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Maximal Functions on Non-Compact,
Rank One Symmetric Spaces

Radial Maximal Functions and Atoms

Takeshi Kawazoe

§1. Introduction

As in the case of a Euclidean space, the theories of maximal func-
tions, Hardy spaces, atoms, etc. are rapidly expanding in the case of homo-
geneous groups, that is, connected and simply connected nilpotent Lie
groups whose Lie algebras are endowed with a family of dilations (see G.
B. Folland and E. M. Stein [5]) and more generally, spaces of homogene-
ous type (see R. R. Coifman and G. Weiss [3, § 2]). In this paper we shall
attempt to develop these theories on a rank one, irreducible Riemannian
symmetric space of non-compact type (see S. Helgason [8, Chs. V and VI}).
Of course such a space is not of homogeneous type.

Let G be a connected, real rank one semisimple Lie group with finite
center and G=KAN an Iwasawa decomposition for G. Put X=G/K. Then
X has a G-invariant measure du (resp. a metric) induced by the G-invariant
measure dg on G (resp. the Killing form of the Lie algebra of G). For
each locally integrable function f on X, the Hardy-Littlewood maximal
function M, fis defined by

(D Mo fG)= sup | BCe 91 1f(@)ldule) (xe X,

where B(x, ¢) is the open ball on X around x with radius ¢ and |B]| is the
volume of the ball. Then J. L. Clerc and E. M. Stein [1] and Jan-Olov
Stromberg [12] showed that the operator M, is of type (L?, L?) for p>1
and of weak type (L', L") respectively. Now we shall define a radial max-
imal function as an extension of M, f as follows. Since 4 is one dimen-
sional, we can parametrize elements of 4 as a, (f € R) and express the
Cartan decomposition of x in G as x=ka,,k, (k;, k, € K and t(x)=0).
Put 4(¢)=(sh t)™ (sh 2¢)™*, where m, and m, are the multiplicities of the
roots a and 2« of (G, A) respectively. Then for fin C(G),
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(1.2) JGf(g)dg_—_ CLJ: j flae) Aty did,

where dk, (i=1, 2) (resp. dt) is a Haar measure on K (resp. a Euclidean
measure on R) (see [8, Ch. X, §1.4]). Let ¢ be a K-biinvariant function
on G and put

(13) 8.00="1 4 (") 2000 gt@0) >0

Then for each right K-invariant function f on G which is identified with a
function on X, the radial maximal function M, is defined by

(1.4 M¢f(g)=0 sup | fx¢(8)] (g€ @),

where = is the convolution on G. Obviously if we replace ¢, by
| B(e, €)X 5(.,» Where X is the characteristic function of B on G, M coin-
cides with Mj;. In Section 3 we shall show that the operator M, is of
type (L?, L?) for p>1 and of weak type (L', L") under the assumption that
¢ satisfies the estimate: |$(x)| < ce™ M+t @N/(x ¢ G) for 0<5<1.

Next let G=SL(2, R). We fix apin 0<p=1 and suppose that ¢
satisfies the above estimate and moreover a condition of regularity. Here
we define a radial maximal operator M, by taking the supremum of (1.4)
over the finite interval: 0<{e<{(1—1/5) (1—1/p)~* instead of 0<e<{oo.
Then in Section 4 we shall obtain a family of compactly supported functions
fon G with finite L? (1 <<g =< c0) norm such that | M} | ,<<C, where C does
not depend on f and ¢, and introduce an analogous concept of atoms on
homogeneous groups (see [5, Chs. 2 and 3]). To obtain this we shall use
some results about Jacobi functions on R (see M. Flensted-Jensen and T.
H. Koornwinder [4]) and in particular, an explicit expression of a kernel
for the integral of the convolution * on G obtained by G. Gasper [6] and
T. H. Koornwinder [9]. In Section 5 we restrict our attention to K-biin-
variant functions on G. Then we shall give a sufficient condition by which
a K-biinvariant function can be written as a sum of K-biinvariant atoms.

I would like to express my appreciation to H. Miyazaki for many
fruitful conversations.

§ 2. Notations

Let G be a connected, real rank one semisimple Lie group with finite
center and G=KAN (resp. g=f+a+n) an Iwasawa decomposition for
G (resp. the Lie algebra g of G). We put X=G/K and identify functions
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on X with right K-invariant ones on G. Let « be a reduced simple root
of (g, a) and H, an element of A such that «(H))=1. We parametrize
elements of 4 by a,=exp (tH,) (¢ € R) and identify 2 in the dual space a*
of a with A(H,) in R. Let m, and m, denote the multiplicities of « and 2«
respectively. Then we can express the Cartan decomposition of x in G
and the Jacobian 4(x) of the integral formula (1.2) as in Section 1. If fisa
K-biinvariant function on G, we abbreviate f(x)= f(a,.,) (X=ka,)k. ki,
k, e K and #(x)=0) as f(¢(x)). Let B(x,r) denote the open ball on G
around x with radius r, that is, B(x, r)={g e G; t(x"'g)<r}. If x is the
unit element e of G, we put B(r)=B(e, r). For any subset S of G we de-

note the volume of S by |S|. Then |B(x, r)| is given by ]B(r)]:cfrd(t)dt
0

(see (1.2)) and the following properties are easily obtained.

Lemma 2.1.
(1) For each a=1 and ry>0 there exists a constant A; ., such that

| B(ar)|<4z,,| BO)| (r=ro).
(2) For each a=0 and r,>0 there exists a constant A}, such that
[B(r+a)|<A4;,,|B(r)| r=ry).
(3) 1B ={2CT =0

O(et™r¥2mar) (r—o0).
Let L?(G) (0<p< o0) (resp. L(G)) denote the space of all functions

fon G such that || f {[ng | f(g)|?dg < oo (resp. with compact support on
G

G) and put LAG)=L*(G)NL(G). When we restrict our attension to

right (resp. bi) K-invariant functions on G, we use the symbol G/K (resp.

G//K) instead of G.
We use the letter ¢ to denote a constant which need not be the same

in different occurences.

§ 3. Radial maximal functions

Let 4;,,=A4; (G//K) (0<5<1 and 2 € R) denote the space of all K-
biinvariant measurable functions ¢ on G which satisfy the estimate |$(x)|
Le @11+ 1(x))"* (x € G), where p=(m,+2m,)/2. Then for each ¢ ¢
A;,,, the radial maximal function M, ffor f e L?(G/K) (1 Zp=<o0)is defined
by

(3.1 M, f (x)=0§:1<rl |fxg(x)]| (x e G),

where ¢,(x)=e'4(t(x)) A "t(x))p(e"'#(x)) (x € G) and * is the convolu-
tion on G.
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Lemma 3.1. There exists a constant C; ; such that ||¢.||,= ¢, =ZC} ,
forall ¢ e 4; .

Proof. =] g(0] Aty
:f:|¢(t)14<t)dz (=1l
< cjw(l 1) R — O < oo, Q.E.D.

Lemma 3.2.
(1) Forall geA;,and e>0, 2=0
g (mutmat D) pmatma(| 4 ple)=Af(f) L2110 0tle
PAGIES: (0< 1< 00)
e (142)2d(t) 12 -1Detle (t=c¢).
(2) For each g,>>0 there exists a K-biinvariant function @,,on G such
that (i) |@. ()| Zc(1+1) e " (t € R*) and thus, D,, belongs to LYG//K)
forall 1<g=oo. (ii) Forall p ¢ A;,and e=e, |¢.(1)|<D,.(t) (t € RY).

Proof. Since sht<¢’, te* (¢=0), (1) is obvious from the definitions
of .and 4. Weput @, (t)=ce; "+ ™2t D™t ma(] 4 gfe )2 A(2) * for 0<t<C 1
and ceg'(141t/e))*4(2)* for t =1, and extend it naturally to a K-biinvariant
function on G. Then @,, satisfies all the conditions of (2). Q.E.D.

Theorem 3.3. Let us suppose that 0<6<1 and 1=0. Then there
exist constants C, ; (1<p< o) such that for all ¢ € 4;,,

(1) HxeG; M, fO)>a}| <Cy il fll/e for all fe L(G/K) and a>0.

(2) M fl,=Coill fll, for all fe LP(G/K) (1<p< o).

Proof. First we choose an ¢, in the interval (0, 1/6—1) and divide
the supremum of (3.1) as follows.

My f(3)= sup |fx ()| sup | fog ()
=M, f(x)+ M, f(x).
We shall show the assertion for each M, f(i=1,2). M,: We divide the

integral f*gﬁs(x)zj f(g)¢.(g 'x)dg into a sum of integrals over B(x,e)U
G
Ui, B(x, 2%, 2¥*%), where B(x, r, r')=B(x, r).N B(x, r’). Then it follows

from Lemma 3.2 (1) that

reI=( @l [ If()ee )

{x,2%e,2k+1¢
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Sce B, O (BCn 9 [ 1f(e)lde)
+ 3 Q™ AR (142 e B, 27|
k=0

(B, 2091 (e de))

ok
Here we note that |B(x, 2"5)]=J A(2)dr <284 (2%) < c(2Fg)mr+ merighotie
0

(k=0) and 4(2**'e) <cA(2*)e*™ . Hence using the fact that 0<<e<le,<
(1/6—1), we see that the infinite sum is convergent and moreover

|f*¢s(x)l§l?(1 + Zw 2k(m1+’mz+l)(1 +2k)—ze—2((1/a—1)—eo)pzk)
k=0

Xsup | B(x, 2%¢)] ‘IL(Z oo |f(g)ldg
=My, f().

In particular we have M, f(x)<cM,, f(x) (x € G). Therefore the desired
results are obvious from the results obtained by [1] and [12]. M,: Let @,
be the function obtained in Lemma 3.2 (2). Then it is easy to see that
| o ()| Z | f %D, (x) for e=e,. Since @,, belongs to L(G//K) for all 1<
g=< oo, we see that the operator M, is of type (L?, L*) (1<p< o) (see [1,
Lemma 2]). Moreover using the estimate of Lemma 3.2 (2), (i) and the
same argument in [12], we see that M, is of weak type (L, L").

This concludes the proof of the theorem. Q.E.D.

Corollary 3.4. Let § and 2 be as in Theorem 3.3. We put

3.2) M;  f(x) =¢s61114£)1M s (x%) (x e G).

Then the operator M, , satisfies the same results in Theorem 3.3.

Let ¥(G//K) denote the K-biinvariant Schwartz space on G and
%'(G//K) its dual space (see [7, § 15]). Then the following assertions are
obtained by the similar arguments in Proposition 1.49 and Theorem 2.7 in

(51
Proposition 3.5. Let us suppose that ¢ € A, , and f &(g)dg=a. Then
[e]

(1) For each f e €(G//K), frd.—af (e—0) in €(G//K).
(2) For each fe €' (G/|K), fxp.—af (e—0) in €'(G//K).

Proposition 3.6. Let us suppose that ¢ € A; ; and f &(g)dg=1. Then
G
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if M, f belongs to LY(G//K) for fe €’ (G/[K) and 1 Zq= oo, f also belongs
to LYG//K).

&4. Atoms on G/K

Let us suppose that 0<p=<1. Inthis section we shall construct atoms
on G/K which are similar to ones on homogeneous groups (see [2], [3, §21,
[5, Ch. 2] and [10]). In Section 5 we shall obtain a sufficient condition by
which a K-biinvariant function can be decomposed into a sum of K-biin-
variant atoms.

4.1. We choose « and § such that m,=2(e—p) and m,=28+1 (see
[4, p. 265)). Then the restrictions of the zonal spherical functions on G to
CL(A*)={a,; t =0} are given by the Jacobi functions ¢{*#(¢) (t € R*) (see
[4, §3]). Furthermore for f, g € C;(G//K) the convolution fxg ¢ C(G//K)
is rewritten as follows (see [6], [9] and [13]):

@) fre@=[ | fR0K G 3 DAy (e RY,

where for (¥, 7, 2) € (R*), 4(x)=2" (shx)"*** (ch x)"**,

2@+ 1) (ch (x) ch (3) ch (2))"*~'(1 — B~
% _ I(a+1/2) (sh (x) sh (y) sh Z))**
(x, ¥, 2)= X Fla+8, a—B; a+1/2; 1—B)2) |x—yp|<z<x+y
0 otherwise,

and B=(ch(x)’+ch (»)*+ch(z)*—1)/2ch (x)ch (y) ch(z). Then K(x, y, z)
is a C~-function on z+#|x+y| and has an expansion K(x,y, z)=
> Po(X)P (WP (2)/(P.(1))°, where P,=P(*® is the Jacobi polynomial
(see [6]). If e is integer, that is, G=S50,2n, 1) (n=2), SU(m, 1) (n=1),
Sp(n, 1) (n=2) and F,_,,, the singularity of K(x, y, z) on z=|x+y| arises
from the term: (sh(x) sh(y) sh(2))"*«(1— B%*"'*. Therefore it is easy to
see that .

Ky(%, 3, 2)=(y =2 %) "y — 2 x) <y 2 )
X (4740 K, 3, DA A)AE)

is a C=-function on (R*)* and Ky, y, z)=0(xyz) (x, y, z—0). Here we
shall describe some rough estimates which will be used in the proof of the
main theorem. We put

H(x,y,2)=(y—z—x)" "V (y—z+x)"*""K(x, y, 2)A(x)A(y) 4(z).
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Clearly H,(x, y, z) is a C=-function on D(z))={(x, y, z) € (R*); |x—y|<z
<x+4y and 2x<z<z} and H,/(x,y,2)=0@yz(y+z—x)*""*(y+z+
x)*"12), Since y<y+z4xand z/2< y+z4x on D(z), it follows that on

D(z,)
-i)xii)mH
( dx dy o, 3, 2)
=0(x 2, (ptz—x)*10m(yqz 4 x)eti/iziemme),

mritaoi
Next we put D'(z)) ={(x,»,2) e (R*)’; |x—y|<z<x+y, x<z, x+2,<z}.
Then since y+z+x>z, on D'(z,), it is easy to see that if @>1/2, that
is, G£SL(2, R), (d/dx)(d/dy)™H (x, y, z)= 0(¢***) on D’(z,). Furthermore
in this case, on (R*)?

H,j(x, y, 2)=0(sh (x) sh () sh (2)e‘* P =+v+),

If G=S0,2n+1) (n=1), K(x, y, 2)4(x)4(y)4(z) is a C~-function on (R*)*
and O(sh (x) sh () sh (2)e@+H@+v+D)

4.2. We assume that 0<{§<1, 1=0and a e N. Let 4% ,=A4% (G//K)
denote the space of all functions ¢ e 4;,; such that ((d/dt)'¢(t)) € 4;,, for
all0=/=Za+1. Wepute,=(1—1/8)(1—1/p)~?, where e,;=co. Then for
each ¢ e A7, we define the radial maximal function M;f for fe LYG//K)
(1L gL ) as follows.

4.2) Mf(x)= sup | fxg ()]  (xeG).

If p=1, M} coincides with M, in Section 3.

4.3. Let(p, g, @) be an ordered triplet such that 0<p<1, 2(a+1)/3
gL o0, ae N and a=[2(e+1)(1/p—1)], where [-] is the Gauss symbol.
We put r,=p/2p(1 —p), where r,=co. Then we shall say that a function
fon G/K is a (p, q, a)-atom if f belongs to LI(G/K) and satisfies

(1) there exists a ball B(x, r) whose closure contains supp (f) and

I1fle=[B(x, r)[7e-e,

@ ifr<r,, r £ (D)= 1dt =0 for all 0=<n<a, where f, (g)=
0
I flxkg)dk € LA(G//K).
K

If B is any ball satisfying the condition (1), we shall say that f is associated
to B.
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Theorem 4.1. Let G£SL(2, R) and (p, q, a) be as above. Suppose
that 0<6<1 and 2>1/p if 0<p<<1. Then there exists a constant C=
C(p, q, ¥, 8, A) such that || M} f, ¢|,<C forall § e A}, and (p, q, a)-atoms
fon G/K.

Proof. Let fbe a(p, q, a)-atom associated to B(x, r). Since f, x=

(f)e. x> Where f(8)=f(xg) (g € G), and f, is a (p, g, a)-atom associated to
B(7), we may assume without loss of generality that x=e. We put fx =1, «.
Since G£SL(2, R), «=1/2. 1In the following we shall give a proof for the
case that « is integer, because a quite similar argument is applicable for
the other case. Thus let us suppose that « € N, and show that

j Mfd(8)dg<C.

First we shall consider the case of 0<p<(1l. We shall divide into two
cases according to the radius r.

[Case1: r<<r,] We write the integral over G as a sum of three inte-
grals over (i) B(2r), (ii) B(r,+r)N B(2r), and (iii) B(r,+r),.

(i) We note that M;fx(g)<M,fx(g) (g€ G), | fxll,=|fll, and
g>1. Then by using Holder’s inequality, Theorem 3.3, Lemma 2.1 (1)
and the condition 4.3 (1) of atoms in that order, we have

ey ([, Mifiloydg ) 1B@n
<M £ BN BC)N- B -or

S C, A5, il | B

<C, 045, 1< oo,

B(2r

(i) Since

M; 1@y de = (uprcac, | 1842 )P4

JB(rp+T) NBEr)e

we shall obtain an estimate of sup,....,|/*¢.(2)|. It follows from 4.1 that
for z=2r

Fers@D=[ £ [ 4K, 3, DA ANy

43 —[[ 1 [ ===z 2 0)
X H(x, y, 2)dxdyd(z)™,

because supp (fx)CB(r) and z—x>r>0. Here we shall prove two
lemmas.
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Lemma 4.2, There exists a constant C such that for all ¢ € A3, and
oi<a+1,

p () eolzel) o e
@ e (121,

Proof. 1If [=0, we use the estimate in Lemma 3.2 (1). Obviously it,
as a function of 0<<e<{oco, takes the maximum value Ct-2@+De-%?t at
emax=(1/0—Dpt/(a+1) and C(1+41) e~ at e,z =2(1/6—1)pt respec-
tively. We recall that we take the supremum of (4.2) in the finite interval
0<<e<le,. Therefore, if e,,,.=¢,, that is, £=r,, the maximal value must
be C(1+1¢) % %P at e=e¢,. Thus we obtain the case of /=0. Next we
note that (d/dt) sh(t/e)<(1/t) sh(t/e) for t<r, and <C(l/e)sh(t/e) for
t>r,. Hence the assertion for 0<C/=<a+1 is obvious from the definition
of A%, and the first case. ’ Q.E.D.

0<¢=‘<eP

Lemma 4.3. Let us suppose that [—2(a+1)/q+1>0. Then there
exists a constant C such that for 0<r<r,

[ 1 xar= crisen,
Proof.  Since r<r, and 4(x)=O0(x**") (0<x<r,), we see that
[ 1 cCorxiax = 01001 ey Aoy v
<elfil ([[ xe-ceromovax)

1/q’

by Hoélder’s inequality (-1— + L/ = 1)
9 49

<c|B(r)|/a-rpi-Gasbias 1 by 4.3 (1)
K Cplit-Hathip by Lemma 2.1 (3). Q.E.D.

Now we return to (4.3) and consider the Taylor expansion of ¢.(») X
H,(x, y, z), as a function of (x, y), around (0, z). Then since H,(x, y, z)
has a zero point at x=0 corresponding to sh (x), there exists a polynomial
P(x, y; z), whose degree with respect to x and y is less than or equal to a,
such that

|6:(NH.(x, y; 2)—xP(x, y; )| =c. 2 Xt (y—2)"

(VL s
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where (x,(2), ¥,(x)) is a point on the segment of the line joining (0, z) and
(x, y) (see Fig. 1).

>

(r, z+71)

x, ¥

o, 2) supp (Ha)

2rt

(r, z—1)

0 ¥ 7> (20

Fig. 1.

Z+x
Since I (y—z—x) " (y—z4+x)""(y—2z)"dy=cx***"if nis even, =0if

n is odd, it is easy to see from the condition 4.3 (2) of atoms that
y Jx(x) fﬁz (y—z—x)""(y—z+x)""xP(x, y; z)dxdy=0. Therefore
0 z—x

we can replace ¢.(V)H,(x, y, z) of (4.3) by ¢.(»)H,(x, y,z2)—xP(x, y; z) and,
applying the above estimate, we can obtain that

FRTCIETED W AT

XJW (y—z—=x)"""(y—z+x)*""(y—2)"| dxdy

d\Y{ d\"
X — A (¢E(y)Hu(xa y9 Z)) le=20(2)
dx dy |y=yo(z)
Here we note that 0<x,(2)Zx<r<r,, z/2<z—rZy(2)Zz+r<3z/2<
3r,, ytz—x>y+z—r>z/2 and y+z+ x>z for y>0 and 2r<z<r,+r.
Hence, using the estimate of H,(x, y, z) on D(2r,) in 4.1 and the one of ¢,
in Lemma 4.2 (1), we obtain that

A2)

up | frrpd@)|Sezrernsomnman 51 {77 G]xi

S
0<e<ep L+m=a+

@4 X[ =z a2 ) Ay — 27 dxdyd(@)
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.
é CZ—Z(a+l)+(2a+1)-(a+1) I ‘fK(x)lxa+2+2udxA(z)—l
0
écra+1+2(a+1)(1—1/p)z—2(a+1)+(2a+1)—(a+l)A(Z)-1

by Lemma 4.3

for 2r<z<r,+r. Therefore, since a+142(a+1)(1 —1/p)=0 by the as-
sumption, we have

| A
B(rp+r)NBQ2r)e

rptr
é crp(a+1+2(a+1)(1—1/p))f ? Z—-2p(a+1)+p(2a+1)—p(a+l)A(Z)1—de
2r
rp+T
S crp(a+1)+2p(a+1)—2(a+l) J ? Z—Zp(a+1)+p(2«+1)—p(a+1)+(2:x+1)(1—-p)dz

27

<c<oo.

(iii) We note that z—x>z—r>r, and y>z—x>z—r,>0. There-
fore, using the estimate of H,(x, y,z) on D'(r,) in 4.1 and the similar
argument in (i) (we use Lemma 4.2 (2) instead of (1)), we obtain that

4.5) sup | fexd(2)|Sc(l+z—r) e 2/Pe*  A(z)~!
0<e<ep
for z=r,+r. Then since 2p>1, we conclude that

T (b z—r) e () 2dz
Tp‘("T

[ Mifuerde=e|
B(rp+7r)e
<c Jw (14+2)*dz<oo.

[Case II: r=r,] We write the integral over G as a sum of two inte-
grals over (i) B(r,+r) and (ii) B(r,+7r),.
(i) Since |B(r,+r)||B(r)|=4;,,,, for r=r, (see Lemma 2.1 (2)),

TpsTp

we see thatf Mfi(g)Pdg<C,,* A/, ,, " asin L (i).

B(rp+r)
(ii) We note that z—x>z—r>r, and fK*ngE(Z):f Sx(x) ‘r $:(»)
0 z2—x

X Hyox, y, 2)dxdyd(z)~* for z=r,-+r. Then applying the estimate of
H,;(x, y,z) on (R*)* in 4.1 and the one of Lemma 4.2 (2) for /=0 (we
don’t use the Taylor expansion in this case), we obtain that

sup [ ferd @I 11 sh (et e j T (b y)iet-2evdxdy
0<e<ep 0 Z2—x
Xef*d(z) ™
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S R O WPAGIE e
X e« hz sh ((2[p — Dpx)dx.

Now we write the last integral as a sum of two integrals f and f Then
D

since r=r,, ¢>2(a+1)/3 and a=1/2, as in the proof of Lemma 4.3,
j”’ | f(x)| sh ()eo sh (2fp— 1px)dx
0

gcf plfK(x)ledx
0
Scrp?;-—Z(oH—l)/p

On the other hand
|7 170 1sh (ot 2= sh (@lp— Doy
< (el d@r e A s

§c“f1{Hq(Jw ezq’(l/p—1/fl)pzdx)1/q' (1/q+1/q/:1)

< | B(r)|/a-irertin-tiner L ¢ by Lemma 2.1 (3).

Hence we see that supo...., | fx*¢.(2)| (z=r, 1 r) satisfies the same estimate
(4.5) and in particular, j Mf(g)dg<c j T (14 2)dz< co.
B(rp+m)e Tp

Therefore we can obtapin the result for 0<p <<1. If p=1, we take
r,>0 arbitrary and consider the cases [I: r<r)], G=B(2r)U B(2r), and
[IL: r=r)], G=B(r,+r)UB(r,+r),. Then, applying the similar argu-
ments as above, we can obtain the desired result for p=1.

This completes the proof of the theorem. Q.E.D.

Remark. If G=SL(2, R), H,;(x, y, z) does not satisfy the estimate
in 4.1, because it has unboundedness corresponding to (1—B*) 2. Hence
the argument in II. (ii) is not applicable.

Corollary 44. We put
(4.6) M /()= sup M;f(x)  (xeG).

a
¢eAa,2

Then under the same assumption in Theorem 4.1, | M, ,f.. x1,=C for all
(p, g, a)-atoms f on G/K.
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Corollary 4.5. Let G+SL(2, R) and (p, q, a, 6, X) be as in Theorem
4.1.  Then there exists a constant C=C(p, q, a, 9, ) such that | M}, f|l,<
C for all K-biinvariant (p, g, a)-atoms f associated to B(r) and all (p, q, a)-
atoms f associated to B(x, r) (r=r,).

Proof. 1If fis a K-biinvariant (p, g, a)-atom associated to B(r), f, «
=f, x=f. Therefore the assertion is obvious from Theorem 4.1. Now
let f be a (p, g, a)-atom associated to B(x, r) (r=r,). As before we may
assume that x=e. Then by the same argument in II. (i) of the proof of
Theorem 4.1 we see that M;,f(g)dg<C, .’ A}, .} "% On the

B(rp+r)
other hand, since B(r,-r), is a K-biinvariant set of G,

[ s cegyrar)ag

fB(r,,w)c (fK M.if (k) dk)pdg
<[, (fle(sup sup [.)(g)7de:

é EA,;",/I 0<e<ep

f M}, f(g)dg=
B(rp+7)e

IA

Here we note that supp (f|x)CB(@r) (r=r,) and | f|x is a (p, g, a)-atom
associated to B(r) (this is not true if »<{r,). Therefore, as in II. (ii) of the

proof of Theorem 4.1, we see that M} f(g)yrdg<ce f” (A 4 2z)~**dz

B(rp+7)e

< oo. Q.E.D.

5. H? and H? , spaces on G//K
q,

As before we assume that @ > 1/2 (G 2 SL(2, R)), 0< p<1, 2(a+1)/3
<g= o0, ae N, a=z[2(a+1D(1/p—1)], 0<s<1 and 2>1/p if 0<p<1.

Now let L2(G//K) denote the subspace of L?(G//K) consisting of all
S e L?(G//K) such that each | f| is dominated by a non-increasing function
f* e L*(G//K). We shall say that f has a non-increasing dominator f* in
L*(G//K). Here we shall define two spaces H?(G//K) and H? (G//K) as
follows;

H*(G||K)={fe ¢'(G/|K); M;,fe LL(G//K)},
H} (G//K) ——‘{f: i}&fi; 2,20, >3 2,,<co and each f; is

a K-biinvariant (p, ¢, a)-atom associated to B(r,.)}.

If f'e H? (G//K), the representation f=) 2, 4,f; is not unique. For any



134 T. Kawazoe

such representation we shall say that f has a K-biinvariant (p, ¢, a)-atomic
decomposition. Let p? and p? , denote the quasi-norms of H?(G//K) and
H2,(G/|K) defined by o*(f)=|M;.f12 (fe HX(G/IK)) and p2.(f)=
inf {3 2,7} f e H? (G//K)) respectively, where we take the infimum over all
K-biinvariant (p, g, a)-atomic decomposition f=> 2, 2,f;. Then it is
easy to see that HZ (G//K)CH? (G//K)CH} (G//K) for ¢,>¢, and
these inclusion maps are continuous.

Proposition 5.1. H? (G//K) C H*(G//|K) and the inclution map is
continuous.

Proof. Let f=37,2,f; be in HZ ,(G//K). Since each f; is a
(pa 0, a)'atoma “ME,,Zf‘i ”w§C;,l”f;'“ooéci,llB(ri)l—l/p' Therefore it fOI-
lows from the proof of Theorem 4.1 that if r<r,,
BG) (0<z=2r))
Min ([B(ri)l—l/p’ cr£1,+1+2(a+1)(1—1/p)
><Z—-2(oz+1)+(2a+1)—(a+1)A(z)-—1) (2r¢<2§rp+ri)
Min (| B(r) |7, ¢/(1+z—r) e ) (z>r,+r,)

M f(D)=F(2)=

and if r=r,, 7
|B(ro|"” O<z=r,+r)

Mifla)2Fa)= {Min (BG)[77, c(l4z—r) e /) (z>r,+r).

We shall denote each K-biinvariant extension of F; to G by the same
letter. Then we may assume that each F; is non-increasing and || F;|[,<C
for all i (see §4). Here we put (M7 ,f)*=>.>, ,F,. Obviously (M ,f)*
is also non-increasing. Moreover, by the subadditivity of the maximal
operator, we sce that p?(f)=|| M., f|2< 3 22 | M, il < 3 A2 || F2<
C? >, 22<oo. Therefore f belongs to H*(G//K) and p?(f)=cp? .(f).
Q.E.D.

Now let Li=Li(G//K) denote the subspace of L'(G//K) consisting of
all fe LY(G//K) such that f(¢)=O0(t ") (t—0) for 0<7<1.

Proposition 5.2. Let us suppose that 0< p<1. Then
L2(G//K)N Li=H? (G//K)N Li= H?(G//K) N L.

Proof. First we shall prove that L2(G//K) N LyC HE (G//K). Letf
be in L2(G//K)N L}. Then we may assume without loss of generality that
fr(@)=Lt7on 0<t<r, (L>0and 0<7<1). Weput 2,={geG;f*(g)
>2*}(k e Z). Then since f* is non-increasing, there exists r,>0 (k € Z)
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such that 2,=B(r,) and r,=r, (k<k’). Here we denote the largest
integer k such that r,>r, by k, and the characteristic functions of £2,, £2¢
and Q,N 2% by X,, X and X, ,» respectively. Now we shall decompose
S, and f;, into a sum of K-biinvariant (p, co, a)-atoms. fX§,: We put

fxico: Z fxlc,k+1= Z zk.ﬁcz
1 k<ko~1

ksko—

where 2k=2k+1iB(rk)|1/P and f,=27f%,c+:.- Then supp (f,) T2, N 2%,
CB(r,) (r,>r,) for k<k,—1. Moreover since f*(#)<2** on 2, N 25..,

Ifello =22 1 fi s 11len
L2 BT A el S| B |2

Therefore each f; is a K-biinvariant (p, oo, a)-atom associated to B(r).
fX,: First we shall prove the following lemma.

Lemma 5.3. For each k there exist functions hf 0<i<a'=a-+}2«a
+1) in LY(G//K) such that

(1) supp (B)CB(r;) 0gig a/)‘,
) J :k R@tdi=5,  (0<Zi, j<a),

@) lArl.=Cry (0<i<a)),
where C does not depend on k.

Proof. Let P,. denote the space of all polynomials whose degrees are .
less than or equal to a’. Then we can find a solution {Pf e P,,; 0Zi<a’}
of (2). Here we denote each K-biinvariant extension of Pf to G by the
same letter and put A¥=P}x,. Then it is easy to see that {#}; 0=<i<a'}
satisfies all the conditions of the lemma. Q.E.D.

Now we put
kao:ka,ko+ka
—( et g0 ) (Sram S 10 )=+

where ff:fmf(t)t"dt (0<i<d’). Then since supp (f¥p,—8) C 2y, 81—
0

f%y, (k—c0) and in particular,

kao:gko“l“k;k: (gk+1_gk)=gko+k>zk (gi—8i+0)-

Here we note that | f(1)|<f*()=Lt~" on 0<t<rp,{fi’“[§Lf:k torde
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(LA —=)rir+tand r,=(L"'2¥)"" for k=k, Therefore it follows from
Lemma 5.3 (3) that

18i =8k il S0 Ll + 25 (SFNAT o +17E AT )

<2914 2((@ + D/(1—1))2F+
é C02k+1’

where C, does not depend on %, and by the same way |g,, /. < C2%+.
Here we put 2, =C2***|B(r,)['"*, go= 25, 81, and f, =25 (gi—gi+) (K=K,),
that is, f2,,= 2,80+ 2 1x=xo 4 Then using the same argument in the first
case we see that f, and g, satisfy the condition 4.3 (1) of (p, o, a)-

. 7 ] Tk
atoms. Moreover smcef * g,§+1(t)ﬂdt=I o gi.(t)t{dt and
1] 0

f” g/(t)tidt = J F e de— 3 f RE(t) e
0 0 3=0 0

a’

=ff—2/",=0 (0=j=a),

=0

each f, (k=k,) satisfies the condition 4.3 (2) of atoms. Hence we see that
cach f, (k=k,) (resp. g,) is a K-biinvariant (p, oo, a)-atom associated to
B(r,) (resp. B(r,,); in this case, since r,,>r,, g need not satisfy the con-
dition 4.3 (2)).

Therefore we find a decomposition of f such that

fzzkog()_}— k=Z_:m 2o S
On the other hand,

Pﬂ,a(f) S+ kZ; A

<C > 20097 B(r,)|
k=—o0

+ oo
<2 [ per g e Gi () > e} 6
SC22p | fE<oo.
Therefore the above decomposition is a K-biinvariant (p, oo, g)-atomic one

and thus, f belongs to HZ (G//K).
Hence combining Proposition 5.1, we see that L2(G//K)NLiC
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H? (G/[K)NLiCH?(G//K)N L. - Now let us suppose that f is in
H?*(G/[K)N L;. Then since f'e L'(G//K), we obtain from the same argu-
ment in [5, Proposition 1.20 and Theorem 2.6] that | f|< M} ,f. In par-
ticular | f|<(M7,/)* € L2(G//K) and thus, fe L2(G//K).

This completes the proof of the proposition. Q.E.D.

Remark. Inthe above proof we assume that f*(¢)=Lt 7 (0<t<rp).
Therefore it is not apparent that there exists a constant C such that for
any dominator f* of fin L2(G//K)N LS, p2.(f)SC|f*|5. Hence we
can not apply the limiting method as in homogeneous groups (see [2],[10]
and [5, Ch. 3]). If fe L3(G//K) (0<p<1) has a non-increasing domi-

nator f* such that Jr [f@®)|dt<rf+(r) for r—0, we can also obtain a K-
0

biinvariant (p, co, a)-atomic decomposition of f.

Remark. The condition (2) of atoms in 4.3 can be replaced as fol-
lows; if r<r,, r fo ()" A(t)dt=0 for all 0<n=a. Moreover if we
0

replace the inequality of the condition (1) by ||/, <|B(x, r)[V2=7 if r<r,
and r~Y| B(x, r)|Y*~'/? if r=r,, all the results in Section 4 are valid for G=
SL(2, R).
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