
REMARKS ON THE ESTIMATION OF COEFFICIENTS OF A REGRESSION

IN THE PRESENCE OF UNKNOWN EXPLANATORY VARIABLES

Herman Chernoff*

Massachusetts Institute of Technology

and

Harvard University

In the linear regression model Y = & X.+ft^Xj+u,
the coefficients 3, and β« may be estimated by least
squares . If the explanatory variable X« is not
observed, the regression of Y on X^ will give an
estimate of 3, whose bias will depend on the correlation
between X

1
 and X2. However qualitative knowledge about

X2 can be exploited We treat the case where the known
and unknown explanatory variables and the coefficients
are nonnegative and where it is known that for some, but
not which, data points, the unknown explanatory
variables are relatively small.

1. Introduction.

A source of difficulty in estimating the effect of one variable on

another, especially in observational studies, is that the explanatory model may

omit a causal variable. Under some circumstances, this difficulty may be

serious. If the omitted variable is unimportant, i.e. it has a relatively small

effect, it may be safe to ignore it. If it is uncorrelated with the other

explanatory variables, it may also be ignored in linear regression models. If

it is correlated with the explanatory variables, and one desires only to use

these for prediction, one may proceed without it, as long as that correlation is
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to be kept constant, the effect of the known independent variables can be

assessed

In other cases, standard regression analysis, ignoring the omitted

variable, can lead to important errors, including wrong signs and a host of

problems associated with the term spurious correlation.

In a recent paper, Rutan and Brown (1984) propose a method of dealing

with such an estimation problem, in the context of analytical chemistry

applications, by using adaptive Kalman filters to compensate for low quality

models While the use of Kalman filters may be relevant to these particular

applications, one is led to raise the fundamental question of what is the basic

principle that can be used to avoid the classical dilemma.

To omit a causal variable or to say that it*s value is not known is

not the same as to say that nothing is known about it In the above

applications there are several known facts. The unknown causal variables and

their effects are known to be nonnegative. Moreover, it is known, or assumed,

that there is a nontrivial, but unspecified set of data points for which the

unknown variables and their effects are negligible

The Kalman filter approach exploits still more information. It uses

the fact that there is a natural (time) ordering of the data, that the unknown

variables are relatively unimportant at the early times, and their effect is a

smooth function of time

In this discussion, I propose to omit these latter assumptions and

confine attention to the positivity and occasional negligibility. The moral is

that quantitatively vague background information can sometimes be exploited

under circumstances where the lack of such information leaves one helpless

Needless to say, especially at this occasion, this moral has been effectively

demonstrated by others

2. Two regression models and modal estimates.

We consider two regression models. These are
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are assumed to be normally distributed, with mean 0 and constant

2
variance σ , independent of each other and of the other variables The

variables V
i
 are not observed. They represent the effect of the unknown causal

variable and may be correlated with X ^ and X-^

The standard regression of Y on X̂^ for (2.1), ignoring V, would yield

an estimate of 3, which is approximately

If V is correlated with X^, the estimate could be seriously biased. That is

also the case for the model (2.2).

To help fix our notions let us consider an example which is similar to

that appearing in analytical chemistry. Let
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take V = ^ j i
 o r

 ^?
X
i2

 O Γ
 ^3

X #
3

# W e s h a 1 1 n o t u s e t h e f a c t t h a t v
i
 i s a

reasonably smooth function of i. However, we do wish to use the facts that

there is a substantial set of i for which 3.X., is much larger than V^ which, in

turn, is smaller than σ, and β , X , and V are all nonnegative

For model (2.1), we use the i-th observation to estimate 3. with

(2.5) 3(i) = X " ^ = 3
χ
 + \\^

±
 + u

±
) > 3

χ
 + χ~j

u ±
,

and for some i, X V. is small compared to 3 , and the last inequality is almost

an equality. If the X ..Y. are used as estimates of 3. they will generally be

biased positively, but some of them will cluster close to 3, Thus, one may

expect the sample distribution of 3(i) to have a mode close to, but above, 3, .

Equivalently, the 3(i) should have a cluster centered close to 3,. The

magnitude of the X ^ when V. is small will affect the spread of the points.

Thus, it seems natural to weight the 3(i) In particular, let w. = X.. and let

(2.6) s(3) = Σ w.

represent the cumulated weight for 3, no larger than 3. When s(3) is plotted

against 3, the modal value corresponds to that value of 3 for which s increases

most rapidly. In particular, one way of defining this mode is to select an

interval length δ and to let 3, be that value of 3 for which

s(3 + δ/2) - s(3 + δ/2) is a maximum. There may be several modes. In that

case, one close to the minimum value of 3(i) is recommended. The reader should

note that the above is somewhat short of a formal definition.

The above modal estimate 3, is likely to be positively biased. We

shall not analyze its properties, but plan to use it for a first approximation.

To help generalize this estimate for model (2.2) it is convenient to interpret

it in the following manner. For each estimate 3(i) construct a kernel function

(2.7) K(3,3(i)) = K*(δ
-1
[3 - 3(i)Ό
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where K*(z) = 0 for |z| > 0.5 and 1 for |z| < 0.5.

Then 3 is the value of 3 which provides the appropriate local maximum of

(2.8) g(3) = Σ
Wj
K(3,3(i)).

One way of representing the data in model (2.2) is to draw the line
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usually lie somewhere below and to the left of that line. Our assumptions about

the V^ imply that j$_ should lie close to some of these lines. Thus, we have a

reasonable expectation of finding &_ close to a densely populated corner of the

convex intersection of the sets below these lines Some vertical adjustment to

allow for the effect of σ is appropriate.

A more direct generalization of the one dimensional modal estimate

follows. Two points (^±9^±\9^ ±2^
 anc

* (
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above, which intersect at
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(2 .9 ) 3 χ ( i , j ) - 3 χ + D" 1 [X j 2 (V i + u±) - X i 2(V j + u

and

(2.10) 3 2 ( i , j ) = 3 2 - D 1 [ X j l ( V i + u±)

where

(2.11) D * Xj2Xil " X i 2 X i l " D ( j L »J)

Λ Λ Λ

Then J3(i,j) - (3
χ
(i,j), 3

2
(i,j)) has covariance matrix
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(2.12)
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with inverse σ J(i,j) where

(2.13)

and _X
i

l
 • ( X

i l
, X

i 2
) . Note that

(2.14) det J(i,j) - D
z
.

Now let K(£,j*(i,j)) = 1 for the ellipse, of area πδ , defined by

(2.15)

and let K =* 0 outside that ellipse. We then seek the local maximum of

(2.16) g(£) = Σ

to be our modal estimate 3.

3. The model with one known explanatory variable.

The investigation of data from artificial examples suggests that

if σ is small enough and there are enough points for which V is negligible, the

plot of Y versus X^ would ordinarily provide a reasonably sharp estimate of 3,

without much recourse to formal theory or procedures. However, an all purpose

theoretical procedure is difficult to develop if we lack large samples and

require robustness.
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A strategy which might apply if the sample size were large and the

model were reliable, is to estimate the cumulant generating function of

Y -

2
and subtract that of u, i.e. tσ /2, and estimate the distribution

of (3, - 3)X
χ
 + V (as well as σ

2
) . For 3 > 3 ^ that distribution would assign

positive probability to negative values. Thus, 3. would correspond to the

smallest value of 3 for which (3, - 3)X. + V has zero probability of being

negative The implementation of this strategy is likely to lead to rules which

require large samples and may lack robustness.

We outline an alternative approach. For the sake of simplicity, we

shall assume that σ is known. Incidentally, if there were a large set of points

for which 3,X., + V. were small, we could use those data to estimate σ.

Our approach consists of assuming, in a limited sense, that the

distribution of V is the mixture of 0 with probability p and a uniform random

variable on (0,τ ) with probability (1-ρ). Then, by identifying certain

properties of the sample with corresponding properties of the distribution

of Y - 3X. for trial values of 3, estimates of 3, may be derived which are

moderately robust

Under the above assumption the distribution of

(3.1) Z = V + u

is given by the density

(3.2) f(z) ml φ φ + (l-p)τ{φφ - Φ(
z
 ~

σ

τ
 )}

where φ and Φ are the standard normal density and cumulative distribution

functions Let
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(3.3) z* = z - τ"
1
,

Then, the cumulative distribution function of Z is

(3.4) F(z) = pΦ(|) + (1 - p)τσ[φφ - ψ(^

where

(3.5) ψ(v) = φ(v) + vΦ(v).

We also note that

(3.6) f'(z) - σ"
2
{-p| φ φ + (1 - p)τσ[φφ - φ(y-)

and, defining

z
G(z) = / vf(v)dv,

(3.7) G(z) = σ{-pφφ + (l-p)τσ[ζφ] - ζφ] - <l-p)ψφ

where

(3.8) ζ(v) = -| {vφ(v) + (v
2
 - l)Φ(v)}

Note that if τσ is small,

(3.9) f '(z) = 0 >̂ |-ilE.τσΞu
0
.

Thus, under this model, the distribution of Y - & I
X
 M

 = Z
i
 h a s i t s m o d e

at z « σu
Q
 > 0.
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To return to the task of estimating 3., we shall select trial

values 3 of 3., and see which is, in a limited sense, most consistent with our

model. For this case of known σ, we use

(3.10) m
n
(3) - Σ χ(Y < βX )

U
 i=l

 x 1L

(3.11) m (3) - Σ χ(Y < βX + σ) - m (3)

i=l

and

(3.12) m
2
(3) = Σ χ(γ

±
 < βX

χ
 + 2.6σ) - m

Q
(3) - m

χ

where χ(E) is the characteristic function of the event E. Then, assuming τσ is

small, and hence φ(z /σ) and ψ(z /σ) can be ignored for z/σ =0,1, and 2.6,

E[m
Q
(3)] = nF(0) « 0.5000 np + 0.3989nστ(l-p),

(3.13) E[m (3)] - n[F(σ) - F(0)] « 0.3413np + 0.6843nστ(l-p),

E[m
2
(3)] - n[F(2.6σ) - F(σ)] « 0.1540np + 1.5181nστ(l-p).

Two additional considerations enter in exploiting equations (3.13).

First, points for which X.Q is small will contribute little to the change in

Y - 3X., as 3 varies, and will accomplish little in permitting us to

discriminate between good and bad approximations to 3, Thus, we shall confine

attention to points where X.. > c for some suitable constant c. Second, our

model for the distribution of V is unrealistic. It may fit well in the

neighborhood of V • 0. More precisely, the conditional distribution of V,

for V < 3σ, may resemble that of our model. Thus, it is important to

distinguish between the original sample size n, or even the sample size
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truncated by the restriction X . > c, and an effective sample size that fits the

data to our model for V < 3σ

Given the value of 3, we can estimate n » np and p = nστ(l-p) from

(3.14)

Then

0.3413n* + 0.6843p

0.1540n * + 1.5181ρ

(3.15) p/n*

is an estimate of u
n
, while

(3.16)
m (3 )

u
2
(3

χ
) = ( A / - 0.5)/0.3989

n

is another estimate of U Q . Since 3, is unknown, we vary the trial value 3,

computing u (3) and u
2
(3).

As 3 increases around 3,, m tends to increase rapidly, m^ decreases

A

less rapidly and m
2
 is pretty stable. Analysis indicates that u«(3) tends to

increase more rapidly than u (3) when στ is small and (l-p)/p is not large.

Thus, the two values will tend to cross at a rather clearly defined
A

estimate 3, and 3, The above statement may be a bit of an exaggeration, since

A A

the stochastic behavior of u.(3) and u«(3) may lead to several crossings in a

A

small neighborhood of 3,, although the asymptotic expected values
A A

of u.(3) and u~(3) intersect with sharply different slopes at 3,.

The estimation procedure described above is somewhat ad hoc, and its

extension for the case of unknown σ is not perfectly clear. However, it can be

replaced by a more formal maximum likelihood estimation (MLE) procedure based on

HIQ, mj, and π^ where, for a trial value 3 of 3,, Z = Y - 3X.. is assumed to

have, conditional on Z < 2.6σ, the approximate c.d f
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(3.17) F,(z;θ,n ,
1
 n Φ(2.6 - •£) + pψ(2.6 - •£)

Then 3. would be estimated by 3 where

(3.18) (β - 3
χ
)

and X is the average of the X ^ for which X > c and Z < 2 6σ If 3 - 3, is

large, this procedure can be iterated with the first 3, used as the new trial

value of 3

This MLE method can be extended by using the frequencies m.(3) for

more than the three levels z/σ » 0, 1, and 2,6. Indeed, for the case of

unknown σ, the use of MLE naturally suggests the application of at least four

such levels.

The choice of 0, 1 and 2.6 as the coefficients of σ in (3.10) to

(3.12) was somewhat arbitrarily made. Asymptotic analysis based on the model

should provide optimal choices of the coefficients in terms of p, σ, and τ. A

good choice for the ad hoc method tends to make u. and u« have maximally

different slopes at 3, For the MLE method one would maximize the Fisher

Information

Other sample properties have potential value The function G was

introduced to compare the conditional expectation of Z • Y - 3,X. given z < cσ

with the corresponding sample mean. Some such properties may be useful in

developing a generalization of this ad hoc method for the case where σ is not

assumed known.

In the example considered in Section 2, an analysis of the

distribution of V for X± > 0.2 suggests that the mixture model we have used in

Section 3 fits moderately, but not very, well. The lack of fit does not seem to

cause much difficulty and the procedure based on this model seems moderately

robust. On the other hand, it is easy to construct an alternative model that
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may fit a little better where the distribution of Z is a mixture of 0 and of an

exponential distribution convolved with a normal. The asymptotic properties of

the MLE based on the use of one of these mixture models when a possibly

different model applies can be derived by use of the methods of Huber (1966).
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