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Introduction

Let (M, %) be a foliated manifold. By this, unless otherwise specified,
we mean that M is a compact C~-manifold and & is a transversely
oriented, codimension one, C>-foliation of M. Recall that a leaf F is
resilient if F accumulates to itself by a contracting holonomy. A resilient
leaf exhibits rather bizarre behaviour and does not submit to concrete
qualitative study. In this paper, we observe that a foliation without re-
silient leaves is decomposed into three types of compact foliated submani-
folds (units) each of which is an immersed image of a foliated interval
bundle or a without holonomy foliation (Theorem 1). We call it an NT-
decomposition. '

Among foliations without resilient leaves, PA-foliations and foliations
of finite type are simple ones. A foliation is said to be PA if each leaf has
polynomial growth and the germinal holonomy group of each leaf is abelian,
and a foliation is said to be of finite type if it is a finite union, along proper
leaves, of open, connected saturated subsets without holonomy. These
foliations are characterized by the property that they have some good de-
compositions (Proposition (3.2.2) and Theorem 2). A theorem of Mizutani
states that a PA-foliation is cobordant to a union of foliated S'-bundles
over tori [Mi].

PA-foliations and foliations of finite type constitute important sub-
spaces of the space of foliations without resilient leaves of a given manifold.
We study how large these subspaces are; that is, we study when a foliation
is approximated by PA-foliations or finite type foliations. By using NT-
decompositions, we show that an “almost PA” foliation of a 3-manifold is
C=-approximated by PA-foliations (Theorem 3). In general, however,
C~-approximations seem to be hopeless. At the expense of differentiability,
we can prove that a foliation without resilient leaves is Z-approximated by
PA or finite type foliations of class & (Theorem 4).

We plan to show that the Godbillon-Vey class is defined for foliations
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of class 2, and the above theorem implies Duminy’s theorem [Du 1, 2]:
the vanishing of the Godbillon-Vey classes of foliations without resilient
leaves.

The paper is organized as follows. In Section 1, we review the theory
of levels and local minimal sets developed by Cantwell-Conlon [C-C 1] and
Hector. In Section 2, we recall the tameness of totally proper leaves from
[Tsuc 2]. In Section 3, we define NT-decompositions and prove Theorem
1. The proof is straightforward from the arguments in Section 2. Also,
we study PA-foliations and foliations of finite type. In Section 4, we deal
with the problem of C~-approximations by PA or finite type foliations. In
Section 5, we introduce the class of foliations of class 9, and prove the
Z-approximation theorem.

For a foliated manifold (M, &), we fix a 1-dimensional foliation .#
transverse to &, and assume each holonomy of & is defined with respect
to Z.

I wish to thank the comrades of the TIT Saturday seminar for their
indefatigable interest and stimulating conversations.

§1. Preliminaries

In this section we review some terminology and facts about foliations
without resilient leaves. We refer the reader to [C-C 1] for a com-
prehensive exposition.

(1.1) Open saturated sets. Let U be an open, connected % -saturated
subset of M. Let U be the Dippolito completion of U (see [Di]); that is, U
is the completion of U with respect to a Riemannian metric induced from
M. Then U is a manifold and the inclusion i: U—M extend naturally to
an immersion i: U—M. Foliations 4 and .£ are induced by & and Z.
The foliation Z is tangent to U and aU is a union of finitely many leaves
of 4. There is a Dippolito decomposition U=KU U, U ---U U, .- Here K
is a compact manifold and each U, is diffeomorphic to B, X [0, 1], where
B,CoU is a non-compact connected submanifold and each {x} X [0, 1],
xe B, is a leaf of £. Thus &, is a foliated [0, 1]-bundle over B,.
Fixing an identification of [0, 1] with {x,} X [0, 1], x, € B;, one obtains the
total holonomy homomorphism ¢: ,(B,, x,)—DIiff[0, 1] and the total holo-
nomy group G=1Image (g).

The manifold K is called the nucleus of U and each U, is called an
arm.

Definition (1.1.1).  If the nucleus K U can be chosen so that, in each
arm U,=B,X[0, 1], & restricts to the product foliation, then U is said
to be trivial at infinity.
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(1.2) Levels and local minimal sets. A subset X of M is a local
minimal set if there is an open Z-saturated set U and X U is a minimal
set of the foliation % ;.

These sets are of three types;

(a) every proper leaf is a local minimal set;

(b) an open F-saturated set UC M, in which each leaf of #; is
dense in U, is said to be an open local minimal set or a local minimal set
of locally dense type;

(¢) alocal minimal set of neither type (a) nor type (b) is said to be
of exceptional type.

There is a level filtration {M,} of M which is defined by the following;
(@ M_ = ﬂ;

(b) M,,,=M,U {all minimal sets of M—M,};

© M.= U M.

Then each M is a closed & -saturated subset and M, is dense in M.
A local minimal set X, and each of its leaves, is said to be at level k if
XCM,—M,_,. Aleaf Fis said to be at infinite level if FS.M,,. The
height h(F) of F is defined to be i(F)=sup {k; M,+0}.

Theorem (1.2.1) (JC-C1; Lemma (5.3)]). There is an integer p(F)
such that, for each p>p(F), each connected component of M—M, is a
Joliated I-bundle.

A one dimensional submanifold T of M is called a sufficient transversal
if T is transverse to & and each leaf of # meets the interior of 7. Choose
a sufficient transversal 7" which is a finite union of compact subarcs of the
leaves of % and choose a Riemannian metric of M. For a foliated /-
bundle Uc M, we define the total width 6(U) of U by 8(U)=length of
TNU. Since M, is dense in M, we get the following.

Corollary (1.2.2). Given >0, there is an integer p. such that each
connected component of M— M, is a foliated I-bundle of total width <e.

(1.3) Resilient leaves. A leaf F is resilient if there exist elements f, g
of the holonomy pseudogroup of # and a point x ¢ FNdom (f) Ndom(g)
such that g(x)=y=x and lim,,__, f"(¥)=x. A resilient leaf is non-proper,
at a finite level, and has exponential growth. It is easy to see that an open
local minimal set U contains a resilient leaf unless &, is without holonomy.
On the other hand, a local exceptional minimal set contains a resilient leaf
by a generalized version of Sacksteder’s theorem [C-C 1]. Thus we find
the following.
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Proposition (1.3.1). Assume F has no resilient leaves. Then each
local minimal set is either a proper leaf or an open local minimal set without
holonomy. The set M., is a disjoint union of proper leaves and countably
many open, connected F-saturated subsets without holonomy.

Definition (1.3.2) (see [Di]). A proper leaf F is said to be semi-stable
on the positive side if it has arbitrarily thin, Z-saturated, one-sided
tubular neighbourhoods on the positive side. Such a neighbourhood is
called a semi-stable collar on the positive side of F. A proper leaf is said
to be stable on the positive side if there is a trivially foliated semi-stable
collar on the positive side of F.

Definition (1.3.3). A proper leaf F is said to be unbounded on the
positive side if there is a leaf F’ which accumulates to F from the positive
side. A one-sided tubular neighbourhood FX [0, 1] of the positive side of
Fwith Fx{0}=F is called an unbounded collar if each leaf of F ;.1
contains F=F % {0} in its limit set. A proper leaf F is said to be contracting
on the positive side if the holomony group of the positive side of F contains
a contracting element.

Obviously, an unbounded side of a leaf has an unbounded collar, and
a contracting side of a leaf is unbounded.

Lemma (1.3.4). Let F be a proper leaf of a foliation without resilient
leaves. If the positive side of F is unbounded, then F is contracting on the
positive side.

Proof. If the leaf F” in (1.3.3) is chosen to be totally proper, then F’
accumulates to F in a staircase (see § 2) and F is contracting. Otherwise
all leaves in F X (0, 1] are contained in an open local minimal set, and the
holonomy group on the positive side of F is fixed point free (see (1.4)).
Thus F is contracting. q.e.d.

Proposition (1.3.5). Let F be a foliation without resilient leaves and
F a proper leaf. Then the positive side of Fis either semi-stable or
contracting.

Proof. In general, it is known that a proper side of a leaf is either
semi-stable or unbounded [Di]. Proposition follows from the above lemma.
q.e.d.

Corollary (1.3.6). Reeb stability for proper leaves (see [In]) holds for
Sfoliations without resilient leaves.

(1.4) Open saturated sets without holonomy. In this subsection we
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assume that & has no resilient leaves. Let U be an open, connected %-
saturated set without holonomy. Let L be a leaf of 2 (L is either a closed
interval, a half open interval, an open interval or a circle). Since L is
oriented, for points x, y of L, we can and do use an interval notation [x, y].
Let x, be a point of L. One can define the Novikov transformation §:
7(U, x,)—>Diff (L) as follows (see e.g. [Tsuc 1, §5]). Let « be an element
of (U, x,), ¢: (S, 0)—(U, x,) a representative of « and x a point of L.
Consider the loop =[x, x,]*c*[x,, x] based at x. It is seen that ¢ is
homotopic relative to {x} to a loop of the form r,*r, where r, is contained
in L and t, is contained in the leaf of 4 through x. We define § by
G(a)(x)=the initial point of z;. One can prove the following.

Proposition (1.4.1). The map § is a well-defined homomorphism, the
image Im(§) of § acts freely on Int (L) and is abelian. Each leaf of &, is
closed in U if rank Im(§))< 1.  Otherwise, each leaf of F,;, is dense in U
and U is an open local minimal set.

Since the image of § is abelian, it factors as follows:
§: 70, x)—>H,(0; 2)-L>Diff (L).

Let Fbe a 4 -leaf in 8U, x, € F, and assume L is the P-leaf through
x,. Let holi: m,(F, x,)~>G be the holonomy map of the leaf F where G is
the group of germs at x, of local diffeomorphisms of (L, x,). From (1.4.1),
one can easily get the following.

Proposition (1.4.2). The map hol}; lifts canonically to a homomorphism
hol; : #,(F, x,)—Diff (L, x,) and factors through q in the following diagram;

hols
7(F, xo)"‘—p’)G
hol}

. 4 -
(0, x)—>Diff (L, x;)

q

H(U; 2)
where vertical arrows are natural homomorphisms.

§ 2. Totally proper leaves and staircases

(2.1) A leaf Fis totally proper if each leaf contained in the limit set
of Fis proper [C-C 1]. It is known that a totally proper leaf spirals on
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leaves in its limit set very finely [C-C 1], [Tsuc 2]. There are some ways
to describe the situation. Here we prefer to use the notion of staircases
[N], [Tsuc 2], since it is closely related with our definition of decompositions.
The material of this section is a summary of [Tsuc 2].

We need some notions. Let K be a connected compact manlfold and
let N be a closed, transversely oriented, codimension one submanifold of
the interior of K which does not separate K. Let C(X, N) denote the com-
pact manifold with boundary which is obtained from K— N by attaching
two copies N, and N, of N as boundary, where the transverse orientation
is.inward (resp. outward) pointing on N, (resp. N;). Let ¢: N,—N, be the
identity map. Let 1 [0, ,]—[0, 8], 6.=/(6,)<4,, be a contracting diffeo-
morphism. We denote by X(K, N, f) the manifold with corner which is
the quotient space of C(K, N) X [0, §,] by the equivalence relation ~ which
is defined by (c(x), 1) ~(x, f(t)) for t € [0, §,] and x e N,. Let #(K, N, f)
denote the foliation of X(K, N, f) induced from the product foliation
{C(K, N)X{t}}, t € [0, §,], of C(K, N)X [0, §,]. Finally Z(X, N, f) denotes
the one dimensional foliation of X(K, N, f) which is induced from the
foliation {{x} X [0, 3,1}, x € C(K, N), of C(K, N)X [0, 5,].

Definition (2.1.1). Let (S, % ;) be a compact foliated manifold. We
say (S, F) is a staircase if there are K, N, f as above and a diffeomorph-
ism & from X(K, N, f) to S which sends the leaf of #(K, N, f) through N,
% {6,} to a leaf of &, and Z(K, N, f) to the one-dimensional foliation .#
transverse to ;. If the diffeomorphism /4 can be chosen to be foliation-
preserving, we call (S, F ) a regular staircase.

We call C(S)=MC(K,N)x{3,}), F(S)=mnC(K, N)x{0}), W(S)=
AN, X [0,, 0,]) and D(S)=h(GK X0, 4,]), the ceiling, the floor, the wall and
the door of (S, &) respectively. And we call [ the slope of the staircase.

Let (S, # ;) be a staircase which is the 1mage of the composed map
" h: C(K, N)x]o, 51]'—>X(K, N, f)—S.

The induced foliation #*(F ) of C(K, N)X [0, 6,] is transverse to the fibres
{x} %[0, 8], x e C(K, N). So A*(F;) is a foliated interval bundle and is
determined by the total holonomy map ¢: =, (C(K, N))—Diff[0, §]. We
call g (resp. the image of g) the reduced total holonomy map (resp. the re-
duced total holonomy group) of (S, # ). The staircase (S, %) may be
viewed as an immersed image of the foliated interval bundle (C(K, N) X
[0, 8,1, A*(F ). Now let (M, &) be a foliated manifold, (S, #) a stair-
case and ¢ a foliation preserving imbedding of (S, F) into (M, F). By
abuse of language, we often identify (S, %) and its image (¢(S), $(Fs))
in (M, #). Let F be a leaf of # which intersects the staircase .S.
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Definition (2.1.2). We say F is well-behaved in S if each connected
component of FN S is closed in the interior of S.

The following lemma is easy to prove (see [Tsuc 2]).

Lemma (2.1.3). 4 leaf F is well-behaved in S if and only if each
element of the reduced holonomy group of S leaves the points of FN{x,} X
[0, 8,] pointwise fixed, where x, is a base point of N,.

Let © be a finite family of staircases of (M, %) satisfying the following
conditions.

(A1) The interiors Int (S) with S € & are disjoint.

(A2) The walls W(S) with S ¢ © are disjoint.

(A3) For each S e &, the door D(S) of S is contained in the union
U{W(S"); S e G}

For two staircases S, S’/ € S, we denote S<S’if D(S") N W(S)=~0,
We also denote by the same symbol< the relation in © which is generated
by the above relation <{. For .S e &, we define B(S)= U{S" € S; S'<S}.
If XC YC M, the & -saturation Sat,(X) of X in Y is the set of points y of
Y such that the leaf F, of the restricted foliation 4, through y intersects
X.

Definition (2.1.4). We say & is an admissible family of staircases if S
satisfies the above three conditions (A 1)-(A 3) and the followings.

(A4) The relation <C is a partial order of .

(A5) For each S e &, the saturations Satzs,(C(S)) and Saty s, (F(S))
are well-behaved in each staircase S’<CS.

Definition (2.1.5). A leaf F is tame if there is an admissible family &
of staircases satisfying the following conditions.

(T 1) Fis well-behaved in each staircase S of &.

(T 2) The set F— U{S; S e &} is relatively compact in F.

In this case we say F is tame in © or © tames F.

The following term “‘thinning”, which was introduced by Nishimori
[N], is useful afterwards.

Definition (2.1.6). Let (S, &) be a staircase which is the image of
C(K,N)x[0,4]. Let n be a non-negative integer. The n-thinning
(S™, Fgm) of (S, Fy)is the staircase which is the image of C(K, N)X
[0, f"(5,)], where f is the slope of S.

Let © be an admissible family of staircases and « a non-negative
integer valued function on ©. Then there exist uniquely an admissible
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family & of staircases and a bijection j: ©—&® such thatj*(S)NS
is the a(S)-thinning of S for each S e & (see [N]).

Definition (2.1.7). The admissible family S as above is called the
a-thinning of &.

Lemma (2.1.8) (Nishimori [N ; Proposition 7]). Let © be an admissible
Jamily of staircases. Let K be a compact subset of M such that K\ F*(S)
=@ for each S € ©, where F*(S) is the leaf of F through F(S). Then there
is a non-negative integer valued function « on & such that KN U{j(S);
Se@}=0.

Now we can state the main result of [Tsuc 2].

Theorem (2.1.9). Let C=\J¥_,F, be a closed saturated subset of
(M, F) consisting of finitely many leaves. Then there is an admissible family
© of staircases which satisfies the following conditions.

(1) For each S € ©, the floor F(S) and the ceiling C(S) are contained
in C.

(2) Each F,CC is tame in ©.

(2.2)  Scaffoldings. Let C be a closed subset of M consisting of
finitely many leaves of %#. Of course, each leaf in C is totally proper.

Definition (2.2.1). We say C is a scaffolding of & if the following
condition is satisfied: Let U be a connected component of M — C (these
components are finite in number since C consists of finitely many leaves).
Then one of the following two cases occurs.

(A) The restricted foliation %, is without holonomy.

(B) In the Dippolito completion U of U, each leaf of the induced
one-dimensional foliation .# is diffeomorphic to the unit interval 7. In
other words, the induced foliation & is a foliated I-bundle.

We say U is a type (A) component if &, is without holonomy.
Otherwise, U is said to be a type (B) component.

Proposition (2.2.2). Let (M, %) be a closed foliated manifold without
resilient leaves. Let C_, be a closed subset of M consisting of finitely many
leaves of &, and let ¢ be a positive real number. Then there is a scaffolding
CD C_, which satisfies the following condition; for each type (B) conponent
U of M—C, the total width o(U) of U is smaller than e.

Proof. Inductively, we define an increasing sequence of subsets C;)C
C,c---cC,C---CM which satisfies the following conditions.
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() C,is a closed F-saturated subsets consisting of finitely many
leaves at level < p.

(2) Each connected component U of M —C, is one of the following
three types;

(A) £,y is without holonomy;

(B) Uis a foliated -bundle of total width <e;

(C) U is neither type (A) nor type (B) and U is a connected compo-
nent of M— M,

From the conditions, M, is contained in the union C, U type (A) compo-
nents U type (B) components. So if p=p, (see (1.2.2)), then C=C_,UC,
is a desired scaffolding.

First we define C,. Let T, be the union of all compact leaves of F,
and T be the set of compact leaves which are semi-stable on the positive
or negative side. T} is a compact subset of M. For each leaf K T, we
choose a possibly one-sided collar of K in M as follows. If X is semi-stable
on the positive side (resp. negative side) and is contracting on the negative
side (resp. positive side), we choose a semistable one-sided collar KX [0, 1]
of total width <{e on the positive (resp. negative) side of K. If K is semi-
stable on both sides, we choose a neighbourhood K xX[—1, 1] of total width
<e with KX{0}=K, and KX][0, 1] and KX[—1, 0] being semi-stable
one-sided collars of K. Since T is compact, there is a finite subcover
UK; X0, 11U UK; X[—1, 1] of the above covering. Let C, be the com-
pact F-saturated set consisting of K; X {0}, K; X {1}, K; X {—1}, K, X {1}
and all other compact leaves K contained in M— UK, X[0, 1]JU UK, X
[—1,1]. Then C, satisfies the conditions (1), (2) with p=0,

Assume that C, with the conditions (1) and (2) is defined. We define
C,.. LetV,(j=1, - .-, k) be the connected components of type (C) of
M—C,, and let V=\_Ji_, V,. Then each V; contains a totally proper leaf
atlevel p4-1. Let 7,,,(V) be the set of all such leaves. Then T,.,(V)is
a closed #-saturated subset of V. Let T,.,(}) be the set of semi-stable
proper leaves in T,,,(V). For each F, ¢ T,,(V), there is a semi-stable,
possibly one-sided, collar F; X [0, 1], F; X[—1,0] or F,X[—1,1] of F as
above of total width <le.

Assertion, There is a finite subcover of the above covering.

Proof. Let V=V,U--. UV, be the Dippolito completion of V. For
each j, fix a nucleus K, of ¥,. For each leaf FCaV,, there is an unbounded
collar N(F) of F in V;. Put N,=U{N(F); FCoV,}, and put K=

k_,{K;—N,}. Then K is a compact subset of V, and it follows that
T, (V)N Kis compact. Choose a finite subcover %, by F; X[0, I]NK,
F,x[—1,00NKor F,X[—1,1]NKof K. Then the F-saturation % of
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U is a finite covering of T.,(V’) by semistable collars.

Let C,., be the union of C,, {{(30); Ue %} and all other totally
proper leaves at level p+1 that are contained in ¥V— U{i(@0); Ue %}.
Then C,,, satisfies the conditions (1) and (2). q.e.d.

§ 3. NT-decomposition

(3.1) Units and decompositions. Let M be a compact connected
manifold possibly with corner and & a codimension one foliation of M.
We assume that the boundary M of M is divided by the corner into two
parts; the tangent boundary 0.,, M which is tangent to & and the transverse
boundary 0,,M which is transverse to . Such a foliated manifold (M, %)
will be called a unit. We always choose a one-dimensional foliation %
transverse to & so that it is tangent to d,,M. A nucleus of the Dippolito
decomposition of an open & -saturated set and a staircase are important
examples of units.

Definition (3.1.1). Let M be a closed manifold of dimension », and #
a codimension one foliation of M. A pair (4, ¢), where 4={(M,, F,);
i=1, .-, m}is a finite family of n-dimensional units and ¢ is a foliation
preserving immersion from the disjoint union U7, (M;, &) to (M, F),
is called a decomposition of (M, &) if the following conditions are satisfied;

(D1) foreach i, @l (ar, is an imbedding,

(D2) if i#j, then ¢ (Int (M,)) N ¢ (Int (M,))=0, and

(D3) U, ¢(M)=M.

As in [N] and [Tsuc 3], we use three types of units. One of those is a
staircase.

Definition (3.1.2). A unit (M, F) is said to be a room if it admits a
structure of a foliated I-bundle with fibres being leaves of #. If the total
holonomy group of (M, &) is abelian, then we say that (M, &) is an
abelian room.

Definition (3.1.3). A unit (M, %) is said to be a hall if each corner
of M is convex (see [Tsuc 3]) and each interior leaf has trivial holonomy.

If (M, %) is a room or a hall, D(M)=0,.M is called the door of
(M, F).

Definition (3.1.4). Let (M, &) be a closed foliated manifold. A de-
composition (d={(M,, F,); i=1, - - -, m}, ) of (M, F) is called an NT-
decomposition if the following conditions are satisfied;

(NT 1) each unit (M, &) is either a staircase, a room or a hall;

(NT 2) for each i, and for each connected component D of the door
of (M, &), there is a staircase (M;, &) of 4 such that ¢(D) is contained
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in ¢(W(M,)), where W(M,) is the wall of M;;

(NT 3) let &(4) be the set of staircases of 4, then ©(4) is admissible;

(NT 4) for each unit (M,, #,) in 4, the leaves of & through
(010 M) are tame in &(4); and

(NT 5) for each hall (M, &,) of 4, the F# -saturation Sat (¢ (Int(M,))
is without holonomy. '

Remark (3.1.5). (1) Again, by abuse of language, we often identify
aunit (M;, ;) and its immersed image in M. In that context, Int (M)
denotes the set ¢(Int (M,)).

(2) For each unit (M,, &#,) of an NT-decomposition, we use the
term total holonomy for the pseudogroup generated by the slope and the
reduced total holonomy group in the case of a staircase, the total holonomy
group in the case of a room and the image of the Novikov transformation
along loops in Int (M) in the case of a hall respectively.

(3) Thenotions of rooms and halls are not mutually exclusive. When
definiteness is needed, we call each unit (M, &#,) a hall if the saturation

Sat (Int (M,)) is without holonomy.
4) Let (M,, #,) be a room or hall, and let U be the saturation

N P
Sat, (Int(34,)) of Int(M,). Then the decomposition U=Int(M,)U
Y .
U{UNS; S e S(4)} gives a Dippolito decomposition of U.

Let (4, ¢) be an NT-decomposition. There are two natural ways to
modify the decomposition. We explain them by figures. First we can
modify 4 by thinning the set &S(4) of staircases of 4. See Figure 1.

5-G

Fig. 1.

Secondly, let S be a staircase of 4 and (M, &) a unit such that D(M,)
N W(S)+0. Let Fbe a leaf through a connected component of 0,,, M,.

‘—_—F )
>

Fig. 2.
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We can consider a decomposition obtained by changing the ceiling of S
to F. See Figure 2.

The notions of NT-decompositions and - scaffoldings are closely
related. Let (4, ¢) be an NT-decomposition. From the conditions (NT
2), (NT 4) and (NT 5), the saturation C of U ;{0.,, M,; M, e 4} is seen to
be a scaffolding of M. We call C the scaffolding associated with the de-
composition.

Conversely, from a scaffolding, one can canonically construct an NT-
decomposition.

Theorem (3.1.6). Let C be a scaffolding. Then there exists an NT-
decomposition (4, ¢) such that the scaffolding associated with (4, ¢) coincides
with C.

Proof. Let & be an admissible family of staircases which tames each
feaf of C (see (2.1.9)). By changing the ceilings of staircases of © and
ignoring unnecessary staircases, we may assume that for each Se &, the
ceiling C(S) and the floor F(S) of S are contained in C. Let U, be a
connected component of M—C— U{S; Se&}. Then U, is the interior
of a compact manifold with corner M;. Let &, be the induced foliation
of M,, Then (M,, &,)is a room or a hall from the definition of a scaf-
folding and the choice of &. There is a natural foliation preserving
immersion ¢,: (M, F)—M, F). Put =S U{(M,, #,)} and ¢={id,;
Se@}U{#;}. Then (4, ) gives an NT-decomposition of (M, F).

g.e.d.

From (2.2.2) and (3.1.6) we get the following.

Theorem 1. Let (M, F) be a closed foliated manifold without resilient
leaves. Then (M, F) admits an NT-decomposition.

Examples. (1) An NT-decomposition by regular staircases and
abelian rooms whose total holonomy is cyclic is an SRH-decomposition of
Nishimori [N]. A foliation admits an SRH-decomposition if and only if
it is of finite depth (that is, each leaf is proper and there is a finite upper
bound to the levels of leaves), and the holonomy group of each leaf is
abelian.

(2) An NT-decomposition by abelian rooms and halls is a Hector-
Imanishi decomposition of an almost without holonomy foliation (see e.g.
{Im] and [M-M-T}).

Generalizing the above two classes of foliations, we consider PA-
foliations and foliations of finite type in the next section.
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(3.2) Foliations of finite type and PA-foliations.

Definition (3.2.1). A foliation % is said to be of finite type if there
is a scaffolding C such that each connected component U of M —C is of

type (A).
The following proposition is easy to prove.

Proposition (3.2.2). The following three conditions are equivalent.

(1) (M, %) is of finite type.

(2 (M, F) has an NT-decomposition into halls and stazrcases

(3) All leaves of F except finitely many proper leaves have trivial
holonomy.

Definition (3.2.3). A foliation # is said to be PA4 if each leaf of &#
has polynomial growth and the holonomy group of each leaf is abelian.

In [Tsuc 3], an NT-decomposition by regular staircases, abelian rooms
and halls was called a Nishimori decomposition. One of the main theorems
of [Tsuc 3] is the following.

Theorem 2. A foliation & is PA if and only if it admits a Nishimori
decomposition.

A foliation of finite type can have a leaf of non-polynomial growth
and a leaf with non-abelian holonomy group. These phenomena result
from the existence of open local minimal sets which are not trivial at in-
finity. A PA-foliation is a disjoint union of countably many open local
minimal sets which are trivial at infinity and totally proper leaves at some
bounded levels. A PA-foliation of finite type is a disjoint union of finitely
many open local minimal sets which are trivial at infinity and totally proper
leaves.

Proposition (3.2.4). A PA-foliation (M, %) is C>-approximated by
PA-foliations of finite type.

Let G be a finitely generated abelian subgroup of Diff[0, 1]. We say
G 1s of finite type if the number of connected components of [0, 1]—Fix G
is finite. The proposition follows from the following.

Lemma (3.2.5). Let G be a finitely generated abelian subgroup of
Diff[0, 1]. Then G is approximated by groups of finite type in the following
sense: There are homomorphisms ¢,: G—Diff[0, 1] (n=1,2. - - -), such
that
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(1) $.(G) is of finite type,

() foreachge G, ¢,(8)—g, as n—oo in the C*-topology and

() for each g € G and sufficiently large n, we have j3($.(g)=j:(g)
and j7(.(8)=J7(g)-

Proof of (3.2.4) from (3.2.5). Let (4, ¢) be a Nishimori decomposition
of (M, #). We alter & in abelian rooms of 4. Let (R, %) be an ab-
elian room with R=BXx]0, 1], ¢: =(B)—Diff[0, 1] its total holonomy
homomorphism and G=Im(g). By (3.2.5), there are homomorphisms
é.: G—DIff[0, 1] which approximate G. Let F 4(n) be the foliation of
R=Bx][0, 1] defined by the total holonomy homomorphism ¢, og. Then
F () —F » as n— oo, and the foliations {F »(n); R is a room of 4}U
{Fy;Hisahallof A U{Fs: S ¢ ©(4)} fit together to a C~-foliation F(n)
of finite type of M for sufficiently large n. We have got a desired approxi-
mation. g.e.d.

A finitely generated abelian subgroup G of Diff [a, b] is said to beylain
if the derived set (Fix G) of Fix G is {a} or {b}.

Assertion. To prove (3.2.5), we may assume that G is plain.

Proof. Let G be as in (3.2.5). Given n>0, there is a sequence 0=
Xo<x, <+ - - <x,=1 of points of Fix G with the following properties;

O {x, %y -+, X, JC(Fix G) and

Q) if x;.,—x;>1/n, then (x;, x;,,) N (Fix G) =0.
Let ¢,; G—Diff [0, 1] be the homomorphism defined by;

idie, 000 if X—x;=<1/n and

8itzs zi41] if x,,—x,>1/n.

¢n(g)l[xi,ri+1]= {

Then {¢,(G)} converges to G in the sense of (3.2.5). And each ¢,(G)cz,2:441
satisfies one of the following four conditions:

(1) ¢a(G)ros, 0447 18 trivial.

(il)  (Fix($(Diczs,z0.0) =0.

(i)  ¢n(G) 1oy, 2s441 18 Plain.

(iv) There is x € (x;, x;,,) such that ¢,(G),;z,, -1 and ¢.(G) ;s 2. .1 aL€
plain. g.e.d.

To prove (3.2.5), we use the “flattening homomorphism” introduced
by Tsuboi and Muller ([Tsub 2], [Mu]). Let 4 be a homeomorphism of
[0, 1] which satisfies the following conditions.

(1) Ay, is a C-diffeomorphism.

@) hx)= {exp (—1/x), near x=0

b , near x=1.
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Let ¥': Diff[0, 1]->Homeo [0, 1] be the homomorphism defined by ¥(g)=
h~%ogo’. We use the following notations; for a C=-function k on [0, 1],
d"(k)=the r-th derivative of k,

|kl =supy<,<i|67(k) (x)] and | kll,=max{kl,;i=1, ---,r}

By some calculations, one can see that the homomorphism ¥ enjoys the
following properties.
(*) The image of ¥ is contained in the group Diff, [0, 1] of C*-
diffeomorphisms of [0, 1] which are infinitely tangent to the identity at O.
(**) For each r=0, there is a constant K, such that |¥'(g)—id|, <
Kr ) Hg——ld”,.+2

Proof of (3.2.5). We may assume that (Fix G) ={0} and Fix G=
{0 <x, < - - <x,<x,=1}. For m,ne N, we define a homomorph-
ism ¢, ,; G—DIff[0,1] by

8(x) , If x=x,,
Dy, (8)X) =3 At n o (F(Ap,nogoArn)) o Ap n(), i Xy SXZX,,
X s if xéxm+ ns

where 4, , is the affine homeomorphism from [x,. ,, x,,] to [0, 1].

Then @, ,(g) is a C~-diffeomorphism of [0, 1] from (*), and @,, ,(G)
is of finite type. We show that {@, .(G)} accumulates to G. For each
r=2 and each g € G, we get the following inequality from (**) and the fact
that g is infinitely tangent to the identity at 0,

SuSp < IET@m, n(g) (x) ] é('xm/xm X+ n)r * Kr '0<Slip | 51 * Zg(x) |-
For each m, choose n(m) such that x,/x,—X,.,m<2. Then we
have

SUp 7D nm(@)(X)=2"- K, - Sup [67g(x)].
Tm+nim) STZTm SEX=Tm
From this inequality, it is easy to see that @, .., (g)—>g in the C*-
topology. q.e.d.

(3.3) GV-decompositions and the localization of the Godbillon-Vey
class. A unit (M, %) is called a GV-unit if F is trivial near the transverse
boundary 3,,M. For such a unit, we can define the Godbillon-Vey class
gv(F) which is an element of H*(M, dM) [Tsuc 3]. We say (M, &) is an
OGV-unit if the class gv(F) is zero. An NT-decomposition is said to be
a GV-decomposition (resp. OGV-decomposition) if each unit is a GV-unit
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(resp. OGV-unit).
In [Tsuc 3], we have proved the following propositions.

Proposition (3.3.1). The Godbillon-Vey class of a closed foliated
manifold (M, F) is zero if it admits an OGV-decomposition.

Proposition (3.3.2). Regular staircases, GV-abelian rooms and GV-
halls are OGV-units.

These imply, from Theorem 2, that the Godbillon-Vey class of a PA-
foliation is zero. Furthermore, using the results of Duminy and Sergiescu
[D-S], one can prove that GV-staircases and GV-rooms are OGV if they
contain no resilient leaves. We then get the following.

Proposition (3.3.3). If (M, &) admits a GV-decomposition each of
whose unit contains no resilient leaves, then the Godbillon-Vey class gv (F)
is zero.

§4. C~-approximations by PA-foliations of finite type

In this section we consider when a foliation is C~-approximated by
PA-foliations of finite type.

(4.1) Let (S, F,) be a staircase in (M, &) which is the image of

the composed map hox: C(K, N)X[O, 5]1>S—}—L>M . Wessay (S, &) is trivial
on the wall if F g v,xpo.0) 18 trivial. And we say (S, F) is flat on the ceiling
if each holonomy along the leaf %o z(C(K, N) X {3, f(), - - -, f*(3), - - -}
is infinitely tangent to the identity, where f is the slope of S.

Let (4, ¢) be an NT-decomposition and let R be a room in 4. We
say R is globally abelian if the saturation Sat (Int (R)) of the interior of R
is a foliated [-bundle of abelian total holonomy.

Proposition (4.1.1). Let (M, &) be a closed foliated manifold which
admits an NT-decomposition (4, ¢) satisfying the following conditions;

(1) each room in 4 is globally abelian;

(2) each staircase in A is trivial on the wall and flat on the ceiling.
Then & is C>-approximated by PA-foliations of finite type.

Proof. 1t is sufficient to approximate &# by PA-foliations (see (3.2.
4)). We alter & in each staircase (S, F5) of 4. Let (S, #5) be the
image of C(K, N)X ][O0, 8], fits slope and g: #,(C(K, N))—>Diff [0, 4] its re-
duced total holonomy homomorphism. For ne N, we define a staircase
(Sty> Fs,,,) as follows. The underlying manifold S, is the same as S and

S¢n)
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the reduced total holonomy homomorphism ¢,,: 7,(C(K, N))—Diff [0, 4]
of #  is given by;

dm(@x)=x  if xe[0, /)],

S¢n)

and

I(@@)=q(@)x)  if xe[f"(), d],

for each « e 7, (C(K, N)).

Then F ,, is well-defined since (S, F) is trivial on the wall, and is
smooth since S is flat on the ceiling. Evidently, & , —% sasn—co. The
n-thinning of (S,,, #s,,,) is a regular staircase. Gathering these foliations,
we get a smooth PA-foliation of M since each S ¢ 4 is trivial on the wall.
These foliations approach to & in the C=-topology. q.e.d.

(4.2) Inflexible staircase. We consider when a foliation has an
NT-decomposition each of whose staircase is flat on the ceiling.

First we recall a theorem due to Sternberg, Takens and Sergeraert
(see e.g., [Tsub 1; (3.5)]).

Theorem (4.2.1). Let g be a C=-diffeomorphism of [0, 1] such that
Fix(g)={0, 1}, and g’ be a diffeomorphism of [0, 1] which commutes with g.
Then either

(a) there are coprime integers m, n and a C=-diffeomorphism h of
[0, 1] such that g=h" and g’ =h", or

(b) there are real numbers s, t and a vector field &, C' on [0, 1] and
C~ on (0, 1), such that g and g’ are the time s and the time t map of & re-
spectively.

In the latter case, if j3(g)+j 5 (id), then & is of class C= at 0.

In the case (a), we write g’=g™/™, and in the case (b), we write g’ =g*/*.
Let (4, ¢) be an NT-decomposition and let ©(4) be the set of staircases
of 4. Let S be an element of ©(4) which is not maximal with respect to
the order < in &(4). So there is S, € &(d) such that W(S) N D(S) 0.
Then , by changing the ceiling of S, one can modify S to S’ so that the
ceiling of S’ is contained in the saturation of the floor of S, (see Figure 3).

<——--Sl

—

Fig. 3.
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Modifying each such staircase in this way, we obtain an NT-decom-
position 4’ with the following extra condition:

(NT-6) The ceiling of each staircase S in 4’ which is not maximal
in &(4’) is contained in the saturation of a floor of some staircase in 4'.

From now on, NT-decompositions are assumed to satisfy the above
additional condition.

Definition (4.2.2). Let (S, %) be a staircase, f its slope and GC
Diff [0, 4] its reduced total holonomy group. We say (S, %) is inflexible
if there is g € G and a finite sequence of points f(6)=1,<#,<.--<¢t;=4
which satisfy the following conditions:

() Fix(@NLFG), dl={to s - -, t.}.

(@ Jjig)+#Jt (d), for each i.

(3) There is a real number « € (0, 1) such that f~"ogof"=g*".

Lemma (4.2.3). Let (S, & ;) be an inflexible staircase without resilient
leaves. Letf, G, g, {t;} and « be as above. Then we have the following
properties:

(1) Let k=min {i; ji, (g)+Ji, (id)}, then

a=10808) i k_1 and
log dg(z,)

__0"g(t) k-1 .
o= 5a(t,) 6f(t)) if k=2

(2) The leaves of & ¢ through {¢,} are tame in S, and all other leaves

are dense in S.
(3) For each & e G, there is 8 € R such that h=g*.

Proof. The first assertion is easily obtained by calculating the
derivative of the equality f~'o gof=g=at #,. The second assertion follows
from the fact g*"—id as n-—>co. From this, each connected component of
Int (S)— U {leaves through {¢,}} is an open local minimal set. It follows
from (1.3.1) and (1.4) that the reduced total holonomy group is abelian.
The third assertion then follows from (4.2.1). g.e.d.

Lemma (4.2.4). Each non-proper leaf in an inflexible staircase has
exponential growth.

Proof. We use the notations of (4.2.2). Let F be a non-proper leaf.
Choose a point x € [f(6), 5] F. Let I, be the set of points of [0, §] which
are mapped from x by words of length <n in fand g. Let 7, be the
cardinality of I",. Then 7, is dominated by the growth function of F (see
e.g. [Tsuc 1]).



Decompositions and Approximations 153

Taking «™ instead of « if necessary, we may assume that e<1/3.
The set I',, contains the following points; g ofo - .- og®of(x) where
g, ==+1. Since a<(1/3 these points are easily seen to be distinct. So
7(2n)=2", and 1 has exponential growth. q.e.d.

Lemma (4.2.5). Let (d, $) be an NT-decomposition of a closed foliated
manifold (M, &) without resilient leaves. Assume that each staircase of 4
is not inflexible. Then we can modify (4, ¢) to a decomposition (4, §') in
which each staircase is flat on the ceiling.

Proof. Let &(4) be the set of staircases of 4. From the conditions
(NT 3) and (NT 6), each staircase which is not maximal in &(4) is flat on
the ceiling. Let S be a staircase which is maximal in &(4). We modify
4 so that the staircase corresponding to S is flat on the ceiling. There are
two cases.

Case (1). There is a room (R, #5) in 4 with D(R)N W(S)+@ and
the saturation U of Int (R) has a leaf with non-trivial holonomy. Let F be
a leaf through a connected component of 0,,, R. Then either F' is semi-
stable on the side of R or there is a totally proper leaf in U whose limit set
contains F. In the first case, in the decomposition 4’ obtained by changing
the ceiling of S to F, the staircase S’ corresponding to S is flat on the ceiling.
See Figure 4.

R

O

IS

Fig. 4.

In the second case, from (2.1.9), the contracting holonomy of F is
compactly supported in the side of R. That is, there is a compact subset
K of F such that each holonomy along a loop in F— K on the side of R is
not contracting. From (2.1.8), there is a: ©(4)— N such that the a-thinning
S@(4) of ©(4) does not meet K. Let 4 be the decomposition obtained
from 4 by a-thinning ©(4) and changing the ceiling of S*% to F. Then
the staircase S’ of 4’ corresponding to S is flat on the ceiling.

Case (2). Each unit adjacent to W(S) is a hall. Assume that a hall
(H, & ;) adjacent to W(S) satisfies one of the following two conditions;

(1) a leaf F through a connected component of 8,,, H with FN S+0
has flat holonomy, or

(2) the holonomy of a leal F through a connected component of
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0.n H with FN S0 is compactly supported.

Then by thinning ©(4) and changing the ceiling as in case (1), we get
a desired decomposition.

Otherwise, there are f(0)=1,<t,<-..-<t,=4 and ge G such that
g(t,)=t, and j¥' (g)#jki (id) for each i and for some k,, where fis the slope
of S and G is the reduced total holonomy group of S. Since each unit
adjacent to W(S) is a hall, the diffeomorphisms f~"ogof™ s, and
8y, are commutative. From (4.2.1), there is «,e R such that
S o8 f  trey, =8 @y ,5- Considering the derivative of g at f7(d), we
get o, =a? and f~"ogof" =8 Since gis C?, we have 0<a, <1 by
a version of Kopell’s lemma. So the staircase S is inflexible. This con-
tradicts our assumption. q.e.d.

From (4.2.4) and (4.2.5), we get the following.

Proposition (4.2.6). If (M, ) has no exponential leaves, then (M, F)
has an NT-decomposition which is flat on the ceiling of each staircase.

(4.3) 3-dimensional case. Let (4, ¢) be an NT-decomposition of
(M, F) and let (M;, &#,) be a room or a hall of 4. Let U, be the &-
saturation of Int(M,). We say U, is trivial on the walls if for each
staircase S=/(C(K, N)X|[O0, d]) € ©(4), the foliation F |,y x5 18 trivial.
If the dimension of M is three, we get the following.

Proposition (4.3.1) (see [C-C 3; 2.3)]). Let (4, $) be an NT-decompo-
sition of a foliated 3-manifold (M, %). Then each hall and each globally
abelian room of 4 are trivial on the walls.

Proof. Let (M,, #,) be a hall and U be the saturation of Int (M)
For each staircase S € ©(4), which is the image of C(K, N) X0, 8], we show
that & |, xxp,s1 18 trivial, by induction on the level of the leaf through the
floor F(S) of S. Assume F(S) is at level 0. And let f be the slope of S.
Since dim M =3, the manifold N is diffeomorphic to a circle. Let g be the
element of the reduced holonomy group of S defined by N. Let (q, b) be
a connected component of UN[f(5), 6], where we identify a fibre of
C(K, N)x]I0, 3] with the interval [0, §]. Then the intersection of [0, 5] and
the connected component of U(.S containing (a, b) is the disjoint union
(@, H)U(fla), fGHU - - - U(f™(a), ["(B)U - - -. We prove that g,;na), raeo)
=id foreachn. Let N,=NX{f"(8)} be the lift of N, and g,: (f*(a), /(b))
—(f"(a), f~(b)) be the corresponding holonomy of U. The map g, isa
diffeomorphism of (f*(a), (b)) by the arguments in (1.4). Since N, and
N, are homologous in the leaf F=Satg ({a}), they define the same holonomy
of U (see (1.4.2)). In other words, f="og, o™ (a,5)=8(a,s)» BUL &, is the
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restriction of g on (f*(a), f*(b)). So we get f~"ogof" 4.0y =&(a,sy [OT
each n. A version of Kopell’s lemma implies that such a diffeomorphism
g can not be of class C* unless g nq, =), 15 the identity map. Thus U is
trivial on the wall of S. By induction, we can prove that U is trivial on
the wall of each staircase of ©(J).
The case of an abelian room is the same and the proof is omitted.
g.e.d.

From (4.1.1), (4.2.4) and (4.3.1), we get the following.

Theorem 3. Let (M, %) be a closed foliated 3-manifold without ex-
ponential leaves. Assume that (M, F) admits an NT-decomposition each
of whose room is globally abelian. Then F is C~-approximated by PA-
Jfoliations of finite type. In particular, finite type foliations of 3-manifolds
are C=-approximated by PA-foliations of finite type.

§ 5. Foliations of class 2 and Z-approximations

(5.1) Foliations of class @. In [D-S], Duminy and Sergiescu intro-
duced an important subgroup of (local) homeomorphisms of I (or R).
For a map k: R—R, let 6% denote the right derivative of k& and Var (k)
denotes the total variation of k. Let fbe an orientation preserving (local)
homeomorphism of R (or I) with compact support which is smooth (C?)
except at countably many points. We say f is of class & if Var (log 6%(f))
is finite. Let 2 be the group of all such homeomorphisms. For fe 2,
log §%f has the right derivative a.e., and 7 log §%fis intergrable (L').  And
we define the Z-norm |f], of f by | f|, =|log 6% .. +| 5% log §%f|, where | |..
(resp. | |;) denotes the essential sup. norm (resp. L'-norm).

Now let &# be a C°-foliation with C=-leaves of a compact n-manifold
M.

Definition (5.1.1). We say & is of class 9, if there is an open cover-
ing {U,} of M and homeomorphisms ¢,: U,—D"-'x D' which satisfy the
following conditions.

(1) For each i and te D', the map P NN Dr-t X{t}—>M is
smooth.

(2) If U;NU,+0, then the map ¢, o ¢;* is locally of the form (x, )
—(g(x, ), h(»)), where x, g(x, ) € D", y, h(y) € D' and y—h(y) belongs
to the class 2.

Note that C*-foliations are of class 2 and that the holonomy pseudo-
group of a foliation of class £ is contained in @. Kopell’s lemma,
Denjoy’s inequality etc., are true for local 2-homeomorphisms. Thus the
theory of levels (1.2) holds for foliations of class 2 (see [Tsuc 4]).
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We want to define a topology on the space of foliations of class 2 by
saying that two @-foliations & and &’ are near if each corresponding
elements of the holonomy pseudogroups of & and &’ are @-near. A
general definition seems to be cumbersome, so we adopt the following
definition.

Definition (5.1.2). Let &% be a foliation of class & of a compact
manifold M. Assume (M, %) has an NT-decomposition (4, ¢) whose
scaffolding is C. Let & ,, n=1, 2, - .- be a sequence of foliations of class
9 of M. We say {#,} accumulates to & along C (or (4, ¢)) if the fol-
lowing conditions are satisfied.

(1) The scaffolding C is a scaffolding of &, for each n, also the
underlying spaces M, of (4, ¢) give an NT-decomposition of the foliated
manifold (M, & ,).

(2) For each unit (M;, &F,) of 4, the foliated manifold

M., $(F g =M., F7)
is a same type of unit as (M, F,).

(3) For each unit (M,;, #7), the total holonomy group of (M,;, F7)
converges to that of (M, &) in the 9-topology.

If # is accumulated by {#,} along some scaffolding, we say & is
P-approximated by {Z,}. '

One can define the GV-invariant of a foliation of class &, and one can
prove that the invariant is continuous with respect to the above conver-
gence.

Duminy and Sergiescu [D-S] proved that if (M, &) is a foliated I-
bundle over a compact manifold B without resilient leaves, then (M, &) is
Z-approximated (along the trivial scaffolding B X {0} U B X {1}), by finite-
type foliations of class 9. We prove that a corresponding theorem is true
in the general case.

(5.2) -approximations of foliations without resilient leaves. In
this section, we prove the following.

Theorem 4. Let (M, F) be a closed foliated manifold. Assume that
F has no resilient leaves. Let C be a scaffolding of #. Then F is 9-
approximated along C by finite type foliations {# ,},n=1,2, - - -, of class
9, which satisfy the following conditions; there is a scaffolding C,DC of
F, such that for each connected component U of M—C,,, F,,y is smooth
and is without holonomy.

Proof. We use the method of Duminy and Sergiescu (see [D-S] and
[Tsuc 4]). For 2>>0, let A, e Diff (/) be the diffeomorphism
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. x
W=

Choose an NT-decomposition (4, ¢) associated with the scaffolding C.
For each staircase S=n (C(K, N)XI) (or a room R=BX]I), fix para-
metrizations of {b} X I, b e N (or {b} X I, b e B). We call such a subset a
pillar of (4, §).

Let n be a positive integer. From (2.2.2), there is a scaffolding C, D C,
such that the total width of each type (B) component of M — C, is smaller
than 1/n. We alter & in each type (B) component of M—C, by 4,. Let
Ibe a connected component of the pillar of (4, ¢) which is contained in a
staircase S or a room R, and let (g, b) be a connected component of the
intersection of a type (B) component of M — C, with I. We define a homo-
morphism 7, from the total holonomy group G of S (or R) to the pseudo-
group of local homeomorphisms Loc 2(1) of I of class & as follows. For x

¢ (a,b)and g € G, we define 7,,(¢)(x)=(g(b) —g(@h{(x — a)/(b—a)) + g (a),
where 1=+/6g(b)/og(a). For x which is not contained in a type (B) com-
ponent of M—C,,, we set =,(g)(x)=g(x). It is seen that z, is a homo-
morphism into Loc 2() and the foliation defined by 7, in each unit gathers
compatibly to a finite type foliation &, of class 9.

For each total holonomy group G of a staircase or a room of 4,
choose a finite symmetric generating set /. Let

max | 6%g (x)|
K::Su _‘T_G.L_
ger min g{x)

xel

Then it is seen that for each ge I,
|log 88 —log 6%7,(g)|.. 4|6 log 6g — 6" log 6%m,(g)].. S2(K+-K7) (1/n).
(see [Tsuc 4]). Thus the foliations {#,} accumulate to & along C. q.e.d.

Theorem (5.2.1). Let (M?®, F) be a closed foliated 3-manifold. Assume
F has no resilient leaves. Then F is @-approximated by finite type, PA-
Sfoliations of class 2.

Proof. This follows from Theorem 4 and Theorem 3, since the
existence of an inflexible staircase makes no trouble when we are consider-
ing @-approximations. g.e.d.
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