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The simple linear regression model y - α + 3x + ε
with i i.d uniform errors is considered, and some
properties of the maximum likelihood estimators (MLE

f
s)

of α and 3 are derived. In particular, the asymptotic
mean square error of the MLE of 3 when α is known to be

zero is proportional to (Σ |x |) instead of

to (Σ x ) as it is for the usual least squares

estimator (LSE) . The MLE's are also superefficient
compared with the LSE's when both α and 3 are unknown.

1. Introduction.

Consider the simple linear regression model with i.i.d. errors

(1.1) y
jL
 = α + 3x

±
 + e

±
, i-1,2,...,

where we are interested in estimating the parameters α and 3. The usual LSE
f
s

of α and 3 are MLE
f
s when the ε. are normal, but not when the normality

assumption fails to hold. We shall obtain some properties of MLE's when
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366 ROBBINS AND ZHANG

the errors are uniform (-0/2,0/2).

There are three cases of interest: the one-parameter model with known

α and 0, the two-parameter model with known α, and the three-parameter model

with unknown α, 3 and 0. We shall always assume α = 0 in the one and two-

parameter models without loss of generality, so that the regression line y = 3x

passes through the origin.

Let

(1.2) b_(t) = b_,
n
(t) = m a x

1 < i < n
 [ y ^ - t/ |x

±
 | ] , t > 0,

and

(1.3) b
+
(t) = b

+
,

n
(t) = m i n

1 < i < n
 [y./x. + t/|x

±
|], t > 0.

In the one-parameter model, a statistic b is an MLE of 3 if and only if

(1.4) b (0/2) < b < b
J
_(θ/2) a.s. .

n +

Since b
+
(θ/2) - 3 and 3 - b_(θ/2) are two identically distributed nonnegative

random variables and the observations y
i
 with x Φ 0 are sufficient for 3, we

shall estimate 3 by

(1.5) b = b (0/2), where b (t) = (b (t) + b (t))/2.
n n n + —

It will be shown in Theorem 1 below that the estimator b possesses certain

optimality properties.

In the two-parameter model, a statistic b is an MLE of 3 if and only

if

(1.6)
 b

-
( w

n
) < \ < V

w

n
) >

 a s
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where w
n
 is the MLE for θ/2 given by

(1.7) w = min [max |y. -tx
n
 t Ki<n

 X 1

When the x. are all non-zero,

(1.8)
 b

+
( w
n

)

and the unique MLE b is also given by

(1.9) max ly. - b x.I - w .
i
 "

 x

In the three-parameter model, statistics a and b
fl
 are MLE's of α and

3 if and only if

(1.10) max |y - a
R
 - b x | = min [max

1 < i < n
 |y - s - tx |

Ki<n s,t

When α = 0 and x. = 1 for all i, the models reduce to the classical

location-scale case in which

(1.11) b
n
 = b

n
(w

n
) = [(max

1 < i < n
 y

±
)

= midrange of the y^'s

and

= range of the y. ' s .

Again, we do not have a unique MLE in the one-parameter case. A statistic b
n
 is

an MLE if and only if it lies between b__(Θ/2) and b
+
(Θ/2), and it turns out that

(1.13) b (θ/2) = (max y.) - Θ/2 and

~ Ki<n
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( 1 . 1 4 ) b . ( θ / 2 ) = (min y ) + θ/2,
K i < n X

It is well known that

(1.15) n(b - β)/θ has the limiting density exp[-2|t|

and

(1.16) lim n
2
E(b' - β )

2
 - Θ

2
/2.

n

The results in this paper may be regarded as an extension of these facts

We summarize the properties of MLE's for the one, two, and three-

parameter models in Theorems 1, 2 (and 2
f
) , and 3, which are proved in Sections

2, 3 and 4 respectively. In Section 5 we consider the case when the empirical

distribution of x, to x converges, and give a number of examples.

THEOREM 1. Let y
1
,y

2
,. be given by (1.1) with α - 0 and known Θ > 0. Let b

n

t

be any MLE for β given by (1.4) and let b be given by (1.5).

n

(i)

2
 n

 2

(1.17) E[(b - β)/θ]
Z
 < 4/(Σ IxJ) .

n
 i=i

f f

(ii) The statistic b is an MLE for β based on y
1
,. .,y

n
, (b - β)/θ

has a symmetric distribution which does not depend on the parameter β and the

value of 0, and

(1.18) E[(b' - β)/Θ]
2

(iii) The following two statements are equivalent:
00

(1.19) Σ IxJ - »
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(1.20) There exist a sequence of statistics δ = δ (y ,...,y ,Θ) and two

numbers &^ and 3
2
 such that δ + 3. in probability when 3 = β.,

i-1,2, and 0 < < θ/maxjxj when max |x | < ».

(iv) Let δ^ =
 δ
n^

y
l'"*

> y
n

j Θ
^
 b e a s e c

l
u e n c e o f

 statistics. If

(1.21)
 m a x

Ki<
n
l

x
il

/ Σ
i=ll

x
il * °

 a s n

then the set

(1.22) B = { β: lim sup
n ^ - β )

2
 < 1}

has Lebesgue measure zero«

(v) If (1.21) holds, then

(1.23) lim
n
 { (d/dt)P{ - S)/θ < t}

and

(1.24) - 8)/θ]
2
 - 1/2

Remarks: (i) and (ii) give bounds for the mean square errors of MLE's

for 3. It follows from (iii) that (1.19) is a minimal condition for the

existence of a consistent estimator for β whether θ is known or unknown.

Actually, if (1.19) fails to hold, it is impossible to have an estimator that is

consistent at even two points with big enough difference. It is shown by (iv)

that b
f
 is asymptotically optimal and asymptotically locally minimax when θ is
n

known, (v) is the extension of (1.15) and (1.16) of the classical location-

scale model.
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THEOREM 2. Let yi>yo> be given by (1.1) with α = 0 and unknown 3 and θ.

(i) Assume that b
n
 is an MLE for 3. Then (1.17) holds,

(ii) Let the MLE of θ/2, w , be given by (1.7). Then 1/2-w /θ has a

nonnegative distribution that does not depend on the parameters 3 and θ, and

(1.25) P {1/2 - w /θ > t} < 2exp[-nt] for any t > 0.

THEOREM 2
f
 . Let y ^ y

2
, ... be given by (1.1) with α = 0 and unknown 3 and θ.

Suppose that x * 0 for every i. Let b be the unique MLE for 3 given by (1.9).

(i) The statistic b is almost surely uniquely defined by (1.9) for each

n, (b - 3)/θ has a distribution symmetric about zero that does not depend on

the parameters 3 and θ, and (1.17) holds.

(ii) The following two statements are equivalent to (1.19):

(1.26) lim (b - 3) = 0 in probability

(1.27) lim sup
n
 { (Σ

n

= = 1
 \κ

±
 | ) |b

n
 - 3 |/log(Σ^

1
 |x

±
 | ) } < e θ , a.s.

(iii) Suppose that (1.21) holds. Then as n •»• °°,

(1.28) (d/dt)P{ (^
= 1
|xj)(b

n
 - 3)/θ < t

o(D) /" (y/2)e"
y
l

t
ldG

n
(y)

where the distribution function G assigns

probability 2n(n + i)"
X
(n + i - I ) "

1

to (n+i)z
i
 + 1 - s ^ and z

i
, s^ are defined for each n as follows:

(1.29)
 S i

 = Σ^
a=1
 z , i - 1, ..., n

(1.30) (z., ..., z ) is the permutation of {|x.I/Σ?_.|x.' i=l,...n
I n i j-l j
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for which z. < z. < ... < z .

1 z n

G
n
 is such that

(1.31) G
n
(l) = 0, G

n
(c) > (c - 3)/(c -2) for c > 3.

COROLLARY 1. Suppose that x *. 0 for every i and (1.21) holds. Let b be

defined by (1.9) and G
n
 be the same as in (iii) of Theorem 2

1
. Then

(1.32) lim inf
n
 ( Σ ^ |x

±
 | )

2
E[(b

n
 - 3)/θ]

2
 > 1/2 ,

(1.33) lim sup
n
 (Σ*^ \x

±
 \ )

2
E[(b

n
 - 3)/θ]

2
 < 2 , and

(1.34) 1/2 < /" 2y
 2
dG

n
(y) < 2.

COROLLARY 2. Let α = 0. Then (b (w ) - 3)/w has a distribution symmetric about

n n n

zero that does not depend on 3 and θ, where b
n
(t) and w

n
 are defined by (1.5)

and (1.7) respectively. Furthermore, under the conditions of (iii) of

Theorem 2
f
,

(1.35) P { ( ^
= 1
|

X i
| ) | b

n
 " 3|/w

n
 > t }

= (1 + o(l))j" exp [-yt] dG
n
(y) , for any t > 0,

where G
n
 ( .) is defined by (1.28) through (1.30).

Remarks: (iii) of Theorem 2
f
 is again an extension of (1.15) and (1.16) of

the classical location-scale model. When x^ = 1 for every i, the distribution

function G
n
 is degenerate at 2. Corollary 2 can be used to construct an

asymptotic confidence interval for the unknown parameter 3. In Section 5, we

study the case when the empirical distribution of the x
i
 converges.

The LSE of 3 based on y ^ ..., y
n
 is 3

fl
 = Σ p r ^ / Σ ^ , and
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E
(3 - ρ )

2
 « Var(ε)/ Σ?x?. When (Σ

n
|x.I)

2
 tends to infinity at a faster rate

than Σ \ , by (i) of Theorems 1, 2, and 2
f
, the MLE

f
s t>

n
 are superefficient

compared with the LSE 3 for the uniform error case. Huber (1973), Bickel

(1973), and others have considered the so-called M, R, and L-estimators in

linear regression. These robust estimators are asymptotically normal, with

asymptotic variances proportional to (Σ x ) , and hence b is again

superefficient compared with them. This phenomenon is not surprising if we

regard estimating 3 as a generalization of the problem of estimating a location

parameter from i i d uniform observations. In fact, if x^
 s
 ... = x

fl
 = 1,

then b is just the midrange of the observations, which estimates the center of

the uniform distribution with variance proportional to n . When a family of

distributions does not have a common support the estimation problem is often

said to be non-regular. Usually, varying support enables one to find estimators

with a superior rate of convergence. The non-regular case for a location

parameter has been studied by Kempthorne (1966), Polfeldt (1970), Woodroofe

(1972), Giesbrecht-Kempthorne (1976), and Hall (1982). There are possibilities

to generalize some of their results to the linear model by combining the methods

of the present paper with those of Bickel (1973). Part (ii) of Theorem 2 is

analogous to results of Lai-Robbins-Wei (1979) and Wu (1981). Most results of

Theorems 1, 2, and 2
f
 can be generalized to the three-parameter model, and some

of them can be generalized to the multi-linear regression model under

appropriate regularity conditions of the design matrix. An extension of part

(i) of Theorem 2 to the case α Φ 0 is provided as follows.

THEOREM 3. Let y j , y 2 , . . . be given by (1 .1) and n > 3 . Let a and b be any

MLE's of α and 3 given by ( 1 . 1 0 ) . Then

( 1 . 3 6 ) E [ ( β . α ) / θ ] 2 < 6 4 [ r Γ 2 + m

2 ( Σ j | x - x | ) " 2

n . α ) / θ ] 2 < 6 4 [ r Γ 2 + m

2 ( Σ j β l | x 1 - x n | ) " 2 )

(1 .37) E [ ( b n - 3 ) / θ ] 2
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where x is the average of x^, . , x
n
 and π^ is the median of Xj, ...,

Remark. Since

(1.38) (Σ»|
Xi
 - x J )

Z
 > n(m

n
 - ί

the estimators a and b are again superefficient compared with the LSE's

for α and 3.

2. Proof of Theorem 1.

We assume without loss of generality that 3 = 0, θ = 1, and x > 0 for the

proofs of (ii) and (v), which will be given first. Let

(2.1) b
+

(2.2) b_ - m a x
1 < i < n

[ (
y i
 - 1/2)^] =

 m a x

1 < i < n
[ (

ε
i " l/2)/x

±
]

(2.3) S

Then P{b
+
 > 0} - P{b_ < 0} - 1, and for

any t > 0, s > 0, and 1/2 - sx* > tx* - 1/2
n n

(2.4) P{b
+
 > t and b_ < -β}

* P{l/2 - sx > ε. > tx - 1/2 for every i=l, ..., n

^
=sl
 log(l - tx

±
 - sx

i
)]

Therefore

(2.5) P{b
+
 > t} - P{b_<-t} <
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(2.6) Eb
2
 = Eb

2
 = 2 QHb

+
 > t} tdt < 2/(Σ*x

±
)

2
, and

(2.7)
 E

(
b

n
>
 < E

<
b
+
 +
 O /

4 <
 l/(Σ

lX±
) , since b

n
 - (b

+
 + b_)/2,

which proves (1.18).

Let Z p . .,z
n
 be given by (1.30). Taking derivatives on both sides of

(2.4),

(2.8) (d/dt) (d/ds)P { (Σ^
X i
)b

+
 > t and (Σ

n

X i
)b_ < - s}

Σ i = l Σj=i z i z j e χ P [ Σk=i l o s ( 1 " t x

k " s x k ) ] < e x p [ " t - s ]

Under the condition (1.21), for any t > 0 and s > 0

(2.9) (d/dt) (d/ds) P { (Σ^x
±
)b

+
 > t and (Σ^

Xi
)b_ < -s}

(1 + o(l))exp[- t - s] as n tends to infinity.

Integrating over the line (t -s)/2 = u, we have by (2.8) and (2.9)

(2.10) (d/du) P{(Σ
n

X i
) b

n
 < u} = (d/du) P{(Σ

n

Xj
,) (b

+
 + b_)/2<u}

(1 + o(l))e"
2
l

U
l

To prove (iii) and (iv) we shall still assume that θ = 1 and
 X i
 > 0 for

every i. Let f (y ,..., y ) be the density of y
1
,...,y

n
 and define

(2.11) A (s,t) - { (y ,..., y ): f (y ,..., y ) = f (y ,...,y ) = 1}
i i i. Li s l n L i n

(2.12) A(s,t) =
 n
Q

1
 A

n
(s,t).
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By the definitions,

(2.13) P
β
{A(s,t)} = exp[ Σ*log(l-|s-t|

Xi
)

+
] for 3 = s,t.

It follows from (1.20) that for any 0 < ό < |0 - B |/2

(2.14) lim P
Q
 {A (3,, 3

0
) ίl [|δ - 3, | > δ} = 0 for i = 1,2.

n 3. n 1 2 ' n i' '

Since the likelihood ratio is unity on A ($,&), (2.14) implies that

v
s

2
) n [|δ

n

Hence, by (2.12) and (2.13), (1.20) implies that

exp[ Σ* log (1 - |β
χ
 - 3

2
| x

i
)

+
 ] - 0 for some 0 <

which implies (1.19). That (1.19) implies (1.20) is clear by (ii).

We shall assume that the set B defined by (1.22) has a positive

Lebesgue measure and prove (iv) by contradiction. Let 6 > 0 be small

enough that y(B(δ)) > 0, where μ is Lebesgue measure and B(6) »

{3: lim sup E
o
(δ - 3)

2
/E

Q
(b - 3 )

2
 < 1 - 6}. Since B(δ) can be covered by

n p n P n

an open set A with arbitrarily small μ(A - B(δ)), there exists a finite open

interval B* = (3
χ
, 3

2
) such that μ(B* Γ) B(δ)) > (1 - δ/16)(3

2
 - 3

χ
) > 0.

Let b
+
 and b_ be given by the first equations of (2.1) and (2.2).

Since P
o
 {b < 3 < b,} = 1, we may assume that

p — +
b < δ < b^ a.s. so that
- n +

(2.15) E
β
(δ

n
 - β )

2
 < E

g
 [<b

+
 - β )

2
 + (b_ - β)

2
] < 4/( Σ ^ )

2
 , by (2.6),
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It follows from (1,24), (2.15), and the definition of B that

(2.16) lim sup
n
 /

 2
 ( Σ V ) V ( 6 - 3)

2
d3

up. ix p n

< 4u(B* - B(δ)) + (1/2 - δ/2)y(B* Π B(δ)) < (1/2 - 6/4) (3
2
 - 3

χ
) .

On the other hand, the Bayes estimator for the uniform (3,, 32) prior

is b* = [min(b
+
, 3

2
) + max(b_, 3

χ
)]/2, and by (2.5) and (1.24),

(2.17) lim
n
 E

6
 (b* - 3 )

2
 ( Σ ^ )

2
 - 1/2 for any 3

χ
 < 3 < 3

2

Hence

lim inf J
 β

1

^hz^h^l - 6)
2
d6

which contradicts (2.16).

Finally, let us prove (i) . It follows from (1.4) and (2.4) that

E(b
n
 - 3 )

2
 < E[(b_ - 3 )

2
 + (b

+
 - 3)

2
].

Hence, (1.17) follows from (2.6). The proof of Theorem 1 is complete.

3. Proofs of Theorems 2 and 2
f
.

We shall first prove Theorem V . Set

(3.1) ε^ - ε
±
 if x

±
 > 0, and -ε

±
 if x

±
 < 0.

By the definition (1.9) of b
n
>
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(3.2) max { |ε^/θ - (t>
n
 - β) | x

 ±
 | / θ | : 1 < i < n, |

X i
| > 0}

= min
b
max { |ε^/θ - b|

X i
|| : 1 < i < n, |x

±
| > 0 }.

It is clear that the minimum of the right side of (3.2) is almost surely

t

uniquely reached at b - (b - β)/θ. Since { ε./θ, i > 1 } is a sequence of

i.i.d. uniform (-1/2,1/2) random variables, the joint distribution of the

sequence { (b - 3)/θ } does not depend on β, θ, and the signs of x
i
. We shall

therefore assume throughout this section that θ = 1, β = 0, and x > 0

for all i, so that (1.9) becomes

(3.3) »a*
1 < 1 < n

 K " V J = min
b
max

1<i<n
 \ε

±
 - bxj

J < 1/2.

Since by (3.3) b >t>0 implies that ε > tx - 1/2 for every i = l,...,n,

(3.4) P {b > t for some m > n} < P{ε^ > tx. - 1/2 for every i=l,...,n}
m ii

< exp[-t Σ?.!^]
 f o r a n

Y t > O

It follows that

Eb
2
 = /" P {b

 2
 > t

2
 } dt

2

n ' U n

J * P {b
n
 > t} tdt < 4 /£ exp[-t Σ^

 Xj
,]tdt

and the proof of (i) is complete.

It is clear that (1.27) implies (1.26), and the equivalence of (1.19) and
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(1.26) is implied by (iii) of Theorem 1 and (i). Therefore, for (ii) we need

only prove that (1-19) implies (1.27). Define the integers n
fc
 by

n -1 HL

V

Then for any t > 0,

P { (log Σ ^ Γ
1
 ( Σ^

X i
)b

n
 > t for some \ < n <

— 1 k+1
< P { k e b > t for some n > n }

< exp[- kte
 L

 ϊ
±
*yX

±
] by (3.4)

< exp[- kt/e].

Therefore

Σ " P{ (log Σ^x ) " ( Σ
n
χ ) b > t for some n^ < n <

< °° for any t > e,

provided that (1.19) holds, and the proof of (1.27) is complete.

To begin the proof of (iii), define

(3.5) d
± J
 = (ε

±

(3.6) w ^ = ε
±
 -

and for any fixed n > 2 let

(3.7) I « smallest i«l, •..,!! for which |ε - b x | « max |ε.-b x.|

(3.8) J = largest j-l, ..,n for which |ε. - b x j = max | ε -b x |

j n j Ki<n i n i
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Then I and J are uniquely defined with probability one, and

(3.9) b
n
 - β = b

n
 - d

u
, m a x

1 < i < n
|

ε i
 - b

Λ
 | = |w

χj
|

so that

(3.10) P { b < t }
n

Σ
i=i

 Σ
j=i+i /-*- I

 p {
l

a n d
 l

ε
k "

 d
ij

x
kl

<
l

w
ijl

 f o r

ε
k "

 s x
kl

 <
 l

w
i
 for

dP { w
± j
 < w |d

±j
 - s} dP {d

± j
 < s },

where the element of measure is

(3.11) dP ί|w
jL
.| < w I d

1#
 - s} dP { d

±
. < s}

sx.|})

I{|sx
i
|+|sx

j
|<l} (x

±
 +

 Xj
)dwds if Isx

±
I, |sxjI < 1/2.

Let zj z
n
 be given by (1.30). It follows from (1.21), (3.10), and (3.11)

that for large n

(3.12) (d/dt) P { ( Σ^
 X i
) b

n
 < t }

- |t|z
±
} + I{ 0 < w < 1/2 - |t|z.

I{|t|(z
1
 + z ) < 1 } dw

Σ
k-1

 ( U

|t|z < u
±
< 1/2} + I {|t|z < u.< 1/2 })



380 ROBBINS AND ZHANG

I{|t| (z
±
 + z.) < 1} du , u = 1/2 - w

J~ exp [ - v - Σ£
= 1
 max(v/n,|t|z

k
)]

Σ
i-1

 I { Z
i
 < v

/(n|t|)} (z
i
 + l/n)dv , v = nu

n|t|z n|

/ 2 /

(1 + o(l)) Σ* (z. + ... + z. + i/nXl+i/n)"
1
.

Γ , 1
 n
l

t | z
i

|exp[- (1
 +
 i/n)v - |t|(«

i + 1 +
 ...

 +
 «

n
)]J

 n
|

t
|

£i

where z
n + 1

 is defined to be infinity.

Let s , ..., s and G
n
 be given by (1.28) and (1.29). Then

-i r
Σ^ exp (

Si
 + i/n) (1 + i/n) lexp[ - (1 + i/n)v - |t|(l - β

exp [ - |t| ((n + i)z
±
 + 1 - β

±
)].

[<β
±
 + i/n)(l + i/n)"

1
 - (s

jL
_

1
 + (i - l)/n) (1 + (i - D/n)"

1
]

(3.13)

= Σ^ exp[- |t|((n + ±)z
±
 + 1 - β

±
)] .

n(n + i)
 X
(n + i - l ) "

1
! ^ + i)z

±
 + 1 - s

±
]

- / " (y/2)exp[- |t|y]dG
n
(y) .

Hence

(d/dt)P { ( Σ° x
4
)b < t }

o(D) / "
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which proves (iii).

To prove Theorem 2, (i) follows from (i) of Theorem 1. For (ii),

P {1/2 - w > t } - 2 P {1/2 - w > t and b > 0 }
n n n

< 2 P { ε > - 1/2 + t for every i » 1, ..., n }

< 2e-nt for any t > 0.

Since P {w < 1/2 } - 1, the proof is complete.

Finally, we prove Corollary 1. Since (1.32) and (1.33) follow from Theorem

2
f
 and (1.34), and the second inequality of (1.34) is trivial, we need only

prove the first inequality of (1.34), which is purely analytic. Consider the

design in which x
 s

 x if n
 s
 ki + i for some integers k and i = 1,..., m where

m is fixed. By the definitions, G
n
 converges to G

m
 weakly. It follows from

(iv) and (v) of Theorem 1 that

"
2
d

lim

n
 / I 2y"

2
dG

n
(y)

- lim

4 . Proof of Theorem 3.

By definitions (1.1) and (1.10),

(4 D max

Ki<n

( b
n "

min max

a,b Ki<n
~
 b x

i

Therefore, we can assume without loss of generality that α » 3 » 0 and θ » 1,

First, let us prove (1.37). For any t > 0,
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(4.2) { b
n
 > t } = { b

n
 > t, a

n
 + b^ < 0 } U {b

n
 > t, a

n
 + b ^ > 0}

c { ε
±
 > t I x

±
 - x

n
 I - 1/2 for all i 5 χ

±
 > x

n
 }

U { ε. < 1/2 - tlx. - x I for all i 5 x
Λ
 < x }

l 'in
1
 in

Hence

P { b > t } < 2 exp [ - (t/2) ί
β
 |x - x | ] , and

Eb
2
 - 2 / " P { |b I > t } tdt - 4 / " P { b > t } tdt
n
 J

 0 ' n
1
 * 0 n

< 8 / ~ exp [- (t/2) Σ^ |χ
±
 - x

n
|]tdt - 32/[ f^Y^i " *n'

)2
 '

9
which proves ( 1 . 3 7 ) . To prove ( 1 . 3 6 ) we f i r s t c o n s i d e r E(a + b m ) .

P { a + b m > t } = P { a + b m > t , b > 0 } + P { a + b m > t , b <0
n n n n n n * n n n n ' n

< P { ε, > t - 1/2 for V i 5 x, > m } + P { ε, > t - 1/2 for V i 3 x, < m }
i i n i in

< 2e"" n t / 2 for any t > 0.

Hence

E ( a n

4
 I 0

 P ί a
n

 +
 V n > t} tdt < 8 / ̂  te"

nt/2
dt - 32/n

2
 .

I t fo l lows from ( 1 . 3 7 ) t h a t

E a 2 < 2 [ E(a + b m ) 2 + m W ] < 2 [ 3 2 / n 2 + 32m2 / ( Σ * Ί x 4 - x I ) 2 ] ,
n n n n n n n l ' i n 1

and the proof of (1.36) is complete.
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5 Limit of G and examples .

We assume that the conditions of Theorem 2
f
 (iii) hold in this section.

Let G
n
(y) be given by (1.28) through (1.30). Set

(5.1) h
n
(x) = [(1 + H

n
(x))x + ! l

+
 tdH

n
(t)]/ / £ tdH

n
(t) ,

where H
n
(x) = n""

1
 Σ

n
 I { ^ | < x } . By the definitions, dG

n
(h

n
(x))/dH

n
(x)

- 2(1 + H (x))"
1
(l+H (x) - 1/n)^

1
. Suppose that lim ΈL - H weakly and

n n
 n

lim / " tdH
n
(t) - / Q tdH(t) = μ > 0. Then

(1 if μ = <*>

(5.2) lim h (x) - h(x)
Irn 4. ufvΛW +

 ;

n J
 [(1 + H(x))x + Γ tdH(T)]/μ otherwise

(5.3) lim G - G weakly such that G({1}) = 1 if μ = ~, and

dG(h(x))/dH(x) - 2(1 + H(x)) (1 + H(x-)) otherwise

(5.4) the density of Σ^ |x |(b - β)/θ at t converges to

f(t) = f(t G) - / " (y/2)exp[-y|t|]dG(y)

(5.5) lim ( Σ^|
Xi
|)

2
E[(b

n
 - 3)/θ]

2
 - / " 2y~

2
dG(y)

where b
n
 is defined by (1.9).

Example 1. H({1}) = H({2}) = H({3}) = 1/3. Then G({3/2}) = 1/2,

G({13/6}) = 3/10, G({3}) = 1/5, and / " 2y *"
2
dG(y) = 0.6167 .

Example 2. H ({1}) - H({10}) - H({50}) = 1/3. Then G ({64/61}) -1/2,

G({100/61}) - 3/10, G({300/61}) - 1/5, and / " 2y"
2
dG(y) - 1.1482.

Example 3. dH(x)/dx - M "
1
I { 0 < x < M}. Then dG(y)/dy - y"

 l
 *

5
 on

1 < y < 4, and / " 2y "
2
 dG(y) - 0.775.
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Example 4. H({x}) - 1 for some x > O Then G({2}) - 1.

Example 5. H(x) - x/(l + x ) . Then G({1}) • 1 and / " 2y~
2
dG(y) - 2.

Remarks: As shown by Examples 4 and 5, the inequalities in Corollary 1 are

sharp. The above results remain valid if we replace the definition of H
n
 by

H (x) - Σ
n
 I {|x |/m < x }/n, since G

n
 only depends on Z p . , z

n
 given by

(1.30). For example, if x = n for every n, then we have the same results as in

Example 3 and / " 2y dG (y) tends to 0.775.
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