Advanced Studies in Pure Mathematics 5, 1985 Foliations pp. 135-158

On Decompositions and Approximations of Foliated Manifolds

Nobuo Tsuchiya

Introduction

Let (M, \mathscr{F}) be a foliated manifold. By this, unless otherwise specified, we mean that M is a compact C^{∞} -manifold and \mathscr{F} is a transversely oriented, codimension one, C^{∞} -foliation of M. Recall that a leaf F is *resilient* if F accumulates to itself by a contracting holonomy. A resilient leaf exhibits rather bizarre behaviour and does not submit to concrete qualitative study. In this paper, we observe that a foliation without resilient leaves is decomposed into three types of compact foliated submanifolds (*units*) each of which is an immersed image of a foliated interval bundle or a without holonomy foliation (Theorem 1). We call it an *NTdecomposition*.

Among foliations without resilient leaves, *PA-foliations* and *foliations* of *finite type* are simple ones. A foliation is said to be PA if each leaf has polynomial growth and the germinal holonomy group of each leaf is abelian, and a foliation is said to be of finite type if it is a finite union, along proper leaves, of open, connected saturated subsets without holonomy. These foliations are characterized by the property that they have some good decompositions (Proposition (3.2.2) and Theorem 2). A theorem of Mizutani states that a PA-foliation is cobordant to a union of foliated S^1 -bundles over tori [Mi].

PA-foliations and foliations of finite type constitute important subspaces of the space of foliations without resilient leaves of a given manifold. We study how large these subspaces are; that is, we study when a foliation is approximated by PA-foliations or finite type foliations. By using NTdecompositions, we show that an "almost PA" foliation of a 3-manifold is C^{∞} -approximated by PA-foliations (Theorem 3). In general, however, C^{∞} -approximations seem to be hopeless. At the expense of differentiability, we can prove that a foliation without resilient leaves is \mathscr{D} -approximated by PA or finite type foliations of class \mathscr{D} (Theorem 4).

We plan to show that the Godbillon-Vey class is defined for foliations

Received November 1, 1983.

of class \mathcal{D} , and the above theorem implies Duminy's theorem [Du 1, 2]: the vanishing of the Godbillon-Vey classes of foliations without resilient leaves.

The paper is organized as follows. In Section 1, we review the theory of levels and local minimal sets developed by Cantwell-Conlon [C-C 1] and Hector. In Section 2, we recall the tameness of totally proper leaves from [Tsuc 2]. In Section 3, we define NT-decompositions and prove Theorem 1. The proof is straightforward from the arguments in Section 2. Also, we study PA-foliations and foliations of finite type. In Section 4, we deal with the problem of C^{∞} -approximations by PA or finite type foliations. In Section 5, we introduce the class of foliations of class \mathcal{D} , and prove the \mathcal{D} -approximation theorem.

For a foliated manifold (M, \mathcal{F}) , we fix a 1-dimensional foliation \mathcal{L} transverse to \mathcal{F} , and assume each holonomy of \mathcal{F} is defined with respect to \mathcal{L} .

I wish to thank the comrades of the TIT Saturday seminar for their indefatigable interest and stimulating conversations.

§1. Preliminaries

In this section we review some terminology and facts about foliations without resilient leaves. We refer the reader to [C-C 1] for a comprehensive exposition.

(1.1) Open saturated sets. Let U be an open, connected \mathscr{F} -saturated subset of M. Let \hat{U} be the Dippolito completion of U (see [Di]); that is, \hat{U} is the completion of U with respect to a Riemannian metric induced from M. Then \hat{U} is a manifold and the inclusion $i: U \to M$ extend naturally to an immersion $\hat{i}: \hat{U} \to M$. Foliations $\hat{\mathscr{F}}$ and $\hat{\mathscr{L}}$ are induced by \mathscr{F} and \mathscr{L} . The foliation $\hat{\mathscr{F}}$ is tangent to $\partial \hat{U}$ and $\partial \hat{U}$ is a union of finitely many leaves of $\hat{\mathscr{F}}$. There is a Dippolito decomposition $\hat{U} = K \cup \hat{U}_1 \cup \cdots \cup \hat{U}_q$. Here K is a compact manifold and each \hat{U}_i is diffeomorphic to $B_i \times [0, 1]$, where $B_i \subset \partial \hat{U}$ is a non-compact connected submanifold and each $\{x\} \times [0, 1]$, $x \in B_i$, is a leaf of $\hat{\mathscr{L}}$. Thus $\hat{\mathscr{F}}_{1\hat{U}_i}$ is a foliated [0, 1]-bundle over B_i . Fixing an identification of [0, 1] with $\{x_0\} \times [0, 1], x_0 \in B_i$, one obtains the total holonomy homomorphism $q: \pi_1(B_i, x_0) \to \text{Diff}[0, 1]$ and the total holonomy group G = Image(q).

The manifold K is called the *nucleus* of \hat{U} and each \hat{U}_i is called an *arm*.

Definition (1.1.1). If the nucleus $K \subset \hat{U}$ can be chosen so that, in each arm $\hat{U}_i = B_i \times [0, 1]$, $\hat{\mathscr{F}}$ restricts to the product foliation, then U is said to be *trivial at infinity*.

(1.2) Levels and local minimal sets. A subset X of M is a local minimal set if there is an open \mathscr{F} -saturated set U and $X \subset U$ is a minimal set of the foliation $\mathscr{F}_{|U}$.

These sets are of three types;

(a) every proper leaf is a local minimal set;

(b) an open \mathscr{F} -saturated set $U \subset M$, in which each leaf of \mathscr{F}_{1U} is dense in U, is said to be an *open local minimal set* or a local minimal set of *locally dense type*;

(c) a local minimal set of neither type (a) nor type (b) is said to be of *exceptional type*.

There is a *level filtration* $\{M_k\}$ of M which is defined by the following;

- (a) $M_{-1} = \emptyset;$
- (b) $M_{k+1} = M_k \cup \{ \text{all minimal sets of } M M_k \};$
- (c) $M_{\infty} = \bigcup_{k \ge 0} M_k.$

Then each M_k is a closed \mathscr{F} -saturated subset and M_{∞} is dense in M. A local minimal set X, and each of its leaves, is said to be at *level* k if $X \subset M_k - M_{k-1}$. A leaf F is said to be *at infinite level* if $F \subset M_{\infty}$. The *height* $h(\mathscr{F})$ of \mathscr{F} is defined to be $h(\mathscr{F}) = \sup \{k; M_k \neq \emptyset\}$.

Theorem (1.2.1) ([C-C1; Lemma (5.3)]). There is an integer $p(\mathcal{F})$ such that, for each $p \ge p(\mathcal{F})$, each connected component of $M - M_p$ is a foliated \mathring{I} -bundle.

A one dimensional submanifold T of M is called a sufficient transversal if T is transverse to \mathscr{F} and each leaf of \mathscr{F} meets the interior of T. Choose a sufficient transversal T which is a finite union of compact subarcs of the leaves of \mathscr{L} and choose a Riemannian metric of M. For a foliated \mathring{I} bundle $U \subset M$, we define the total width $\delta(U)$ of U by $\delta(U)$ =length of $T \cap U$. Since M_{∞} is dense in M, we get the following.

Corollary (1.2.2). Given $\varepsilon > 0$, there is an integer p_{ε} such that each connected component of $M - M_{p_{\varepsilon}}$ is a foliated \mathring{I} -bundle of total width $< \varepsilon$.

(1.3) Resilient leaves. A leaf F is *resilient* if there exist elements f, g of the holonomy pseudogroup of \mathscr{F} and a point $x \in F \cap \text{dom}(f) \cap \text{dom}(g)$ such that $g(x) = y \neq x$ and $\lim_{n \to \infty} f^n(y) = x$. A resilient leaf is non-proper, at a finite level, and has exponential growth. It is easy to see that an open local minimal set U contains a resilient leaf unless \mathscr{F}_{10} is without holonomy. On the other hand, a local exceptional minimal set contains a resilient leaf the following.

Proposition (1.3.1). Assume \mathcal{F} has no resilient leaves. Then each local minimal set is either a proper leaf or an open local minimal set without holonomy. The set M_{∞} is a disjoint union of proper leaves and countably many open, connected \mathcal{F} -saturated subsets without holonomy.

Definition (1.3.2) (see [Di]). A proper leaf F is said to be *semi-stable* on the positive side if it has arbitrarily thin, \mathscr{F} -saturated, one-sided tubular neighbourhoods on the positive side. Such a neighbourhood is called a *semi-stable collar* on the positive side of F. A proper leaf is said to be *stable* on the positive side if there is a trivially foliated semi-stable collar on the positive side of F.

Definition (1.3.3). A proper leaf F is said to be *unbounded* on the positive side if there is a leaf F' which accumulates to F from the positive side. A one-sided tubular neighbourhood $F \times [0, 1]$ of the positive side of F with $F \times \{0\} = F$ is called an *unbounded collar* if each leaf of $\mathscr{F}_{|F \times (0,1]|}$ contains $F = F \times \{0\}$ in its limit set. A proper leaf F is said to be *contracting* on the positive side if the holomony group of the positive side of F contains a contracting element.

Obviously, an unbounded side of a leaf has an unbounded collar, and a contracting side of a leaf is unbounded.

Lemma (1.3.4). Let F be a proper leaf of a foliation without resilient leaves. If the positive side of F is unbounded, then F is contracting on the positive side.

Proof. If the leaf F' in (1.3.3) is chosen to be totally proper, then F' accumulates to F in a staircase (see § 2) and F is contracting. Otherwise all leaves in $F \times (0, 1]$ are contained in an open local minimal set, and the holonomy group on the positive side of F is fixed point free (see (1.4)). Thus F is contracting. q.e.d.

Proposition (1.3.5). Let \mathscr{F} be a foliation without resilient leaves and F a proper leaf. Then the positive side of F is either semi-stable or contracting.

Proof. In general, it is known that a proper side of a leaf is either semi-stable or unbounded [Di]. Proposition follows from the above lemma. q.e.d.

Corollary (1.3.6). Reeb stability for proper leaves (see [In]) holds for foliations without resilient leaves.

(1.4) Open saturated sets without holonomy. In this subsection we

assume that \mathscr{P} has no resilient leaves. Let U be an open, connected \mathscr{P} saturated set without holonomy. Let L be a leaf of \mathscr{L} (L is either a closed interval, a half open interval, an open interval or a circle). Since L is oriented, for points x, y of L, we can and do use an interval notation [x, y]. Let x_0 be a point of L. One can define the Novikov transformation \hat{q} : $\pi_1(\hat{U}, x_0) \rightarrow \text{Diff}(L)$ as follows (see e.g. [Tsuc 1, § 5]). Let α be an element of $\pi_1(\hat{U}, x_0)$, $c: (S^1, 0) \rightarrow (\hat{U}, x_0)$ a representative of α and x a point of L. Consider the loop $\sigma = [x, x_0] * c * [x_0, x]$ based at x. It is seen that σ is homotopic relative to $\{x\}$ to a loop of the form $\tau_1 * \tau_2$ where τ_1 is contained in L and τ_2 is contained in the leaf of \mathscr{P} through x. We define \hat{q} by $\hat{q}(\alpha)(x) =$ the initial point of τ_1 . One can prove the following.

Proposition (1.4.1). The map \hat{q} is a well-defined homomorphism, the image $\text{Im}(\hat{q})$ of \hat{q} acts freely on Int(L) and is abelian. Each leaf of $\mathscr{F}_{|U}$ is closed in U if rank $(\text{Im}(\hat{q})) \leq 1$. Otherwise, each leaf of $\mathscr{F}_{|U}$ is dense in U and U is an open local minimal set.

Since the image of \hat{q} is abelian, it factors as follows:

$$\hat{q}: \pi_1(\hat{U}, x_0) \longrightarrow H_1(\hat{U}; Z) \xrightarrow{q} \text{Diff}(L).$$

Let F be a $\hat{\mathscr{F}}$ -leaf in $\partial \hat{U}$, $x_0 \in F$, and assume L is the $\hat{\mathscr{L}}$ -leaf through x_0 . Let $\operatorname{hol}_F^+: \pi_1(F, x_0) \to G$ be the holonomy map of the leaf F where G is the group of germs at x_0 of local diffeomorphisms of (L, x_0) . From (1.4.1), one can easily get the following.

Proposition (1.4.2). The map hol_F^+ lifts canonically to a homomorphism hol_F^+ : $\pi_1(F, x_0) \rightarrow \operatorname{Diff}(L, x_0)$ and factors through q in the following diagram;

where vertical arrows are natural homomorphisms.

§ 2. Totally proper leaves and staircases

(2.1) A leaf F is *totally proper* if each leaf contained in the limit set of F is proper [C-C 1]. It is known that a totally proper leaf spirals on

leaves in its limit set very finely [C-C 1], [Tsuc 2]. There are some ways to describe the situation. Here we prefer to use the notion of staircases [N], [Tsuc 2], since it is closely related with our definition of decompositions. The material of this section is a summary of [Tsuc 2].

We need some notions. Let K be a connected compact manifold and let N be a closed, transversely oriented, codimension one submanifold of the interior of K which does not separate K. Let C(K, N) denote the compact manifold with boundary which is obtained from K-N by attaching two copies N_1 and N_2 of N as boundary, where the transverse orientation is inward (resp. outward) pointing on N_1 (resp. N_2). Let $\iota: N_2 \rightarrow N_1$ be the identity map. Let $f: [0, \delta_1] \rightarrow [0, \delta_2], \ \delta_2 = f(\delta_1) < \delta_1$, be a contracting diffeomorphism. We denote by X(K, N, f) the manifold with corner which is the quotient space of $C(K, N) \times [0, \delta_1]$ by the equivalence relation ~ which is defined by $(\iota(x), t) \sim (x, f(t))$ for $t \in [0, \delta_1]$ and $x \in N_2$. Let $\mathscr{F}(K, N, f)$ denote the foliation of X(K, N, f) induced from the product foliation $\{C(K, N) \times \{t\}\}, t \in [0, \delta_1], \text{ of } C(K, N) \times [0, \delta_1]$. Finally $\mathscr{L}(K, N, f)$ denotes the one dimensional foliation of X(K, N, f) which is induced from the foliation $\{\{x\} \times [0, \delta_1]\}, x \in C(K, N), \text{ of } C(K, N) \times [0, \delta_1]$.

Definition (2.1.1). Let (S, \mathcal{F}_s) be a compact foliated manifold. We say (S, \mathcal{F}_s) is a *staircase* if there are K, N, f as above and a diffeomorphism h from X(K, N, f) to S which sends the leaf of $\mathcal{F}(K, N, f)$ through $N_1 \times \{\delta_i\}$ to a leaf of \mathcal{F}_s , and $\mathcal{L}(K, N, f)$ to the one-dimensional foliation \mathcal{L} transverse to \mathcal{F}_s . If the diffeomorphism h can be chosen to be foliation-preserving, we call (S, \mathcal{F}_s) a *regular staircase*.

We call $C(S) = h(C(K,N) \times \{\delta_i\})$, $F(S) = h(C(K,N) \times \{0\})$, $W(S) = h(N_2 \times [\delta_2, \delta_1])$ and $D(S) = h(\partial K \times [0, \delta_1])$, the *ceiling*, the *floor*, the *wall* and the *door* of (S, \mathcal{F}_S) respectively. And we call f the *slope* of the staircase.

Let (S, \mathcal{F}_s) be a staircase which is the image of the composed map

h:
$$C(K, N) \times [0, \delta_1] \rightarrow X(K, N, f) \rightarrow S.$$

The induced foliation $h^*(\mathscr{F}_s)$ of $C(K, N) \times [0, \delta_1]$ is transverse to the fibres $\{x\} \times [0, \delta_1], x \in C(K, N)$. So $h^*(\mathscr{F}_s)$ is a foliated interval bundle and is determined by the total holonomy map $q: \pi_1(C(K, N)) \rightarrow \text{Diff}[0, \delta_1]$. We call q (resp. the image of q) the *reduced total holonomy map* (resp. the *reduced total holonomy group*) of (S, \mathscr{F}_s) . The staircase (S, \mathscr{F}_s) may be viewed as an immersed image of the foliated interval bundle $(C(K, N) \times [0, \delta_1], h^*(\mathscr{F}_s))$. Now let (M, \mathscr{F}) be a foliated manifold, (S, \mathscr{F}_s) a staircase and ϕ a foliation preserving imbedding of (S, \mathscr{F}_s) into (M, \mathscr{F}) . By abuse of language, we often identify (S, \mathscr{F}_s) and its image $(\phi(S), \phi(\mathscr{F}_s))$ in (M, \mathscr{F}) . Let F be a leaf of \mathscr{F} which intersects the staircase S.

Definition (2.1.2). We say F is well-behaved in S if each connected component of $F \cap S$ is closed in the interior of S.

The following lemma is easy to prove (see [Tsuc 2]).

Lemma (2.1.3). A leaf F is well-behaved in S if and only if each element of the reduced holonomy group of S leaves the points of $F \cap \{x_0\} \times [0, \delta_1]$ pointwise fixed, where x_0 is a base point of N_1 .

Let \mathfrak{S} be a finite family of staircases of (M, \mathscr{F}) satisfying the following conditions.

(A1) The interiors Int (S) with $S \in \mathfrak{S}$ are disjoint.

(A 2) The walls W(S) with $S \in \mathfrak{S}$ are disjoint.

(A 3) For each $S \in \mathfrak{S}$, the door D(S) of S is contained in the union $\bigcup \{W(S'); S' \in \mathfrak{S}\}.$

For two staircases $S, S' \in \mathfrak{S}$, we denote $S \leq S'$ if $D(S') \cap W(S) \neq \emptyset$, We also denote by the same symbol \leq the relation in \mathfrak{S} which is generated by the above relation \leq . For $S \in \mathfrak{S}$, we define $B(S) = \bigcup \{S' \in \mathfrak{S}; S' \leq S\}$. If $X \subset Y \subset M$, the \mathscr{F} -saturation $\operatorname{Sat}_{Y}(X)$ of X in Y is the set of points y of Y such that the leaf F_{y} of the restricted foliation \mathscr{F}_{Y} through y intersects X.

Definition (2.1.4). We say \mathfrak{S} is an *admissible family* of staircases if \mathfrak{S} satisfies the above three conditions (A1)-(A3) and the followings.

(A4) The relation < is a partial order of \mathfrak{S} .

(A 5) For each $S \in \mathfrak{S}$, the saturations $\operatorname{Sat}_{B(S)}(C(S))$ and $\operatorname{Sat}_{B(S)}(F(S))$ are well-behaved in each staircase S' < S.

Definition (2.1.5). A leaf F is *tame* if there is an admissible family \mathfrak{S} of staircases satisfying the following conditions.

(T 1) F is well-behaved in each staircase S of \mathfrak{S} .

(T 2) The set $F - \bigcup \{S; S \in \mathfrak{S}\}$ is relatively compact in F.

In this case we say F is tame in \mathfrak{S} or \mathfrak{S} tames F.

The following term "*thinning*", which was introduced by Nishimori [N], is useful afterwards.

Definition (2.1.6). Let (S, \mathscr{F}_S) be a staircase which is the image of $C(K, N) \times [0, \delta_1]$. Let *n* be a non-negative integer. The *n*-thinning $(S^{(n)}, \mathscr{F}_{S^{(n)}})$ of (S, \mathscr{F}_S) is the staircase which is the image of $C(K, N) \times [0, f^n(\delta_1)]$, where *f* is the slope of *S*.

Let \mathfrak{S} be an admissible family of staircases and α a non-negative integer valued function on \mathfrak{S} . Then there exist uniquely an admissible

family $\mathfrak{S}^{(\alpha)}$ of staircases and a bijection $j^{(\alpha)} \colon \mathfrak{S} \to \mathfrak{S}^{(\alpha)}$ such that $j^{(\alpha)}(S) \cap S$ is the $\alpha(S)$ -thinning of S for each $S \in \mathfrak{S}$ (see [N]).

Definition (2.1.7). The admissible family $\mathfrak{S}^{(\alpha)}$ as above is called the α -thinning of \mathfrak{S} .

Lemma (2.1.8) (Nishimori [N; Proposition 7]). Let \mathfrak{S} be an admissible family of staircases. Let K be a compact subset of M such that $K \cap F^*(S) = \emptyset$ for each $S \in \mathfrak{S}$, where $F^*(S)$ is the leaf of \mathcal{F} through F(S). Then there is a non-negative integer valued function α on \mathfrak{S} such that $K \cap \cup \{j^{(\alpha)}(S); S \in \mathfrak{S}\} = \emptyset$.

Now we can state the main result of [Tsuc 2].

Theorem (2.1.9). Let $C = \bigcup_{i=1}^{k} F_i$ be a closed saturated subset of (M, \mathcal{F}) consisting of finitely many leaves. Then there is an admissible family \mathfrak{S} of staircases which satisfies the following conditions.

(1) For each $S \in \mathfrak{S}$, the floor F(S) and the ceiling C(S) are contained in C.

(2) Each $F_i \subset C$ is tame in \mathfrak{S} .

(2.2) Scaffoldings. Let C be a closed subset of M consisting of finitely many leaves of \mathcal{F} . Of course, each leaf in C is totally proper.

Definition (2.2.1). We say C is a *scaffolding* of \mathcal{F} if the following condition is satisfied: Let U be a connected component of M-C (these components are finite in number since C consists of finitely many leaves). Then one of the following two cases occurs.

(A) The restricted foliation $\mathscr{F}_{\mu\nu}$ is without holonomy.

(B) In the Dippolito completion \hat{U} of U, each leaf of the induced one-dimensional foliation $\hat{\mathscr{L}}$ is diffeomorphic to the unit interval *I*. In other words, the induced foliation $\hat{\mathscr{F}}$ is a foliated *I*-bundle.

We say U is a type (A) component if $\mathscr{F}_{|U}$ is without holonomy. Otherwise, U is said to be a type (B) component.

Proposition (2.2.2). Let (M, \mathscr{F}) be a closed foliated manifold without resilient leaves. Let C_{-1} be a closed subset of M consisting of finitely many leaves of \mathscr{F} , and let ε be a positive real number. Then there is a scaffolding $C \supset C_{-1}$ which satisfies the following condition; for each type (B) component U of M-C, the total width $\delta(U)$ of U is smaller than ε .

Proof. Inductively, we define an increasing sequence of subsets $C_0 \subset C_1 \subset \cdots \subset C_p \subset \cdots \subset M$ which satisfies the following conditions.

(1) C_p is a closed \mathscr{F} -saturated subsets consisting of finitely many leaves at level $\leq p$.

(2) Each connected component U of $M-C_p$ is one of the following three types;

(A) $\mathscr{F}_{|_U}$ is without holonomy;

(B) U is a foliated I-bundle of total width $<\varepsilon$;

(C) U is neither type (A) nor type (B) and U is a connected component of $M - M_p$.

From the conditions, M_p is contained in the union $C_p \cup$ type (A) components \cup type (B) components. So if $p \ge p_{\varepsilon}$ (see (1.2.2)), then $C = C_{-1} \cup C_p$ is a desired scaffolding.

First we define C_0 . Let T_0 be the union of all compact leaves of \mathscr{F} , and T'_0 be the set of compact leaves which are semi-stable on the positive or negative side. T'_0 is a compact subset of M. For each leaf $K \subset T'_0$, we choose a possibly one-sided collar of K in M as follows. If K is semi-stable on the positive side (resp. negative side) and is contracting on the negative side (resp. positive side), we choose a semistable one-sided collar $K \times [0, 1]$ of total width $<\varepsilon$ on the positive (resp. negative) side of K. If K is semistable on both sides, we choose a neighbourhood $K \times [-1, 1]$ of total width $<\varepsilon$ with $K \times \{0\} = K$, and $K \times [0, 1]$ and $K \times [-1, 0]$ being semi-stable one-sided collars of K. Since T'_0 is compact, there is a finite subcover $\cup K_i \times [0, 1] \cup \cup K_j \times [-1, 1]$ of the above covering. Let C_0 be the compact \mathscr{F} -saturated set consisting of $K_i \times \{0\}$, $K_i \times \{1\}$, $K_j \times \{-1\}$, $K_j \times \{1\}$ and all other compact leaves K contained in $M - \bigcup K_i \times [0, 1] \cup \bigcup K_j \times [-1, 1]$. Then C_0 satisfies the conditions (1), (2) with p=0.

Assume that C_p with the conditions (1) and (2) is defined. We define C_{p+1} . Let V_j $(j=1, \dots, k)$ be the connected components of type (C) of $M-C_p$, and let $V=\bigcup_{j=1}^k V_j$. Then each V_j contains a totally proper leaf at level p+1. Let $T_{p+1}(V)$ be the set of all such leaves. Then $T_{p+1}(V)$ is a closed \mathscr{P} -saturated subset of V. Let $T'_{p+1}(V)$ be the set of semi-stable proper leaves in $T_{p+1}(V)$. For each $F_i \in T'_{p+1}(V)$, there is a semi-stable, possibly one-sided, collar $F_i \times [0, 1], F_i \times [-1, 0]$ or $F_i \times [-1, 1]$ of F as above of total width $< \varepsilon$.

Assertion. There is a finite subcover of the above covering.

Proof. Let $\hat{V} = \hat{V}_1 \cup \cdots \cup \hat{V}_k$ be the Dippolito completion of V. For each j, fix a nucleus K_j of V_j . For each leaf $F \subset \partial \hat{V}_j$, there is an unbounded collar N(F) of F in V_j . Put $N_j = \bigcup \{N(F); F \subset \partial V_j\}$, and put $K = \bigcup_{j=1}^k \{K_j - N_j\}$. Then K is a compact subset of V, and it follows that $T'_{p+1}(V) \cap K$ is compact. Choose a finite subcover \mathscr{U}_K by $F_i \times [0, 1] \cap K$, $F_i \times [-1, 0] \cap K$ or $F_i \times [-1, 1] \cap K$ of K. Then the \mathscr{F} -saturation \mathscr{U} of

 \mathscr{U}_{K} is a finite covering of $T'_{p+1}(V)$ by semistable collars.

Let C_{p+1} be the union of C_p , $\{\hat{i}(\partial \hat{U}); U \in \mathcal{U}\}$ and all other totally proper leaves at level p+1 that are contained in $V - \bigcup \{\hat{i}(\partial \hat{U}); U \in \mathcal{U}\}$. Then C_{p+1} satisfies the conditions (1) and (2). q.e.d.

§ 3. NT-decomposition

(3.1) Units and decompositions. Let M be a compact connected manifold possibly with corner and \mathscr{F} a codimension one foliation of M. We assume that the boundary ∂M of M is divided by the corner into two parts; the *tangent boundary* $\partial_{tan}M$ which is tangent to \mathscr{F} and the *transverse boundary* $\partial_{tr}M$ which is transverse to \mathscr{F} . Such a foliated manifold (M, \mathscr{F}) will be called a *unit*. We always choose a one-dimensional foliation \mathscr{L} transverse to \mathscr{F} so that it is tangent to $\partial_{tr}M$. A nucleus of the Dippolito decomposition of an open \mathscr{F} -saturated set and a staircase are important examples of units.

Definition (3.1.1). Let M be a closed manifold of dimension n, and \mathscr{F} a codimension one foliation of M. A pair (\varDelta, ϕ) , where $\varDelta = \{(M_i, \mathscr{F}_i); i=1, \dots, m\}$ is a finite family of *n*-dimensional units and ϕ is a foliation preserving immersion from the disjoint union $\bigcup_{i=1}^{m} (M_i, \mathscr{F}_i)$ to (M, \mathscr{F}) , is called a *decomposition* of (M, \mathscr{F}) if the following conditions are satisfied;

(D 1) for each *i*, $\phi|_{\text{Int}(M_i)}$ is an imbedding,

(D 2) if $i \neq j$, then $\phi(\operatorname{Int}(M_i)) \cap \phi(\operatorname{Int}(M_j)) = \emptyset$, and

(D 3) $\bigcup_{i=1}^{m} \phi(M_i) = M.$

As in [N] and [Tsuc 3], we use three types of units. One of those is a staircase.

Definition (3.1.2). A unit (M, F) is said to be a *room* if it admits a structure of a foliated *I*-bundle with fibres being leaves of \mathscr{L} . If the total holonomy group of (M, \mathscr{F}) is abelian, then we say that (M, \mathscr{F}) is an *abelian room*.

Definition (3.1.3). A unit (M, \mathscr{F}) is said to be a *hall* if each corner of M is convex (see [Tsuc 3]) and each interior leaf has trivial holonomy.

If (M, \mathscr{F}) is a room or a hall, $D(M) = \partial_{tr}M$ is called the *door* of (M, \mathscr{F}) .

Definition (3.1.4). Let (M, \mathcal{F}) be a closed foliated manifold. A decomposition $(\Delta = \{(M_i, \mathcal{F}_i); i=1, \dots, m\}, \phi)$ of (M, \mathcal{F}) is called an *NT*-decomposition if the following conditions are satisfied;

(NT 1) each unit (M, \mathcal{F}_i) is either a staircase, a room or a hall;

(NT 2) for each *i*, and for each connected component *D* of the door of (M_i, \mathcal{F}_i) , there is a staircase (M_j, \mathcal{F}_j) of Δ such that $\phi(D)$ is contained

in $\phi(W(M_j))$, where $W(M_j)$ is the wall of M_j ;

(NT 3) let $\mathfrak{S}(\Delta)$ be the set of staircases of Δ , then $\mathfrak{S}(\Delta)$ is admissible;

(NT 4) for each unit (M_i, \mathcal{F}_i) in Δ , the leaves of \mathcal{F} through $\phi(\partial_{\tan} M_i)$ are tame in $\mathfrak{S}(\Delta)$; and

(NT 5) for each hall (M_i, \mathcal{F}_i) of Δ , the \mathcal{F} -saturation Sat $(\phi(\text{Int}(M_i)))$ is without holonomy.

Remark (3.1.5). (1) Again, by abuse of language, we often identify a unit (M_i, \mathscr{F}_i) and its immersed image in M. In that context, $Int(M_i)$ denotes the set $\phi(Int(M_i))$.

(2) For each unit (M_i, \mathcal{F}_i) of an NT-decomposition, we use the term *total holonomy* for the pseudogroup generated by the slope and the reduced total holonomy group in the case of a staircase, the total holonomy group in the case of a room and the image of the Novikov transformation along loops in Int (M_i) in the case of a hall respectively.

(3) The notions of rooms and halls are not mutually exclusive. When definiteness is needed, we call each unit (M_i, \mathcal{F}_i) a hall if the saturation Sat (Int (M_i)) is without holonomy.

(4) Let (M_i, \mathscr{F}_i) be a room or hall, and let U be the saturation Sat_M (Int (M_i)) of Int (M_i) . Then the decomposition $\hat{U} = Int(M_i) \cup \bigcup \{\widehat{U \cap S}; S \in \mathfrak{S}(\mathcal{A})\}$ gives a Dippolito decomposition of \hat{U} .

Let (Δ, ϕ) be an NT-decomposition. There are two natural ways to modify the decomposition. We explain them by figures. First we can modify Δ by *thinning* the set $\mathfrak{S}(\Delta)$ of staircases of Δ . See Figure 1.

Fig. 1.

Secondly, let S be a staircase of Δ and (M_i, \mathscr{F}_i) a unit such that $D(M_i) \cap W(S) \neq \emptyset$. Let F be a leaf through a connected component of $\partial_{\tan} M_i$.

Fig. 2.

We can consider a decomposition obtained by changing the ceiling of S to F. See Figure 2.

The notions of NT-decompositions and scaffoldings are closely related. Let (Δ, ϕ) be an NT-decomposition. From the conditions (NT 2), (NT 4) and (NT 5), the saturation C of $\bigcup_i \{\partial_{\tan} M_i; M_i \in \Delta\}$ is seen to be a scaffolding of M. We call C the scaffolding associated with the decomposition.

Conversely, from a scaffolding, one can canonically construct an NT-decomposition.

Theorem (3.1.6). Let C be a scaffolding. Then there exists an NTdecomposition (Δ, ϕ) such that the scaffolding associated with (Δ, ϕ) coincides with C.

Proof. Let \mathfrak{S} be an admissible family of staircases which tames each leaf of C (see (2.1.9)). By changing the ceilings of staircases of \mathfrak{S} and ignoring unnecessary staircases, we may assume that for each $S \in \mathfrak{S}$, the ceiling C(S) and the floor F(S) of S are contained in C. Let U_i be a connected component of $M-C-\cup\{S; S\in\mathfrak{S}\}$. Then U_i is the interior of a compact manifold with corner M_i . Let \mathscr{F}_i be the induced foliation of M_i , Then (M_i, \mathscr{F}_i) is a room or a hall from the definition of a scaffolding and the choice of \mathfrak{S} . There is a natural foliation preserving immersion $\phi_i: (M_i, \mathscr{F}_i) \to (M, \mathscr{F})$. Put $\Delta = \mathfrak{S} \cup \{(M_i, \mathscr{F}_i)\}$ and $\phi = \{\mathrm{id}_S; S \in \mathfrak{S}\} \cup \{\phi_i\}$. Then (Δ, ϕ) gives an NT-decomposition of (M, \mathscr{F}) .

q.e.d.

From (2.2.2) and (3.1.6) we get the following.

Theorem 1. Let (M, \mathcal{F}) be a closed foliated manifold without resilient leaves. Then (M, \mathcal{F}) admits an NT-decomposition.

Examples. (1) An NT-decomposition by regular staircases and abelian rooms whose total holonomy is cyclic is an *SRH-decomposition* of Nishimori [N]. A foliation admits an SRH-decomposition if and only if it is of finite depth (that is, each leaf is proper and there is a finite upper bound to the levels of leaves), and the holonomy group of each leaf is abelian.

(2) An NT-decomposition by abelian rooms and halls is a Hector-Imanishi decomposition of an almost without holonomy foliation (see e.g. [Im] and [M-M-T]).

Generalizing the above two classes of foliations, we consider PAfoliations and foliations of finite type in the next section. (3.2) Foliations of finite type and PA-foliations.

Definition (3.2.1). A foliation \mathscr{F} is said to be of *finite type* if there is a scaffolding C such that each connected component U of M-C is of type (A).

The following proposition is easy to prove.

Proposition (3.2.2). *The following three conditions are equivalent.*

(1) (M, \mathscr{F}) is of finite type.

(2) (M, \mathcal{F}) has an NT-decomposition into halls and staircases.

(3) All leaves of \mathcal{F} except finitely many proper leaves have trivial holonomy.

Definition (3.2.3). A foliation \mathscr{P} is said to be *PA* if each leaf of \mathscr{F} has polynomial growth and the holonomy group of each leaf is abelian.

In [Tsuc 3], an NT-decomposition by regular staircases, abelian rooms and halls was called a *Nishimori decomposition*. One of the main theorems of [Tsuc 3] is the following.

Theorem 2. A foliation \mathcal{F} is PA if and only if it admits a Nishimori decomposition.

A foliation of finite type can have a leaf of non-polynomial growth and a leaf with non-abelian holonomy group. These phenomena result from the existence of open local minimal sets which are not trivial at infinity. A PA-foliation is a disjoint union of countably many open local minimal sets which are trivial at infinity and totally proper leaves at some bounded levels. A PA-foliation of finite type is a disjoint union of finitely many open local minimal sets which are trivial at infinity and totally proper leaves.

Proposition (3.2.4). A PA-foliation (M, \mathcal{F}) is C^{∞} -approximated by PA-foliations of finite type.

Let G be a finitely generated abelian subgroup of Diff[0, 1]. We say G is of finite type if the number of connected components of [0, 1]—Fix G is finite. The proposition follows from the following.

Lemma (3.2.5). Let G be a finitely generated abelian subgroup of Diff [0, 1]. Then G is approximated by groups of finite type in the following sense: There are homomorphisms ϕ_n : $G \rightarrow \text{Diff}[0, 1]$ $(n=1, 2, \cdots)$, such that

(1) $\phi_n(G)$ is of finite type,

(2) for each
$$g \in G$$
, $\phi_n(g) \rightarrow g$, as $n \rightarrow \infty$ in the C^{∞} -topology and

(3) for each $g \in G$ and sufficiently large n, we have $j_0^{\infty}(\phi_n(g)) = j_0^{\infty}(g)$ and $j_1^{\infty}(\phi_n(g)) = j_1^{\infty}(g)$.

Proof of (3.2.4) from (3.2.5). Let (\mathcal{A}, ϕ) be a Nishimori decomposition of (M, \mathscr{F}) . We alter \mathscr{F} in abelian rooms of \mathcal{A} . Let (R, \mathscr{F}_R) be an abelian room with $R = B \times [0, 1]$, $q: \pi_1(B) \to \text{Diff}[0, 1]$ its total holonomy homomorphism and G = Im(q). By (3.2.5), there are homomorphisms $\phi_n: G \to \text{Diff}[0, 1]$ which approximate G. Let $\mathscr{F}_R(n)$ be the foliation of $R = B \times [0, 1]$ defined by the total holonomy homomorphism $\phi_n \circ q$. Then $\mathscr{F}_R(n) \to \mathscr{F}_R$ as $n \to \infty$, and the foliations $\{\mathscr{F}_R(n); R \text{ is a room of } \mathcal{A}\} \cup$ $\{\mathscr{F}_R; H \text{ is a hall of } \mathcal{A}\} \cup \{\mathscr{F}_S: S \in \mathfrak{S}(\mathcal{A})\}$ fit together to a C^{∞} -foliation $\mathscr{F}(n)$ of finite type of M for sufficiently large n. We have got a desired approximation. q.e.d.

A finitely generated abelian subgroup G of Diff [a, b] is said to be *plain* if the derived set (Fix G)' of Fix G is $\{a\}$ or $\{b\}$.

Assertion. To prove (3.2.5), we may assume that G is plain.

Proof. Let G be as in (3.2.5). Given n > 0, there is a sequence $0 = x_0 < x_1 < \cdots < x_m = 1$ of points of Fix G with the following properties;

(1) $\{x_1, x_2, \dots, x_{m-1}\} \subset (Fix G)'$ and

(2) if $x_{i+1} - x_i > 1/n$, then $(x_i, x_{i+1}) \cap (\text{Fix } G)' = \emptyset$.

Let ϕ_n ; $G \rightarrow \text{Diff}[0, 1]$ be the homomorphism defined by;

$$\phi_n(g)_{|[x_i, x_{i+1}]} = \begin{cases} \mathrm{id}_{|[x_i, x_{i+1}]} & \mathrm{if} \quad x_{i+1} - x_i \leq 1/n \quad \mathrm{and} \\ g_{|[x_i, x_{i+1}]} & \mathrm{if} \quad x_{i+1} - x_i > 1/n. \end{cases}$$

Then $\{\phi_n(G)\}$ converges to G in the sense of (3.2.5). And each $\phi_n(G)_{[[x_i, x_{i+1}]]}$ satisfies one of the following four conditions:

(i) $\phi_n(G)_{|[x_i, x_{i+1}]}$ is trivial.

(ii) $(\text{Fix}(\phi_n(G)_{|[x_i, x_{i+1}]}))' = \emptyset.$

(iii) $\phi_n(G)_{|[x_i, x_{i+1}]}$ is plain.

(iv) There is $x \in (x_i, x_{i+1})$ such that $\phi_n(G)_{|[x_i, x]}$ and $\phi_n(G)_{|[x, x_{i+1}]}$ are plain. q.e.d.

To prove (3.2.5), we use the "flattening homomorphism" introduced by Tsuboi and Muller ([Tsub 2], [Mu]). Let h be a homeomorphism of [0, 1] which satisfies the following conditions.

(1) $h_{1(0,1]}$ is a C^{∞} -diffeomorphism.

(1) $h_{[0,1]} = \begin{cases} \exp(-1/x), & \max x = 0 \\ x, & \max x = 1. \end{cases}$

Let \mathcal{V} : Diff [0, 1] \rightarrow Homeo [0, 1] be the homomorphism defined by $\mathcal{V}(g) = h^{-2} \circ g \circ h^2$. We use the following notations; for a C^{∞} -function k on [0, 1], $\delta^r(k) =$ the r-th derivative of k,

$$|k|_r = \sup_{0 \le x \le 1} |\delta^r(k)(x)|$$
 and $||k||_r = \max\{|k|_i; i=1, \cdots, r\}.$

By some calculations, one can see that the homomorphism Ψ enjoys the following properties.

(*) The image of \mathcal{V} is contained in the group $\text{Diff}_{\infty}[0, 1]$ of C^{∞} -diffeomorphisms of [0, 1] which are infinitely tangent to the identity at 0.

(**) For each $r \ge 0$, there is a constant K_r such that $|\Psi(g) - \mathrm{id}|_r \le K_r \cdot ||g - \mathrm{id}||_{r+2}$.

Proof of (3.2.5). We may assume that $(\text{Fix } G)' = \{0\}$ and $\text{Fix } G = \{0 < \cdots < x_n < \cdots < x_1 < x_0 = 1\}$. For $m, n \in N$, we define a homomorphism $\phi_{m,n}$; $G \rightarrow \text{Diff}[0,1]$ by

$$\Phi_{m,n}(g)(x) = \begin{cases} g(x) &, & \text{if } x \ge x_m, \\ A_{m,n}^{-1} \circ (\Psi(A_{m,n} \circ g \circ A_{m,n}^{-1})) \circ A_{m,n}(x), & \text{if } x_{m+n} \le x \le x_m, \\ x &, & \text{if } x \le x_{m+n}, \end{cases}$$

where $A_{m,n}$ is the affine homeomorphism from $[x_{m+n}, x_m]$ to [0, 1].

Then $\Phi_{m,n}(g)$ is a C^{∞} -diffeomorphism of [0, 1] from (*), and $\Phi_{m,n}(G)$ is of finite type. We show that $\{\Phi_{m,n}(G)\}$ accumulates to G. For each $r \ge 2$ and each $g \in G$, we get the following inequality from (**) and the fact that g is infinitely tangent to the identity at 0,

$$\sup_{x_m+n\leq x\leq x_m} |\delta^r \Phi_{m,n}(g)(x)| \leq (x_m/x_m-x_{m+n})^r \cdot K_r \cdot \sup_{0\leq x\leq x_m} |\delta^{r+2}g(x)|.$$

For each *m*, choose n(m) such that $x_m/x_m - x_{m+n(m)} \leq 2$. Then we have

$$\sup_{m+n(m)\leq x\leq x_m} |\delta^r \Phi_{m,n(m)}(g)(x) \leq 2^r \cdot K_r \cdot \sup_{s\leq x\leq x_m} |\delta^{r+2}g(x)|.$$

x

From this inequality, it is easy to see that $\Phi_{m,n(m)}(g) \rightarrow g$ in the C^{∞} -topology. q.e.d.

(3.3) GV-decompositions and the localization of the Godbillon-Vey class. A unit (M, \mathscr{F}) is called a *GV-unit* if \mathscr{F} is trivial near the transverse boundary $\partial_{tr}M$. For such a unit, we can define the Godbillon-Vey class $gv(\mathscr{F})$ which is an element of $H^{3}(M, \partial M)$ [Tsuc 3]. We say (M, \mathscr{F}) is an *OGV-unit* if the class $gv(\mathscr{F})$ is zero. An NT-decomposition is said to be a *GV-decomposition* (resp. *OGV-decomposition*) if each unit is a GV-unit

(resp. OGV-unit).

In [Tsuc 3], we have proved the following propositions.

Proposition (3.3.1). The Godbillon-Vey class of a closed foliated manifold (M, \mathcal{F}) is zero if it admits an OGV-decomposition.

Proposition (3.3.2). Regular staircases, GV-abelian rooms and GV-halls are OGV-units.

These imply, from Theorem 2, that the Godbillon-Vey class of a PAfoliation is zero. Furthermore, using the results of Duminy and Sergiescu [D-S], one can prove that GV-staircases and GV-rooms are OGV if they contain no resilient leaves. We then get the following.

Proposition (3.3.3). If (M, \mathcal{F}) admits a GV-decomposition each of whose unit contains no resilient leaves, then the Godbillon-Vey class $gv(\mathcal{F})$ is zero.

§ 4. C^{\sim} -approximations by PA-foliations of finite type

In this section we consider when a foliation is C^{∞} -approximated by PA-foliations of finite type.

(4.1) Let (S, \mathscr{F}_S) be a staircase in (M, \mathscr{F}) which is the image of the composed map $h \circ \pi$: $C(K, N) \times [0, \delta] \xrightarrow{\pi} S \xrightarrow{h} M$. We say (S, \mathscr{F}_S) is trivial on the wall if $\mathscr{F}_{S|\pi(N_2 \times [0, \delta])}$ is trivial. And we say (S, \mathscr{F}_S) is flat on the ceiling if each holonomy along the leaf $h \circ \pi(C(K, N) \times \{\delta, f(\delta), \dots, f^n(\delta), \dots\})$ is infinitely tangent to the identity, where f is the slope of S.

Let (Δ, ϕ) be an NT-decomposition and let R be a room in Δ . We say R is globally abelian if the saturation Sat (Int (R)) of the interior of R is a foliated \mathring{I} -bundle of abelian total holonomy.

Proposition (4.1.1). Let (M, \mathcal{F}) be a closed foliated manifold which admits an NT-decomposition (Δ, ϕ) satisfying the following conditions;

(1) each room in Δ is globally abelian;

(2) each staircase in Δ is trivial on the wall and flat on the ceiling. Then \mathscr{F} is C^{∞} -approximated by PA-foliations of finite type.

Proof. It is sufficient to approximate \mathscr{F} by PA-foliations (see (3.2. 4)). We alter \mathscr{F} in each staircase (S, \mathscr{F}_S) of \varDelta . Let (S, \mathscr{F}_S) be the image of $C(K, N) \times [0, \delta]$, f its slope and $q: \pi_1(C(K, N)) \rightarrow \text{Diff } [0, \delta]$ its reduced total holonomy homomorphism. For $n \in N$, we define a staircase $(S_{(n)}, \mathscr{F}_{S(n)})$ as follows. The underlying manifold $S_{(n)}$ is the same as S and

the reduced total holonomy homomorphism $q_{(n)}: \pi_1(C(K, N)) \rightarrow \text{Diff}[0, \delta]$ of $\mathscr{F}_{S_{(n)}}$ is given by;

 $q_{(n)}(\alpha)(x) = x$ if $x \in [0, f^n(\delta)]$,

and

 $q_{(n)}(\alpha)(x) = q(\alpha)(x)$ if $x \in [f^n(\delta), \delta]$,

for each $\alpha \in \pi_1(C(K, N))$.

Then $\mathscr{F}_{S(n)}$ is well-defined since (S, \mathscr{F}_S) is trivial on the wall, and is smooth since S is flat on the ceiling. Evidently, $\mathscr{F}_{S(n)} \to \mathscr{F}_S$ as $n \to \infty$. The *n*-thinning of $(S_{(n)}, \mathscr{F}_{S(n)})$ is a regular staircase. Gathering these foliations, we get a smooth PA-foliation of M since each $S \in \Delta$ is trivial on the wall. These foliations approach to \mathscr{F} in the C^{∞} -topology. q.e.d.

(4.2) Inflexible staircase. We consider when a foliation has an NT-decomposition each of whose staircase is flat on the ceiling.

First we recall a theorem due to Sternberg, Takens and Sergeraert (see e.g., [Tsub 1; (3.5)]).

Theorem (4.2.1). Let g be a C^{∞} -diffeomorphism of [0, 1] such that Fix $(g) = \{0, 1\}$, and g' be a diffeomorphism of [0, 1] which commutes with g. Then either

(a) there are coprime integers m, n and a C^{∞} -diffeomorphism h of [0, 1] such that $g = h^m$ and $g' = h^n$, or

(b) there are real numbers s, t and a vector field ξ , C^1 on [0, 1] and C^{∞} on (0, 1), such that g and g' are the time s and the time t map of ξ respectively.

In the latter case, if $j_0^{\infty}(g) \neq j_0^{\infty}$ (id), then ξ is of class C^{∞} at 0.

In the case (a), we write $g' = g^{n/m}$, and in the case (b), we write $g' = g^{t/s}$.

Let (Δ, ϕ) be an NT-decomposition and let $\mathfrak{S}(\Delta)$ be the set of staircases of Δ . Let S be an element of $\mathfrak{S}(\Delta)$ which is not maximal with respect to the order < in $\mathfrak{S}(\Delta)$. So there is $S_1 \in \mathfrak{S}(\Delta)$ such that $W(S) \cap D(S_1) \neq \emptyset$. Then, by changing the ceiling of S, one can modify S to S' so that the ceiling of S' is contained in the saturation of the floor of S_1 (see Figure 3).

Fig. 3.

Modifying each such staircase in this way, we obtain an NT-decomposition Δ' with the following extra condition:

(NT-6) The ceiling of each staircase S in Δ' which is not maximal in $\mathfrak{S}(\Delta')$ is contained in the saturation of a floor of some staircase in Δ' .

From now on, NT-decompositions are assumed to satisfy the above additional condition.

Definition (4.2.2). Let (S, \mathscr{F}_S) be a staircase, f its slope and $G \subset$ Diff $[0, \delta]$ its reduced total holonomy group. We say (S, \mathscr{F}_S) is *inflexible* if there is $g \in G$ and a finite sequence of points $f(\delta) = t_0 < t_1 < \cdots < t_l = \delta$ which satisfy the following conditions:

(1) Fix $(g) \cap [f(\delta), \delta] = \{t_0, t_1, \cdots, t_l\}.$

- (2) $j_{t_i}^{\infty}(g) \neq j_{t_i}^{\infty}$ (id), for each *i*.
- (3) There is a real number $\alpha \in (0, 1)$ such that $f^{-n} \circ g \circ f^n = g^{\alpha^n}$.

Lemma (4.2.3). Let (S, \mathcal{F}_s) be an inflexible staircase without resilient leaves. Let $f, G, g, \{t_i\}$ and α be as above. Then we have the following properties:

(1) Let $k = \min\{i; j_{t_0}^i(g) \neq j_{t_0}^i(id)\}$, then

$$\alpha = \frac{\log \delta g(t_0)}{\log \delta g(t_l)} \quad \text{if} \quad k = 1, \text{ and}$$
$$\alpha = \frac{\delta^k g(t_0)}{\delta^k g(t_l)} (\delta f(t_l))^{k-1} \quad \text{if} \quad k \ge 2.$$

(2) The leaves of \mathscr{F}_{S} through $\{t_{i}\}$ are tame in S, and all other leaves are dense in S.

(3) For each $h \in G$, there is $\beta \in \mathbf{R}$ such that $h = g^{\beta}$.

Proof. The first assertion is easily obtained by calculating the derivative of the equality $f^{-1} \circ g \circ f = g^{\alpha}$ at t_i . The second assertion follows from the fact $g^{\alpha^n} \rightarrow id$ as $n \rightarrow \infty$. From this, each connected component of Int $(S) - \bigcup$ {leaves through $\{t_i\}$ } is an open local minimal set. It follows from (1.3.1) and (1.4) that the reduced total holonomy group is abelian. The third assertion then follows from (4.2.1). q.e.d.

Lemma (4.2.4). Each non-proper leaf in an inflexible staircase has exponential growth.

Proof. We use the notations of (4.2.2). Let F be a non-proper leaf. Choose a point $x \in [f(\delta), \delta] \cap F$. Let Γ_n be the set of points of $[0, \delta]$ which are mapped from x by words of length $\leq n$ in f and g. Let Γ_n be the cardinality of Γ_n . Then Γ_n is dominated by the growth function of F (see e.g. [Tsuc 1]).

Taking α^n instead of α if necessary, we may assume that $\alpha < 1/3$. The set Γ_{2n} contains the following points; $g^{\epsilon_n} \circ f \circ \cdots \circ g^{\epsilon_1} \circ f(x)$ where $\epsilon_i = \pm 1$. Since $\alpha < 1/3$ these points are easily seen to be distinct. So $\gamma(2n) \ge 2^n$, and γ has exponential growth. q.e.d.

Lemma (4.2.5). Let (Δ, ϕ) be an NT-decomposition of a closed foliated manifold (M, \mathcal{F}) without resilient leaves. Assume that each staircase of Δ is not inflexible. Then we can modify (Δ, ϕ) to a decomposition (Δ', ϕ') in which each staircase is flat on the ceiling.

Proof. Let $\mathfrak{S}(\Delta)$ be the set of staircases of Δ . From the conditions (NT 3) and (NT 6), each staircase which is not maximal in $\mathfrak{S}(\Delta)$ is flat on the ceiling. Let S be a staircase which is maximal in $\mathfrak{S}(\Delta)$. We modify Δ so that the staircase corresponding to S is flat on the ceiling. There are two cases.

Case (1). There is a room (R, \mathscr{F}_R) in \varDelta with $D(R) \cap W(S) \neq \emptyset$ and the saturation U of Int (R) has a leaf with non-trivial holonomy. Let F be a leaf through a connected component of $\partial_{\tan} R$. Then either F is semistable on the side of R or there is a totally proper leaf in U whose limit set contains F. In the first case, in the decomposition \varDelta' obtained by changing the ceiling of S to F, the staircase S' corresponding to S is flat on the ceiling. See Figure 4.

Fig. 4.

In the second case, from (2.1.9), the contracting holonomy of F is compactly supported in the side of R. That is, there is a compact subset K of F such that each holonomy along a loop in F-K on the side of R is not contracting. From (2.1.8), there is $\alpha: \mathfrak{S}(\varDelta) \to N$ such that the α -thinning $\mathfrak{S}^{(\alpha)}(\varDelta)$ of $\mathfrak{S}(\varDelta)$ does not meet K. Let \varDelta' be the decomposition obtained from \varDelta by α -thinning $\mathfrak{S}(\varDelta)$ and changing the ceiling of $S^{\alpha(S)}$ to F. Then the staircase S' of \varDelta' corresponding to S is flat on the ceiling.

Case (2). Each unit adjacent to W(S) is a hall. Assume that a hall (H, \mathcal{P}_{H}) adjacent to W(S) satisfies one of the following two conditions;

(1) a leaf F through a connected component of $\partial_{tan} H$ with $F \cap S \neq \emptyset$ has flat holonomy, or

(2) the holonomy of a leal F through a connected component of

 $\partial_{\tan} H$ with $F \cap S \neq \emptyset$ is compactly supported.

Then by thinning $\mathfrak{S}(\Delta)$ and changing the ceiling as in case (1), we get a desired decomposition.

Otherwise, there are $f(\delta) = t_0 < t_1 < \cdots < t_i = \delta$ and $g \in G$ such that $g(t_i) = t_i$ and $j_{t_i}^{k_i}(g) \neq j_{t_i}^{k_i}(\mathrm{id})$ for each *i* and for some k_i , where *f* is the slope of *S* and *G* is the reduced total holonomy group of *S*. Since each unit adjacent to W(S) is a hall, the diffeomorphisms $f^{-n} \circ g \circ f^n_{|[f(\delta),\delta]}$ and $g_{|[f(\delta),\delta]}$ are commutative. From (4.2.1), there is $\alpha_n \in R$ such that $f^{-n} \circ g \circ f^n_{|[f(\delta),\delta]} = g^{\alpha_n}_{|[f(\delta),\delta]}$. Considering the derivative of *g* at $f^n(\delta)$, we get $\alpha_n = \alpha_1^n$ and $f^{-n} \circ g \circ f^n_{|[0,\delta]} = g^{\alpha_n}_{|[0,\delta]}$. Since *g* is C^2 , we have $0 < \alpha_1 < 1$ by a version of Kopell's lemma. So the staircase *S* is inflexible. This contradicts our assumption.

From (4.2.4) and (4.2.5), we get the following.

Proposition (4.2.6). If (M, \mathcal{F}) has no exponential leaves, then (M, \mathcal{F}) has an NT-decomposition which is flat on the ceiling of each staircase.

(4.3) 3-dimensional case. Let (Δ, ϕ) be an NT-decomposition of (M, \mathcal{F}) and let (M_i, \mathcal{F}_i) be a room or a hall of Δ . Let U_i be the \mathcal{F} -saturation of $\operatorname{Int}(M_i)$. We say U_i is *trivial on the walls* if for each staircase $S = h(C(K, N) \times [0, \delta]) \in \mathfrak{S}(\Delta)$, the foliation $\mathcal{F}_{|U_i \cap N \times [0, \delta]}$ is trivial. If the dimension of M is three, we get the following.

Proposition (4.3.1) (see [C-C 3; (2.3)]). Let (Δ, ϕ) be an NT-decomposition of a foliated 3-manifold (M, \mathcal{F}) . Then each hall and each globally abelian room of Δ are trivial on the walls.

Proof. Let (M_i, \mathscr{F}_i) be a hall and U be the saturation of Int (M_i) . For each staircase $S \in \mathfrak{S}(\Delta)$, which is the image of $C(K, N) \times [0, \delta]$, we show that $\mathscr{F}_{|U \cap N \times [0, \delta]}$ is trivial, by induction on the level of the leaf through the floor F(S) of S. Assume F(S) is at level 0. And let f be the slope of S. Since dim M=3, the manifold N is diffeomorphic to a circle. Let g be the element of the reduced holonomy group of S defined by N. Let (a, b) be a connected component of $U \cap [f(\delta), \delta]$, where we identify a fibre of $C(K, N) \times [0, \delta]$ with the interval $[0, \delta]$. Then the intersection of $[0, \delta]$ and the connected component of $U \cap S$ containing (a, b) is the disjoint union $(a, b) \cup (f(a), f(b)) \cup \cdots \cup (f^n(a), f^n(b)) \cup \cdots$. We prove that $g_{1(f^n(a), f^n(b))}$ = id for each n. Let $N_n = N \times \{f^n(\delta)\}$ be the lift of N, and $g_n: (f^n(a), f^n(b))$ $\rightarrow (f^n(a), f^n(b))$ be the corresponding holonomy of U. The map g_n is a diffeomorphism of $(f^n(a), f^n(b))$ by the arguments in (1.4). Since N_n and N_1 are homologous in the leaf $F = \operatorname{Sat}_S(\{a\})$, they define the same holonomy of U (see (1.4.2)). In other words, $f^{-n} \circ g_n \circ f^n_{|(g,b)|} = g_{1(g,b)}$. But g_n is the

restriction of g on $(f^n(a), f^n(b))$. So we get $f^{-n} \circ g \circ f^n_{|(a,b)} = g_{|(a,b)}$ for each n. A version of Kopell's lemma implies that such a diffeomorphism g can not be of class C^2 unless $g_{|(f^n(a), f^n(b))}$ is the identity map. Thus U is trivial on the wall of S. By induction, we can prove that U is trivial on the wall of each staircase of $\mathfrak{S}(\Delta)$.

The case of an abelian room is the same and the proof is omitted.

q.e.d.

From (4.1.1), (4.2.4) and (4.3.1), we get the following.

Theorem 3. Let (M, \mathcal{F}) be a closed foliated 3-manifold without exponential leaves. Assume that (M, \mathcal{F}) admits an NT-decomposition each of whose room is globally abelian. Then \mathcal{F} is \mathbb{C}^{∞} -approximated by PA-foliations of finite type. In particular, finite type foliations of 3-manifolds are \mathbb{C}^{∞} -approximated by PA-foliations of finite type.

§ 5. Foliations of class \mathcal{D} and \mathcal{D} -approximations

(5.1) Foliations of class \mathcal{D} . In [D-S], Duminy and Sergiescu introduced an important subgroup of (local) homeomorphisms of I (or \mathbb{R}). For a map $k: \mathbb{R} \to \mathbb{R}$, let $\delta^R k$ denote the right derivative of k and Var (k)denotes the total variation of k. Let f be an orientation preserving (local) homeomorphism of \mathbb{R} (or I) with compact support which is smooth (C^2) except at countably many points. We say f is of class \mathcal{D} if Var $(\log \delta^R(f))$ is finite. Let \mathcal{D} be the group of all such homeomorphisms. For $f \in \mathcal{D}$, $\log \delta^R f$ has the right derivative a.e., and $\delta^R \log \delta^R f$ is integrable (L^1). And we define the \mathcal{D} -norm $|f|_{\mathcal{D}}$ of f by $|f|_{\mathcal{D}} = |\log \delta^R f|_{\infty} + |\delta^R \log \delta^R f|_1$ where $| \mid_{\infty}$ (resp. $| \mid_1$) denotes the essential sup. norm (resp. L^1 -norm).

Now let \mathscr{F} be a C° -foliation with C^{∞} -leaves of a compact *n*-manifold M.

Definition (5.1.1). We say \mathscr{F} is of class \mathscr{D} , if there is an open covering $\{U_i\}$ of M and homeomorphisms $\phi_i \colon U_i \to \mathring{D}^{n-1} \times \mathring{D}^1$ which satisfy the following conditions.

(1) For each *i* and $t \in \mathring{D}^1$, the map $\phi_{i|\mathring{D}^{n-1}\times\{t\}}^{-1}: \mathring{D}^{n-1}\times\{t\} \to M$ is smooth.

(2) If $U_i \cap U_j \neq \emptyset$, then the map $\phi_i \circ \phi_j^{-1}$ is locally of the form $(x, y) \rightarrow (g(x, y), h(y))$, where $x, g(x, y) \in \mathring{D}^{n-1}$, $y, h(y) \in \mathring{D}^1$ and $y \rightarrow h(y)$ belongs to the class \mathscr{D} .

Note that C^2 -foliations are of class \mathcal{D} and that the holonomy pseudogroup of a foliation of class \mathcal{D} is contained in \mathcal{D} . Kopell's lemma, Denjoy's inequality etc., are true for local \mathcal{D} -homeomorphisms. Thus the theory of levels (1.2) holds for foliations of class \mathcal{D} (see [Tsuc 4]).

We want to define a topology on the space of foliations of class \mathcal{D} by saying that two \mathcal{D} -foliations \mathcal{F} and \mathcal{F}' are near if each corresponding elements of the holonomy pseudogroups of \mathcal{F} and \mathcal{F}' are \mathcal{D} -near. A general definition seems to be cumbersome, so we adopt the following definition.

Definition (5.1.2). Let \mathscr{F} be a foliation of class \mathscr{D} of a compact manifold M. Assume (M, \mathscr{F}) has an NT-decomposition (\varDelta, ϕ) whose scaffolding is C. Let $\mathscr{F}_n, n=1, 2, \cdots$ be a sequence of foliations of class \mathscr{D} of M. We say $\{\mathscr{F}_n\}$ accumulates to \mathscr{F} along C (or (\varDelta, ϕ)) if the following conditions are satisfied.

(1) The scaffolding C is a scaffolding of \mathscr{F}_n , for each n, also the underlying spaces M_i of (\varDelta, ϕ) give an NT-decomposition of the foliated manifold (M, \mathscr{F}_n) .

(2) For each unit (M_i, \mathcal{F}_i) of Δ , the foliated manifold

 $(M_i, \phi^{-1}(\mathscr{F}_{n \mid \phi(M_i)})) = (M_i, \mathscr{F}_i^n)$

is a same type of unit as (M_i, \mathcal{F}_i) .

(3) For each unit (M_i, \mathscr{F}_i^n) , the total holonomy group of (M_i, \mathscr{F}_i^n) converges to that of (M_i, \mathscr{F}_i) in the \mathcal{D} -topology.

If \mathscr{F} is accumulated by $\{\mathscr{F}_n\}$ along some scaffolding, we say \mathscr{F} is \mathscr{D} -approximated by $\{\mathscr{F}_n\}$.

One can define the GV-invariant of a foliation of class \mathcal{D} , and one can prove that the invariant is continuous with respect to the above convergence.

Duminy and Sergiescu [D-S] proved that if (M, \mathscr{F}) is a foliated *I*bundle over a compact manifold *B* without resilient leaves, then (M, \mathscr{F}) is \mathscr{D} -approximated (along the trivial scaffolding $B \times \{0\} \cup B \times \{1\}$), by finitetype foliations of class \mathscr{D} . We prove that a corresponding theorem is true in the general case.

(5.2) \mathcal{D} -approximations of foliations without resilient leaves. In this section, we prove the following.

Theorem 4. Let (M, \mathscr{F}) be a closed foliated manifold. Assume that \mathscr{F} has no resilient leaves. Let C be a scaffolding of \mathscr{F} . Then \mathscr{F} is \mathscr{D} -approximated along C by finite type foliations $\{\mathscr{F}_n\}$, $n=1, 2, \cdots$, of class \mathscr{D} , which satisfy the following conditions; there is a scaffolding $C_n \supset C$ of \mathscr{F}_n such that for each connected component U of $M - C_n, \mathscr{F}_{n|U}$ is smooth and is without holonomy.

Proof. We use the method of Duminy and Sergiescu (see [D-S] and [Tsuc 4]). For $\lambda > 0$, let $h_{\lambda} \in \text{Diff}(I)$ be the diffeomorphism

$$h_{\lambda}(x) = \frac{x}{(1-\lambda)x+\lambda}.$$

Choose an NT-decomposition (Δ, ϕ) associated with the scaffolding C. For each staircase $S = \pi$ (C(K, N)×I) (or a room $R = B \times I$), fix parametrizations of $\{b\} \times I$, $b \in N$ (or $\{b\} \times I$, $b \in B$). We call such a subset a *pillar* of (Δ, ϕ) .

Let *n* be a positive integer. From (2.2.2), there is a scaffolding $C_n \supset C$, such that the total width of each type (B) component of $M - C_n$ is smaller than 1/n. We alter \mathscr{F} in each type (B) component of $M - C_n$ by h_{λ} . Let *I* be a connected component of the pillar of (\varDelta, ϕ) which is contained in a staircase *S* or a room *R*, and let (a, b) be a connected component of the intersection of a type (B) component of $M - C_n$ with *I*. We define a homomorphism π_n from the total holonomy group *G* of *S* (or *R*) to the pseudogroup of local homeomorphisms $\operatorname{Loc} \mathscr{D}(I)$ of *I* of class \mathscr{D} as follows. For $x \in (a, b)$ and $g \in G$, we define $\pi_n(g)(x) = (g(b) - g(a))h_{\lambda}((x-a)/(b-a)) + g(a)$, where $\lambda = \sqrt{\delta g(b)/\delta g(a)}$. For *x* which is not contained in a type (B) component of $M - C_n$, we set $\pi_n(g)(x) = g(x)$. It is seen that π_n is a homomorphism into $\operatorname{Loc} \mathscr{D}(I)$ and the foliation defined by π_n in each unit gathers compatibly to a finite type foliation \mathscr{F}_n of class \mathscr{D} .

For each total holonomy group G of a staircase or a room of Δ , choose a finite symmetric generating set Γ . Let

$$K = \sup_{g \in T} \frac{\max_{x \in I} |\delta^2 g(x)|}{\min_{x \in I} \delta g(x)}.$$

Then it is seen that for each $g \in \Gamma$,

 $|\log \delta g - \log \delta^R \pi_n(g)|_{\infty} + |\delta \log \delta g - \delta^R \log \delta^R \pi_n(g)|_{\infty} \leq 2(K + K^2) (1/n).$

(see [Tsuc 4]). Thus the foliations $\{\mathcal{F}_n\}$ accumulate to \mathcal{F} along C. q.e.d.

Theorem (5.2.1). Let (M^3, \mathcal{F}) be a closed foliated 3-manifold. Assume \mathcal{F} has no resilient leaves. Then \mathcal{F} is \mathcal{D} -approximated by finite type, PA-foliations of class \mathcal{D} .

Proof. This follows from Theorem 4 and Theorem 3, since the existence of an inflexible staircase makes no trouble when we are considering \mathscr{D} -approximations. q.e.d.

References

- [C-C 1] J. Cantwell and L. Conlon, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc., 265 (1981), 181–209.
- [C-C 2] —, Tischler fibrations of open foliated sets, Ann. Inst. Fourier, 31 (1981), 113-135.
- [C-C3] —, A vanishing theorem for the Godbillon-Vey invariants of foliated manifolds, preprint.
- [C-C 4] —, The dynamics of open, foliated manifolds and a vanishing theorem for the Godbillon-Vey class, preprint.
- [Di] P. Dippolito, Codimension one foliations of closed manifolds, Ann. of Math., 107 (1978), 403-453.
- [Du 1] G. Duminy, L'invariant de Godbillon-Vey d'un feuilletages se localize dans les feuilles ressort, preprint.
- [Du 2] ____, Sur les cycles feuilletages des codimension un, preprint.
- [D-S] G. Duminy and V. Sergiescu, Sur la nullité de l'invariant de Godbillon-Vey, C. R. Acad. Sci. Paris, Serie I, 292 (1981), 821–824.
- [Im] H. Imanishi, Structures of codimension-one foliations which are almost without holonomy, J. Math. Kyoto Univ., 16 (1976), 93-99.
- [In] T. Inaba, A sufficient condition for the C² Reeb stability of non-compact leaves of codimension one foliations, this volume.
- [Mi] T. Mizutani, Foliated cobordisms of PA-foliations, this volume.
- [M-M-T] T. Mizutani, S. Morita and T. Tsuboi, The Godbillon-Vey classes of codimension one foliations which are almost without holonomy, Ann. of Math., 113 (1981), 515-527.
- [Mu] M-P. Muller, Sur l'approximation et l'instabilité des feuilletages, preprint.
- [N] T. Nishimori, SRH-decompositions of codimension-one foliations and the Godbillon-Vey classes, Tôhoku Math. J., 32 (1980), 4–34.
- [Tsub 1] T. Tsuboi, On 2-cycles of B Diff (S¹) which are represented by foliated S¹-bundles over T², Ann. Inst. Fourier, **31** (1981), 1-59.
- [Tsub 2] —, Γ_1 -structures avec une seule feuille, preprint.
- [Tsuc 1] N. Tsuchiya, Growth and depth of leaves, J. Fac. Sci. Univ. Tokyo, Sec. IA, 26 (1979), 473-500.
- [Tsuc 2] ____, Leaves of finite depth, Japan. J. Math., 6 (1980), 343-364.
- [Tsuc 3] —, The Nishimori decompositions of codimension-one foliations and the Godbillon-Vey classes, Tôhoku Math. J., 34 (1982), 343-365.
- [Tsuc 4] —, On a theorem of Duminy-Sergiescu, TIT Saturday Seminar report (1982), (in Japanese).

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguroku Tokyo, 152 Japan