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Abstract

Model selection refers to a data-based choice among competing statisti-
cal models, for example choosing between a linear or a quadratic regression
function. The most popular model selection techniques are based on inter-
pretations of p-values, using a scale originally suggested by Fisher: .05 is
moderate evidence against the smaller model, .01 is strong evidence, etc.
Recent Bayesian literature, going back to work by Jeffreys, suggests a quite
different answer to the model selection problem. Jeffreys provided an inter-
pretive scale for Bayes factors, a scale which can be implemented in practice
by use of the BIC (Bayesian Information Criterion.) The Jeffreys scale of-
ten produces much more conservative results, especially in large samples,
so for instance a .01 p-value may correspond to barely any evidence at all
against the smaller model. This paper tries to reconcile the two theories
by giving an interpretation of Fisher's scale in terms of Bayes factors. A
general interpretation is given which works fine when checked for the one-
dimensional Gaussian problem, where standard hypothesis testing is seen to
coincide with a Bayesian analysis that assumes stronger (more informative)
priors than those used by the BIC. This argument fails in higher dimensions,
where Fisher's scale must be made more conservative in order to get a proper
Bayes justification.
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1 Introduction

In model selection problems the statistician must use the data to choose between discrete

alternative models, for instance which explanatory variables to include in a regression

analysis. A particularly simple example involves a single Gaussian observation

x~N(θ,l). (1.1)

and the choice between two models, a smaller one inside a bigger one,

M o : 0 = 0 versus M: θ φ 0. (1.2)

This example shows up frequently in the model selection literature, and we will use it

here for comparison of different methods.

By far the most widely-used model selection methods are based on hypothesis tests.

A test statistic S{x) depending on the observed data x is evaluated, S(x) = s, and the

critical level a is calculated,

a = prob^0{5(x) < s} (1.3)

(so 1 — a equals the p-value or significance level). Here we suppose that larger values

of S indicate stronger evidence against the smaller hypothesis Mo, as with the optimal

test statistic S(x) = \x\ for situation (1.1)-(1.2). This leaves us with the problem of

evaluating the strength of evidence for M and against Λίo Prequentists use a scale of

evidence set down by Fisher in the 1920's. Table 1 gives Fisher's scale as it is commonly

interpreted: a = .99 is strong evidence in favor of M versus Mo, .95 is moderate

evidence, etc. The borderline of neutral evidence is somewhere around a = .90. Fisher,

discussing chi-square tests, states it this way, in terms of P = 1 - a: "If P is between .1

and .9 there is certainly no reason to suspect the hypothesis tested. If it is below .02 it

critical level α: .90 .95 .975 .99 .995 .999

strength of borderline moderate substantial strong very strong overwhelming

evidence for M:

Table 1. Fisher's scale of evidence against hypothesis Mo- The critical level (one

minus the p-value) is the Mo probability of the test statistic being smaller than the

value actually observed.
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is strongly indicated that the hypothesis fails to account for the whole of the facts. We

shall not often be astray if we draw a conventional line at .05, and consider that higher

values of χ2 indicate a real discrepancy." Section 20, Fisher (1954).

Recent Bayesian literature provides a different answer to the model selection problem.

Attention is focussed on the Bαyes Factor JB(x),

prob{Λΐ|x} prob{Λ4}

prob{M)|x} Wprob{Λ<o}' { '

the ratio between the aposteriori and apriori odds in favor of the bigger model Λΐ, defined

more carefully in Section 2. Jeffreys (1961) suggested a scale of evidence for interpreting

Bayes factors, presented in slightly amended form in Table 2. For example B(x) = 10

indicates positive but not strong evidence in favor of Λ4.

The calculation of B(x) requires a full Bayesian prescription of the prior distribution

on Λ4 and Λίo? &s described in Section 2.1. This is not available in most situations,

but Jeffreys suggested rules for objectively selecting priors in the absence of apriori

knowledge, see Kass and Wasserman (1996). These rules have led to convenient data-

based estimates of the Bayes factor B(x), the most popular of which is the BIC (Bayesian

Information Criterion), Schwarz (1978). Let B(x) be Wilks' maximum likelihood ratio

statistic, the ratio of the maximized likelihoods for Λ4 compared to ΛΊo In a repeated

sampling situation, where the data x comprise a random sample of size n, the BIC

approximates the Bayes factor by £?BIC(X)5

log BBIC(X) = log B(x) - £ log(n), (1.5)

where d is the difference in the number of free parameters between ΛA and Λio The

rationale for this formula is discussed in Section 2.

As an example, suppose x is an i.i.d. (independent and identically distributed)

Gaussian sample of size n,

XUX2,...Xn~N(θUl). (1.6)

Bayes Factor B(x):
Evidence for M:

< 1
negative

1 —
not worth

than a bare

3

more

mention

3 — 20
positive

20 - 150
strong

>

very
150

strong

Table 2. Jeffreys' scale of evidence for the interpretation of Bayes factors, as amended

by Kass and Raftery (1995).
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and we wish to select between

Mo : #i = 0 versus M : ff^O.

This problem reduces to (1.1), (1.2) by defining

(1.7)

and θ = (1.8)

since x is a sufficient statistic. In this case d = 1, j?(x) = χ2/2, and

We can now make a disturbing comparison, of a type first emphasized in Lindley's

1957 paper: Jeffreys' scale of evidence, as implemented by the BIC, often leads to much

more conservative decisions than Fisher's scale. A data set with p-value .01 (critical level

.99) may be "barely worth mentioning" on Jeffreys' scale, a shocking assertion to the

medical scientist for whom a .01 significance level settles the issue. Figure 1 illustrates

the comparison for situation (1.6)-(1.7).

SCALE:

0.896 ev cvMUtat

•tro&f

•vb tavtlml

bod r ct

size n

Figure 1 Jeffreys' scale of evidence for M as implemented by BIC; for Gaussian

samples as in (1.6)-(1.9); Fisher's scale, shown at right, does not depend on n. Jeffreys'

scale is much more conservative for large sample sizes. For example, x = 2.58 with

n = 100 is strong Fisherian evidence, but barely worth mentioning for Jeffreys.
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How can the two scales of evidence give such different results? We will try to answer

the question by showing that frequentist model selection can be understood from a

Bayesian point of view, but one where the prior distribution favors the bigger model

more strongly than with BIC or other objectivist Bayes techniques. The reasons for

this are partly historical, perhaps relating to Fisher's and Jeffreys' different scientific

environments and different attitudes concerning the "null hypothesis" MQ. More of the

difference though arises from the Bayesian notion of sample size coherency, discussed in

Section 4, which implies that evidence against the smaller model must be judged more

cautiously in larger samples, as seen in Figure 1.

Section 2 reviews Bayes factors and develops a useful approximation formula for their

comparison,

B(x) = B(x)/B(y), (1.10)

where y is a "breakeven point", that is a data set for which the Bayes factor B(y) equals

1. Fisher's scale is interpreted as putting the breakeven point at the 90th percentile of

the test statistic, e.g., at y = 1.645 in situation (1.1), (1.2), while the BIC puts it at

Vfoφ), (1.9).

There is a healthy literature on the comparison of Bayesian and frequentist model

selection. Some of this concerns the interpretation of a p-value as prob{.Mo|χ} Berger

and Selke (1987) show that this interpretation must be wrong for two-sided testing

situations like (1.1)-(1.2), with the p-value underestimating prob{Λίo|x} as in Lind-

ley's paradox, while Casella and Berger (1987) show that it is reasonable for one-sided

problems. Berger, Boukai, and Wang (1997) reconcile p-values with Bayesian posterior

probabilities using a conditional inference approach.

Andrews' (1994) results are closer to the point of view taken here. He shows that in

a certain asymptotic sense there is a monotone relationship between p-values and Bayes

factors. Section 3 gives some comparisons with Andrews' results. Section 5 concerns a

small but illustrative example of model selection, combining the Bayesian and frequentist

points of view. The paper ends with a series of remarks in section 6, and a brief summary.

Our main goal here is to reconcile Fisherian hypothesis testing with Jeffreys' Bayes-

factor theory, at least as far as reconciliation is possible, and then to pinpoint the nature

of the remaining differences. Technical issues will be kept to a minimum, with simple

examples used to make many of the main points.
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2 Approximations for Bayes Factors

The BIC formula (1.5) provides an objective approximation to the Bayes factor -B(x),

objective in the sense that it is entirely data-based and does not involve subjective

appraisals of prior probabilities. This section discusses a class of such approximation

formulas based on the convenient representation (1.10). Our comparison of Fisher's and

Jeffreys' scales of evidence will take place within this class.

2.1 Bayes Factors and the BIC

Suppose that we observe data x distributed according to a parametric family of densities

Λ(χ),

x ~ Λ(x), (2.1)

θ being an unknown parameter vector. We wish to choose between a smaller model and

a bigger model for 0,

θ eM0 versus θ £ M, with Mo C M. (2.2)

A complete Bayesian analysis begins with prior probabilities for Mo and Λt,

τr0 = prob{<9 £ Mo) and π = prob{0 £ M}, (2.3)

π 0 + π = 1, and also with prior conditional densities for θ given each model,

go(θ) and g(θ) (2.4)

for the densities of θ given Mo and M respectively. We assume that g(θ) puts probability

zero on Mo so that it is not necessary to subtract Mo from M as was done in (1.2).

Sometimes it is slightly more convenient to take Mo C M as in (2.2).

Letting π(x) and 7Γ0(x) be the aposteriori probabilities for M and Mo having ob-

served x, Bayes' rule gives

π(x) = jr_ /(x) g .

π /o(x)'

where /(x) and /0(x) are the two marginal densities
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/(x) = / fθ(*)9(θ)dθ and /0(x) = / fθ(κ)g0(θ)dθ. (2.6)
J M JMo

The ratio

is called the Bαyes factor in favor of M compared to Mo- Kass and Raftery (1995)

provide a nice overview of Bayes factors, including their origins in the work of Jeffreys,

Good, and others.

Bayes' rule (2.5) relates the posterior and prior odds ratio through the Bayes factor,

π ( x ) = - I B(χ). (2.8)
7Γ0(x) 7Γ(o

The Bayesian model selection literature tends to focus on the case n/π0 = 1 of equal

prior odds, with the presumption that π/π0 will be appropriately adjusted in specific

applications. This paper proceeds in the same spirit, except for some of the specific

frequentist/Bayesian comparisons of Section 5.

In most situations there will be no obvious choice for the prior densities go{θ) and

g(θ) in (2.4). Jeffreys (1935, 1961) suggested objective rules for choosing priors in model

selection problems. This has led to a substantial current literature, Kass and Raftery's

(1995) bibliography listing more than 150 papers. The BIC approximation (1.5) can be

thought of as a Bayes factor based on Jeffreys' objective priors, but we will see that

other approximations, closer in effect to Fisher's scale of evidence can be described in

the same way.

A clear derivation of the BIC appears in Section 2 of Kass and Wasserman (1995).

They follow Smith and Spiegelhalter's (1980) approach in which Bayesian objectivity

is interpreted to mean a prior distribution having the same amount of information for

θ as one observation out of a random sample of size n. As an example, consider the

repeated-sampling Gaussian problem (1.6)-(1.7), with xι,X2,. >.Xn'~'N(θ\,l). If we

use a Gaussian prior g(β\) = 7V(0, A) then Smith and Spiegelhalter's approach suggests

taking 4̂ = 1. The exact Bayes factor is easily calculated,

which approaches log JBBIC(X) — [#2 — l°g(n)]/2, (1-9), as n grows large.
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There seems to be an obvious objective Bayesian prior density for this situation:

g{θ\) = c, a constant. This gives a Bayes factor / cfθ1(x)dθι/f0{x) of the form

(2.10)

However because we are dealing with an improper density function we still have to select

a value for the constant c. The BIC chooses c = 1/Λ/2TT. The breakeven point for (2.10),

where B(x) = 1, occurs at x = [log(n/27rc2)]1/2, so the BIC choice amounts to setting

the breakeven point at [log(n)]1/2.

Suppose we believe entirely in model M in (1.6)-(1.7), and wish only to estimate

θ. Then the constant prior density g(θ) = c gives answers agreeing with the usual

frequentist confidence intervals, and the Bayesian objectivist does not have to worry

about the choice of c. Model selection is inherently more awkward and difficult than

estimation, part of the trouble coming from the different dimensionalities of M and Mo-

A prior distribution for situation (2.2) is inherently bumpy around the smaller model

ΛΊ0, rather than smooth as in estimation problems, making the Bayesian analysis more

delicate. See Remark D in section 6.

2.2 A Useful Approximation Lemma

Our comparison of frequentist and Bayesian model selection relies on formula (1.10),

B(x) = B(x)/B(y), y a breakeven point, which will now be derived in somewhat more

general form. We will work in an exponential family setting where M is a multiparameter

exponential family of densities /#(x), and Mo C M is also an exponential family. For

example, M might be a logistic regression model with m predictors while Mo, is a

submodel in which m0 < m of the predictors appear.

Besides the observed data point x consider a second point x^, which for now can be

any point in the domain of the exponential family. Definition (2.7) gives

where R and Ro are ratios of marginal densities (2.6),

Section (1.2) of OΉagen (1995) reviews some of the history of equation (2.10).
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In what follows we will show that R/Ro = £(x)/B(χt) is well-approximated by the

ratio of likelihood ratio statistics,

t), (2.12)

where

and ί(x > - g g } . (2.13)

Here (0, 0O) are the MLEs under Λ4 and Mo for data point x, and similarly {θ\ θ\) for

x*. Notice that R involves only densities from M, and Ro involves only densities from

Mo, which makes the approximation theory easy: we need never compare densities from

spaces of different dimensions, which is particularly helpful in working with improper

priors such as g(θ) = constant. This tactic is an example of Good's (1947, 1951) "device

of imaginary results" used, differently, by Smith and Spiegelhalter (1980, 1982), Kass

and Wasserman (1995) and Pettit (1992).

Information matrices play a central role in the derivation of (2.12). The observed

and expected Fisher information matrices for θ are defined in terms of the log likelihood

second derivative matrix ίx(θ) = Jgy log/^(x),

iχ(θ) = -Uθ) and I(θ) = Eθ{ix(θ)}. (2.14)

In exponential families ix(0) = 7(0), so ix(θ) does not depend upon x. In repeated

sampling situations such as (1.6), 7(0) is proportional to the sample size n. The order

of magnitude error rates that follow refer to n, but they are valid beyond the repeated

sampling framework. In a logistic regression situation, for instance, we could take n to

be trace {7(0)} and the bounds would remain valid under mild regularity conditions on

the choice of the covariate vectors. In practice "sample size" is a difficult concept to

define and causes trouble in applications of the BIC, see Section 5 here and Section 5 of

Kass and Wasserman (1995).

For estimation problems (but not for model selection) Jeffreys suggested using the

invariant prior density, usually improper,

g(θ) = c \I(θ)\K (2.15)

c being an arbitrary positive constant, Kass and Wasserman (1996). This is particularly

convenient for deriving (1.10) as the following lemma shows.
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Lemma Suppose Mo C M are exponential families and that the prior densities

(2.4) are

9o(θ) = c0 • \I0(θ0)\i a n d g(θ) = c-\I(θ)\*, (2.16)

Io{θo) being the M.o Fisher information matrix at point θ0 in Mo Then the ratio RjR0 =

5(x)/B(χt) (2.11) is approximated to second order by B(x)/B(x*), (2.13),

(2.17)
B(χt)'

Proof For any smooth prior density g(θ)1 Laplace's method, Tierney, Kass and Kadane

(1989), gives

/(x) = (2πΓ/2/5(x)ff(δ) |/(S)Γ*(1 + O(n-1)), (2.18)

m = dim(Λ/ί), and similarly for the other combinations of parameter values and data

points appearing in (2.13). Therefore

L) and Ro = — 2 ^r ^
/ 8 ( x t ) P β(§t) |/0(β0) |-i

(2.19)

Jeffreys' priors (2.16) result in R = /j(x)//- t(x t) and Λo=/^(x)//gj(χt), regardless

of the two constants c0 and c in (2.16), verifying (2.17).

Combining (2.10) with the lemma shows that

( 2 2°)
" = " indicating second-order accuracy as in (2.17). Various choices of x* are made in

Section 2.3, leading to convenient approximations for #(x). For all such choices we will

insist that χ1" have the same Mo MLE as x,

θl = θ0. (2.21)

This has the following benefit: if Mo is an exponential family and 0j = θ0} then

Ro = /oM//o(x') exactly equals f-p (x)//y (x1^), no matter what the prior go(θo) may
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be, reducing assumptions (2.16) to g(θ) = c |/(0)|2, and removing part of the error in

approximation (2.17). This follows easily from the exponential family fact that (2.21)

makes

fθo(x)
for all ΘO£MO (2.22)

Approximation (2.12), B(x)/β(χt) = J B(χ)/β(χt) ) tends to be highly accurate even

in small samples. Table 3 shows part of a regression example with 0 - 1 response data

taken from Finney (1947), and used by Kass and Wasserman (1995). A total of n = 39

(predictor, response) pairs (v^Xi) are available, and we consider testing model ΛΊ, that

the probability pi of X{ — 1 follows the linear logistic form

logit(p<) = θ0

versus Mo : θ\ — 0. The MLE of p = (pi,P2, ,P39) under Mo is

p o = (.513, .513,...,.513),

and we will take

= .365 p 0 + .635 x.

This is a breakeven point for testing θ\ = 0, as defined in Section 2.3.

(2.23)

(2.24)

(2.25)

v:

x:

v:

x:

v:

x:

157

1

115

1

126

1

154

1

88

1

98

0

110

1

136

1

128

1

88

1

151

1

120

0

90

1

93

1

143

1

85

1

123

0

137

0

78

0

126

1

104

0

104

0

60

0

104

1

95

0

98

0

108

1

95

0

113

0

90

1

90

0

118

0

98

0

74

0

120

1

88

0

78

0

78

0

111

1

Table 3 Logistic regression example; n = 39 cases of predictor v and dichotomous

response x. Prom Finney (1947) in an experiment concerning vasoconstriction; v is x\

from his table 1.
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We can evaluate B(x) and B(x^) directly by numerical integration of (2.6) over the

Jeffreys' prior (2.15), obtaining

= 8.888 compared to -S^EL = 8.841, (2.26)

an error of only half a percent. This impressive accuracy reflects the fact that in a certain

practical sense discussed in Remark I of Section 6, approximation (2.12) is third-order

accurate.

The combination of Jeffreys' prior densities with exponential families makes the ap-

proximation J3(x)/JB(χt) = B(x)/B(χt) at least second-order accurate. Less restrictive

assumptions lead to less accurate versions of (2.17) and (2.20). If we allow Mo to be a

curved exponential subfamily of M then (2.17) may only be first-order accurate, erring

by factor 1 + O(n~1/2), and similarly if Jeffreys' prior is replaced by some other slowly

varying function g(θ). All of this is of more theoretical than practical importance. Much

bigger differences between the frequentist and Bayesian methods arise from their different

choices of the breakeven point y in (1.10).

2.3 The Breakeven Point

Definition A breakeven point y is a data set having the same Mo MLE as the observed

data set x, (2.21), and satisfying B(y) = 1.

It follows from (2.20) that

B(x) = B(x)/B(y) (2.27)

so if we can find y we can compute a good approximation to the Bayes factor B(x). This

is especially convenient in Fisher's framework. A critical level of a0 = .90 corresponds to

the Fisherian breakeven point, so we can take y to be a point such that the test statistic

S(y) equals its Mo 90th percentile,

S{y) = S('90l (2.28)

Things are particularly simple if the test statistic S(x) is the likelihood ratio statistic

J5(x) itself. Wilks' theorem says that 21og(S' 9 0) is approximated by the 90th percentile

of a Xύ random variable, d = dim(M) — dim(Λ40),

(2.29)
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Then (2.27) provides an estimate of uf?freq(x)", the effective frequentist Bayes factor,

log B{τeq(x) = log B(x) - χf90)/2. (2.30)

Notice that formula (2.30) does not require explicit calculation of the breakeven point

y. It is less accurate than (2.27), see Remark E, but the difference is small in practice.

For the one-dimensional Gaussian situation (1.6)-(1.7), relation (2.27) says that an

objective Bayes factor in favor of M should be of the form

log JB(x) = {x2 - y2)/2 {x = y/ϊίx) (2.31)

for some choice of the breakeven value y. The frequentist choice is yfreq = 1.645, the 90th

percentile of |a;|, while the BIC formula (1.9) uses J/BIC = \/log (n). Table 4 shows that

2/BIC crosses the frequentist value at sample size n = 15, growing larger at a rate that

causes the dramatic differences seen on the right side of Figure 1. Section 4 discusses

the Bayesian rationale for increasing the breakeven point as n gets bigger.

n: 10 15 100 1000 10000

Vlog (n): 1.52 1.645 2.15 2.63 3.04

Table 4 Breakeven point for BIC in Gaussian problem (1.6)-(1.7), as a function of

sample size n. It equals frequentist value 1.645 at n = 15.

For another comparison consider selecting between Mo and M in the logistic regres-

sion situation of Table 3 , (2.23), which has S(x) = 34.28. Applying definitions (2.30)

and (1.5) gives

Sfreq(x) = 8.84 and BB ic(x)=5.49, (2.32)

showing substantial disagreement even at sample size n = 39.

There is another interesting choice for x* in the approximation formula B(x) =

[B(x)/B(χt)J B(χt):

Definition: A least favorable point z is a data set having its MLE under both Ai0 and

Λ4 equal θ0) the Λ4O MLE for the actual data set x. The point z is least favorable to

the bigger hypothesis in the sense that the availability of Ai does not change the MLE

from its Mo value. In examples (1.1), (1.2), and (1.6), (1.7), z = 0.

We have B(z) = / - (z)//~ (z) = 1, so (2.20) gives B(x) = JB(X) B ( Z ) , or equivalently
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log B(x) = log B(x) - log B " x(z), (2.33)

where B"ι(z) = 1/B(z) is the Bayes factor for Mo compared to M. This has the

following interpretation: to obtain the log Bayes factor in favor of Λ4, penalize the

corresponding log likelihood ratio by the log of the Bayes factor in favor of Mo at the

least favorable point. Comparing (2.33) with (2.27) shows that

B-\z) = β(y), (2.34)

so the penalty against log B(x) also equals the log of the likelihood ratio statistic at the

breakeven point.

Prom (1.5) and (2.30) we see that the BIC and frequentist penalties are

^log(n) and log S ^ = χf^/2 (2.35)

respectively. The BIC penalty amounts to taking B~ι(z) = nd/2 in (2.33), so that at

the least favorable point for Λ4 there can be a large Bayes factor in favor of Λ40. By

contrast, in the frequentist framework their can never be a large Bayes factor for Mo,

the maximum possible factor being exp{χ^ 72}, equaling 3.87 for d—l.

3 Frequentists As Bayesians

Section 2 argues that objective Bayes factors should be of the form B(x.) = B(x)/B(y),

and that Fisher's scale of evidence amounts to putting the breakeven point y at a

value y( 9°) such that S(y^9^) = Sf( 9 0 \ the 90th percentile of the test statistic S.

Taken together these arguments suggest defining the frequentist Bayes factor to be

J5freq(x) = £?(x)/B(y('90)), or for convenience the cruder approximation (2.30).

For the one-dimensional Gaussian situation (1.6)-(1.7) with x = yfn ί, we have

β f r e q(x) = exp((x2 - y2)/2), y = 1.645. (3.1)

Table 5 shows Bfτeq(x) for values of x corresponding to Fisher's scale in Table 1. For

example, \x\ = 2.58, which is strong evidence against Mo on Fisher's scale, corresponds

to Bayes factor 7.13, giving aposteriori probability .88 for Λ4 assuming equal prior prob-

abilities on M and Mo Expressing the frequentist results in terms of -Bfreq(x), instead

of comparing than with BBIC(X) as in Figure 1, reduces the discrepancy between Fisher's
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Fisher: borderline moderate substantial strong very strong overwhelming

α: .90 .95 .975 .99 .995 .999

~~\x\: 1.645 L96 2^24 2^58 2^81 3^29

B f r e q ( x ) : 1 1.76 3.19 7.13 13.29 58.03

π(x): 10 M J6 ^88 ^93 ^98

Table 5. Frequentist Bayes factors corresponding to critical levels on Fisher's scale;

one-dimensional Gaussian case, (3.1); π(x) is prob{Λΐ|x} assuming equal prior proba-

bilities for Λ4 and Λ40.

and Jeffreys' scales of evidence, though Jeffreys' scale remains somewhat more favorable

to Mo-

i?freq(χ) is an answer to the question "what kind of Bayesians are frequentist model

selectors?" We can fortify our belief in this answer by finding a genuine prior density g(θ)

on ΛΊ, as opposed to Jeffreys' improper prior, that gives Bayes factors close to Bfreq(x).

This section shows that such priors exist in the one-dimensional Gaussian situation (1.6)-

(1.7), and in its one-sided version, but not in higher dimensional Gaussian problems.

These results have a close connection to the work of Andrews (1994), discussed below.

3.1 The One-Dimensional Gaussian Case

We consider the simple problem (1.1), (1-2), which is equivalent to the repeated sampling

version (1.6), (1.7). Figure 2 compares #freq(x), (3.1), with i?4.85(x), the actual Bayes

factor(2.7) when g(θ) = U[± 4.85], the uniform density for θ on [-4.85,4.85]. (Since Mo

consists of the single point θ = 0, the other conditional density go(θo) in (2.4) must put

all of its probability on zero). We see that the match is excellent. The average absolute

error over the range of Fisher's scale,

r3.29

Q = / |2Wx)/Bfreq(x) " 1| dx/(2 . 3.29) (3.2)
7-3.29

is only 0.011. Section 3.3 motivates the choice 4.85 and shows that still better matching

priors are possible. The optimum choice among symmetric priors g(θ) is supported on

six points,

θ : ±.71 ±2.18 ±3.86

g : .147 .159 .194

and gives Q = .00061, the minimum possible Q value according to the linear program-

ming theory of Section 3.3.
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d
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0

Figure 2 Comparison of log B{τeq(x), (solid curve, from (3.1)), with log £?4.85(x)

(dots) the genuine Bayes factor for the one-dimensional Gaussian situation if g(θ) is

uniform on [—4.85,4.85].

All of this says that the frequentist is behaving like a somewhat unobjective Bayesian:

the prior distribution g(θ) on the alternative hypothesis M is entirely supported within

a few standard errors of the null hypothesis Mo- By contrast, the BIC criterion is nearly

equivalent to using a prior density g(θ) uniformly distributed over ± (π n/2)1/2, see

formula (3.17) of Section (3.3),

n : 10 15 100 1000 10000

(τr n/2) 1/ 2: 3.96 4.85 12.53 39.63 125.33
(3.4)

The n 1/ 2 growth in the range of support for g(θ) is rooted in notions of Bayesian co-

herency as discussed in Section 4.

As in Table 4, the BIC and frequentist results agree at n = 15. To put it another

way, the frequentist is effectively using a prior density g(θ) having about l/15th of the

data's information for estimating θ within model M, while the BIC prior has only 1/nth

of the information. See Remark H of Section 6.

The results in this section are closely related to those of Andrews (1994). Andrews
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considers the asymptotic analysis of model-selection problem (2.1), (2.2) when the prior

density g(θ) in (2.8) is shrinking toward Λd0 at rate 1/̂ /n For a class of elliptically

symmetric g(θ) densities chosen to match the hypothesis-testing situation, he shows (in

our notation) that B(x) is asymptotically a function of B(x). This amounts to defining

a frequentist Bayes factor, like our Bfreq(x) though the specific form is a little different.

In situation (1.6)-(1.8) Andrews' theory would suggest

log Bfreq(x) = j i y y - \ log {A + 1), (3.5)

as in his equation (2.6), this being the actual Bayes factor B(x) starting from the Gaus-

sian prior g(θ) ~ Λf (0, A). He recommends choosing the prior variance A so that Bfτeq(x)

equals one at the usual acceptance point for a hypothesis test. If Andrews' acceptance

point is put at critical level .90 then we need A = 11.0 in (3.5).

In our previous language this amounts to giving the prior 1/1 lth of the data's in-

formation content, reasonably close to our value of l/15th. The difference comes from

Andrews' use of proper Gaussian-like priors rather than the improper Jeffreys' priors

used here. Jeffreys' priors give a better match to objective Bayes methods like the BIC

(which was not Andrews' purpose of course), via the lemma of Section 2.2, while avoiding

most of the asymptotics.

3.2 One-Sided Testing

We can consider the one-sided version of the one-dimensional Gaussian problem (1.1)-

(1.2) by changing the bigger model to

M : θ > 0. (3.6)

The improper prior g(θ) = c on M gives Bayes factor,

B(x) = c Φ(x)/φ[x) (3.7)

where Φ(x) and φ{x) are the standard normal cdf and density. For y a breakeven point,

B(y) = 1, we can write

log B(x) = log {B(x)/B(y)} = *-^- + l o g | | i . (3.8)
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The frequentist breakeven point is now y = 1.282, the .90 critical level of the one-sided

test statistic S(x) = x, giving

log Bfreq(α;) = ^-^- + log | M (tf = 1.282) (3.9)

as the one-sided version of (3.1). This can also be derived from a version of the lemma at

(2.17) which takes account of the fact that in the one-sided case Mo is an extreme point

of Λ4 rather than an interior point. (This changes (2.18), the Laplace approximation for

/(x).) Andrews (1994) gives similar formulas, for example at his equation (2.7).

Table 6 is the equivalent of Table 5 for the one-sided case. Notice that the critical

levels of Fisher's scale, .90, .95, .975, ..., produce nearly the same Bayes factors in both

tables. The aposteriori probabilities π(x) (assuming π/πo = 1) are the same to two

digits.

The Bayes factors in Table 6 are closely approximated by taking the prior density

g(θ) to be uniform on [0,5.13]. However a Bayesian who began with the uniform prior

U[—4.85,4.85] appropriate to the two-sided situation, and then decided that θ < 0 was

apriori impossible, would get Bayes factors B(x) not much different than those in Table

6: Using 4.85 instead of 5.13 as the one-sided upper limit for g(θ) gives an excellent match

to the version of (3.8) having breakeven point at y = Φ~1(.893) instead of Φ~1(.9O).

Tables 5 and 6 show that a frequentist going from a two-sided to a one-sided Gaussian

testing problem does so in reasonably coherent Bayesian fashion, essentially by cutting

off the negative half of the U[—4.85,4.85] prior. We can also use the U[—4.85,4.85] prior

to investigate frequentist behavior in multiple testing situations, see Remark J in Section

6.

Critical

x:
level a

1

.90

.282

1

.95

1.645

1.80

.975

1.96

3.25

•

2

7

99

.33

.24

.995

2.58

13.42

.999

3.09

57.86

π(x): .50 .64 .76 .88 .93 .98

Table 6. Critical levels and Bayes factors (3.9) for one-sided testing, one-dimensional

Gaussian case; breakeven point at y = 1.282, the .90 quantile of x under Mo; π(x)

aposteriori probability of M assuming prior probability 1/2.
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3.3 Multidimensional Gaussian Testing

The Bayesian justification for Fisher's scale of evidence is less satisfactory in higher

dimensional testing problems. Suppose that we observe an m-dimensional Gaussian

vector with unknown expectation vector θ and covariance matrix the identity

x~ΛΓm(0,I), (3.10)

and that we wish to test

Mo' 0 = 0 versus M : θ e Rm . (3.11)

We will denote x = ||x||, θ = ||0||, and write B(x) instead of J3(x) in the case where

B(x) depends only on re, etc. The likelihood ratio statistic B(x) equals exp(x2/2) so

that (2.27) gives

logB(x) = (x2 - y2)/2 where y2 = χ2^ . (3.12)

Here αo is the frequentist breakeven critical level, o?o = .90 on Fisher's scale. The

arguments of this section extend easily to the case where θ is partitioned as θ = (0<j, #i)i

and Mo is θ\ = 0. We can also take x ~ Nm(θ,σ2I) with σ2 estimated independently

from σ2 ^ σ2χ2, see Remark E of Section 6.

We used (3.12) in the one-dimensional case, with G?O = -90, and showed that it agreed

well with a proper Bayesian analysis, starting from g(θ) uniform on [-4.85, 4.85]. The

trouble in higher dimensions is that if we choose αo = .90, then B(x) in (3.12) is not

close to being a Bayes factor for any genuine prior g(θ).

To show this we begin with ρ(0), the density of θ given M, uniform on a disk of

radius u,

(3.13)

The constant in (3.13) makes g integrate to 1. Using definitions (2.6)-(2.7), and remem-

bering that <7o (0) is a delta function at zero, it is easy to show that the resulting Bayes

factor is

Bu(x) = ^e*2/2Fm(u, x) [cm = 2™/2Γ(m/2 + 1)] , (3.14)



228 B. Efron and A. Gous

where

Fm{u,x) = prob{χ^(x2) < u2} , (3.15)

the probability that a non-central χ2 variate with m degrees of freedom and non-

centrality x2 is less than u2.

We would like (3.14) to match the objective Bayes formula (3.12) B(x) = exp(x2 -

y2)/2. Notice that

r\ r\ r\

— logBu(x) = —logB(x) + — logFm(u,x) . (3.16)

The last term is always negative so ̂  log Bu(x) < -J^ logB(:r).

The value u = uo that makes y = [Xm ]1^2 the breakeven point satisfies BUo(y) = 1,

or according to (3.14),

uo = [cme^2Fm(no>y)}1/m. (3.17)

For m = 1 and y = 1.645 we get u$ = 4.85, the value used in Section 3.1. The second

term ^ log F\{UQ, x)\y in (3.16) is only -.0025 in this case, accounting for the good match

between B(x) and i?4.85(#) in figure 2. Numerical calculations show that this match

breaks down as the dimension m increases: the last term in (3.16) grows large, spoiling

the agreement between Bu(x) and B(x). We might hope to save things by choosing g(θ)

differently, but the next analysis shows not.

If Bg(x) is the Bayes factor (2.6)-(2.7) corresponding to a spherically symmetric prior

g{θ\ and B f req(x, α 0) = exp[(z2 - y2)/2) for y2 = χ%αo) define

fX.999

Q{g,α0) = / \Bg{x)/Bίτeq{x;α0) - l\dx /x.999 , (3.18)

x 9 9 9 = (xm ) ^ 2 , so Q measures the average absolute deviation between Bg(x) and

Bfreq{χ] αo) over the range of Fisher's scale in Table 1.

Linear programming techniques allow us to minimize Q(g\ αo) over all possible

choices of a spherically symmetric prior distribution g{θ). The results are shown in

Figure 3. We see for example that for αo = .90 and dimension m = 6, the minimum

possible value of Q is .17. In order to match -Bfreq(̂ »̂ o) with accuracy Q = .011, the

accuracy shown in Figure 2, we need to increase αo to .96. This raises the breakeven
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QJO 0.85 OJO OJ5

Figure 3. Minimum possible value of average absolute deviation (3.18) as a function

of c*o and dimension m; m = .5 is the one-sided one-dimensional problem.

point to y = (χe ( α o ) ) 1 / 2 = 3 63> r a t h e r t h a n (X6('90))1/2 = 3.26, and decreases the Bayes

factor exp((x2 — y2)/2) by a factor of 3.58. Some details of these calculations appear in

the Appendix.

We used Fisher's scale of evidence to set the frequentist breakeven point at the .90

quantile of the test statistic. This definition turns out to be near the minimum possible

for one-dimensional Gaussian testing problems: the m = 1 curve in Figure 3 shows

that reducing αo to say .80 would make it impossible to get an accurate match with

any genuine Bayes factor, the minimum attainable Q being .18. In higher dimensions

αo = .90 itself is too small. A frequentist who desires a proper Bayesian interpretation

of p-values needs to set the breakeven quantile αo higher. A recipe for doing so appears

in Remark G of Section 6.

4 Sample Size Coherency

The BIC assesses evidence in favor of the bigger model M more cautiously as the

sample size n grows larger. The behavior is rooted in notions of coherent decision making,

namely that the Bayesian specifications (2.3)-(2.4), whatever they may be, should stay

the same for all sample sizes. This simple but important principle, which we have been

calling "sample size coherency", causes most of the disagreement between Fisher's and

Jeffreys' methods.
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It is particularly easy to illustrate sample size coherency for the one-dimensional

Gaussian example (1.6)-(1.7). Suppose that at sample size n = 1 we used density gι{θι)

for V ' in (2.4) (remembering that in this case go puts all of its probability on zero.).

Then, according to the coherency argument, we should still use gι(θ\) at sample size n.

Making transformations (1.8),

ΛΓ(0,1), θ = Vn 0i , (4.1)

restores us to situation (1.1), (1.2), now with

(4.2)

Equation (4.2) says that g(θ) is dilating at rate y/n, and that the crucial value g(0)

is going to zero at rate 1/y/ri. If <?i(0) is positive and gι(θ) is continuously different]able

at zero then it is easy to show that the breakeven point y occurs at

Choosing gι(θ) to be a standard 7V(0,1) density gives y = y l̂og (n), which is the BIC

breakeven point, (1.9). Variations of this argument are familiar in the Bayesian model

selection literature, as in Section 3 of Kass and Wasserman (1995).

Frequentist model selection does not obey sample size coherency. Using Fisher's scale

in the standard way amounts to using a fixed prior density no matter what the sample

size may be, for instance g(θ) = U[± 4.85] in situation (1.6)-(1.8).

We have now reached a clear and unresolvable distinction between the Fisher and

Jeffreys approaches to model selection. Which one is right? Here are some of the

arguments that have been put forward:

Consistency Under quite general conditions BIC will select the correct model as

n -> oo, with log BBIC(X) going to —oo if θ € Mo and +oo if θ fi Mo The BIC penalty

— ^log(n) in (2.35) makes this happen (as would any other penalty function going to

infinity at a rate slower than n.) The frequentist uses a fixed penalty = χd γ 2 and

does not achieve consistency; even if θ E Λ40 there is always a fixed probability, .05 in

the most common formulation, of selecting ΛΊ.

Power Consistency is not much of a comfort in a fixed sample size experiment. To

use Neyman-Pearson terminology, what we really want is good size and good power too.

Fisher's approach tends to aggressively maximize power by being satisfied with critical
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levels (i.e. sizes) in the .95 range. Jeffreys' methods are aimed at a more equitable

balance. In using them the statistician risks settling for small power, as suggested by

Figure 1.

Pre-experimental power calculations are an important part of frequentist model se-

lection. A common prescription for the one-dimensional Gaussian situation (1.6)-(1.7) is

to require sample size n = (ίi/3.24)2, where t\ is a preliminary guess for the treatment

effect 0i. The constant 3.24 results in .90 power for a two-sided .95 test, at θ\ = t\. This

kind of calculation, which has a strong Bayesian flavor, fits in well with the U[± 4.85]

prior ascribed to the frequentist in Section 3.1. Selecting n on the basis of the prior

reverses the BIC selection of the prior on the basis of n.

Sufficiency Transformations (1.8) restore problem (1.6), (1.7) to form (1.1), (1.2)

no matter what n may be. Why should our assessment of evidence for M versus Mo

depend in any way upon n? This could be the frequentist's riposte to the Bayesian

argument for sample size coherency. It is strengthened by the difficulties of defining "n"

in practical problems, see Section 5. The Bayesian argument is unassailable if we begin

with a genuine prior but less so if "g(θ)" expresses only a lack of prior knowledge.

Very Large Sample Sizes Raftery (1995) argues for the superiority of Jeffreys'

scale and BIC model selection in the social sciences. His main example concerns a multi-

national social mobility study with data o n n = 113,556 subjects. An appealingly simple

sociometric model explains 99.7% of the deviance but still is rejected by the standard

likelihood ratio test at a p-value of 10~120. In this case the BIC penalty function is

severe enough to give a Bayes factor in favor of the sociometric model, compared to a

saturated model.

Many statisticians intuitively agree with Raftery that something goes wrong with

Fisher's scale of evidence when n is very large, and that evidence against ΛΛ0 should

indeed be judged more cautiously in large samples. A counterargument says that Raftery

is putting too much strain on the model selection paradigm: standard hypothesis tests

and confidence intervals would show that the sociometric model does not fit the data

perfectly but that the deviations from the model are quite small. Gelman and Rubin

argue along these lines in the discussion following Raftery (1995), see also Diaconis and

Efron (1985).

The Role of Mo The smaller model Mo is usually a straw man in Fisher's pro-

gram, not an interesting scientific theory in its own right, see Section 4 of Efron (1971).

Jeffreys' scale shows more respect for Mo, perhaps on the Occam's razor principle that

simpler hypotheses are preferred whenever tenable. This shows up in Table 5 (where
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the distorting effect of sample size coherency has been avoided by use of the frequentist

breakeven value y = 1.645). Comparing Bfτeq(x) with Jeffreys' scale, Table 2, Fisher's

"moderate" evidence is "not worth more than a brief mention" for Jeffreys', "strong" is

only "positive", etc.

This is more a difference in scientific context than a fundamental Bayesian-frequentist

disagreement. Fisher worked in an agricultural field station where sample sizes were small

and the data were noisy. Jeffreys' hard-science background suggests more abundant data,

better structured models, and a more stringent standard of evidence. It is conceivable

that had Jeffreys worked at Rothamsted he would have adjusted his scale downward,

conversely for Fisher in geophysics.

Perhaps no single scale of evidence can serve satisfactorily in all contexts. In practice

Jeffreys' scale, as opposed to Fisher's, tends to favor Mo, and if implemented by the

BIC will do so with increasing force as n increases.

The BIC is not the last word in objective Bayes model selection, though it seems to

be the most popular method. Kass and Wasserman (1996) review a variety of techniques

developed mostly since 1990 under such names as uninformative priors, reference priors,

intrinsic priors, and fractional Bayes factors. All of these methods come close to obeying

sample size coherency, and demonstrate BIC-like behavior in large samples.

Sample size coherency is an appealing principle in situations where the statistician

actually sees the data set growing in size. It is less compelling in the more common case

of fixed n, and taking it literally can lead to the situation seen in Figure 1 where evidence

at the .995 level is barely worth mentioning. The selenium experiment of Section 5 has

aspects of both fixed and changing sample sizes.

5 The Selenium Experiment

This section uses our methods to produce a combined Bayesian-frequentist analysis of

a small but inferentially challenging data set. Table 7 shows total cancer mortality

for a double-blind randomized trial of the trace element selenium taken as a cancer

preventative, Clark et al. (1996). The original purpose of the trial was to test selenium's

ability to prevent the recurrence of carcinoma of the skin. 1312 subjects, all of whom

had suffered previous skin cancers, were recruited beginning in 1983 and received either

200 mmg per day of selenium or an identical-looking placebo. The results from 1983

to 1989, labeled "1st Period" in Table 7, did not show any skin cancer reduction in

the selenium group. However total cancer mortality, mainly from lung, prostate, and

colorectal cancers, did suggest a moderately significant reduction. The p-value of .032

shown in Table 7 is the one-sided binomial probability of seeing 7 or less occurrences of
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Selenium Placebo Total s/N p-value

1st Period: 7 16 23 7/23 ^032

2nd Period: 22 41 63 22/63 .00843

Combined: 29 67 86 29/86 .00124

Table 7 Total cancer mortality in the selenium experiment; p-values are one-sided,

based on binomial distribution (5.1). Data from Table 5 of Clark et al. (1996).

5 ~ binomial (N, 1/2), splitting the probability atom at 7,

with N = 23 and s = 7.

New funding was obtained, allowing a second trial period from 1990-1993. At the

beginning of this period total cancer mortality was officially listed as a "secondary end-

point". The primary endpoint remained skin cancer, but given the results of the 1st

period it seems fair to assume that the investigators' attention was now focused on total

cancer mortality. Lung, prostate, and colorectoral cancer incidence were also listed as

secondary endpoints, see Remark A.

We now consider selecting between the models

Mo * selenium has no effect on total cancer mortality

M : selenium has an effect on total cancer mortality.

By conditioning on TV the total number of cancer deaths in both groups, N — 23 for the

first period and 63 for the second period, we can model s, the number of deaths in the

selenium group, by

ί Mo: 0 = .5

s ~ binomial(iV, θ) with < versus (5.3)

I M : 0 ^ .5

as the competing models. We will also consider the one-sided version Λd : θ < .5. In

either case we are dealing with a one-dimensional problem, dim(.M) — dim(A10) = l

How strong is the evidence for M and against Λί0? The combined-data p-value of

.00124, even doubled for two-sided testing, is between "very strong" and "overwhelming"

on Fisher's scale. However, this ignores the data-mining aspects of the experiment, which
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used the first period's outcome to change the focus of interest. Restating the frequentist

results in terms of Bayes factors helps clarify the strength of evidence for selenium's

cancer-preventing ability.

The simplest approach considers only the 2nd period data since it was then that

attention was focused on total cancer mortality. A very quick way of doing the calcu-

lations transforms the one-sided binomial p-value .00843, computed as in (5.1) into an

approximate normal deviate x = Φ~ x(l — .00843) = 2.39, and then calculates the Bayes

factor for Λ4 from the one-dimensional Gaussian approximation formula (3.1),

Bίτeq(s) = exp{(2.392 - 1.6452)/2} - 4.49 . (5.4)

Starting from the conventional prior odds ratio π/πo = 1, the Bayes rule results in

aposteriori probability π(s) = .82 for Λί. Remark C of Section 6 shows that this is

nearly the same as the aposteriori probability for the event of actual interest {θ < .5},

even though we began the analysis with Λ4 : θ φ .5. Remark B shows that the Gaussian

approximation (5.4) works quite well in this case.

We might instead begin our analysis with the one-sided model M : θ < .5, on the

grounds that the 1st period results removed most of our apriori probability on θ > .5.

This entitles us to use the one-sided formula (3.9) for the Bayes factor, giving J3fΓΘq(s) =

8.42, nearly double (5.4), and π(s) = .89. These results are shown in Table 8.

Instead of focusing on the 2nd period we might consider the combined data for both

periods. If so we need to adjust our inferences to account for the fact that total cancer

2nd Period:

Combined:

[*•(«)]:

B

18.36

103.8

2-sided

4.49

[.82]

25.14

[.86]

βfreq

1-sided

8.42

[.89]

BE

n = N

2.31

[.70]

11.19

[.74]

JIC

n = 1312

0.51

[.34]

2.87

[.42]

Table 8 Approximate Bayes factors for the Selenium experiment, as explained in text;

boldface numbers are aposteriori probabilities for selenium having an effect, assuming

π/πo = 1 for 2nd period, π / π o = 1/4 for combined data.
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mortality was not the original primary endpoint. We will do this by setting the prior

odds ratio to be

TΓ/TΓO = 1/4 . (5.5)

This is rather arbitrary of course but it cannot be wildly optimistic: after the 1st period

results, which yielded a Bayes factor of only 1.44, the investigators effectively raised total

cancer mortality to the status of primary endpoint, presumably with odds ratio near the

conventional value 1 we have been using.

The combined data has s = 29 and N = 86. The two-sided normal approximation

used in (5.4) is now

(5.6)

Bayes' rule with π/πo = 1/4 gives aposteriori probability π(s) = .86 for ΛΊ. One-sided

testing gives B(s) = 47.46 and π(s) = .92, but now we lack scientific justification for a

one-sided analysis.

All of our frequentist-cum-Bayesian analyses yielded aposteriori probabilities π(s) in

the range .82 to .89 for selenium being efficacious in reducing cancer deaths. Perhaps

this seems disappointing given the striking p-values in Table 7, but as Table 5 shows

this is what we get from "strong" evidence on Fisher's scale. As far as Jeffreys' scale is

concerned, Bfτeq(s) never gets stronger than "positive" (remembering to divide by 4 for

the combined data).

BIC analysis is predictably more pessimistic about selenium's efficacy. The BIC

Bayes factor (1.5) for the combined data is

BBIC{S) = 103.8/v^ (5.7)

Taking n = 86, the number of deaths, gives Bmc(s) = 11.19, and π(s) = .74 starting

from π/πo = 1/4. If we take n = 1312, the number of subjects in the study then

π(s) = .42. Raftery (1986) makes a good argument for preferring n = 86 to 1312, but in

general there is not a firm prescription for "n". If the data was collected in pairs should

"n" be n/2? Kass and Wasserman (1995) aptly characterize the sample size question

as "subtle but important", see also Lauritzen's commentary on O'Hagan (1995). These

difficulties are avoided in the frequentist formulation, at the expense of ignoring sample

size coherency.
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Sample size coherency is unimportant in the usual fixed size experiment where the

frequentist approach operates to best advantage. The selenium experiment is somewhere

intermediate between fixed sample size and sequential. If we think of it as occurring in

two stages, then the sample size coherency argument suggests dividing the 2nd period

Bayes factors by \/2, giving Bfτeq(s) = 5.95 and π(s) = .86 for the one-sided analysis.

This kind of Bayesian correction is not much different than the standard frequentist

approach to multiple testing situations, see Remark J.

6 Remarks

Remark A. Lung, prostate, and colorectal cancer incidence rates were also flagged as

important secondary endpoints for the 2nd period of the selenium trial. Incidence of all

three together was 17 in the selenium group versus 29 in the placebo group during the 1st

period, giving binomial significance level .040 according to (5.1). 2nd period incidences

were 21 versus 56, significance level 2.79 10~5. Now the one-sided 2nd period Bayes

factor corresponding to Bfτeq(s) = 8.42 in Table 8 is 1642. The very strong 2nd period

results are a reminder that the two periods differ in the amount of selenium experienced

by the treatment group.

Remark B. We do not need to rely on the Gaussian approximation (3.1) for the

selenium analysis. Let y be the .95 percentile point for a binomial^, .5) distribution,

calculated by interpolation of the "split-atom" cdf as in (5.1), so y is a .90 breakeven

point for two-sided testing. Then according to (2.27)

Bίτeq(s) = B(s)/B(y) = yy\N_yy • (6.1)

This gives 4.63 instead of 4.49 for the two-sided 2nd period value of £?freq and 26.80

instead of 25.14 for the combined data. We see that (3.1) works quite well here.

Remark C In the two-sided formulation (5.2), 2nd period data, we calculated

#freq(s) = 4.49 in favor of M : θ φ .5 versus Mo - θ = .5. However, we are re-

ally interested in the one-sided alternative θ < .5. To this end we can state the results

as follows: the aposteriori probability of M : θ φ .5 is π(s) = .82, and given that

M is true, the aposteriori probability that θ < .5, (using g(θ) = U[± 4.85]) is about

Φ(2.39) = .992. This gives .81 for the aposteriori probability of {θ < .5}.

Remark D Suppose that in situation (1.1), (1.2) we observe x = 1.96 and wish

to estimate 7 = prob{0 > 0 | x}. The prior distribution of Section 3.2 appropriate to
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one-sided model selection, π/πo = 1 and g(θ) uniform on [0,5.13], gives aposteriori Bayes

estimate 71 = .76. Section 3.1 's prior for two-sided model selection, π/πo = 1 and g(θ)

uniform on [—4.85,4.85], gives 72 = .64. This decrease is reasonable since the second

prior puts only half as much probability on the positive axis.

Both 71 and 72 are much smaller than the value 73 = .975 we get using the standard

objective prior for estimation, which has g(θ) constant over (—00,00), with no special

treatment for 0 = 0. This is the difference between model selection, which puts a

bump of probability on, or at least near, Mo : 0 = 0, and estimation which does

not. The estimation paradigm is often more appropriate than model selection. If we are

trying to choose between constant, linear, or quadratic regression functions for prediction

purposes, then there may not be any reason to assign bumps of prior probability to zero

values of the regression coefficients β$->β\,β2' Efron and Tibshirani (1997) consider

discrete selection problems from the "smooth prior" point of view. See also Lindley and

O'Hagan's disagreement in the discussion following OΉagan (1995).

Remark E The multidimensional Gaussian situation (3.10), (3.11) can be general-

ized to its more common form where we observe

x - ΛΓm(0, σ2l) independent of σ2 ~ σ2χ2

q/q , (6.2)

0 = (0O, 0χ), dim(0i) = d, and wish to select between

Mo : 0i = 0 versus M: 0 <Ξ Rm . (6.3)

Applying the lemma (2.17) in form (2.27), (2.28) gives estimated Bayes factor

where Fd)q is the usual F statistic for testing Mo versus M, and α 0 is the breakeven

quantile, αo = .90 on Fisher's scale. The shortcut formula (2.30) amounts to replacing

Fd°q^ w i t h i t s l i m i t a s ' ~* °°*

Remark F Is Fisher's scale of evidence too liberal, as charged in the Bayesian

literature? The answer depends at least partly on scientific context, though much of

the contextual effect can be mitigated by an honest choice of the prior odds ratio π/πo

Biomedical research has employed Fisher's scale literally millions of times, with generally
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good results. In crucial situations the scale may be implicitly tightened, for instance by

the F.D.A. requirement of two .95 significant studies to qualify a new drug.

We have argued that Fisherian hypothesis testing has a reasonable Bayesian inter-

pretation, at least if one is willing to forego sample size coherency. Section (3.3) shows

the Bayesian interpretation breaking down in multidimensional testing problems, with

the suggestion that Fisher's choice of breakeven quantile αo = .90 needs to be increased.

Remark G Here is another argument for using bigger values of a$ in higher di-

mensions. The BIC penalty function d (log n)/2, (2.35), is linear in the dimensional

difference d. By considering a nested sequence of models it is easy to show that this

must always be the case if the penalty function depends only on d and n. However, the

frequentist penalty function x} /2 is not linear in d.

We can enforce linearity by replacing .90 in approximation (2.30) with αo(d), where

OLo{d) satisfies

(6.5)

αo(l) being the breakeven quantile in dimension 1. Doing so makes ao(d) increase with d,

as shown in Table 9. The choice αo(l) = -86 is the minimum that keeps the discrepancy

measure Q, (3.18) reasonably small (about .05) for dimensions 1-6.

d:

αo(l) = -86:

c*o(l) = .90:

1

.86

.90

2

.887

.933

3

.912

.956

4

.931

.971

5

.946

.981

6

.958

.987

Table 9 Quantile ao(d) satisfying linearity relationship (6.5); for two choices of αo(l)

Remark H In the Gaussian situation (1.6)-(1.7), and in more general problems too,

the BIC depends on a prior density g(θ) having 1/n of the data's information for esti-

mating θ. Jeffreys' original proposal used a slightly more diffuse prior with information

about l/(f n), see Section 3 of Kass and Wasserman (1995). Berger and Pericchi (1993)

suggest the value l/(n/no), where no > 1 is a fixed small constant. O'Hagan's (1995)

proposal leads to larger values of no, for robustness purposes, an idea criticized in Berger

and Mortera's discussion.

Remark I The calculations leading to the lemma's result (2.17) can be carried out

more accurately by using a higher-order version of Laplace's method as in the appendix

of Tierney and Kadane (1986). We get
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B{x) _ B(x) M ^ α(θ) - α(0t)

where α(θ) is 0(1). In applications like the logistic regression example (2.26), 0t is

Op(n~2). The interesting uses of (6.6), the ones where B(x) is of moderate size, also

have α(0) of order Op(rΓ^), so α(θ) - α(0ΐ) is Op(ri~*) in (6.6). This suggests that

approximation (2.17) is actually third-order accurate, giving the kind of good small-

sample results seen in (2.26). However, this argument fails for the standard asymptotic

calculation where the true 0 is a fixed point in ΛΊ, in which case α(0) — α(0t) is 0p(ΐ).

Remark J The U[± 4.85] prior density figuring in the discussion of Section 3.1 also

gives a rough Bayesian justification for the standard frequentist approach to multiple

testing. Suppose that we observe J independent Gaussian variates, each having a possibly

different expectation,

t = l , 2 , . . . , J , (6.7)

and that we wish to test

Mo ' all θi = 0 versus
(o.o)

ΛΊ : one of the θi not zero.

For the conditional prior distribution of 0 = (0i, 02, »θj) given model «M, we take an

equal mixture of the J distributions

9i{θ) : 0, ~ W(-4.85,4.85) and θj = 0 for j φ i , (6.9)

i = 1,2,..., J. If J = 2, g(θ) is a cross-shaped distribution.

It is easy to calculate the Bayes factor for M versus Mo if the observed data vector

is

x = (a?i,0,0,...,0) , (6.10)

in which case
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J: 2 3 4 6 8 10

Bonferroni: 1.96 2.13 2.24 2.39 2.50 2.58

(6.11): 1.95 2.13 2.25 2.41 2.52 2.60

Table 10. Simultaneous testing; comparison of critical point for the simultaneous .90

Bonferroni test with the breakeven point (6.11) for the Bayesian analysis suggested by

the U[± 4.85] distribution; J is the number of simultaneous tests.

Using this approximation, the breakeven point y = (y, 0,0,..., 0) occurs at

y = ± {2 log [ ^ - ^ - (J - I)]}1/2 . (6.12)

Table 10 compares the Bayesian breakeven point y from (6.12) with the .90 critical

point y = Φ~1(l~.05/J) of the usual frequentist Bonferroni procedure for J simultaneous

tests. Once again we see that the frequentist is behaving in a reasonably Bayesian

fashion, although caution is warranted here because of the somewhat special choices

made in (6.8)-(6.10).

Summary Frequentist hypothesis testing, as interpreted on Fisher's scale of evidence,

is the most widely used model selection technique. Jeffreys' theory of Bayes factors, as

implemented by objective formulas like the BIC, implies that Fisher's scale is badly

biased against smaller models, especially in large samples. This paper compares the two

theories by giving an interpretation of Fisher's scale in terms of Bayes factors, as far as

that is possible, along these lines:

• An ideal form for objective Bayes factors is developed in Section 2, B(x) = 23(x)/B(y),

with y a breakeven point: B(y) = 1.

• Fisher's theory is interpreted as putting the breakeven point at the 90th percentile

of the test statistic, leading to a prescription Bfreq(x) for the frequentists' implied Bayes

factor, as in (3.1).

• For the one-dimensional Gaussian problem Figure 2 shows that Bfreq(x) is close

to the actual Bayes factor if the prior density on the bigger model is uniform over

[—4.85,4.85]. This portrays the frequentist as a somewhat unobjective Bayesian. By

contrast, the BIC amounts to choosing the prior density uniform over ± [π n/2]1/2,

getting wider as the sample size n increases. Roughly speaking, the frequentist assigns

the prior 1/15 of the data's information, compared to 1/n for the BIC.
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• The BIC, and other objectivist Bayesian methods, behave this way because of

"sample-size coherency", the principle that a Bayesian specification for the model se-

lection problem should be consistent over all possible sample sizes. Section 4 discusses

arguments for and against this principle.

• Sample size coherency causes most of the disagreement between Fisher's and Jef-

freys' methods, but even after correcting for it, Jeffreys' scale remains somewhat more

inclined toward the smaller hypothesis Λί0. This is more a matter of scientific context

than frequentist/Bayesian dispute.

• The argument that Bfreq(x) is close to being a proper Bayes factor weakens in

higher dimensional problems. To restore it we need to increase the breakeven point on

Fisher's scale above the αo = .90 quantile of the test statistic. Figure 3 suggests an αo

of about .96 for a six-dimensional Gaussian testing problem. It also shows that in the

one-dimensional case we could not choose αo much smaller than .90.

• ^freq(x) provides a Bayesian interpretation for standard p-values, as exemplified in

Section 5's analysis of the selenium data.

Appendix

Numerical methods were used in Section 3.3 to find the spherically symmetric prior g on

the alternative of the m-dimensional Gaussian test (3.10)-(3.11) yielding a Bayes factor

Bg most closely matching the effective frequentist Bayes factor, i5freq, defined in (2.30).

We will describe the calculations in detail here. The one-sided test (labelled m = 0.5 in

Figure 3) may be treated similarly, as will be shown later.

As in Section 3.3 we put x = ||x|| and θ = ||0||, and write Bg(x) instead of Bg(x)^g(θ)

instead of g(θ), etc. In this notation, we define the following objective function, a

measure of distance between the Bayes factors Bg and Bfreq

fX.999

Q(g, α) = / \B9{x)/B{τeq(χ ) α0) - l\dx/x.999 (A.I)
Jo

Here α .999 = (xm )*• Other objective functions are possible; see below. The

function Q is convenient because the problem can be formulated as a linear program.

Formally, we want to solve the following:

minimize
9
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(01) subject to 1. g is a density on Tlm, spherically symmetric around 0,

2. Bg(y) = Bfreq(ί/;<*o) = 1, where y2 - χ^ α o ) .

The second constraint restricts consideration to priors g which result in a Bayesian test

with the same "breakeven point" y (see Section 2.3) as the frequentist test.

The g minimizing (01) for dimension m = 1 and αo = .90 is given in (3.3). The

minimum q(g, αo) over a range of m and αo are shown in Figure 3.

Writing the spherically symmetric density g as g(θ) = h(θ) we have

If m = 1, for example, /0°° h(θ)dθ = 1/2.

An expression for Bfτeq is given in (3.12). We can calculate

9(x)= Γ sx{θ)h(θ)dθ , (A3)
Jo

where

sx(θ) = θ^e-'^Hixθ), θ>0, (AΛ)

OΊΓ(m-l)/2 r

«M - Γ((m-

To solve (01) numerically we will discretize over the ranges of both x and θ. Let

θii . ., θn$ be n^ equally-spaced values from 0 to u, and xι,..., a;n:c be n^ equally-spaced

values from 0 to £.999- We will approximate h by an n^-vector 7, with Λ(%) = jj, j =

Define the n$-vectors 6t , i = 1,..., nX) to have entries

!q(xi,αo), j = 1,... ,n$ , 04.-6)

evaluated using (3.12), (7.4), and (7.5). The function H in (A.5) can be evaluated

using numerical integration. Then a discrete approximation to Q is

7)
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so a discrete version of (01) is

minimize
7

subject to lα. jj > 0, j = 1,... ,n# .

(02) 16. Σ%ι Ίjθ™-1 = Γ(m/2)/(2πm/2)

2. Σ£i7ί*y(*i) = 1, where y2 = χ ^ o ) .

Constraint 1 in (01) has been split into two parts; part lb. follows from (A.2).

To express (02) in the standard form of a linear program we can introduce dummy

variables <i,.. ., tUz, and write (02) as

minimize v^ ,
7 Z^U

2 = 1

(03) subject to la., lb., and 2. in (02), and

3. u:

One-sided testing

The optimization problem (02) may be adapted to the one-sided testing case of

Section 3.2 with the following modifications. We now have Bfreq as in (3.9), so that the

breakeven point becomes y = Φ - 1(αo), and the upper limit of integration in (A.I) is

x 9 9 9 = Φ~1(.999). The bij in (A.6) are calculated using (3.9) and

sθ{x) =

Finally, since g (and 7) in this case has mass 1 on the positive real line, we replace

constraint lb. of (02) with

710

lb.

Choice of the objective function:

Note that since Bfreq is 0(eχ2) for large x, while Bg is only 0(ex) for any g, the

two functions can, at most, remain close up to some finite x. We therefore restrict the

integration in (A.I) below x.999, Table l's upper bound on plausible values for x under

the null model.

Other objective functions could be considered. The squared-error criterion
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fX.999

Qι(g, α) = / (B9(x)/Bfreq(χ α0) - l)2dx/x.999 (A.9)
Jo

for example results in a quadratic, rather than linear, program. Besides computa-

tional simplicity, we prefer Q to Q\ because Q penalizes values of Bg far from £?freq less

heavily, and so matches the two functions more closely near x = y where their values are

equal. This is the region of primary interest.

The objective function could compare the Bayes factors on the log scale, using, for

example,

ΓX.999

Q2{g,θί) = / \\ogBg{x) -\ogBfτeq(x;α0)\dx/x.999 . (A10)
Jo

Minimization over g is far more difficult in this case though, since Q<ι, unlike Q or

Qi, is not convex in g.
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DISCUSSION

R.E. Kass

Carnegie-Mellon University

At this moment in the history of statistics, there seems to be less interest in the great

Bayesian/frequentist divide than there had been in the nineteen seventies and eighties,

when Efron (1986) asked, "Why isn't everyone a Bayesian?" We are all eager to get

on to solving the many challenges of contemporary data analysis. Yet, we have our

foundational conscience speaking to us; it continues to prod, with occasional welcome

reminders from papers such as this one by Efron and Gous. How can these two great

paradigms co-exist in peace? Where are the resolutions? What conflicts are irresolvable?

And where does this leave us?

To me, the issues raised in this paper continue to be interesting. I find the authors'

discussion clear and their new results informative. On the other hand, there are those in

the Bayesian camp who see little relevance of all this to things they care about. Nearly all

statisticians I have come across, regardless of philosophical persuastion, freely admit to

thinking Bayesianly. Among the converted, however, there is a kind of Cartesian credo:

"I think Bayesianly, therefore I am Bayesian." The impatience of the true believers

comes in part from their taking the next step: "I think Bayesianly, therefore I must

place all of my statistical work within the Bayesian paradigm."

A second, equally fundamental difficulty many Bayesians (and some frequentists)

have with the perspective articulated in this paper, is in the importance it places on

hypothesis testing and model selection. As the authors note, a recent version of this

dissenting point of view is in Gelman and Rubin's discussion of Raftery (1995).

One might say that a major practical goal of this paper is to dissect Jeffreys's re-

mark that his methods and Fisher's would rarely lead to different conclusions (Jeffreys,

1961, p. 435): "In spite of the difference in principle between my tests and those based
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