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Discontinuous Invariants of Foliations

Shigeyuki Morita

§1. Introduction

Let &, be the linear foliation on the torus 7%= R*/Z*, whose leaves
consist of parallel translations of the line y=cx (ce RU). {F.}.
should be considered as a C~ family of codimension one foliations on T
in any sense. However as is well known the global geometric property
of #, changes discontinuously with respect to the parameter ¢. Namely
if ¢ e QU oo, then all leaves of F, are closed, while if ¢ ¢ QU oo, then all
leaves of &, are dense in 7% One way to express this phenomenon by
numerical invariants would be as follows.

P, is defined by a non singular closed 1-form » and we have the
corresponding cohomology class [w] € H*(T7; R). This cohomology class
is well defined up to non-zero scalar and a particular choice corresponds
to defining a transverse orientation and a transverse invariant Riemannian
metric. Now consider the question whether @ bounds as a non singular
closed 1-form, namely whether there is a compact 3-manifold W with
boundary 7% which has a non singular closed 1-form @ such that &
restricts to the given @ on the boundary. It is easy to see that this is the
case if and only if ¢ € QU co. Now write [w] = a[dx] - b[dy], where [dx] and
[dy] e H(T?; Z) form the standard basis (c==—(a@/b)). Consider [w],=
a/\b e Ay(R), where A5(R) denotes the 2-fold exterior power of R over Q.
Then it is easy to see that [@], does not depend on the choice of the basis
of H'(T*; Z) and we can say that w bounds if and only if [w],=0. We will
think of [], as a kind of characteristic number which detects the discon-
tinuous phenomenon described above.

It turns out that this kind of phenomenon arises whenever we are
given real cohomology classes. Now there is a theory of characteristic
classes of foliations and one distinctive feature of them is that they are in
general cohomology classes which have values essentially in the reals.
This reflects on the fact that sometimes they can vary continuously on a
C= family of foliations. Now the purpose of the present paper is to
show that the same reason gives rise to discontinuous invariants of folia-

Received December 6, 1983.



170 S. Morita

tions (usually in higher degrees than the ones where continuous variations
occur), which might detect some discontinuous phenomena of foliations.
More concretely in Section 2 we shall give a typical example of such
invariants which is associated with the Godbillon-Vey class for codi-
mension one foliations. Then in Sections 3 and 4, we shall give the
general definition. At present we have only a few examples of foliations
with non-trivial discontinuous invariants. Sections 5-7 are devoted to
them, among which Theorem 7.1 would be most interesting.

§2. A homomorphism & £,, ,— A5(R)

Let &, be a codimension ¢ foliation on a closed oriented n-dimen-
sional manifold M; (i=1,2). Two foliated manifolds (M,, &#,) and
(M,, &,) are said to be jfoliated cobordant if there is a compact oriented
(n+1)-manifold W with a codimension ¢ foliation Z on it such that

(i) & is transverse to oW

() (W, F)=My F)+(—M,, F)
where — M, denotes M, with the opposite orientation. This defines an
equivalence relation on the set of all diffeomorphism classes of closed
oriented codimension g foliated n-manifolds and we have the quotient set
F1R, ., The disjoint union induces a structure of an abelian group on
F10,, . and we call it the foliated cobordism group of codimension g
foliated n-manifolds.

Let A5(R) be the k-fold exterior power of R over Q. The purpose
of this section is to define a homomorphism

GV,: FLy. ,—>A5R)

for all k=1,2, ... As stated in the Introduction, these are typical
examples of our discontinuous invariants for k>1. Let & be a codimen-
sion one foliation on a closed oriented manifold M. Then there is
defined the Godbilon-Vey class gv(#) e H¥(M; R) ((GV]). If dim M=3,
then we obtain the so called Godbillon-Vey number

GV(M, F)={[M], g(F))

where [M] denctes the fundamental cycle of M. It is well known that
this number depends only on the foliated cobordism calss of (M, &) and
we have a homomorphism

GV: 2, —>R.

Of course we set GV,=GV. Now we proceed to define GV, for k>1.



Discontinuous Invariants 171

So assume that dim M=3k. Let {x,, ---, x,} be a basis of H¥M; Q).
Then we have

gV(F)=ax,+ - - +a,x,
for some a, e R. We define

GV.(M, F)= >, (ML x,xe, - X0, \a,/\ - - N\a,;, € A(R).

1< <ip

Proposition 2.1. The above expression is well defined. Namely it
does not depend on the choice of the basis {x,, - - -, X,}.

Proof. Let{y, ---,yn} be another basis of H¥(M; Q). Then there
is a matrix C=(c,;) € GL(m, Q) such that

yi=2 CijXje
If we write C~'=(¢,;), then '
xl=Z Eijyj'

Let I={i, -- -, i,} (A= <- - <ix=m) and J={j,, -+, i} 1=/ <---
<j,<m) be multi-indices. We write ¢(Z, J) for the minor determinant
of C of degree k corresponding to (7, J) and similarly for C-'. Now let

gv(y)=b1y1+ R +bmym

so that
a,=72 . c;;b,.
We have
Xyw o Xye= 2. e, )y -y, and
J={j1y0+Jk}
a N\ Nag, = 2. Dby /N - Nby,.
T'={Ggsmen g}
Hence
I (.Z ) }<[M]’ Xigt e 'xik>ai1/\ e /\aik
={i1,e, ix : .

22 KM}, ; e, )i Vi ; e’ Dby /N« Nby}
=32 {5 32 o', DR, IXIMY, vy i 0by -+ by
:ZJ: <[M]s Vi 'y]k>b]1/\ e /\bjk
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because ¢(J’, I)eé(l, J)=4,, by the Laplace’s expansion theorem. This
completes the proof.

Proposition 2.2. GV (M, F) depends only on the foliated cobordism
class of (M, F).

Proof. It is enough to prove that if (W, %)=(M, %), then
GV (M, F)=0. Leti: M=0W—>W be the inclusion and let i*: H¥(W; Q)
—>H¥M; Q) be the induced homomorphism. Let {x,, - - -, x,} be a basis
of Im i*C H*(M; Q) and choose y, ¢ H(W; Q) (i=1, - --,s) such that
i*(y)=x;. Let{y, -«+, Ve Vi1, -+ +» V4. be a basis of H(W; Q) such
that y,,4, - - -5 Vs € Ker i*, Now write

gv(j)‘_‘%yl‘f‘ R N 2TTS JYUR
Then by the naturality of the Godbillon-Vey class, we have

gv(gz)zi*gv(j):alxl_{— e +asxs'

Then
GV.(M, 9)=i1<;<ik (MY, x5, - -x0a, N\ - - Nay,
= 3 MLy PRdauA - Ay,
= 3 GIMLygcvdanh--- Ay,
=0,

Combining Propositions 2.1 and 2.2, we obtain the desired homomor-
phism GV,: #02,, ,—A45R). It is clear from the definition that GV,
factors through H,,(BI',; Z), where BI', is the classifying space for
codimension one Haefliger structures (or I',-structures) ((Ha]). Namely
there is a similar homomorphism GV, : H,(BI';; Z)—A}(R) (we use the
same letter), making the following diagram commutative

V
F S A5(R)

PNy GV

H,(BI';; Z)

where « is the natural map. Thurston [Th 1] has proved that GV, is a
surjection. We propose

Conjecture 2.3. The homomorphisms
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GV,: FOy.,—> MR
are surfective for all k.

The difficulty of the problem to prove or disprove the above Con-
Jecture increases as k becomes larger. The case k=2 is already extremely
difficult. In fact even the non-triviality of GV, is unknown. The follow-
ing problem is related to this.

Problem 2.4. For any given a, b ¢ R, construct a codimension one
Joliation # on S*X S* such that gv (F)=(a, b) e ROR=H(S*X S*; R).

Let &, (te R) be one of Thurston’s foliations on S* such that
GV(#,)=t ([Th 1]) and let 7, € m(BI";) be the corresponding element.
We have a I'-structure 7,7, on S*\/S® The obstruction to extend
this structure to whole of $%X S® is represented by the Whitehead product
[Te, 7] € m(BI') and if we can prove that it vanishes, then we could
obtain a solution to Problem 2.4. If g and b are linearly dependent over
Q, then [r,, 7,]=0 because Tsuboi [Ts] has proved that Thurston’s
examples define a direct summand RCr(BI";). However if a and b are
linearly independent over Q, then we cannot say anything because at
present nothing is known about the group #,(BI';)). We shall consider
this problem again in Section 6 from a different point of view.

§ 3. Homology of K(R, q)

In the preceding section we have observed that the Godbillon-Vey
class for codimension one foliations, which is a real cohomology class of
degree 3, gives rise to various foliated cobordism invariants with values in

E(R) (k=2, 3, - - -) which are vector spaces over the rationals rather than
the reals. In this section we examine homotopy theoretic background of
this phenomenon. Thus let X be a reasonable topological space (e.g. a
CW complex) and let « € HY(X; R) be a cohomology class. Then there is
defined the corresponding continuous map «: X—K(R, q) (we use the same
letter) such that a*(:)=«, where ¢ e HY(K(R, q); R) is the fundamental
cohomology class of the Eilenberg-MacLane space K(R, g), namely it
corresponds to the id: R—R under the isomorphism H%K(R, q); R)=
Homy(R, R). We would like to identify the induced homomorphism
ay: H(X; Z)-—>H (K(R, q); Z) (see Theorem 3.5). To do so we first
recall the homology of K(R, q), which should be well-known (see [Ro] for
the case g=1). Let SE(R) be the k-fold symmetric power of R over Q.
For a real number a € R, we write 4 for the corresponding element of
Se(R=R.
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Proposition 3.1. (i) If q is odd, then we have

4 *=0
Hy(K(R, q); Z)= A3(R) x=kq
0 otherwise.
@) If q is even, then we have
yA ¥ =0
H(K(R, 9); Z)={SH(R) *=kq
0 otherwise.

Proof. Let {a,;ie I} be a basis of R as a vector space over Q. For
a finite subset F of 7, let Q be the vector subspace of R generated by g,
(i€ F). Then clearly R=1lim Q and so
F

K(R, 9)=lim K(Qr, 9)

The homology of K(Q, ¢) is well-known:
If ¢ is odd,
Z x=0
H.(K(Q, q); Z)={Q =x=¢q
0  otherwise.
If g is even,
Z x=0
H(K(Q, 9); Z)={Q x=kq
0  otherwise.

From this we can calculate H (K(Qr, q); Z) using the theorem of
Kiinneth and we obtain the desired result because

H.(K(R, q); Z)=1iTm H.(K(Qr, 9); Z).

Here we look into the above isomorphism more closely. Let

be the map defining the natural H-space structure on K(R, ¢). Namely
it is characterized by the property p*()=¢X141X¢. (If one worries
about the topology of K(R, q) X K(R, g), one can consider everything at
the levels of K(Qr, q)’s, because K(Qy, g) can be assumed to be a coun-
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table CW complex so that K(Qz, ) X K(Qp, q) is also a CW complex.
This remark applies also to the proof of the next Proposition.) This
induces the Pontrjagin product on H (K(R, q); Z): if ue H (K(R, q); Z)
and ve H(K(R, q); Z), then uxve H,. (K(R, q); Z) is defined by
uxv=p,(uX v), where uXv is the cross product of # and v. For a real
number a;, € R (ie I), let u, € H (K(R, q); Z) be the corresponding ho-
mology class. Then we can say the following

With respect to the Pontrjagin product, H.(K(R, q); Z) is a free
graded commutative algebra over Q generated by the elements u, (i & I).

The isomorphisms in the statement of Proposition 3.1 are given by the
correspondences

Uk sk, —>a, /N - Aa,, (q:o0dd)

1

Ug ke - okl ——>0y - -y, (g: even).
Let d: K(R, 9)—K(R, g) X K(R, q) be the diagonal map.
Proposition 3.2.

(1) sy - suy ) XUy e - %My )) ==y % - o %l KU % - XUy,
()  dy(ug =« oxuy,
{; Sgn S(u{s(l,* M *ui:(”) X(uﬂa)* tee *ui;(m)) (q: Odd)

%; (ufsm* e *uis(l))x(uizm* e *uium) (q even),

where S={s(1), ---,s(D}, 1=s(D)<---<s()=k, SU{L(1), - - -, t(m)}=
{1, -+, k} m=k=0D), 1t(DN<+ - - <t(m)=k and

Lo, k
e S=sen (s(l)- s(D1(1)- -r(m)>'

Proof. (i) isclear. We prove (ii) by the induction on k. If k=1,
clearly we have d,(u;)=u; X 1+1Xu,. Next consider the following com-
mutative diagram:

K(R, )X K(R, q) £ >K(R, q)
dXd
K(R, 9) X K(R, ) XK(R, 9) X K(R, q) d
IXTX1

KR, )X K(R, §) X K(R, ¢) X K(R, )—"LSK(R, 9) X K(R, @)
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where T: K(R, 9) X K(R, 9)—K(R, q) X K(R, q) is defined by T(s, t)=
(t,5) (s, t e K(R, q)). Now we assume ¢q is odd and compute
do(ug -+ xuy,,)
= *P‘*((uil* Tt *uik)xuik_H)
=X (I X TX D) (dX D) (g 5+ - - 513,) Xty
=(peXpw(1XTX 1)*(25: sgn S(ug, % - - *uim,) XUy % - *umm))
XUy X T+H1 XU, )
= (X Q0 (D)™ sgn Sy - - -5ty )
Xty X Wy -+ -1ty )X 1
+§ sgN S Uy, p %+ kg, ) X EX Uy, 0 % - *Ug 00) XUy )
=§ (— D)™ sgn Sy, % - Uy, %l )X Wy g %0 - ¥Ug, )

+§ sgn S(uism* e *uism) X(uitm* e *uium)*uikﬂ)'

This proves the assertion (ii) for g odd. The case ¢: even is easier (just

forget the sgn in the above computation).
Let f;: R—R (i=1, - - -, k) be an additive (in general discontinuous)

homomorphism. We consider f; as an element of
HY(K(R, q); R)=Hom,(R, R).
Proposition 3.3.

Z sgn O'f;(aia(u)' : 'fk(aia(k)) (q Odd)
Qg v ¥l i v fip =1755%
EZS:k fai, ) - filas, ) (g: even),

where Sy, is the k-th symmetric group.

Proof. We assume ¢q is odd and use the induction on k. If k=1,
then the assertion is clear. Now

<u11*' . .*uik,fl. . f;c>
= Qsx -y, d*(fre S X))
=gy - - -xuy), fir - Seoa X fi)
=g (_..-1)"-’<uh*. S Ug, KU, K .uikxu”’fl. . .fk_lek>
(Proposition 3.2, (ii))
=20 (=D Wy - uy kg ety S [ (U fi)
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= (—=1)F? sgn 7f(a;, ) - 'fk—l(air(m))fk(aiz)

r€8’

= >, sgn Uﬁ(ai¢(1))' . 'fk(aig(k;)

ec Sy

where S is the permutation group of {1, - - -, /—1, /41, -~ -, k}. The case
¢g: even is similar.

Now for any i e/, let ¢, e H(K(R, q); R)=Hom,(R, R) be the dis-
continuous cohomology class defined by ¢,(a,)=1, ¢,(a;,)=0 (j+i). We
have ¢,(u,)=4,;. In view of Proposition 3.3, we have

Proposition 3.4. We have
=0 l:f{ilﬁ "'9ik};&{jla "’5jlc}
:léo if{ila "'7ik}={j19 "'9jk}'

Therefore the cohomology classes ¢, ---¢;, detects all the elements of
H(K(R, q9); 2).

<ui1*' C KUy, gyt '!jlc>{

Theorem 3.5. Let X be a reasonable topological space (e.g. a finite
CW complex) and let « e HY(X; R). We use the same letter « for the cor-
responding map X —K(R, q). Let {x,, ---,x,} be a basis of H(X; Q)
and write

Czzal-xl_i" ctt +amxm°
Letue H, (X; Z) be an element. Then we have

Z <u7 xil' * 'xi]g>a721/\ tt /\aik € AE(R)ngq(K(Ri 9); Z)

1< <
a*(u): 1 (q Odd)
T Z Uy Xgy Xy, g, - -4y € SHR)=H, ((K(R, 9); Z)

o (g: even).

Proof. Letu,e HJ(X;Q) (i=1, - - -, m) be elements such that
{uy, X9 =04
First we claim that
ag(u)=a, e R=H (KR, q); Z).
This follows because
Cayus), o =uy, a¥() =uy, ) =a,.
Next let f ¢ HY(K(R, q); R)=Hom,(R, R) be an element. Then we have
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Qugy () ="<ay(w:), [
= <aiaf>
=f(a,).

Hence we obtain

a*(f)=fla)x+ - - - + f(an)Xp.
Now let £}, - - -, fi ¢ H(K(R, q); R). Assuming that g is odd, we have

laW), fi [
= (u, a*(f)- - a*(f)>
=, (fil(@)x;+ - - - +filaw)x,) - - -(filadx+ - - - + fil@)xn))
=y, sz fla) - fila,)xs, - xs,

Taynees

= Z Z Sgn af;(aiul))' . 'fk(aia<k))<u’ xil. ° .xik>

<<l 6 ESE

= Z <ui1*" ’*uik,ﬁ...fk><u5 xil' . 'xik

i< iy .
(see Proposition 3.3)

= <Z‘:<. <ai1/\ P /\aikaf‘l' . .fk><u, X .xik>_
Since elements of H,,(K(R, q); Z) can be detected by cohomology classes
of the form f;- - - f, e H**(K(R, q); R) (see Proposition 3.4), we obtain

a W)= 2, u,xy- - xoa,/\ - Nag,.
3o <lig

The case when ¢ is even is similar and omitted.

In this way, any real cohomology class « € HY(X; R) gives rise to a
homomorphism «,: H,,(X; Z)—A5(R) (or SE(R)) according as ¢q is odd
(or even), which we would like to call discontinuous invariants arising from
a for k>1. If « is a rational cohomology class, then clearly all the
discontinuous invariants vanish. Also it is clear that the homomorphisms
GV,: H,(BI'y; Z)—A}(R) defined in Section 2 are nothing but the discon-
tinuous invariants arising from the Godbillon-Vey class gv e H*(BI'}; R).

§ 4. Discontinuous invariants —general framework—

In the preceding section, we have observed that any real cohomology
class of a topological space induces discontinuous invariants, which are
homomorphisms from the integral homology groups of the space to various
vector spaces over @ such as A5(R) or SH(R). In this section we generalize
this procedure. More precisely we consider systems of real cohomology
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classes instead of just one cohomology class and give the general defini-
tion of our discontinuous invariants. This is done in the framework of
the theory of Sullivan ([Su], in particular § 8). Thus let »/ be a differen-
tial graded algebra (d.g.a:.) over R. An .«7-differential system on a space
X is a d.g.a. map &/ —A*(X), where A*(X) is the set of all C* forms on
X. Here X is either a C* manifold, 4*(X) being its de Rham complex
or else X is a simplicial complex, 4*(X) being its Sullivan-de Rham com-
plex, namely the set of all “compatible C* forms” on X. In any case we
have the de Rham theorem

H*(AX*(X)=H*(X; R).

Now let &/ —A*(X) be an «7-differential system on X. Then we have a
homomorphism '

H*(sf)—>H*(X; R)

which induces a system of real cohomology classes of X. There is a
universal space BsZ, called the spatial realization of ./, which is defined
to be the geometric realization of the simplicial set whose n-simplices
consist of all .«/-differential systems on the standard n-simplex 4" and the
face, degeneracy operators are defined by restrictions and pull backs of
forms. An .o7-differential system on X naturally defines a classifying map
X—Bso/ and conversely any map X—B.«/ induces an ./-differential
system on X well defined up to homotopy. Here two «/-differential
systems on X are said to be homotopic if there is an «/-differential system
on X X I such that the restrictions to X X {0}, X X {1} are the given ones.
Then we have a bijection

the set of homotopy
classes of «7-differential =[X, B./]
systems on X

for any reasonable X. Now one has a natural d.g.a. map &/ —A*(B)
and for an .-differential system on X, the following diagram clearly
commutes

H*(of)———>H*(BsZ/; R)

H*(X;R)

where the vertical homomorphism is induced by the classifying map X —
Bs/. The classifying map also induces homomorphisms

H(X; Z)—H,B;Z) (k=1,2,--)
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which we call discontinuous invariants arising from the given «/-differential
system on X. The point here is that the natural map &/ —A*(B.</) does
not induce isomorphism on cohomology. In fact the image of the homo-
morphism H*(«/)—>H*(B«/; R) consists of those cohomology classes
which can be represented by cocycles on B/ which are continuous with
respect to the coarse topology of B./ which is induced from the natural
topology on C~ forms. Thus to detect homology classes of B/, we have
to consider discontinuous cohomology classes also. This motivates the
naming of our invariants.

Now we apply the above construction to the case of characteristic
classes of foliations. Thus let % be a codimension g foliation on a C*
manifold M. Assume that the normal bundle of 4 is trivialized. Then
ZF is defined by certain 1-forms w® (i=1, - - -, g). The integrability condi-
tion implies that there are 1-forms wj such that

do'+ > i ANo’=0.

If we differentiate the above equation, we see that there are 1-forms o,
such that

dwi+ > oi Ao’ + 3 o) Nof=0.

One can continue this procedure indefinitely to obtain a system of 1-forms
{0 @%; iy; @i - - -} on M. Tt turns out that this defines an a,-structure
on M. Here a, denotes the topological Lie algebra of formal vector
fields on R? and an q,-structure on M means an Aj(a,)-differential
system on it, where 4X(a,) is the d.g.a. consisting of all continuous
cochains on a, (see [B 3]). This construction is natural so that there is
defined a map

BI' ,—>Ba,

where BI", is the classifying space for codimension g Haefliger structures
with trivial normal bundles ([Ha]) and Ba, denotes the spatial realization
of A¥(a,). Sullivan [Su] asks whether this map is a homotopy equivalence
or not.

The cohomology of 4}(a,) was determined by Gel'fand-Fuks [GF]
and can be described as follows. Define a d.g.a. W, as

Wq:E(hla Tt hq)®ﬁ[cl, ) cq]
dh,=c,, deg h;=2i—1

where E denotes the exterior algebra and R denotes the polynomial
algebra truncated by the ideal consisting of elements of deg>>2¢g. Then
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there is a d.g.a. map
W, —>A¥(@,)

inducing an isomorphism on cohomology. Thus we have a homomor-
phism

H*(W )—>H*(BI";; R)

which defines the so-called characteristic classes of foliations (see [BH] for
example). There is a nice topological model for the d.g.a. W, which is
defined as follows. Let BU, be the classifying space for the unitary
group U, and let z: EU,—~BU, be the universal U, bundle over BU,.
Let BUJ? be the 2g-skeleton of BU, (with respect to the natural cell
structure of BU,) and set Y, =n"'(BU$?). Then there is a d.g.a. map
W,—A*(Y,) which induces an isomorphism on cohomology.

Now in general let X be a simply connected finite simplicial complex
and let A/ ; be the minimal model of 4*(X) in the sense of Sullivan [Su].
We call B4, the real type of X and denote it by Xz. The homotopy
group of X} is isomorphic to 7, (X)®R and the integral homology groups
of Xy are vector spaces over Q (see [Su]). For example it is easy to see
that S%¥+'is a K(R, 2g-+1) and hence we know H,(S¥*'; Z) by Proposi-
tion 3.1. However the computation of H,(X; Z) is in general very dif-
ficult. Even the case when X=S?? seems to be non-trivial:

Problem 4.1. Compute H,(S¥; Z).

S% is the classifying space for real cohomology classes « € H*( ; R)

such that &*=0.
Now clearly Ba, is homotopy equivalent to (Y,)r and hence we

have a map
Bl ,——>(Y )g.

This induces homomorphisms
HyBI 3 Z)——>H((Y )p; Z) (k=12 ---)

and we call them discontinuous invariants of foliations. If g=1, then Y,
has the homotopy type of S® and hence (Y,)p is a K(R, 3). In this case the
discontinuous invariants defined above coincide with the homomorphisms
GV,: H,(B[}; Z)—> AR = H,,(Y)g; Z) defined in Section 2. In
general it is known that Y, has the homotopy type of bouquet of spheres
and in accordance with that Hurder [Hu] has constructed many non-
trivial foliations on spheres. However at present no example of C=
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foliations is known which is detected by essentially discontinuous in-
variants.

Preblem 4.2. Calculate H, (Y )g; Z).

Problem 4.3. Prove the non-triviality of discontinuous invariants of
foliations.

It is clear that the above considerations can be applied to various
geometric structures other than the foliations. It is enough to assume
only that there is defined a system of C* forms (or real cohomology classes)
in a functorial manner. For example we can consider foliated M-bundles
or flat G-bundles where G is a Lie group. Here is a sample problem for
the latter case.

Problem 4.4. Let ve H(SL,C; R) be the “volume class” (cf. § 7).
Is the homomorphism

H(SL,C; Z)—> Li(R)

induced by v non-trivial? (Here we understand SL,C as a discrete group.)

§5. Examples

(D The volume class of Riemannian foliations

Let & be a transversely oriented codimension ¢ Riemannian folia-
tion on a C* manifold M. Roughly speaking there is defined a metric
on the normal direction to the leaves of £ which is invariant by the
action of the holonomy pseudo-group of #. (See [LP] [P] for more
precise definitions). In particular we have the volume class v(F) e
HY(M; R). If we denote BRI} for the classifying space for codimension
g transversely oriented Riemannian Haefliger structures, then we have the
universal volume class v € HY(BRI'}; R). Clearly we have v*=0. The-
refore by Theorem 3.5 and the results in Section 4, we have homomor-
phisms

A(R) (g: odd)

V.:H, (BRI} ; Z)—>
e Hiol a3 %) {H,cq(S%;Z) (g: even).

Pasternack [P] has proved that BRIy is a K(R, 1) so that V, is an
isomorphism for all k.

Conjecture 5.1. The homomorphisms V,, (k=1, 2, - - .} are surjective
for any q.
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Let L: R**— R be a linear map of maximal rank. Then it induces
a codimension ¢ Riemannian foliation on R*¢, which is invariant under
parallel translations of R*?. Hence taking the quotients of it with respect
to various lattices of R*¢ of maximal rank, we obtain codimension g
Riemannian foliations on 7%, It is likely that these examples are enough
to prove Conjecture 5.1 at least for the case when ¢ is odd.

There is defined the notion of characteristic classes of Riemannian
foliations ([LP] [Mor 1)).

Problem 5.2. Prove the non-triviality of discontinuous invariants of
Riemannian foliations.

(I) Foliated S'-bundles
Let Diff, S* be the topological group of all orientation preserving

C~ diffeomorphisms of S* and let Jr)\if/f,rS1 be its universal covering group.
We denote Diff?S?, ,D\iijﬁSl for the same groups but with the discrete

topologies. The Godbillon-Vey class for codimension one foliations
gives rise to cohomology classes

« ¢ HY(BDiff!S"; R)
~

« ¢ HY(BDIH!S"; R)
L

B e HY(BDII!S"; R)

(see [Mor 2] for more details). By the procedure given in Section 3,
these cohomology classes induce discontinuous invariants. To study the
non-triviality of them, we first consider the group Diff,R consisting of all
C~ diffeomorphisms of R with compact supports. If we embed R in S*
as an oriented open interval, then Diff R is a subgroup of Diff,S".
Hence by restriction we have

«a ¢ H¥(BDIffZR; R).

It is easy to see that this cohomology class is well defined independent of
the choice of the embedding RCS'. Now for any ke N, choose k
mutually disjoint oriented open intervals U, (i=1, ---, k) of R. These
define an injective homomorphism Diff R X - - - X DiffyR—Diff,R and
hence a map

k times

j: BDIffiR x - - - X BDiffR——>BDiff}R.

Let a: BDiffitR—K(R, 2) be the map defined by the cohomology class
«. Then it is easy to see that the following diagram is homotopy
commutative:
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BDIflZRX - - - X BDiff:R—>BDiff2R
aX o Xa J{«x
2
KR, D)X - XK(R,2) —> K(R, 2)

where 1 is a map characterized by
BO=231% Xex oo XL
Now it can be shown that the induced homomorphism
Ayt Hy(K(R,2)X - - - XK(R, 2); Z)—>H,(K(R, 2); Z)
is surjective (cf. Proposition 3.2, (i)). From this and the fact that
ay: H(BDiffiR; Z)—>R
is a surjection (see {Th 1] [Ma] and Theorem 6.5 below) we conclude
Proposition 5.3. The homomorphisms
oy H, (BDiffiR; Z)—>SH(R) (k=1,2, ---)
are all surjective.
Corollary 5.4. There are surjections
H, (BDIft!S'; Z)—>SL(R)—0
H,,,(BDIf:S"; Z)— >S5 (ROR—>0 (k=1,2, --)
H,(BDIff?S*; Z)—>S5(R)—0.

Proof. The first and the third homomorphisms are discontinuous
invariants arising from the cohomology class « and their surjectivity
follows directly from Proposition 5.3. The second surjection is induced
from the homomorphism

H, o1 (BDIff1S"; Z)—> Hy, (K(R, 2); Z)R, H(K(R, 3); Z)

which is defined by the discontinuous invariants arising from « and 8.

§ 6. The Godbillon-Vey class (real case)

In Section 2 we have defined a homomorphism

GV,: Hy(BI',; Z)—> £(R)
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and proposed the problem to prove the surjectivity of it. In this section
we relate it with another problem about the homology of BDiffZ R
Recall that we denote 7, € m(BI",)=r,(BI",) for the element corresponding
to Thurston’s codimension one foliation &, on S* such that gv(&F,)=
te H(S*; )= R. We would like to know whether the Whitehead
product [7,, 7,] vanishes in x,(BI";) or not when a and b are linearly
independent over Q.

Now in general let X be a simply connected topological space. We
have a natural isomorphism z,,.,(X)=z,(2X) for any p. For an element
a € m,,(X), we write @ € 7,(2X) for the corresponding element under the
above isomorphism. Let y: 2XX 2X—2X be the map defined by the
composition of loops. This induces the Pontrjagin product on the
homology H,(2X; Z): if ue H,(2X; Z),v e H (£2X; Z), then a homology
class uxv e H,, (2X; Z) is defined to be uxv=p,(uXv), where uXv is
the cross product of u and v. Let &:7,(2X)— H,(2X;Z) be the
Hurewicz homomorphism. The following is well known.

Proposition 6.1. For any simply connected topological space X, the
kernel of the Hurewicz homomorphism &: z (2X)—H (2X; Z) is a torsion

group for any p.

There is a close relation between the Whitehead products on the
homotopy group of a simply connected space and the Pontrjagin products
on the homology group of its loop space as the following theorem
indicates.

Theorem 6.2 (Samelson [Sa]). Let X be a simply connected topological
space and let a € 7, ,(X), B €7, ,(X) so that we have [a, f] € w,, ;. (X).
Let @ e n,(2X), B e n,(2X), [a, B Bl e np+q(.QX ) be the corresponding ele-
ments. Then we have

&, B)=(—D*E@+£(@)— (— DR @).
Combining Proposition 6.1 and Theorem 6.2, we obtain
Proposition 6.3. Let X be a simply connected topological space. If

the Pontrjagin products on H (2X; Q) is graded commutative, then all the
Whitehead products in w.(X) have finite orders.

Now we go back to our problem. We are concerned with the ele-
ment [7,, 7,] € z,(BI",) or equivalently the corresponding element [7,, 7,] €
7 (2BI,) (recall that B, is simply connected [H]). By Proposition 6.1,
[7e» 7,] has finite order if and only if &(7,, 7,]) has finite order in
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H(QBI,; Z). By Theorem 6.2, we have

E([7 o, T.D=E6(T)*E(T ) —ET)*E(T,).
Hence we obtain

Proposition 6.4. [1,, 7,] has finite order if and only if

§(7)x6(T)=E(T)xE(T,)  up to torsion.

At this place let us recall the result of Mather [Ma] relating the
homology of BI', to that of BDiff2R. Let h: BDiff2R X R—BI’; be the
natural map classifying the - universal codimension one foliation on
BDifffRX R. Since this foliation is trivial in a neighborhood of the
infinity of the R-factor, the map # has an adjoint map H: BDiffiR—
QB[

Theorem 6.5 (Mather [Ma]). The map H: BDiffiR—Q2BI’, induces
an isomorphism on the integral homology.

Now let p: DiffiR X DiffR—Diff{ R be the homomorphism defined
by identifying R on the first factor with (— oo, 0) by the map say —exp ~¢
and R on the second factor with (0, co) by the map say exp¢z. The
homomorphism g induces a product on the homology of BDiff;R, which
we denote by the letter x. Thus if

ue H,(BDiff;R; Z) and ve H(BDIffiR; Z),
then

urv =, (uxv) ¢ H,, (BDIiffiR; Z).
It is easy to see that the above x-product does not depend on the

particular choices of identifications of R with (—co, 0) and (0, o). Itis
clear that the following diagram is homotopy commutative:

BDIff2R X BDiff2R—">BDiffLR
HXH H
QBT X QB", —* > 0BT,
I rom this follows

Proposition 6.6. The x-product on H (BDIffiR; Z) corresponds to
the Pontrjagin product on H (QBI,; Z) under the isomorphism of Theorem
€.5.
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Now we propose

Conjecture 6.7. The x-product on H, (BDiffiR; Z) is graded com-
mutative at least up to torsion.

Here it is amazing to observe the following. Let ¢: R—S* be any
embedding. This induces a homomorphism lefKR—»Dlﬂ‘ S* and hence
a map i: BDiff.R—BDiff:S'. Then we have

4 (uxv—(—1)"0u)=0

for any v € H,(BDiff;R; Z) and v ¢ H (BDiffiR; Z). This follows from
the fact that on S* we can go from + oo to — oo without passing through
R and the fact that the inner automorphisms of a group induce the
identity on homology. In view of Propositions 6.4 and 6.6, we obtain

Proposition 6.8. If the x-product on H (BDIffiR; Q) is (graded)
commutative for x=2, then the homomorphism GV,: H(BI';; Z)— AH(R)
is non-trivial. In fact its cokernel is a torsion group.

In this way, we have reduced a problem of homotopy groups of B,
to that of homology groups of BDiffiR. However this latter problem
seems to be still extremely difficult. One reason for that can be explained
as follows. There is a result of Gel’fand-Feigin-Fuks [GFF] about a
curious phenomenon on the characteristic classes of family of foliations.
Let us consider one special case. So let %, (¢ € R) be a C~ one-parameter
family of codimension one foliations on a manifold M. We may assume
that %, is defined by a 1-form w, which depends smoothly on ¢. By the
integrability condition, there is a 1-form », on M such that

do,=7,No,.

We may assume that », also depends smoothly on 7. Now the cohomology
class represented by the closed form 7, Ady, is the Godbillon-Vey class
gv(F,) e H(M; R). Since %, depends smoothly on ¢, we can differentiate
gv(F,) with respect to ¢ to obtain a cohomology class gv/(%,)|,-, €
H¥M; R). Now the result of Gel’fand-Feigin-Fuks in this particular
case claims

gV (F) gV (F )]-=0.

This can be easily proved as follows. This cohomology class is re-
presented by

VA YA TVAN /B AP/ AN/ VAN U YAN: £/ S/ YA 174}
—0
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because we have (dz,)*=0. From this follows, for example, that if &,
(te R) is a C~ one parameter family of codimension one foliations on
S¥x S® and if we write gv(F,)=(a,, b,) ¢ R®*= H*(S*X S*; R), then the
ratios a,/b, are independent of z. It follows from this fact that even if
Conjecture 6.7 were true, it cannot be proved by a construction on elements
of DiffZR which varies continuously with respect to the C= topology.
By the same reason we can say that even if BI", were a K(R, 3), the cor-
responding H-space structure on B/, cannot be continuous with respect
to the coarse topology of it (for the coarse topology see [Mos]).

In any case there are two extremal candidates for the space B, the
Eilenberg-MacLane space K(R, 3) and the Moore space M(R,3). It
would be too early to say something about the homotopy type of BI,,
but the result of the next section (§ 7) seems to support the first candidate.

§7. The Godbillon-Vey class (complex case)

There is a theory of characteristic classes for holomorphic foliations
which is analogous to the C> case (see [B1]). In particular if we denote
BI" ,C for the classifying space of codimension g holomorphic Haefliger
structures with trivial normal bundles, then there is defined a map

H*(W ,®,C)—>H*BI" ,C; C)
or at the space level we have a map
BI',C—>(Y )¢

where (Y,)¢ is the complex type of the space Y, which is defined by using
complex valued C> forms. As before this induces discontinuous in-
variants of holomorphic foliations. In particular, we have homomor-
phisms

GV¢: H,(BI',C; Z)—>A4C) (k=1,2, ---)

which should be considered as complex analogue of the homomorphisms
GV, defined in Section 2. Namely they are induced by the Godbillon-
Vey class gv e HBI’,C; C) which is now a complex valued cohomology
class of degree 3 defined for any codimension one holomorphic foliation
with trivial normal bundle.

Bott [B2] has proved that GV¢ is a surjection. In fact for non zero
complex numbers e, §, let F(«, B) be the codimension one holomorphic
foliation on C*—0 defined by the holomorphic 1-form «z,dz,+ fz,dz,.
Then Bott shows
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(s ev(# (e py =4 £+ %_2)

which can be assumed to take any complex value by suitable choices of
o and 8.

Now we would like to show the non-triviality of the homomorphism
GV¢. For that observe that the Hopf fibration S®*—CP! defines a
codimension one holomorphic foliation on S3, by taking the fibres as
leaves, whose Godbillon-Vey number is equal to — 16z® because we can
take /= —1. To prove the non-triviality of GVY{ it is enough to
show the existence of a certain non-trivial family of the Hopf fibrations
along a closed 3-manifold. There exists such a thing. Namely let M* be
a closed orientable hyperbolic 3-manifold (see [Th2]) and let 7:M be its
unit tangent bundle. Then there is a-codimension two foliation on T, M,
called the Anosov foliation, whose leaves are transverse to the fibres of
the projection T;M—M. The total holonomy group of this foliated S*-
bundle lies in PSL,C which acts on S*= CP' holomorphically. Hence
this foliation can be considered as a codimension one holomorphic folia-
tion. Since M is parallelizable, the total holonomy group lifts to SL,C
(the unique obstruction to lift a homomorphism z,(M)—PSL,C to SL,C
is the second Stiefel-Whitney class which is zero in this case). This
implies that we can take an S'-bundle E, over T\M which is a sort of
family of Hopf fibrations over M. E, has a codimension one holomor-
phic foliation £ ,, whose restriction to any fibre is isomorphic to the one
induced from the Hopf fibration. We will compute the discontinuous
invariant GVE(Ey, Fy) € 43(C) of this foliation. Let v(M) be the
volume of M and let 7(M) be the y-invariant of M (see [APS]).

Theorem 7.1. Let M be a closed oriented hyperbolic 3-manifold.
Then we have

GVE(Ey, Fy)=192z" \a*p(M)—64z* Niv(M) e AH(C).

Corollary 7.2. The homomorphism GV¢: H(BI',C; Z)—A(C) is
non-trivial.

Proof of Theorem 1.1. First of all we take a second way of viewing
our foliation £, which is convenient for computation. Let H?® be the
3-dimensional hyperbolic space. Then the group of isometries of it is
PSL,C and we have a fibration

PSU,—>PSL,C-2>H?
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which can be seen as the principal SO(3)-bundie associated to the tangent
bundle of H®. 'We have also a fibration

SU—>sL,c-2>H?

which should be considered as the “fibre-wise Hopf fibration over the
unit tangent bundle 7,H® Now the fundamental group =,(M) acts on
these fibrations freely and if we take the quotient, then we obtain the
tangent orthonormal frame bundle of M

SOQB)—>F,—>M
and the fibration
S:—>E,~——>M.

Now our foliation &, on E,, is the quotient by z,(M) of the codimension
one holomorphic foliation # on SL,C defined as follows. Let

X=<1 0) X=<o 1) X=<o o>
N -1/ TV o TP\ oo

be a basis over C of the Lie algebra 3[,C and let w, (i=0, 1, 2) be the
dual basis. We consider w, as a left invariant complex valued 1-form on
PSL,C and SL,C. TItis easy to see that

doy=—u; N\,
dw,= —2w,/\ w,
dw,=2w,/\ 0,

Now £ is defined by the 1-form w,. Therefore the associated Godbillon-
Vey form is —4o,w,w,. If we write

00,0, =G+ I
for some real forms ¢, », then computation shows that

(i) On PSL,C, ¢ is »*Q where Q is the Chern-Simons form cor-
responding to the 1-st Pontrjagin class,

(i) = —p*v+ exact form, where v is the volume form of H® and
p: PSL,C (or SL,C)—H? is the projection

(see [Y]). Moreover the restriction of ww,w, to the fibre SU, equals
2 volume-form of SU,. Now choose a cross-section s: M—E, (recall
that M is parallelizable so that E, =M X S®). This induces a cross-section
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§: M—F,. Now let zand w be the homology classes of E, represented
by the fibre S* and s(M) respectively. Then we have

@ e F )= iH(—da00)

=f — 8 volume form of SU,
SUs
= ——1671'2

because v(S*)=2z% Observe that the above computation coincides with
Bott’s one for the Hopf fibration, Next we have

o e Pay=  —dg+iv)

=4z Q+4ij v
M

§(M)

= —4x*(3p(M)—36(M, 5))+4iv(M)

because according to Yoshida [Y], we have

[, o=300-3004,5

for any closed oriented Riemannian 3-manifold M with an orthonormal
framing 5, where §(M, 5) denotes the Hirzebruch’s invariant of the framed
manifold (M, 35). If we denote x,ye HE,; Z) for the cohomology
classes dual to z, w, then the above computation implies

gv(Ey, F y)=—16ax+{—4z"Cp(M)—36(M, 5)) +4iv(M)}y.
Hence if we orient E,, by requiring xy=1 e H%E,, Z), then we have
GVS§(Ey, & 1)=192" Aa’(M)— 64z N\iv(M).

Here we have used the fact that 36(M, §) is an integer. This completes
the proof.

Since there are only countably many isometry classes of hyperbolic
3-manifolds, the set of values of the above examples is very small in
AH(C).

Problem 7.3. Prove that the homomorphism GV¢: H(BI'.C; Z)—
AY(C) is surjective.

Remark 7.4. Observe that the non-triviality of the above examples
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can be detected by the cohomology class gvgv € HY(BI',C; C). From this
point of view the above computation can be generalized to the homo-
geneous codimension ¢ holomorphic foliation on SL,,,C which is given
similarly as above (the case g=1) and also to the foliations constructed
by Rasmussen [Ra]. In this way we obtain many non-triviality results for
the discontinuous invariants of BI",C. However we omit the details.
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