the corresponding element [r a' r b] E 

7t"iQBr1) (recall that Br, is simply connected [HD. By Proposition 6.1, 
[ra, Tb] has finite order if and only if WT a , TbD has finite order in 
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HMJBFI; Z). By Theorem 6.2, we have 

Hence we obtain 

Proposition 6.4. [r a' r b] has finite order if and only if 

At this place let us recall the result of Mather [Ma] relating the 
homology of BFI to that of BDiff.kR. Let h: BDiff.kRXR~BFI be the 
natural map classifying the universal codimensiol;1 one foliation on 
BDiff.kR X R. Since this foliation is trivial in a neighborhood of the 
infinity of the R-factor, the map h has an adjoint map H: BDiff.kR~ 
{JBFI. 

Theorem 6.5 (Mather [MaJ). The map H: BDiff.kR~{JBFI induces 
an isomorphism on the integral homology. 

Now let p,: Diff.kRxDiff.kR~Diff.kR be the homomorphism defined 
by identifying R on the first factor with (- 00,0) by the map say -exp-t 
and R on the second factor with (0, 00) by the map say exp t. The 
homomorphism p, induces a product on the homology of BDiff.kR, which 
we denote by the letter *. Thus if 

U E Hp(BDiff.kR; Z) and v E Hq(BDiff.kR; Z), 

then 

It is easy to see that the above *-product does not depend on the 
particular choices of identifications of R with ( - 00, 0) and (0, 00). It is 
clear that the following diagram is homotopy commutative: 

I rom this follows 

Proposition 6.6. The *-product on H*(BDiff.kR; Z) corresponds to 
the Pontrjagin product on H * ({JBF I; Z) under the isomorphism of Theorem 
f.5. 



Discontinuous Invariants 187 

Now we propose 

Conjecture 6.7. The :;!.<-product on H*(BDiffJcR; Z) is graded com· 
mutative at least up to torsion. 

Here it is amazing to observe the following. Let l: R-+SI be any 
embedding. This induces a homomorphism DiffKR-+Diff+SI and hence 
a map i: BDiffJcR-+BDiff!SI. Then we have 

l*(U*V-( -I)pqv*u)=O 

for any u E Hp(BDiffJcR; Z) and v E HiBDiffJcR; Z). This follows from 
the fact that on SI we can go from + 00 to - 00 without passing through 
R and the fact that the inner automorphisms of a group induce the 
identity on homology. In view of Propositions 6.4 and 6.6, we obtain 

Proposition 6.8. If the *-product on H*(BDiffJcR; Q) is (graded) 
commutative for * = 2, then the homomorphism GV2 : H6(BF I; Z)-+ A~(R) 
is non-trivial. In fact its cokernel is a torsion group. 

In this way, we have reduced a problem of homotopy groups of BFI 
to that of homology groups of BDiffJcR. However this latter problem 
seems to be still extremely difficult. One reason for that can be explained 
as follows. There is a result of Gel'fand-Feigin-Fuks [GFF] about a 
curious phenomenon on the characteristic classes of family of foliations. 
Let us consider one special case. So let ff, (t E R) be a c= one-parameter 
family of codimension one foliations on a manifold M. We may assume 
that ff, is defined by a I-form w, which depends smoothly on t. By the 
integrability condition, there is a I-form Ti, on M such that 

dW'=Tit/\w,. 

We may assume that Ti, also depends smoothly on t. Now the cohomology 
class represented by the closed form Ti,/\dTi' is the Godbillon-Vey class 
gv(ff,) E H3(M; R). Since ff, depends smoothly on t, we can differentiate 
gV(~t) with respect to t to obtain a cohomology class gv'(ff,)I,~o E 

H 3(M; R). Now the result of Gel'fand-Feigin-Fuks in this particular 
case claims 

gV(ffo) gv' (ff,)I,~o=O. 

This can be easily proved as follows. This cohomology class is re­
presented by 

Tio /\ dTio/\ (Tit /\ dTi'Y I, ~o = Tio /\ dTio /\ {Ti~/\ dTio + Tio /\ dTia 

=0 
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because we have (dT}o)2=O. From this follows, for example, that if .9 t 
(t E R) is a C= one parameter family of codimension one foliations on 
S3XS3 and if we write gv(%t) = (at> bt) E RZ~H3(S3XS3; R), then the 
ratios at/bt are independent of t. It follows from this fact that even if 
Conjecture 6.7 were true, it cannot be proved by a construction on elements 
of Diff;R which varies continuously with respect to the C= topology. 
By the same reason we can say that even if BFI were a K(R,3), the cor­
responding H-space structure on BF I cannot be continuous with respect 
to the coarse topology of it (for the coarse topology see [MosD. 

In any case there are two extremal candidates for the space BFl> the 
Eilenberg-MacLane space K(R, 3) and the Moore space M(R, 3). It 
would be too early to say something about the homotopy type of BFI , 

but the result of the next section (§ 7) seems to support the first candidate. 

§ 7. The GodbiJIon-Vey class (complex case) 

There is a theory of characteristic classes for holomorphic foliations 
which is analogous to the C= case (see [BID. In particular if we denote 
BF qC for the classifying space of codimension q holomorphic Haefliger 
structures with trivial normal bundles, then there is defined a map 

or at the space level we have a map 

where (Yq)c is the complex type of the space Yq which is defined by using 
complex valued C= forms. As before this induces discontinuous in­
variants of holomorphic foliations. In particular, we have homomor­
phisms 

'" hich should be considered as complex analogue of the homomorphisms 
GV k defined in Section 2. Namely they are induced by the Godbillon­
Vey class gv E H 3(BF IC; C) which is now a complex valued cohomology 
class of degree 3 defined for any co dimension one holomorphic foliation 
with trivial normal bundle. 

Bott [B2] has proved that GVp is a surjection. In fact for non zero 
complex numbers a, 13, let ~'(a, 13) be the codimension one holomorphic 
foliation on C 2 - 0 defined by the holomorphic I-form azzdzl + j3zldzz. 
Then Bott shows 
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which can be assumed to take any complex value by suitable choices of 
IX and 13. 

Now we would like to show the non-triviality of the homomorphism 
GVf. For that observe that the Hopf fibration S3-+Cpl defines a 
co dimension one holomorphic foliation on S3, by taking the fibres as 
leaves, whose Godbillon-Vey number is equal to -161C"2 because we can 
take IX/I3 = -1. To prove the non-triviality of GVf it is enough to 
show the existence of a certain non-trivial family of the Hopf fibrations 
along a closed 3-manifold. There exists such a thing. Namely let M 3 be 
a closed orientable hyperbolic 3-manifold (see [Th 2]) and let TIM be its 
unit tangent bundle. Then there is a codimension two foliation on TIM, 
called the Anosov foliation, whose leaves are transverse to the fibres of 
the projection TIM-+M. The total holonomy group of this foliated S2_ 
bundle lies in PSL2C which acts on S2= Cpl holomorphically. Hence 
this foliation can be considered as a codimension one holomorphic folia­
tion. Since M is parallelizable, the total holonomy group lifts to SL2C 
(the unique obstruction to lift a homomorphism 1C"1(M)-+PSL2C to SL2C 
is the second Stiefel-Whitney class which is zero in this case). This 
implies that we can take an SI-bundle EM over TIM which is a sort of 
family of Hopf fibrations over M. EM has a codimension one· holomor­
phic foliation g;: M whose restriction to any fibre is isomorphic to the one 
induced from the Hopf fibration. We will compute the discontinuous 
invariant GVf(E"I' g;: M) E A~(C) of this foliation. Let v(M) be the 
volume of M and let r;(M) be the r;-invariant of M (see [APS)). 

Theorem 7.1. Let M be a closed oriented hyperbolic 3-manifold. 
Then we have 

Corollary 7.2. The homomorphism GVf: H6(BF IC; Z)-+A~(C) is 
non-trivial. 

Proof of Theorem 7.1. First of all we take a second way of viewing 
our foliation .9 M which is convenient for computation. Let H3 be the 
3-dimensional hyperbolic space. Then the group of isometries of it is 
PSL2C and we have a fibration 
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which can be seen as the principal SO(3)-bundle associated to the tangent 
bundle of H3. We have also a fibration 

which should be considered as the "fibre-wise Hopf fibration" over the 
unit tangent bundle TIH3. Now the fundamental group it'1(M) acts on 
these fibrations freely and if we take the quotient, then we obtain the 
tangent orthonormal frame bundle of M 

and the fibration 

Now our foliation :F M on EM is the quotient by it'1(M) of the codimension 
one holomorphic foliation :F on SLzC defined as follows. Let 

x.=(0 0) 
z 1 0 

be a basis over C of the Lie algebra §fzC and let Wi (i = 0, I, 2) be the 
dual basis. We consider Wi as a left invariant complex valued I-form on 
PSL2C and SLzC. nis easy to see that 

dwo= -wI /\WZ 

dwI= - 2WO/\WI 

dwz=2wo/\w2 • 

Now .'P is defined by the 1-form WI. Therefore the associated GodbilIon­
Vey form is -4WOWIW2. If we write 

WOWIW2 = p+ i,y 

for some real forms p, ,y, then computation shows that 

(i) On PSL2C, p is it'2Q where Q is the Chern-Simons form cor­
responding to the I-st Pontrjagin class, 

(ii) ,y= -p*v+ exact form, where v is the volume form of H3 and 
p: PSL2C (or SL2C)-+H3 is the projection 

(see [Y]). Moreover the restriction of WOW IW2 to the fibre SU2 equlUs 
2xvolume-form of SU2 • Now choose a cross-section s: M-+EM (recall 
that Mis parallelizable so that EM:!:.MX S3). This induces a cross-section 
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s: M-+FM. Now let z and w be the homology classes of EJ[ represented 
by the fibre S3 and sCM) respectively. Then we have 

=J -8 volume form of SU2 
SUo 

=-161t'z 

because v(S3)=21t'2. Observe that the above computation coincides with 
Bott's one for the Hopf fibration. Next we have 

<w, gv(~M»=tM) -4(s6+ i t) 

=-41t'ZJ Q+4iJ v 
'(M) M 

= -41t'2(3r;(M)-3o(M, s»+4iv(M) 

because according to Yoshida [y], we have . 

J Q=3r;(M)-3o(M, s) 
I(M) 

for any closed oriented Riemannian 3-manifold M with an orthonormal 
framing s, where oeM, s) denotes the Hirzebruch's invariant of the framed 
manifold (M, s). If we denote x, y e H3(EM ; Z) for the cohomology 
classes dual to z, w, then the above computation implies 

Hence if we orient EM by requiring xy = 1 e H6(E M, Z), then we have 

Here we have used the fact that 3o(M, s) is an integer. This completes 
the proof. 

Since there are only countably many isometry classes of hyperbolic 
3-manifolds, the set of values of the above examples is very small in 
A~(C). 

Problem 7.3. Prove that the homomorphism GVf: H6(Br 1C; Z)-+ 
A~( C) is surjective. 

Remark 7.4. Observe that the non-triviality of the above examples 
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can be detected by the cohomology class gvgv E H'(BT1C; C). From this 
point of view the above computation can be generalized to the homo­
geneous co dimension q holomorphic foliation on SLq+IC which is given 
similarly as above (the case q= 1) and also to the foliations constructed 
by Rasmussen [Ra]. In this way we obtain many non-triviality results for 
the discontinuous invariants of BT qC. However we omit the details. 
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