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One of K populations is chosen according to some

given selection procedure. Population i has the

parameter θ associated with it The θ value for the

chosen population is to be estimated using only the data
on which the selection was made. Some general results
relating to Bayes and minimax rules as well as the
minimax value are obtained. Applications of these
results to particular problems are given.

1 Introduction.

One is often faced with the problem of having to choose one of a

number of options Once data are collected and criteria established the

selection rule is usually straightforward More often than not the selection

procedure will be a simple function of the order statistics. For example, a

manufacturer would simply select the machine from among K machines that was most

productive during some trial period. It is often important to be able to say

something about the likely result of the chosen option The above manufacturer

would want an estimate of the expected mean output of the selected machine.

From a practical point of view the main concern in problems such as

these is the possibility of overestimation if only data from the chosen
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population are used. It seems clear that a product
f
s performance in a contest

in which it has won is likely to be above its mean performance The problem of

inference after selection has received relatively little attention in the

literature. Our bibliography and references therein contain the bulk of the

work on this problem. When it has been studied it is usually with respect to

some particular problem.

In this paper we develop some basic theory regarding minimax decision

making for such problems. Minimaxity seems to be a well suited criterion in

this setting. Unbiasedness on the other hand does not seem to be a good

criterion in such problems. Putter and Rubinstein (1968) have shown that no

unbiased estimator exists in the normal case and Sackrowitz and Samuel-Cahn

(1984) have shown that the U.M.V.U.E. is inadmissible in the negative

exponential case. The results given here yield methods for finding and

identifying minimax estimators in some cases as well as answering questions left

open in previous works in this area. We only consider continuous random

variables so that ties can be avoided. We remark that different methods for

breaking ties can lead to different minimax values

2. Notation and definitions.

Our model is as follows. Let π ,...,ττ be K populations, π.
l K. j

characterized by some unknown parameter θ. ε Θ, j=l,...,K, for some set Θ. Let

X., i=l,...,K, be independent continuous random variables with density function

f(x|θ ). Let _X = (X
±9
...,X

K
) and θ_ = (θ ,...,θ ). I(_X) is called a selection

rule if

(2.1) I(X) = j if X. ε A., j-l,...,K.

where A. is a given partition of the space of Jί values This terminology

implies that population π. is selected if IQO = j. We wish to make inference

about θ
 f
 v relative to the loss L(a,θ

 f
 . ) , which notedly is a random variable

A decision rule will be ψ(X) with the risk function R (ψ,θ) - E L(ψ(X),θ )
~ I θ __ U

χ
)
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which is not a random variable. For a joint prior distribution, G_
9
 over the

space of vectors θ denote by G ( |x) the posterior distribution of θ
τ / v Λ

 given

3C = _x. The Bayes risk of ψ relative to Ĝ  is denoted by r (ψ,(J) while the Bayes

rule with respect to G will be denoted ψ_(X). For short write r_(G) instead
— (, — i —

of r
I
(ψ^,G).

We will find it very useful to relate this problem to the more

standard inference problem which we shall call the "component problem." In the

component problem the random variable X has density f(x|θ). The loss function

is L(a,θ), a decision rule will be denoted by φ(x), R(Φ,Θ) = E L(φ(X),θ) is the

risk function. If G is a prior distribution on θ then the posterior

distribution of θ given X
 s
 x is denoted by G( |x). The Bayes risk of φ with

respect to G is r(φ,G), φ_ is a Bayes rule with respect to G and r(φ^,G) is

G G

abbreviated to r (G). Lastly the posterior risk of φ is r^CφjX) -

G

E{L(φ(X),θ)|x = x} and r fφ_,x) is abbreviated to r
r
(x) .

G G **

3. Theoretical results .

We begin by exploring the relationship between Bayes rules for the

selected parameter and component problems for independent priors. Lemmas 3.1

and 3.2 are stated without proof as they essentially follow from definitions.

LEMMA 3.1. Let the joint prior distribution _G(Θ) » Π G.(θ.) so that the θ.

j = 1
 3 3 3

are independent. Then the posterior distribution of
 θ
y/

χ
\ given X_= x. satisfies

(3.1)

LEMMA 3.2. Let I( ) be a selection rule and assume that G(&) = Π G.(θ.). Then

for each j»l, ...,K

(3.2) ψj(χ) - φ
G
 (x

I ( χ )
) for

An interpretation of (3.2) is that when the θ. are independent the
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Bayes rule ignores the selection procedure in the sense that the component Bayes

rule is always used (together with the observation of the selected population)

A case of particular interest is G.
 s
 G all j-l,...,K so that the θ. are i.i.d.

each with c.d f. G. Then (3.2) becomes ψ_(x) - <kΛx
τ
, O ϊt should be noted

VJ — I* IΛX

that even in this case it does not follow that r (G) - r (G). The following

theorem given necessary and sufficient conditions for this to be true for all

selection rules

THEOREM 3.1. Let θ. be i i d with distribution G. A necessary and sufficient

condition for the Bayes rule for
 θ
-r/

χ
\» given in (3.2), to have Bayes risk equal

to r (G) for every selection rule I( ), is that the posterior risk for the Bayes

component problem, r
G
(x), not depend on x.

Proof . Sufficiency follows immediately, since by Lemma 3.1 the posterior risk

of (3.2) the Bayes rule of
 θ
-r/

χ
\>

 i s
 J

u s
t

 r
G^

x
I(x)^*

 T o
 P

r o v e
 necessity,

suppose r
G
(x) is not constant (on a set with positive probability under the

marginal distribution of X.) Without loss of generality take K - 2 and let

I(x) = 1 if ^ ( x ^ >
 r
G^

x
2^

 a n d ι
($)

 = 2
 otherwise. Also let the set

A = {x : I(x) = 1 } and let f( ) denote the marginal density of X. Then simple

manipulations of the integral yields

r*(G) = r*(G) + / ^ r ^ ) - r
G
(x

2
)]f(x

χ
)f(x^dx^ > r*(G)

A

by our assumption.

Remark. An interesting phenomenon occurs in the related problem of

estimating all parameters in the following way. Let I ^ x ) , .. .,I
κ
(_x) be a set of

selection rules such that for each j^, I
±
(x) φ IjίjO for i ?t j (i.e., no

population is chosen by more than one rule). Let φ(x) be any decision rule for
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the component problem, and suppose ψ (x)
 β
 φ(x

τ
 ) is used to decide on θ . One

i i

K K

may then be misled to believe that Σ R (ψ
1
,^) * Σ R(Φ,Θ.), arguing, for

i=l i i=l

example, that "the order of the presentation of the problems can make no

difference." This is not correct. The somewhat surprising fact is that the

above statement is correct, for any φ, if the risk function is replaced by the

Bayes risks. That is, if G_ is a prior distribution which

renders θ. independent, θ. with distribution G. , then

K K

Σ r ( Ψ S G ) = Σ r(φ,G ).
i=l i i=l

We can now turn our attention towards minimaxity.

THEOREM 3.2. A sufficient condition for ψ(x_) to be minimax for θ . . is that

there exists a sequence of Bayes rules (with respect to G
n
) for the component

problem, whose posterior risks are independent of x, and such that

R
τ
(ψ,θ) < lim r*(G ) for all θ.

1
 " n+oo

Proof. This follows immediately from Theorem 3.1 and Theorem 2 of Ferguson

(1967), p. 90.

Up to now we have considered a fixed number, K, of populations. In

the remainder of this section we will be interested in the minimax value as a

function of K. We will be using a fixed order statistic as selection rule

although it will be seen that the results obtained can be extended to other

types of selection rules. To avoid confusion we set X^ - (X^,•• ,Xg),

θ^ « (θ ,...,θ ), etc. To be specific we shall consider decisions about the

parameter of the maximal observation only, and let J
R
 =

 J
κ ^ K ^ denote the index

i such that X
i
 > X, for all j * i, j=l,...,K. For the remainder of this section

we consider a fixed loss function, L(a,θ), bounded from below, and hence without

loss of generality assumed to satisfy L(a,θ) > 0. Let v
R
 denote the minimax

value for deciding on θ and assume v < ~, all K. Sometimes it is useful to
J
K
 K

think of X p . .Xj^ as the observations at hand at time K.
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Theorem 3.3 states that under a simple condition v < v . The

K K+l

content and proof of this theorem is a formalization of the following intuitive

reasoning, from Nature's point of view: If the distributions are such that by

proper choice of θ Nature can make the probability that ^κ+l^ibc+l^
 =
 ^K^K^

as close to one as desired, then in the K+l dimensional problem Nature would be

no worse off than in the K dimensional problem.

THEOREM 3.3. Let X,, X2, be independent continuous r.v s. where X^ has

density f( |θ ). Suppose the family of distributions F( |θ), θ ε 0, satisfies

(I) For every ε > 0 if x is such that P
Q
(X < x) > 0 for some θ then there

exists a θ,= QΛx,ε) such that P
Q
 (X < x) > 1-ε.

0 0 Θ
Q

If L(a,θ) > 0, then v
R
 < v

R + χ
, K=l,2,... .

Proof . We first give a proof which assumes that least favorable distributions

exist (as proper priors) and that Bayes rules exist for all proper priors. In

particular let G
v
 denote a least favorable distribution for the K dimensional

— K

problem. Also let φ,, i^KjK+l denote a minimax rule for the i dimensional

* *

problem. We note that φ is Bayes with respect to G^. Fix θ and define the K+l

K K

dimensional distribution H
Q
(Θ__ .) as follows: θ__ = (θ.,...^^) have joint

σ —K+l —K 1 K
*

distribution Ĝ . and are independent of ΘT,,* which is equal to θ with probability
Q

1. Let δ,_
t1
 denote the Bayes rule with respect to H

Q
 (for all K+l dimensional

K+l σ

problem). We define the set A = {x^,, :J
v
(Xj.) - J

v
,
Λ
ί]^,

Λ
)} and examine

—K+l K. —K. K+l —K+l

properties of 6 .. Since Bayes rules can be obtained by minimizing the

K+l

posterior risk it follows from the definition of H
Q
 that
D

φ (x ) for x ε A

O Λ \ c. v , v K K K+1

•3) δ (x )
irrelevant otherwise

and
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(3.4)
> 0 otherwise

The Bayes risk is the expectation of the l.h.s. of (3.4) with respect to the

marginal density. The marginal densities (for the K and K+l dimensional

problems, resp.) are

W%> - U A£<*ilVd<£(£>and V W GΪ
—K 0 1—1 σ —K.

By the definition of the minimax value

(3.5) v
R + 1

- gup inf r ζ ό , * ^ ) > r(6
K + 1

,H
Q
) for all θ ε θ.

—K+l o

Also let ε > 0 be given. Since the r .v s are continuous

r * * i *
K. K G K ~K JI/N^W) **• k__ *^ J _ I i

X Λ. Jx — K —Λ. 1 - 1

(3.6)
* κ

= l im / . . . / E * {Lίφ^ίx ) , θ . . x ) | x J f r *(Xχ,) Π dx, .
Vj_. IX IN. ϋ τ ^ y X τ r / Jλ V7 τ r Ix -ί — 1

Thus for given ε > 0 there exist a y
n
 =

 v
n^

ε
^
 s u c

^
 t n a

t the value of the

integral on the r.h.s. of (3.6) is > v -ε and P
n
(X < y

Λ
) > 0 for some θ. Now

K. ΰ U

let θ =
 θ

0
(y

0
>ε) be defined through condition (I). Then

θ
Λ
 a. K+l

Ω *

(3.7) > j u [ / . . . / E *{L(φ ( O , θ ( ) | O f * ( x κ ) Π dx ] f ( x |θ ) dx
yQ ^K K ^ JKC x* } ^ % " * i-1 i K+l 0 K+lyQ

y

/ °
( v

K
"

ε ) f ( x
K+ll

θ
0

) d X
K+l

—00

Combining (3.5) and (3.7) yields v > v
v
, since ε was arbitrary. If no least

K.+ 1 K.

favorable distribution or Bayes or minimax rules exist one can obtain a proof by

essentially repeating the above argument but using instead a sequence of
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ε-minimax rules, e-Bayes rules, etc... The only point that requires some care

θ *
is the relationship between δ . and φ as expressed in (3.3) and (3.4). This

KT 1 J\.

is resolved by noting that one method of constructing ε-Bayes rules is to use a

rule which comes within ε of minimizing the posterior risk for almost all _Xjr
+
i

(i.e. the rule is conditional ε-Bayes as well as ε-Bayes).

In the following example we show that if Condition I of Theorem 3.3 is

not fulfilled (yet all other assumptions are valid) then the result of Theorem

3.3 need not hold.

Example 3.1. Let Xi»X? ^
e
 independent uniform distributions on

[0,θ ] and [0,θ ] respectively. We wish to estimate θ
 f

 . with respect to

1 I ^ V%'

squared error loss, L(a,θ) = (a-θ) However the parameter space consists of

only two points; 0 = {1,2}. Easy computations show that in the 1 dimensional

problem the minimax rule is φ. where φ.(x ) = /2 if 0 < x < 1 and φ (x ) = 2

if 1 < x < 2 and the minimax value is v = (/? - 1) > .17. In 2 dimensions

* *
 Γ

_
the minimax rule is φ

2
 where φ (x ,x ) = (1 + /3)/2 if 0 < x < 1, 1=1,2 and

* /— 2
φ^(x ,x ) = 2 otherwise and the minimax value is v^ - (/3 -1 ) < .14. Thus
v

2
 < v

r

The following corollary, which follows immediately from Theorem 3.3

indicates how the result of that theorem may be used to find minimax rules (see

also example 4.2) for problems in which K is fixed.

COROLLARY 3.1. Under the assumptions of Theorem 3.3 if there exists an

estimator Ψ O O for the K dimensional problem such that

sup R(ψ,jL,) < v some i=l,.. ,K
a —K i

then ψ is minimax. (Usually v^ would be determined most easily for 1=1.)

Another immediate consequence of Theorem 3.3 is the following rather

general result.
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COROLLARY 3.2. Let X
1
,X

2 >
... be independent continuous random variables. If

has (location parameter) c.d.F. F(x-Θ ), θ = (-°°,°°) and L(a,θ) > 0 then

v
κ *

 v
κ+i

 a 1 1 κ = ! l
'

2
>

On the other hand v
R
 cannot increase with K too rapidly. We have

THEOREM 3.4. If L(a,θ) > 0, then v , < (K+lW/K.

Proof . Let φ
v
 be a minimax rule for the K dimensional problem, and let φ be the

rule for the K+l dimensional problem defined as follows: Drop, at random, one

of the observations different from X
 (

 .
9
 each with probability K Then

decide on θ by using φ with the remaining observations
J
κ+i

 κ

L e t
 ^

+ 1

 b e
 fixed, and let l

K + 1 ( i )
 - (

θ

1
f »

θ

i
_

1

 θ

i + 1
»

 Θ

K
+ 1

) > i s l
> >

κ + 1
>

and let JC^
+
w^x be defined correspondingly. Let A. = 2̂Eκ+i

 :
^κ+

,...,K+l, and B<
i }
 - ̂

+ 1 ( i )

 :
 V^C+l(i)

) = j }
 ' J

 = 1
» >

κ+1
> J ^

 τ h e n

K+l K+l
R
τ ίΦ»lir

+
i)

 = Σ
 L UΦ(x«

+ 1
),θ ) Π (f (x )dx

J
K+1 "^

+ 1
 j-1

 A
j "^

+ 1 J
 t-1 t

 t t+
 L

 +1K+1 ^
+ 1
 j-1

 A
j ^

+ 1 J
 t-1 t

K+l K+l K+l

K Σ Σ / L < Φ κ

( x * + i m > ' θ i > π ( f

θ

j-1 i-1
 A
j
 κ

^
+ 1
^ > J

 θ

K+l K+l K+l

(3.8) < K Σ Σ / π ^ V ^ K + K i V
6
- ^

 Π
^

f

i*i
 J

 t^i

K+l K+l K+l

K τ Σ !
 (i)

L ( Φ
K

(
2

K
+l(i)'

θ
i

) Π ( f
θ (

1=1 j-1 B Γ
; K

 ^
+ U l ί

 J t=l t
3

-1
 K + 1

 -1
κ
 *

 R
j<*κ -5

κ+1
(i)> '

 κ ( κ + 1 ) v
κ -

i—l K

where the first inequality in (3.8) uses L > 0, and the last follows since φ__ is

K

a minimax rule for the K-dimensional problem. Taking supremum over θ yields
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the theorem. Clearly the proof carries over also when no minimax rule exists

for the K dimensional problem, and φ is chosen to be any ε-minimax rule

We chose to concentrate on the maximal observation, J^ Clearly,

however, the arguments carry over quite easily to any other fixed order

statistic. Similar results carry over also to other selection rules, such as

the median. Note that if φ
τ
.(x.,) is any (fixed) function of X

τ
 only, and one

K -K J
κ

uses ψ to decide on θ , then an argument similar to that of Theorem 3.4
κ J

κ
yields b

R + 1
 < b

κ
(K+l)/K, where b

R
 = sup R ί Ψ j ^ ) .

In example 4.1,(b), we show that for the Normal distribution v + °°
K

4. Examples.

In this section we investigate minimaxity for some particular

distributions and try to relate the results to those of the previous section.

Except for the normal case (where some theoretical results are also established)

we will simply report the outcomes without exhibiting the calculations

o
Example 4.1. The Normal distribution: Let X be N(θ,σ ) and

2 2
let θ be N(μ,v ). The posterior distribution of θ given x is then N(μ ,v )

2 2 2 2 2 2 2 2 2
where μ = ( σ μ + v x ) / ( σ + v ) and v = σ v /(σ + v ) . For the component

2
problem μ. is therefore the Bayes estimator and v is the posterior risk for the

2 2
Bayesian problem with squared error loss L(a,θ) = (a-θ) . Since v is

independent of x it is the Bayes risk for the Bayes rule for any θ . . .

2 2 ~~
Now let v -• °°. The Bayes risk then tends to σ , and hence the

2
minimax value for θ , * and any selection rule I( .) and any K is at least σ .

lVΛ

For K=2, X Q } (the largest order statistic) as an estimator of θ has risk

2
 K

function equal to the constant σ , and hence is minimax. This result is well

known. See e.g., Cohen and Sackrowitz (1981), where the problem of finding

"reasonable" estimators for θ for the normal distribution, is treated in
J
κ

detail. (By symmetry of the normal distribution, the problem of estimating

the θ corresponding to the minimum X< is analogous to that of estimating θ .)
J
K

The result above does not generalize to K > 2, and indeed, for K > 3

both the minimax rule and value are unknown. Below we prove the following facts
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(using the antirank notation of q = J (X)):
1 K.

(a) X, ̂ is not miniraax for K > 3; and (b) v + » as K + .

Proof of (a): For C > 0 let φ (X) -
 x
π ) ~

c τ h e n

(4.1) R (Φ~,θ) = R
Λ
 (Φ

Λ
,Θ) + C -2C E

Q
(X

Now E
Q
(X,

l λ
-θ ) > max EX.-EΘ > max θ - max θ = 0 and E

0
(X,

l Λ
- θ ) tends to

1 (1) q
χ
 i

 i q
l i

 X
 i 1 (1) q

χ

0 only if the difference between max θ and all other θ. tends to °°. By Theorem

3.1 of Cohen and Sackrowitz (1981) R (φ
Λ
,θ) is maximal if θ =...=θ

v
. For this

q 0 - IK
2 2 2 2

case R (Φn,θ) - σ (a__ + b__) where a__ = Var( max Z ) and b = E( max Z )
q Ί U " ~ Λ. & K. . , . . 1 Js. . _ , ^ l

JL Λ i~J. ) i jK X"~lj jl\.

and Z. are i .i d. N(0,l). a and b^ are extensively tabulated. For

K=2, al + hi = 1, and for K > 3, a j + b j > 1. For K > 3, R(φ
π
,θ) tends to σ

2

only when the difference between the largest, or two largest θ and all other
2

θ tends to °°. Otherwise it is larger than σ . Let K > 3,

0 < ε < ( a 2 + b 2 - l ) σ 2 , and Ω = {θ:max R ( φ n > θ ) - R ( φ n , θ ) < ε} . A l s o , l e t
K K ~ ^ q l 0 ~ ^l ° "

inf E
Ω
(X

/ l X
- θ ) = 6. By our previous argument δ > 0. Now let

^εΩ
 θ ( 1 ) q

l

0 < C* < minίε
1
 ,26} . By (4.1), for any θ^ ε Ω, max R (Φ

Q
,_Θ) -

QεQ,
 q
 1

^ • c * ' ^ "
 R

q i

(
*0'V -

 R

q i

(
*C* V •

 C
*

[ 2
\

{
\ l ) - \^ -

 C
*

] > C
*(

2 δ
"

C
*).

and for any

% ε Ω, max R U
Q
,β) - R (Φ^,^) > max R U

Q
,9) - [R %,%) * C*

2
] >

U£i6 1 1 UGofc 1 1

ε - C*
2
. Thus sup R (φ θ)-sup(φ θ) = inf {max R (Φ

n
,jO - R

n
 (Φ

Γ
*,Θ)} >

θεR
 q

l ° ~ θεR
 C

* " θεR θ^εR
 q

l ° "°
 q

l
 C

 "

min{C (2δ-C ),ε-C } > 0 and hence φ is not minimax. Whether φ is admissible

or not, is still and open question.

2
Proof of (b). For simplicity set σ = 1 and consider the Bayesian problem of

estimating θ , where the θ are i.i.d. with prior P{θ = 0} = 1-P{Θ =ξ} =
J

v
 i i i

-1
1-K , 1=1,...,K. By Lemma 3.2 the Bayes estimator is

ξ
κ
[l+(K-l)exρ(-ξ

κ
X

J
 + ξ

2
/2)]~

1
. Let B

R
 be the Bayes risk of this estimator. We

K.
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shall show that for proper choice of ξ , B + » as K + ~. Since v > B the

K. K. K K
result then follows

(4.2) B
R
 > P{β

1
-...-θ

κ
- 0}ξjE([l+(K-l)exp(-ξ

κ
Y

κ
+ξJ/2)]

 2
)

1 /?
where Y„« .max __Z. and Z ~ N(0,l). Let ξ = (2 log K) ' . Then

K.1—1, ,K.X 1 K.

E([l+(K-l)exp(-ξ
κ
Y

κ
+ξ^/2)]"

2
) > ̂ P{exp(-ξ

κ
Y

κ
+ξ

2
/2) < K"

1
}

1 1/2 —1 Y —1
- τ

p
ί

γ
v > (2 log K) ' }. Since P{θ-...-θ - 0} = (1-K ) + e , it follows by

(4.2) that is suffices to show that

1/9 K 1/9

(4.3) lim 2 log K P(Y > (2 log K)
i / Z

) = lim 2 log K[l-Φ*((2 log K)
1 / Z

)]

For x > 0 (See e.g. Feller (1968), 2nd ed. p. 166)

(4.4) φ(x)x ^l-x
 2
} < l-Φ(x) < φ(x)x

From (4.4) we have

(4.5) 1 > lim Φ
K
(/ZΪ5gK) > lim[l

It follows from a well known inequality (see e.g. Hardy, Littlewood and Polya

(1934) 2nd ed. p.39, paragraph 41) that for all x

l-Φ
K
(x) > K Φ

K 1
(x)(l-Φ(x)), and thus by (4.4)

(4.6) l-Φ
K
(x) > K Φ

K 1
(x)φ(x)x

Setting x = /21ogK in (4.6), multiplying by 2 log K, we have

lim 2 log K[l-Φ
K
(/21ogK)] > lim {(2 log K)K Φ

K
"

1
(/2logK)(/Tπ)κ"
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x (2 log K Γ
1 / 2

[ 1 - ( 2 log K)""
1
]} = « by (4.5)

which establishes (4.3) and completes the proof.

A good example of the use of Corollary 3.1 is

Example 4.2: The Uniform Distribution. Let X.̂  be independent,

X
±
 ~ U(0,θ

i
), i-l,...,K. The loss function is L(a,θ) = (a-θ)

2
/θ

2
. It can be

shown that for one dimension the minimax rule is 3X^/2 and has constant risk of

1/4, i.e. v
λ
 - 1/4. Consider the estimator ψ(X) = 3X_ /2. Suppose, without loss
1
 "

 J
κ

of generality, that θ > ... > θ > 0. After somewhat tedious calculations it

1 K.

can be shown that the risk function of ψ in the K dimensional problem is

K—1 θ ft 1 f t

(
4.7) I

 +
 3 I ψlgu I X ( ψ ) h ^[1 ̂  I(^

i
)]}

+
 3 I ψljg^u- -I- X(ψ)h - ̂[1- ̂

 s
I

1
(^

i-1
 t ϊ l

θ
t
 s s

It is easily seen that the curly bracket portion of (4.7) is nonpositive for all

i < 3 and the risk function is < 1/4 for K < 4. Hence v^.. .=v^=l/4 and ψQO

is minimax by Corollary 3.1.

Example 4.3. The Negative Exponential Distribution; Let X ^ . .jX^ be

i.i.d. each with density f
Q
(x) - θ exρ(-θx), x > 0, θ > 0. Let the prior on θ

be gamma with density g(θ) - Γ(r)"
1
ξ

Γ
θ

r
~

1
e'"

θξ
 for θ > 0 where r > 0, ξ > 0.

2 2 —1

Using loss L(a,λ) = (a-λ) /λ to estimate λ = θ , straight forward

calculations yield φ(x) - (x+ξ)/(r+2) as Bayes estimator with posterior risk

(r+2) for the component problem. By Theorem 3.1 this will be the Bayes risk

for
 λ
j /

χ
\
 f
or any selection rule I( ). This example was considered in detail

by Sackrowitz and Samuel-Cahn (1984). Letting r ->• 0 yields a minimax value of

at least 1/2 for any selection rule !(.). The corresponding Bayes rule for the

component problem tends to (x+ξ)/2 and letting also ξ •> 0 we have x/2 as a

candidate for a minimax rule for the component problem. It is easily seen to

have constant risk 1/2, and hence is minimax. The "natural" candidate for

minimax rule for λ is therefore —X. . . For small values of K it is minimax
J
κ
 L u ;

(with nonconstant risk), but for K > 8 it is not. It was however shown (see
Sackrowitz and Samuel-Cahn (1984)) that the estimator of λ given by

J
K
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2 ( 1 ) "
X
( 2 ) '

 h a S c o n s t a n t r i s k
 I/

2
>
 f o r a n

Y
 κ
>
 a n d

 hence, by Theorem 3.2 is

minimax. Note that this is an example of a rather unusual situation, where the

limit of the Bayes risks yields the minimax value, but the corresponding limit

of the Bayes rules does not yield a minimax rule.
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