Chapter 6. Metrics on Groups, and Their Statistical Uses

In working with data, it is often useful to have a convenient notion of dis-
tance. Statisticians have used a number of different measures of closeness for
permutations. This chapter begins by analyzing some applications. Then a host
of natural metrics (and basic properties) is provided. Next, some abstract princi-
ples for constructing metrics on any group are shown to yield the known examples.
Finally, the ideas are carried from groups to homogeneous spaces.

A. APPLICATIONS OF METRICS.

Ezample 1. Association. Let p be any metric on the permutations in S,,. Thus,
p(r,7) = 0,p(r,0) = p(o,) and p(m,n) < p(r,0) + p(c,n). Many possible
metrics will be described in Section B. To fix ideas, one might think of p as
Spearman’s footrule: p(w,0) = Y, |7(i¢) — o(z)|. One frequent use is calculation
of a measure of nonparametric association between two permutations. A standard
reference is the book by Kendall (1970).

As an example, consider the draft lottery example in Figure 2 of Chapter 5.
The data consists of 12 pairs of numbers, (7,Y;), and Y; being the rank of the
average lottery number in month ¢. It is hard to get the value of Y; out of the
figure, but easy to get the rank of Y; (i.e., biggest, next biggest, etc.). I get

™ Month JFMAMIJIJAS OND
o Rank Y; 5 4 1 3 2 6 8 9 10 7 11 12

The two rows can be thought of as two permutations in Sj;. Are they close
together? Taking p as the footrule, p(7, o) = 18. Is this small? The largest value
p can take is 72. This doesn’t help much. One idea is to ask how large p(7, o)
would be if o were chosen at random, uniformly. Diaconis and Graham showed
the following result (proved in Section B below).

Theorem 1. Let p(7, o) = Y |7(i) — o(¢)|. If o is chosen uniformly in S, then
L 2
AV(p) = +(n - 1)
Var(p) = %(n +1)(2r* 4 7)

— AV
P{B'SD_ <t} = ~=* 24z + o(1).
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In the example, AV = 47.7,5D = 9.23. The value 18 is more than 3 standard
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deviations from the mean. Thus 18 is small in that it (or a smaller value) is quite
unlikely to have occurred under a simple chance model.

The approximate normality is valid as n tends to infinity and one might worry
about n = 12. Figure 4 below shows the result of a Monte Carlo experiment based
on 100,000 choices of o from a uniform distribution. The normal approximation
seems fine. The graph was supplied by Hans Ury who also published tables of the
footrule for n < 15, in Ury and Kleinecke (1979). From their tables, the p value
for the draft lottery data is P{p < 18} = .001 .

Figure 1
Normal approximation for n = 12
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Many further tests of randomness for the Draft Lottery data are described
by Fienberg (1971). This test is natural starting from Figure 2.

Statisticians often normalize metrics to lie in [-1,1] like correlation coefficients.
If p(s,t) is a metric with maximum value m, then R(s,t) = 1—2p/m lies in [-1,1].

I find it interesting that the standard “non-parametric measures of associ-



104 Chapter 6A

ation” arise from metrics. I’ve never been able to get much mileage out of the
triangle inequality, which translates to

R(s,u) > R(s,t) + R(t,u) — 1.

Ezample 2. Scaling A second use of metrics for permutation data adapts such
data for a run through a standard multidimensional scaling or clustering program.
Multidimensional scaling takes points in any metric space and finds points in the
plane such that the distances between the points in the plane are close to the
distances between the points in the metric space. Imagine a collection of several
hundred rankings of 10 items. It can be hard to get a preliminary “feel” for
such data. Scaling finds representative points or sometimes “nonlinear mapping”
which can be visualized. Obviously, a metric is necessary, since the input to
a multidimensional scaling program is the set of distances between the original
points. A nice discussion of scaling is in Chapter 14 of Mardia, Kent, and Bibby
(1978). Critchlow (1985, pg. 116-121) gives an example with permutation data.
Cohen and Mallows (1980) use the biplot in a similar way. See Figure 2 below.

Ezample 3. Mallows’ model. A third use of metrics is as a means of model
building. Following Mallows (1957), let’s use a metric to put a probability measure
on S,. This measure will have a location parameter 7y € S, and a scale parameter
A € R*. Set
P(ﬂ') — Ce—/\p(7r,1ro); c—l — Ze—)\p(ﬂ,wo).
™

The largest probability is assigned to my and probability decreases geometri-
cally as the distance from 7. Increasing A makes the distribution more and more
peaked about my. Of course, A = 0 gives the uniform distribution.

A nice application of this approach to analyzing agreement between several
judges in a contest is in Feigin and Cohen (1978). Critchlow (1985) gives other
examples where Mallows’ model provides a good fit to ranking data.

Mallows’ original derivation of this model is less ad hoc. He considers gen-
erating a ranking of n items by making paired comparisons. Suppose 7 is the
true ranking, but a subject errs in comparing 7 and j with probability p. Mal-
lows shows that conditional on the comparisons yielding a ranking, the ranking is
distributed as above, with p given by Kendall’s measure of association 7 and \ a
function of p. This is discussed in Section B below. Fligner and Verducci (1986,
1988b) develop and extend this justification for Mallows model.

Ezample 4. Two-sample problems. Here is a fourth use of metrics: as a means
of looking at 2 sample problems. In such problems we consider two sets of permu-
tations my,...,m, and o04,...,0,, and ask about their similarities and differences.
One classical question: “Can these two sets be regarded as samples from a single
population of permutations?”. If the n's and o’s were permutations of a small
number of items and » and m were large, there would be no problem. The ques-
tion could be treated by well-known techniques for the multinomial distribution.
Consider though, the problem of distinguishing between the distribution of riffle
shuffles generated by Reeds and Diaconis in Chapter 5. Here n = 100, m = 103
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and the permutations are in Ss;. Here is an idea, borrowed from J. Friedman and
L. Rafsky (1979).

Choose a metric p. Regard the 2 sets of permutations as points in a metric
space. Form the minimal spanning tree for the combined data — that is, the
shortest connected graph having a unique path between every pair of points.
“Color” the points of one set (say the set {r;}) red. Count T, the number of
edges in the tree that join two nodes of different colors. The idea is that if the
distributions of m and o differ, the 2 types of points will tend to be separated,
and only a few edges in the tree will cross over. If the distributions of 7 and o
are the same, there will be many cross-overs.

Figure 2

A ‘scaling’ picture of the minimal spanning tree in a metric space. The squares
are sample 1, the stars are sample 2.

The distribution of T' can be simulated by fixing the tree and randomly
relabelling the vertices, drawing the m values without replacement from an urn
containing n + m balls. Friedman and Rafsky give a normal approximation. See
also Stein (1986).

The discussion above used the minimal spanning tree. Any graph that con-
nects points together if they are close can be used. Friedman and Rafsky also
obtained good results for the graph connecting each point to its k-nearest neigh-
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bors. Critchlow (1985, Chapter 6) used the union of all minimal spanning trees —
for discrete metrics, the tree need not be unique.

Feigin and Alvo (1986) give another approach to assessing variability between
groups using metrics on permutations. Fligner and Verducci (1988a) develop these
ideas into a new approach for judging athletic competitions.

Ezample 5. Generalized association. Friedman and Rafsky (1983) have devel-
oped a method of testing association for data of the form (z1,%1), (z2,%2),.--,
(zn,Yn). Here z takes values in a metric space X, and y takes values in a metric
space Y. In an epidemiology application it might be that z; are times of occur-
rence, and y; are spatial locations of cases of a rare disease. One suspects trouble
if points that are close in time are close in space.

In a more mundane setting, X and Y may both be symmetric groups, the
data representing rankings of items on two occasions.

To test “association” they suggest forming a nearest neighbor graph for the
z;, and a separate nearest neighbor graph for the y;. These graphs might both
be minimal spanning trees. This gives two graphs on the vertex set 1, 2, ..., n.
Now take T to be the number of edges that occur in both graphs. T is large if
points close in X are close in Y.

One can get a null hypothesis distribution for T by comparing it with re-
peated values from the samples (1, ¥Yr(1)),---,(Zn,Yn(n)) Where 7 is a random
permutation. After all, if z; and y; have no connection, the value of T should be
about the same as for (z;, yr(;)). Friedman and Rafsky give a normal approxima-
tion for this statistic. See also Stein (1986).

One final idea: this test of association includes the 2 sample test described
in Example 4! To see this, consider the m + n values as points in a space Y, and
let z; be one or zero as y; is from the first or second sample. Use the discrete
metric on X. The association statistic 7, counts the number of edges that appear
in both graphs. This is the number of edges in the graph in Y space that have the
same colored edges in the two sample setting. Thus T =n + m — 1 — T, so the
two tests are equivalent; distributions are judged different if there is association
with sample labels.

Jupp and Spurr (1985) give a different approach to testing for independence
on groups using metrics.

Ezample 6. Goodness of fit tests. Given a model for data in a metric space X,
one can carry out standard chi-squared goodness of fit tests by splitting X into
pieces based on a metric and comparing observed and expected.

FEzample 7. Robust regression.  Here is an approach to non-linear regression
using a metric on S,. Consider a family of real valued functions from a space X;

f(z,0: X >R, 0€0
e.g., f(z) = a+bz, or f(z) = a+b cos (cz +d). Suppose we observe (y1,z1), ...,

(Yn,Tn) and desire a value of § such that y; is close to f(z;, ). The classical
approach to this is to fit by least squares: find a value of # minimizing > (y; —
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f(z;i, 6))2. In recent years, people have noted that this approach is very sensitive
to a few “wild values”. If 1 or 2 of the z or y values are far away from the
rest, those values have a huge effect on the minimizing 6. Here is a simple idea:
choose a value of 8 so that the rank of f(z;, ) is as close as possible to the
rank of y;. In simple linear cases, this gives the line with correlation replaced
by the nonparametric measure of correlation induced by p. Sen (1968) develops
properties of the estimator. Bhattacharya, Chernoff, and Yang (1983) apply it to
a fascinating cosmology problem involving truncated regression.

Ezample 8. Social choice functions. A common problem in social choice theory
is the choice of the “best alternative” based on a committee’s ranking of the
available alternatives. Classical examples include
Plurality: Choose the alternative with the most first place votes
Borda’s rule: Assign a weight of 0 to the least preferred
alternative. 1 to the next least preferred, and so on. The
total score of each alternative is computed and the
alternative(s) with the highest score is chosen as winner.
Condorcet’s rule: If there is some alternative that defeats every
other in pairwise comparison, then that alternative
should be chosen as the winner.

Even when applicable, the different rules need not lead to the same choice.
Consider 19 rankers choosing between three alternatives a, b, ¢. If the rankings
are

a b ¢ #

QW ND =
DN == W N
=N WN W
DA W

19
then a is chosen by plurality but b is chosen by Borda’s rule (it gets score 21 versus
16 for a and 20 for ¢) and c is chosen by Condorcet’s rule (it defeats each of @ and b
in 10 votes). A famous theorem of Arrow says that there is no “reasonable” social
choice function. A review of this literature may be found in Fishburn (1973).
Grofman and Owen (1986) contains several further review articles.

For some tasks it may be desirable to choose a winner and a runner up. Other
tasks require a committee of the top three choices or a complete permutation,
representing the group’s ranking. These may all be subsumed under the problem
of choosing a partial ranking of shape ), where A is a partition of n, the number of
alternatives (see Section B of Chapter 5). We will focus on the choice of a complete
ranking given a probability P on rankings. Usually, P(r) is the proportion of
rankers choosing .

One usable route through this problem uses metrics on groups as a way of
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defining a “mean” or “median”. Let P be a probability on a finite group G. Let
p be a metric on G. Define

£(s) = 37 P(t)p(s, 1).
i

The group element 7 is a p-median of P if  minimizes f(s). The number f(n) is
called the p-spread of P. Substitution of p? for p in the formula for f(s) yields a
p-mean.

John Kemeny has proposed choosing a group ranking by using the metric
induced by Kendall’s tau on S,. In Young and Levenglick (1978), a list of prop-
erties of Kemeny’s procedure are shown to characterize it. Here is a version of
their result:

A preference function p assigns a set of permutations to each probability
P on S,. For example p(P) could be the set of p-medians of P. A preference
function is neutral if it transforms correctly under relabeling. In symbols, let
P,(r) = P(n~'x), then u is neutral if

w(Pp) = nu(P) for all  and P.

A preference function is consistent if for any a in (0,1),

p(Pr) N p(Pr) # ¢ = p(aPr + (1 - a)Py) = p(Py) N p(Py).

If P, and P, represent the rankings of n and m judges respectively, then the
pooled panel is represented by Pyn/(n + m) + Pom/(n + m). Consistency says
that if P; and P; lead to common preferences then the combined judges choose
these preferences.

Given a probability P, let n(P,15) be the difference between the probabilities
of all = preferring ¢ to j and all = preferring j to . Condorcet’s proposal was that
alternative ¢ was preferred if n(P,15) > 0 for all j # ¢ (thus ¢ would beat any j in
a pairwise popularity contest).

If a complete ranking is desired, a natural extension of Condorcet’s idea is
this: if 7 beats j in a pairwise popularity contest, then ¢ should be ranked above j
in any consensus ranking. Formally, it suffices to deal only with adjacent rankings.
A preference function p is called Condorcetif n(P,ij > 0) (for fixed ¢ and 7) implies
no m with (i) = w(j)+1 is in u(P). (For this, the condition becomes n(P,ij) = 0
implies 7~1(k) = i, 7 Yk + 1) = jeu(P) iff v~1(k) = j, 7Yk + 1) = ieu(P)).
Thus, no 7 ranking j as the immediate predecessor of ¢ is in the consensus ranking.

Young and Levenglick show that medians based on Kendall’s 7 are neutral,
consistent, and Condorcet. They further show that these three properties char-
acterize T-medians among preference functions.

These ideas can be carried over to choosing a final ranking of shape A. Each
7 € S, can be naturally assigned to such a partial ranking. The image of P under
this map gives a probability on partial ranks and a choice of distance on partial
rankings leads to a mean.
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In Section 8.7 of Grenander (1981), a notion of a centroid set is introduced.
This is very similar to a p-median, based on a distance defined using characters.

Example 9. Moments of probabilities on groups.

It is not clear how the p-medians and p-spreads relate to group operations
like convolution. There is a little theory for moments of probabilities on groups
that share, with the mean and variance, the property of being homomorphisms
from probabilities under convolution into G (so the mean of a convolution is the
sum of the means) or Rt (so the variance of a convolution is the sum of the
variances). This is elegantly surveyed in Heyer (1981).

Here is an example due to Levy (1939). Consider a random variable X taking
values on the circle T = {2¢C: |z| = 1}. Levy defined variance as

V(X) = inf [ eGP px(d2)

(where arg z is the unique ¢ € (—m, ] such that e'® = z). Every a € T which
achieved the infimum he called a mean. He used these notions to prove the
following version of the Kolmogorov three series theorem: Let X7, Xs,..., be T
valued random variables. A necessary and sufficient condition for convergence of
(e
Y Xjas. is
j=1
(a) ZV(X;) < 0 (b) XE(X;) < 00

where (b) is interpreted as holding for any choice of expectations. This has been
somewhat improved by Bartfai (1966).

Note that Levy’s mean is the mean of example 8, with the usual metric.

FEzxample 10. Tests for uniformity. Let X be a homogeneous space on which G
acts transitively. We have data zy,z,,...,z, and want to test if it is reasonable
to suppose that these are independent and uniform.

As an example, X might equal G and the z; might be the output of a com-
puter routine to generate random elements of G — one wants to test such things.
See Diaconis and Shahshahani (1987a) for examples.

The amount of data will play a role in choosing a test. If n is small, one can
only hope to pick up fairly strong departure from uniformity.

One simple example is the following variant of the empty cell test: Let
p(z,y) be a G invariant metric. Look at m = min p(z;,z;), and compare with
its null distribution. The null distribution can be approximated using Poisson
limit theorems for U-statistics.

To fix ideas, take X = G = Z§ with p(z,y) the Hamming distance — the
number of coordinates where z and y disagree. If z and y are chosen at random,

P{p(z,y) < a} = P{B(a)}, with B(a) the ball of radius a. This has 3 (%) points,
J=0

and so P(B(a)) = 5520(;!).

The expected number of pairs (z;,z;) within distance a is thus A =
(3)P(B(a)). For d large, and a chosen so that e.,g. 1 < A < 10, the number
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of close pairs is approximately Poisson()). The chance that no two are within
distance a is thus approximately e~*.

For example, if d = 10,7 = 50,a = 0, then A = 1.2,e™* = .3.

The argument can be made rigorous by checking the conditions in Sev-
astyanov (1972), Silverman and Brown (1978), or Stein (1986). Note that theo-
rems giving the null distributions of metrics (see Example 1 above) now are useful
to compute volumes of spheres B(a).

A collection of tests for uniformity on groups is suggested by Beran (1968),
developed by Giné (1973), with a practical implementation by Wellner (1979).
These all use distances and are mainly specialized to continuous examples such
as the circle or sphere. Jupp and Spurr (1985) apply similar ideas.

FEzample 11. Loss functions. Investigating statistical aspects of the examples
presented here leads to estimating parameters in a group. Metrics can be used as
loss functions. For a classical example, consider n observations from a multino-
mial distribution with k categories and unknown probability vector p1, pa, ..., Pk.
It may be desired to rank the p;, deciding on the largest, next largest, and so
on. Thus the parameter and estimate are permutations, and a decision theoretic
formulation will involve a distance.

Estimation of Gaussian covariance matrices could stand some work from this
viewpoint using the observation that GL, /O, is identified with the space of pos-
itive definite matrices; now the techniques of Section D below can be used.

The location parameter in Mallows’ model (Example 3 above) is an element
of S, and evaluation of estimators again necessitates a metric.

Andrew Rukhin (1970, 1977) began a systematic development of statistical
estimation on groups that is well worth consulting.

FEzample 12. Random walk again. In investigating the rate of convergence of
random walk on groups to the uniform distribution we used the total variation
distance. It is natural to try other distances between probabilities. Several of
these may be defined starting from a metric on G. Let G be a compact group,
P and @ probabilities on G, and d a metric on G. We assume d is compatible
with the topology on G (so d(s,t) is jointly continuous). Usually d is invariant or
bi-invariant. Also assume d < 1.

The Wasserstein or dual bounded Lipschitz metric is defined by dw(P,Q) =
sup |P(f) — Q(f)|; the sup being over all f satisfying the Lipschitz condition
1£(2) — F(y)| < d(=>y).

It can be shown that the following statements are equivalent:
(a) dw(P,Q) <e.
(b) There are random variables taking values in G with X ~ P,Y ~ @ and

E(d(X,Y))<e.

Dudley (1968) and Huber (1981) contain proofs of this result. Rachev (1986)
contains an extensive survey. These papers also describe the Prohorov distance
between P and () — this also depends on the underlying metric. It seems ex-
tremely hard to get our hands on these metrics.
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Inequality (b) above suggests that strong uniform times and coupling tech-
niques can be used to bound these distances. I do not know of any examples.

Example 13. Rank tests. Doug Critchlow (1986) has recently found a remark-
able connection between metrics and nonparametric rank tests. It is easy to
describe a special case: consider two groups of people — m in the first, n in
the second. We measure something from each person which yields a number, say
T1,T2y oy T Yly. -, Yn.- We want to test if the two sets of numbers are “about
the same.”

This is the classical two-sample problem and uncountably many procedures
have been proposed. The following common sense scenario leads to some of the
most widely used nonparametric solutions.

Rank all » + m numbers, color the first sample red and the second sample
blue, now count how many moves it takes to unscramble the two populations. If it
takes very few moves, because things were pretty well sorted, we have grounds for
believing the numbers were drawn from different populations. If the numbers were
drawn from the same population, they should be well intermingled and require
many moves to unscramble.

To actually have a test, we have to say what we mean by “moves” and
“unscramble.” If moves are taken as “pairwise adjacent transpositions,” and
unscramble is taken as “bring all the reds to the left,” we have a test which is
equivalent to the popular Mann-Whitney statistic. If m = n, and moves are taken
as the basic insertion deletion operations of Ulam’s metric (see Section B below)
we get the Kolmogorov-Smirnov statistic.

Critchlow begins by abstracting slightly: consider the positions of sample 1
as an m set out of m + n. The procedures above measure the distance to the
set {1,2,...,m}. A two-sided procedure measures the smaller of the distances to
{1,2,...,m}or{n+1,n+2,...,n+m}.

Every metric on Sy4m/Sn X S, gives a naturally associated test. This is
just the beginning. With k sample problems, having sample size A; from the ith
population, we get testing problems on Sx/Sy, X Sx, X ... X S),. Metrics on
these spaces give rise to natural test statistics. Critchlow shows how essentially
all of the basic testing problems in nonparametric statistics can be put into this
framework.

This leads to a unified approach — there is a straightforward extension of
the Mann-Whitney statistic for £ sample problems, two-way layouts, two-sample
spread problems, and others. Further, some procedures popular in two-sample
problems have not been previously generalized, so many new tests are possible.

To those of us who have marveled at the cleverness of nonparametricians in
cooking up new tests, this new unified view comes as a breath of fresh air. It
offers hope for a lot more.

We all realize that normal theory testing is essentially testing with respect
to the orthogonal group. Consider the ordinary ¢ test for mean 0 versus mean
g > 0. One normalizes the data vector z1,23,...,%, to lie on the unit sphere in
R", and calculates the distance to (1,1,...,1)/y/n. If u = 0, the point on the
sphere is random. If p > 0, the point should be close to the vector with all equal
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coordinates. The t-test amounts to the cosine of the angle between the vectors of
interest. See Efron (1969) for discussion and pictures.

The F test in classical ANOVA has a similar interpretation as the distance
between the observed vector and a subspace where some coordinates are equal.
If in the robust regression of example 7, one uses the orthogonal group, ordinary
least squares results. Many other normal theory procedures can be similarly
interpreted.

Of course, the permutation group sits inside the orthogonal group. One
may try to interpolate between nonparametrics and normal theory by considering
intermediate groups. The sign change group is a natural starting place.

More examples will be discussed as we go along. Most of the applications
can be carried over to other groups and homogeneous spaces. It is time to get to
some metrics and their properties.

B. SOME METRICS ON PERMUTATIONS.

Let 7 and o be permutations in S,, with the interpretation that «(7) is the
rank assigned by 7 to item .
The following metrics have been used in various statistical problems.

D(rn,0) = Z|r(3) — o(i)|(Footrule)
§%(r,0) = B{n(i) — 0(3)}* (Spearman’s rank correlation)
H(m,o0) = #{i:7(3) # 0(¢)} (Hamming distance)
I(7r,0) = minimum number of pairwise adjacent transpositions taking 7~
to o ~!(Kendall’s tau)

T(r,0) = minimum number of transpositions taking = to o (Cayley distance)

1

L(r,0) = n — length of longest increasing subsequence in o7~ (Ulam’s
distance)

This seems like a lot of metrics although it is only the tip of the iceberg.
Table 2 gives the distance to the identity for all 6 metrics on S4. The metrics
have all been defined to be right-invariant in a way which will now be explained.

Invariance. In the most general situation, permutations are presented as 1—1
maps between 2 different sets of the same cardinality:

;i A — B,|A| = |B| = n.
The way we wind up labeling A or B may be fairly arbitrary and it is reasonable

to consider distances that are invariant in some way. Here, if 7 is a 1 — 1 map
n: A — A, right invariance means

p(m1,m2) = p(m1m, mam).

FEzample. Consider 3 students ranked on the midterm and final:



Metrics on Groups, and Their Statistical Uses

Table 1
Values of the six metrics when n = 4

™ Cycles T(x) I(x) D(x) S%*(w) H(w) L(m)
1234 (1)2)3)4) 0 o0 0 0 0 0
1243 (1)(2)34) 1 1 2 2 2 1
1324 (1)(23)4) 1 1 2 2 2 1
1342 (1)(234 2 2 4 6 3 1
1423 (1)(243) 2 2 4 6 3 1
1432 ()o@ 1 3 4 8 2 2
2134 (12)3)4) 1 1 2 2 2 1
2143 (12)(34) 2 2 4 4 4 2
2314 (123)4) 2 2 4 6 3 1
2341 (1234) 3 3 6 12 4 1
2413 (1243) 3 3 6 10 4 2
2431 (124)8) 2 4 6 14 3 2
3124 (132)4) 2 2 4 6 3 1
3142 (1342 3 3 6 10 4 2
3214 (13)(2)4) 1 3 4 8 2 2
3241 (134)(2) 2 4 6 14 3 2
3412 (13)(24) 2 4 8 16 4 2
3421 (1324) 3 5 8 18 4 2
4123 (1432) 3 3 6 12 4 1
4132 (142)3) 2 4 6 14 3 2
4213 (143)(2) 2 4 6 14 3 2
4231 1923 1 5 6 18 2 2
4312 (1423) 3 5 8 18 4 2
4321 (14)(23) 2 6 8 2 4 3

113
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| Bill Bob Jane
midterm m; 2 1 3
final Ty 3 1 2

So the set A = {Bill, Bob, Jane} and B = {1,2,3}. Suppose the data had been
recorded as

I Bob Bill Jane
midterm 1 2 3
final 1 3 2

This is the same situation: Bob finished first in both exams, etc. It seems rea-
sonable to insist that whatever measure of distance is used not change under this
type of relabeling. If one naively uses the minimum number of pairwise adjacent
transpositions it takes to bring the second row to the first, then the original way
of writing things down takes 3 transpositions and the second way of writing things
down takes 1 transposition.

Obviously, data can be presented in a form where left invariance is the natural
requirement:

rank | 1 2 3
midterm Bob Bill Jane
final Bob Jane Bill

Finally, here is an example in which two-sided invariance is a natural re-
quirement. Imagine 5 people and 5 “descriptions” e.g., a psychological profile like
MMPI or a psychic’s description. A judge matches people with descriptions giv-
ing a 1 — 1 map {descriptions} « {people}. With 2 or more judges, the question
of how close the judges’ rankings are to one another arises. A two sided invariant
distance seems appropriate.

Of the six distances in Section B, only H and T are invariant on both sides.
Of course, any metric can be made invariant by averaging it.

EXERICSE 1. Show that T is bi-invariant. Show that Spearman’s footrule,
averaged to also make it left invariant, is the same as Hamming distance up to a
constant multiple.

There are examples in which invariance, on either side, is not compelling.
Consider a psycho-physical experiment in which a subject is asked to rank seven
musical tones from high to low. If the tones are not uniformly distributed on
some natural scale it might be natural to give different weights to differences in
different parts of the scale. A measure like Xw;|r(¢) — o(7)i| is not invariant on
either side.

All of the six metrics are invariant under reversing order — changing i to
n + 1 — ¢ — i.e. interchanging high and low.

Invariance considerations are natural in other problems as well. Consider an
empirical set of data g;,..., g, taking values in the finite group G. In testing
whether the data is uniform it is sometimes natural to require that a test statis-
tic T(g1,-..,9n) is invariant under translation: T(gy,...,9,) = T(017, - - -, gn7).
An example of a non invariant test takes T'(gi,...,9,) equal to the number of
gicA (e.g., the number of even permutations). Two easy ways to make statis-
tics invariant are averaging and maximizing. Averaging replaces T by T} =
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%TET(gln,...,gnn). Maximizing replaces T by T = maxT(¢17,...,9a0)-
n n

Again, there are problems in which invariance is not compelling: In testing a
shuflling mechanism for uniformity it is perfectly reasonable to pay special atten-
tion to the top and bottom cards.

We next turn to a case-by-case discussion of the six metrics and their prop-
erties.

1. Spearman’s footrule D(m,0) = X|r(i) — o(i)|. Clearly this is a right
invariant metric. Thus D(wr,0) = D(id,or~!). If either = or o is uniformly
chosen from §,, the distribution of D(7,0) is the same as the distribution of
D(id, n) with 7 chosen uniformly in S,. The mean of D is computed as

E{D} = %ZD(id,W) = ;21—!2 Y li— (i)l

T oi=1
1

= §(n2 - 1).

EXERCISE 2. Prove this last assertion.
A more tedious computation (see Diaconis and Graham (1977)) gives

Var{D} = %(n +1)(2n2 4 7).

Finally, we indicate how the asymptotic normality of D can be shown (see the
Theorem in example 1 of Section A for a careful statement). One approach uses
Hoeffding’s (1951) combinatorial central limit theorem: Consider {a]}}, i,j =
1,...,n a sequence of arrays. Define

n
Wa =3 al
=1

where 7 is a random permutation in §,. Then, subject to growth conditions on
a%;, W, is asymptotically normal. The expression for the variance given above
allows verification of the sufficient condition (12) in Hoeffding (1951) for the array
al = |i—j|,4,7 = 1,...,n. Bolthausen (1984) gives a version of the combinatorial
limit theorem with a Berry-Esseen like error bound.

Ury and Kleinecke (1979) gave tables for the footrule when n < 15. The
asymptotics seem quite accurate for n larger than 10. See Example 1 in Section
A above.

Diaconis and Graham (1977) give some relations between the footrule and
other measures of association that appear in the list of metrics. In particular

I+T<D<K2I.

So the more widely used metric I underlying Kendall’s tau is close to the footrule
D in the sense I < D < 21.
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Ian Abramson has pointed out a sampling theory interpretation for the
footrule. Consider using the footrule to measure association. We are given n
pairs (X1,Y:1),(X2,Y2),...,(Xn,Ys). Assume that P{X; < s,Y; < t} = H(s,t)
and that the pairs are iid (of course, X; and Y; may well be dependent). To
transform things to permutations, let the rank R; = #{j: X; < X;}. Similarly,
let S; denote the rank of Y;. Assuming no tied values, Spearman’s footrule defines
a measure of association between the two samples by

(%) D=>|Ri-Si
i=1

LEMMA 1.  Let {X;,Y;} be iid from joint distribution function H, with mar-
gins H1(s), Hy(t). Then, Spearman’s footrule D satisfies 2z D = E{|H.(X) —
Hy(Y)[} + 0,( 22).

Proof. From the Kolmogorov-Smirnov limit theorem

Hi(X;) = % + Op(%) uniformly in z.
Thus ) 1 )
—FZ|Ri = Sil = —Z[Hi(Xi) - Ha(Yi)| + Op(ﬁ)-
The sum converges to its mean as a sum of iid random variables. O
Remarks. Of course Hy(X) and Hy(Y) are uniform random variables. If

H(s,t) = Hy(s)Hs(t), then E{|H:1(X) — Hy(Y)|} = 3, so the lemma agrees
with the mean of D derived above. If X and Y are perfectly correlated (so
H(s,t) = (H1(s)A H2(t)) and have equal margins, the parameter E|H; — Hy| = 0.
If X and Y are perfectly negatively correlated (so H(s,t) = (H1(s)+ Hz(t)—1)4),
then E|H, — Hy| = 3.

The test based on D is clearly not consistent (there are marginally uniform
variables on the unit square which are dependent but for which E|X — Y| = ).
Lehmann (1966) discusses consistent tests under these assumptions.

2. Spearman’s rank correlation S*(r,0) = X(m (i) — o(z))%. This metric is the
L? distance between two permutations. It is right invariant. When transformed
to lie in [—1,1] as in example 1 of Section A, it arises naturally as the correlation
R between the ranks of two samples. It is widely used in applied work.

S? has mean (n® — n)/6 and variance ﬁ@—_—%ﬂ. Normalized by its mean
and variance, §% has a limiting normal distribution. These results can all be
found in Kendall (1970). Normality can be proved using Hoeffding’s theorem as
above.

EXERCISE 3. Compute S? for the draft lottery example in Section A above and
test for randomness.
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The correlation version R has an interpretation as an estimate of a population
parameter. Let (X;,Y1),...,(X,,Y,) be independent and identically distributed
pairs drawn from the joint distribution function H(z,y). Then as in the lemma
for Spearman’s footrule,

5 _ 1 2 2
— = ;5-2[12,- - Si|* = E|Hi(X) - H2(Y)|* +0

1
3 ”(ﬁ)'
If X and Y are marginally uniform, E(H; — H;)? = 2(55 — cov(X,Y)).

2
There is a different population interpretation: R = 1— (f _"1;”/3

correlation between the ranks. The expected value of R can be shown to the three
times the covariance of X = sgn(X; — X;) and Y = sgn(Y2 — Y;). This and
further interpretations are carefully discussed by Kruskal (1958, Sec. 5.6) and
Hoeffding (1948, Sec. 9). Lehmann (1966, Sec. 3) gives some further properties
of R.

is the sample

3. Hamming distance H(m,0) = n — #{i:7(1) = 0(7)}. Hamming’s distance
is widely used in coding theory for binary strings. It is a bi-invariant metric on
permutations. Following Exercise 1 in Chapter 7, under the uniform distribution
E{H}=n-1, Var{H} = 1, and n — H has a limiting Poisson (1) distribution.
These results are all familiar from the probability theory of the matching problem
(Feller (1968, pg. 107)). I have shown that the total variation distance between
n — H and Poisson (1) is smaller than 2™/n!.

The null distribution of H is thus close to its maximum with very little
variability. This doesn’t mean that H is useless: for instance, in the draft lottery
example (section A above) H(7,0) =9 which has a p-value of .08.

4. Kendall’s tau I(r,0) = min # pairwise adjacent transpositions to bring
w1 to o7, This metric has a long history, summarized in Kruskal (1958, Sec.
17). It was popularized by Kendall who gives a comprehensive discussion in
Kendall (1970). The definitions in terms of inverses is given to make the metric
right invariant. It has a simple operational form: given 7,0 e.g., 7 =3%3{,0=
1234 write them on top of each other, T 3% 4 1, sort the columns by the top row,
1234, and calculate the number of inversions in the second row (= # pairs i < j
with ith entry >jth entry). This is 3 in the example. This number of inversions
is also the minimum number of pairwise adjacent transpositions required to bring
the 2nd row into order. The letter I is used to represent inversions.

I(r,0) has mean (%)/2 and variance n(n—1)(2n+5)/72. Standardized by its
mean and variance I has a standard normal limiting distribution. Kendall (1970)
gives tables for small n. An elegant argument for the mean, variance and limiting
normality is given in (C-3) below. This also gives fast computational algorithms
and correction terms to the normal limit. A second argument is sketched in 5.
below.

Kruskal (1958) and Hoeffding (1948) show that the correlation version of
I has a sampling interpretation. Using the notation introduced for Spearman’s
S%, E(1-2I/(%)) is the covariance of X = sgn (X2—X;)and Y = sgn (¥, -Y1).

5. Cayley’s distance T(r,0) = min # transpositions required to bring T to
o. This is a bi-invariant metric on S,. It was named after Cayley because he
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discovered the simple relationship
T(m,0) = n — # cycles in (o™ 1).

This is easy to prove. By invariance, take ¢ = id. If 7 is a k cycle, it takes k — 1
moves to sort, and disjoint cycles take separate sorting operations.

For the distribution theory, under the null hypothesis the mean is asymptot-
ically n —log n, the variance is asymptotically log n, and T normed by its mean
and standard deviation has a limiting standard normal distribution.

These results have an easy derivation. Without loss, take o = id . Sort 7 by
transposing pairs, first switching 1 to place 1, then 2 to place 2, etc. The chance
that 1 is already at 1 is 1/n. Whether or not 1 is switched, after it is in place 1
the relative order of 2,...,n is uniform. The chance that 2 does not need to be
switched is 1/(n — 1), and so on. Thus T has the same distribution as

X1i+Xe+...+ X
with X!s independent having P{X; =1} =1-1/i = 1- P{X,; = 0}. From here,

1 1 1 1 1 1
E(T)—n—(1+§+...+;), Var(T)-1+-2-+...+;l-—(1+2—2-+...+ -n—z).

The central limit theorem for sums of independent variables gives the limiting
normality. This proof appears in Feller (1968, pg. 257). Section C-3 below gives
an algebraic connection.

The same argument works to give the distribution of the number of inversions
for Kendall’s tau. There the sum is Y; +...+Y,, with Y; uniformon 0,1,...,2—1.

EXERCISE 4. Compute Cayley’s distance for the Draft Lottery example A-1 and
show it doesn’t reject the null hypothesis.

6. Ulam’s distance L(7,0) = n— length of longest increasing subsequence in
or7l. fo=1%2342578%, the longest increasing subsequence is of length 6
(e.g., 0(3) < 0(4) < 0(5) < 0(7) < (8) < ¢(9)). This natural metric is defined
to be right invariant. To motivate it, consider n books on a shelf in order 0. We
want to sort the books by deletion-insertion-operations — taking a book out and
inserting it in another place. Thus 3 moves are required to sort o above.

LEMMA 2. The smallest number of moves to sort m is n— length of longest
increasing subsequence in .

Proof. If m(i1) < m(i3) < ... < m(ix) is a longest increasing subsequence, then
clearly inserting and deleting other letters doesn’t change the ordering of this
subsequence. It follows that n — k moves suffice. Since each move can increase
the longest increasing subsequence by at most 1, n — k moves are required. O

This metric is used by biologists and computer scientists. See Knuth (1978,
5.1.4). Gordon (1983) has suggested it for statistical tasks. If n is large, it is
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not so obvious how to compute L in a reasonable amount of time. The following
solitaire game gives an efficient algorithm.

Floyd’s game. Consider a deck containing n cards labelled 1,2, ..., n. Shuffle,
so the top card is labeled 7(1), etc. Start to play solitaire (turning cards up one
at a time) subject to the following rule: you can only put a lower card on a higher
card. If a card is turned up that is higher than the ones on top of piles, it starts
a new pile. The object is to have as few piles as possible. Thus, if the deck starts
as 6315247, the game goes

1 1 1 1 1
6 3 3 3 3 2 3 2 3 2
6 6 6 5 6 5 6 5 4 6 5 4 7

It seems clear that the best strategy is to place a lower card on the smallest
card higher than it. We will always assume that the game is played this way.

EXERCISE 5.
(a) Show that the number of piles equals the length of the longest increasing
subsequence in 7.
(b) Show that the expected number of cards in the first pile is log n asymptoti-
o0 .

cally, in the 2nd pile (e — 1) log =, in the 3rd pile ¢ log n, with ¢ = Jz_:l[(?)ﬂl_l -
1]/j!. It can be shown that the expected number of cards in the kth pile is
of order log n for fixed k. The remarks below show there are order 2/n piles
asymptotically.

This game was invented by Bob Floyd (1964). It gives an order n log n
algorithm for finding the longest increasing subsequence. Fredman (1975) shows
this is best possible.

The distribution theory of L(7,0) is a hard unsolved problem. The mean is
asymptotically n — 24/n, see Logan and Shepp (1977). The rest of the distribution
is unknown. The analysis leads into fascinating areas of group theory; see, e.g.
Kerov-Vershik (1985).

C. GENERAL CONSTRUCTIONS OF METRICS.

The preceding section discussed a variety of metrices that have been sug-
gested and used by applied researchers. In this section we give general recipes
for constructing metrics on groups. Specialized to the symmetric group, these
recapture the examples, and a good deal more.

1. Matriz norm approach.

Let G be a finite group. Let p: G — GL(V) be a unitary representation of G
which is faithful in the sense that if s # ¢ then p(s) # p(¢t). Let || || be a unitarily
invariant norm on GL(V). Thus ||AM|| = ||M]| = ||M A|| for A unitary. Define
d,(s,t) = ||p(s) — p(t)||. Observe that this is a bi-invariant metric on G.

Ezample. Let ||M||? = £; ;M;;M;; = Tr(M M*), the sum of squared lengths of
the rows. This is unitarily invariant and leads to interesting special cases.
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Case 1. Take G = S,. Take p as the n-dimensional permutation representation.
Then, d3(id,n) = Tr(I — p(m))(I — p(x)T) = Tr(2I — p(r) - p(r)T) = 2H(id, 7)
where H is the Hamming metric, where on the right, d, is the dimension of p.

Case 2. For general G and p, the argument above shows that characters yield
metrics. Thus d,(s,t) = (d, — re x,(st~1))# is a metric, where on the right, d, is
the dimension of p.

Case 3.  Specializing the above to the usual n-dimensional representation of
the orthogonal group, d,(s,t) = (n — Tr(st=1))? is a metric on O,. Consider
the distance to the identity d(s,id) = y/n — Tr(s). The (i,i) element of s is the
cosine of the angle between se; and e;, where e; is the ith basis vector. Thus
d(s,id) = {£1 — (se;, e;)}7. Since the metric is bi-invariant, it can be expressed
in terms of eigenvalues e'i: d(s,id) = {Z(1 — cos 6;)}%.

Despite these natural properties, and its ease of computation, this is not
the “natural” metric on O,. Mathematicians prefer a metric arising from the
Riemannian structure on O, as a Lie group. In terms of the eigenvalues this
metric is {Z0§}%. See E-5 below.

Case 4. The regular representation R of G gives the discrete metric

G| if s#1
d’*(s’t):{ol | ;fzit.

To determine the distribution of d,(id, t) requires knowing the distribution of
characters. That is, pick ¢t at random on G, and treat x,(t) as a random variable.
This is a problem that is interesting on its own. It has not been well studied.

EXERCISE 6. Show that E(x,) and E(x, — Ex,)(x, — EX,) can be expressed
as follows: Let x, = a1x1 +...+ aprXxr be a decomposition into irreducibles, with
repetitions. If x; is the trivial representation, then E(x,) = a1, and E(x,X,) =
a? +...+al. In particular, if p is real irreducible, E(x,) = 0,Var(x,) = 1. Find

the mean and variance of df, described in Case 4 above.

Remark.  Exercise 6 suggests that metrics defined as (d, — re x(st=1))% will
not be very “spread out.” For real irreducible representations, df, has mean dim
p and variance one. Nonetheless, they can have interesting distributions. For
example n — H(id,7) has a limiting Poisson(1) distribution. Further, the first
n moments of n — H(id,7) equal the first » moments of Poisson(1). Similarly,
the first 2n + 1 moments of the trace of a random orthogonal matrix equal the
first 2n + 1 moments of a standard normal variable. Thus, the distance defined
for the orthogonal group (Case 3 above) has an approximate standard normal
distribution. See Diaconis and Mallows (1985) for these results.

EXERCISE 7. Take G as Sy,. Let p be the (I) dimensional representation derived
by the action of 7 on the set of unordered pairs {7, j}. Show that for large n, x,(r)
has as limiting distribution the same distribution as ﬂ%l +Y where X and Y
are independent, X is Poisson(1) and Y is Poisson(1/2).
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Exercise 8. Compute distances suggested by the discussion above for G = Z,,,
and Z3. What are the limiting distributions for n large?

All of the above examples used the L? or Frobenius norm. There are many
other unitarily invariant norms. Indeed, these have been classified by von Neu-
mann (1937). To state his result, define a symmetric gauge function as a function
¢:R™ — R satisfying
(a) ¢(u1,...,u,) > 0, ¢ continuous.

(b) ¢(u1,...,un) =0 implies uy = ... = u, = 0.

(c) d(tuy,...,tun) = td(uy,...,ug), t> 0.

(d) d(ur +ul,...un +ul) < P(ur,...,un)+ S(ul,...,ul).

(e) ¢ is invariant under permuting and sign changes of coordinates.

For M € GL,, let wy,...,w, be the eigenvalues of MM*. Define ||M| =
#(Jwi|?,...,|lwn|?). This is a matrix norm: |cM| = |c|||M|,||]M + N|| <
[|M|| + || N||. It is unitarily invariant and ||M|| = ||M*||.

Von Neumann showed that, conversely, every such norm arises in this way.
Examples include

1 i
¢= (2|wi|p)p, ma'xlwil’ or { Z Wiy Wiy -« 'w‘l:j}, .

i1 <ig... <ij

The first of these, for p = 2, becomes the already considered matrix norm
(ElMijP)%. The second choice becomes the maximum length of Mwu subject
to uu® = 1. These last two norms also satisfy ||MN|| < || M]|||N]|. It would be
instructive to try some of these norms out on the symmetric group.

2. The fized vector approach.

Let G' be a group, (p,V) a representation. Suppose that V has an inner
product, and p is unitary. Fix a vector v € V and define

d(s, ) = [lo(s™ o = p(t™ ).

This distance has been defined to be right invariant. It clearly satisfies the triangle
inequality and symmetry. One must check that d(id,¢) # 0 unless ¢ = id. It is
not even necessary that |||| come from an inner product. All that is needed is that
p(s) be norm preserving for s € G.

Fzample. Take G = S,, p the usual n-dimensional representation, so p(r~1)
(v1,v2,.+.,Vn) = (Vr(1), Vr(2)> - - -2 Vn(n))- Take v = (1,2,...,n)T. Then d*(r,n)
= X|r (i) — n(?)|®. If the distance on R™ is chosen as the L! distance, Spearman’s
footrule results. These considerations emphasize that Spearman’s rho and footrule
depend on the choice of v. They make it easy to change v to emphasize differences
at one end of the scale. The distribution theory of these variants follows from
Hoeffding’s combinatorial limit theorem. The strong points of the fixed vector
approach will become apparent when it is applied to homogeneous spaces in the
next section.
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3. Lengths.

Let G be a finite group. Let S be a subset of G that generates G in the sense
that any element can be written as a finite product of elements in 5. Assume id
¢ S and §~! = S. Define the length of an element ¢ as the smallest integer ¢ > 0
such that t = s18...s, with each s; € S. Write ¢ = £(t). Thus id is the unique
element of length zero, and each element of S has length 1.

Define a metric on G by d(t,u) = £(tu™?).

LEMMA 3. The length metric d(t,u) = £(tu™?) is a right invariant metric. It is
two-sided invariant if tSt™! = § for everyt € G.

Proof. Clearly, lengths satisfy £(tu) < £(¢)+£(u), and £(t) = £(t~!). Thus d(t,u)
is a right invariant metric. For the last claim, d(nt,7u) = {(ntu=1n~") = £(tu~!)
because S is invariant under conjugation by 7. 0

Fzample. Take G = §,,. If S is chosen as the set of all transpositions one gets
the Cayley metric T'. Choosing S as the set of transpositions of form (z,7+1),1 <
t < n— 1 gives the metric form I of Kendall’s tau. To get Ulam’s metric L, take
S as the set of all cycles (a,a + 1,...,b),1 < a < b < n. Let§ =5 US".
These amount to the basic insertion deletion operations described in example 6
of Section B.

Not all metrics arise this way. For instance, the Hamming distance on S, is
not based on lengths. To see this observe that elements in S have length 1 and
two permutations cannot disagree in only one place. The Hamming distance on
Z3 is based on lengths.

There is a curious application of some fairly deep group theory to the distribu-
tion theory of length metrics. When specialized, it gives the neat representations
of Kendall’s and Cayley’s distances as sums of independent random variables.

Each of the classical groups (e.g. orthogonal, unitary, symplectic) has associ-
ated a finite Weyl group W. A Weyl group is a group W with a set of generators
81,82,...,5, such that s = id and for some integers n;;,(s;, ;)™ = id, these
being the only relations. For example, S, with generators (¢, 4+ 1) is a Weyl
group; n;; being 2 if the generators are disjoint and 3 otherwise. The sign change
group (permute coordinates and change signs arbitrarily) is another familiar Weyl
group.

Modern motivation for studying these groups comes from Lie theory and
combinatorics. Bourbaki (1968) and Stanley (1980) are readable surveys.

Let (W, S) be a Weyl group. Let F(t) = Z,ewt4™) be the generating func-
tion of the lengths. A basic theorem in the subject states that there exist an m
and integers e; called the exponents of W such that

m

F(ty=J(1+t+...t%).

i=1

Letting ¢t = 1, this shows |W| = Il(e; + 1). Dividing both sides by |W|, we have
the following.
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CoROLLARY 1. Let (W, S) be a Weyl group with exponents e;. Then the length
of a random w € W has the distribution of X1 + ...+ X, where the X; are
chosen as independent uniform variables on {0,1,2,...,¢e;}.

The factorization can be found as Exercise 10 of Section 4 in Bourbaki
(1968) or Stanley (1980). As a convolution of symmetric unimodal distributions,
P{f(w) = j} is a symmetric unimodal sequence as j varies.

As an example, on S, with pairwise adjacent transpositions as generators,
the exponents are e; =7 — 1 for i = 1,2,...,n, and the factorization becomes the
representation of the number of inversions as a sum of uniforms discussed under
Cayley’s distance in Section B above.

There is a second general theorem of the same type. Let (W,S) be a Weyl
group. Take § = {tSt~1} as a new set of generators obtained by closing up the
old set under conjugation. This gives a new length function, say £(w). It is an
amazing fact that the generating function of £ factors as

(%) Yot = ﬁ(1 + eit).

i=1

COROLLARY 2. Let (W, S) be a Weyl group with exponents e;. Then the length £
of a random w € W has the distribution of X1 +. ..+ X, where X; are independent
with P{X, = 0} = 1/1 + e,-,P{X,- = 1} = 6,‘/1 + €;.

The factorization (*) was proven by Coxeter and Shephard Todd. See
Solomon (1963) or Proposition 4.6 in Stanley (1979).

These representations make the means and variances of d(s,t) easy to com-
pute. They also make the distribution easy to work with: sums of independent
uniforms have an easy limit theory, with correction terms readily available. Fur-
ther, Harding (1984) shows how such factorizations lead to an easy algorithm for
fast exact computation of distributions in small cases.

Of course, in the case of Cayley’s distance or Kendall’s tau, the represen-
tations are well known in statistics. In the next section we show how a similar
factorization holds for the natural extension of these metrics to homogeneous
spaces.

EXERCISE 9. Consider Hamming distance on Z}. Show its length generating
function factors as (1 + t)™.

An Application. Here is an application of the factorizations in Corollaries
1 and 2 above. Consider Monte Carlo generation of a sample from the Mallows
model (example 3 of Section A) based on the metric I of Section B:

* Py(m) = C(A)e~M(mmo),
We begin by recalling a correspondence between permutations and sequences.

Let (a,...,a,) be a sequence of integers 0 < a; < ¢ — 1. Associate a permutation
by insertion; starting with n,n—1,n—2,... insert n —i+1 so it has a; previously
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inserted numbers to its left. Thus, if n = 7, the sequence (0, 0,1, 3,2, 3,6) develops
as

7 — 67— 657 — 6574 — 65374 — 653274 — 6532741.

The final permutation has a; + ...+ a, inversions (here 15). This gives a 1-1 cor-
respondence between permutations and sequences, with the sum of the sequence
equal to the number of inversions. The correspondence is equivalent to the Weyl
group factorization of Corollary 1 above.

If the initial sequence is chosen uniformly: 0 < a; < 7 — 1, then a random
permutation results. If P{a; = j} = e""j[:—__-;,-"Tll], 0 < j <£1-1, the final
permutation has probability * with 79 = id. The distribution of a; is easy to
generate by inversion (Chapter IIL.2 of Devroye (1986)).

It is easy to modify things to incorporate mg, or to work for any other metric
with a similar factorization.

Fligner and Verducci (1986, 1988b) have pointed out that the normalizing
constant C(A) in * is known from the factorization in Corollary 1. They ap-
ply this in doing maximum likelihood estimation and as a way of extending the
models. Steele (1987) discusses some other combinatorial problems where similar
factorizations arise.

D. METRICS ON HOMOGENEOUS SPACES.

Most of the considerations of previous sections can be generalized to homo-
geneous spaces. Let X be a homogeneous space on which a group G operates
from the right, transitively. Fix §, € X, let K = {s € G:Yps = Fp}. In this
section X will be identfied with right cosets of K in G, X & {Kz;} where id =
Zo,Z1,...,Z; € G are coset representatives for K in G (soG = KUKz;...UKz;
as a disjoint union). Here G acts (from the right) on cosets by Zs = (Kz)s = Kzs
for any s € G and any 7T = Kz € X.

We have made a slight change of notation (from left to right cosets) to agree
with the notation in Critchlow (1985). Critchlow’s monograph develops a host of
metrics for partially ranked data. He gives numerous applications, computer pro-
grams, and tables for popular cases. It is very readable and highly recommended.

There are several ways to choose a metric on X which is right-invariant in
the sense that d(Z, ) = d(Zs, ¥s), i.e. d(Kz,Ky) = d(Kzs, Kys).

a) Hausdorff metrics. Let G be a compact group, K a closed subgroup and
d a metric on G. Let X be a space on which G acts transitively with isotropy
subgroup K. Write X = G/K to denote the representation of X by right cosets.

A metric d* is induced on G/K by the formula

d*(z,7) = d*(Kz, Ky) = max(a,b)

with
a = max min d(s,t), b= max min d(s,?).
s€EKz teKy s€EKyteKz

The metric d* is the Hausdorff distance between the sets Kz and Ky — the
smallest amount that each must be “blown up” to include the others. It is a
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standard way to metrize the homogeneous space X, see e.g., Dieudonne (1970,
pg. 53), Nadler (1978), or Roelcke and Dierolf (1981).

ExERrcise 10.

(a) Show that d* is a metric.

(b) If d is right invariant then so is d*.

(c) If d is left invariant, then d*(Kz, Ky) = lrcréxll{l d(z, ky).

The definition of d* seems more theoretically than practically useful — it
seems hard to explicitly compute the minimum. However, Critchlow (1985) has
given reasonably elegant closed form expressions for partially ranked data and d
any of the classical metrics of Section B. Some of his results will be given here.

Ezample 1. k sets of an n set. Let T and ¥ be k element subsets of {1,2,...,n}.
Note T and 7 can be identified with points in the homogeneous space S,/(Sx X
Sn—k), where S X Sp_x is the subgroup {r € Sp:7(i) < k Vi = 1,...,k and
(1) > kVi=k+1,...,n}. Let H be the Hamming distance on the symmetric
group S,. Then the induced Hausdorff metric is

H*(7,9) = 2(k - |70 7).

To see this, realize T and ¥ as ordered sets 27 < ... < Zg,y1 < ... < Yg. Asso-
ciate permutations z and y to T and ¥ by choosing coset representatives. Since
H(z,y)= H(z~!,y™!), the permutations can be taken as

v = [zlzg cee Tk Ty ... :c;l_k]
12 ... kk+1 n

y= ['ylyz e Yk Y1 y;.—k]
12 ... kk+1 ... n

Now using part c) of the exercise above

H*(Z,9) = resin}g . H(z,7y).

Multiplying on the left by 7 allows us to permute the y; with¢ € {1,...,k} among
themselves and the y; € {k+ 1,...,n} among themselves in the first row of y.
This permits matching elements and proves the result.

The null distribution of |[ZN 7| is the well known hypergeometric distribution.

Ezample 2. Rank k out of n. Here people rank order their favorite £ out of n, in
order. Represent a ranking as (z1,z,...,%r) Where z; is the item ranked first,
T, is the item ranked second, etc. Critchlow (1985, Chapter 3) shows

HYZ,9) = #{i< krzi # 3} + (k= [N 7).

Again, this is a very reasonable distance, albeit, perhaps, a bit crude.
Critchlow gives similar explicit, interpretable formulas for the induced Hausdorff
distances derived from the other classical metrics.
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Ezample 3.  The n-sphere. Using the distance d%(s,t) = n — Tr(st™!) on the
orthogonal group, then choosing reflections I — 2zz* as coset representatives (for
z on the unit sphere), leads to

1
@@ = Vi-<zlg> = 2z -7

Diaconis and Shahshahani (1983, Sec. 3) discuss the choice of coset representatives
more carefully. If Z or 7 is chosen at random, v/n(d?—1) is approximately standard
normal for large n. This last result is proved with good error bounds in Diaconis
and Freedman (1987).

b) The fized vector approach. Here is another large class of invariant metrics
on a homogeneous space X = G/K. Let (p,V) be any unitary representation of
G. Say p has a K fized-vector v € V if p(k)v = v for every k € K. Usually it is
easy to find such a p and v, see the examples below. It follows from Chapter 3F
that p has a K fixed vector if and only if p appears in the decomposition of L(X).
Define a metric on X by

dy(T,7) = dp(Kz, Ky) = ||(p(z™") = p(y™1))o]l.

Note that this is well defined (it is independent of the choice of coset representa-
tives). Note further that this distance is right G-invariant:

dy(Ts,7s) = dp(Kzs, Kys) = [|p(s)[p(z ") = p(y™)]o]
= d,(%,7),

because p is unitary. This d, clearly satisfies the properties of a metric except
perhaps for d,(%,y) = 0 implying T = §. This must be checked separately. The
fixed vector approach was suggested by Andrew Rukhin as a way to choose loss
functions in statistical problems on groups.

Ezample 1. k sets of an n set. For the (}) k-element subsets of {1,2,...,n},
choose p as the usual n-dimensional representation on R™ with the usual inner
product. Take v = (a,...,a,b,...,b) with a run of k a’s followed by n — k b’s.
Choosing coset representatives as the reverse shuffles of example 1 above yields

dy(z,y) = la - b|V2(k ~ TN 7])*

Cf. Example 1 of the Hausdorff approach.
Again, Critchlow (1985) gives a variety of results, giving extensions of Spear-
man’s footrule and rho to partially ranked data.

FEzample 2.  The n-sphere. Take X = §™ G = 0,, K = 0,_1. Take p as the
usual n-dimensional representation of 0,,, and e; = (10...0)! as a K -fixed vector.
Finally take coset representatives as I — 2vv' where v = (e; + z)/c,c = |e; + z|,
and z runs over S™. An easy computation yields d?(z,y) = ||z — y||%.
Constructions a, b, make it clear that there are a wealth of tractable met-
rics on homogeneous spaces. Critchlow gives examples and applications carrying
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over much of the material of Section A to partially ranked data. He has subse-
quently developed many further applications to standard nonparametric problems
as remarked in Example 13 of Section A.

There are a reasonable number of nice distributional problems open — the
null distribution of metrics on homogeneous spaces needs to be better developed.
The following special case hints at what’s lurking there.

Ezample. A metric on partially ranked data. Consider six flavors, a, b, ¢, d, e, f.
Suppose two rankers rank them, choosing their two favorites, and two least fa-
vorite, not distinguishing within:

(1) sbedel phsded

How close are these ranks? It is natural to try the minimum number of pairwise
adjacent transpositions it takes to bring one bottom row to the other. This is 5
in the example. Recall however that the labelling of the top row is arbitrary. The
two arrays could just as easily have been presented with first and last columns
switched. This yields

f cde fb

32123 1
These are the same rankings, but now their distance is 3.

A simple way to have invariance rearranges the two rankings in order of (say)
the first, and then computes inversions. Thus (1) becomes

N o

11 g 3 :{ # inversions = 5.

5 :{ g ¢4 # inversions = 5.

wo

a
1
This example has n = 6, and partial rankings of shape 222. More generally,

Definition. Let A be a partition of n. Let m and n be partial rankings of shape ).
Define I(m,n) as follows: arrange the columns of ® and 1 so that 7 is in order,
beginning with A, ones, Ay twos, etc. This must be done using the minimum
number of pairwise adjacent transpositions. Then count the minimum number of
pairwise adjacent transpositions required to bring the 2nd row of n into order.

EXERCISE 11. Show that [ is a right invariant metric.
One reason for working with the metric I is the following elegant closed form
expression for its null distribution. By right invariance, this only needs to be

computed for I(id, ) 4 I(m).

Theorem 2. Let A = {A1,\2,...,A.} be a partition of n. Let m range over the
n!/IIA;! partial rankings of shape A. Then

n n))!
Zr g7 = ((,\1)\2 . ,\)) - ((/\1))(!(. .).)((A,))!
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where (A)!= (A = D)((A=2))...((1)) with (7)) = 1+ g+ +...+ ¢,

Remarks.  Theorem 2 was proved by Netto when r = 2, and by Carlitz in
the general case. Stanley (1985, Proposition 1.3.17) presents several elementary
proofs. Stanley (1980) proves that the coefficients P{I(7) = j} are symmetric
and unimodal. The factorization and unimodality generalize to other Weyl groups.
The expressions on the right side are known as ¢g-nomial coefficients.

Fligner and Verducci (1986, 1988b) use this factorization as a base for ex-
tending and interpreting Mallows model on partially ranked data.

Note that ((A))!/A! is the generating function of the convolution of A inde-
pendent uniform variables Uy + ...+ U, with U; uniform on {0,1,2,...,¢ — 1}.
This gives an easy way to compute means, variances, and asymptotic distribu-
tions where necessary. The following neat argument evolved in work with Andy
Gleason and Ali Rejali. For clarity, it is given for A = (k,n — k).

The null distribution can be described this way: let z be a pattern of k¥ ones
and (n—k) twos. Let I(z) be the number of inversions (e.g. 2121 has 3 inversions).
For z chosen at random, the generating function of I(z) satisfies

RIS N (¢9))
AR N

Rearranging, the right hand side is

gn(q)gn—l(Q)"-gn—k+l(Q)
96(0)9k-1(q) - - - 92(a)

with g;(¢) = %(1 + ¢+ ...+ ¢°71), the generating function of U; - a uniform

random variable on {0,1,2,...5 — 1}. This has mean = p; = '7— and variance
J 12 -
Cross-multiplying, the identity has the probabilistic interpretation

I+ U4+ Us+ ...+ Uk 2 Up + Unci + ..o+ Un_ig,

where the D means equality in distribution. All of the uniform variables are
independent. From this we have

PROPOSITION 1.

@) B(I)= ptn + ..t fnokgt = = Bt . = o =

b) Var(I)——a +...+0%_ . ol —ol_,...— 0} = M"—kl

c) Asn andk tend to infinity in any way, provided n—k also tends to infinity, the

distribution of I, standardized by its mean and standard deviation, has a standard
normal limit.

Proof. The mean and variance are derived in the remarks preceding the state-
ment. For the distribution, suppose without loss that k > n/2. Write the distri-
butional identity as I + Ux = Un—x. Then standardize

I —
{ 1324 _?I 'F{

ar On—k

Uk“/J'k} D U'n—k_ﬁn-—k
On—k On—k
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The right side converges to a standard normal distribution, as does {9"7;?&}

Since this last is independent of {I—;-ﬁﬂ-}, it must be that { I—;IEJ-} converges, and
by Cramer’s theorem, to a standard normal. O

Remark 1. The argument above works for virtually any type of partition, in
particular 19, (n — ¢)! — for rankings of ¢ out of n.

Remark 2. The proof is similar to the standard argument for the Mann-Whitney
statistic given in Kendall and Stuart (1967, pg. 505).

Remark 8. The generating function is a ratio of generating functions. We took
advantage of this by cross-multiplying. That is different from having a direct
probabilistic interpretation. Indeed, I do not know how to generate random partial
rankings from the associated Mallows model as suggested for full rankings at the
end of the last section. Fligner and Verducci (1988b, Sec. 3.2) have made some
progress here.

E. SOME PHILOSOPHY.

We have seen examples and applications of metrics. We pause for a moment
to reflect on the big picture. What makes a natural metric; how can we compare
metrics? Important issues here are "

1) Interpretability. Is the metric easy to think about directly, easy to explain
to a non-professional? Does it measure something with real world significance such
as the actual number of steps required to sort, or the running time of an algorithm,
or the cost of an error?

Along these lines, observe that Cayley’s, Kendall’s tau, and Ulam’s metric
have sorting interpretations. The footrule, Kendall’s tau, and Spearman’s rho
have a statistical interpretation as estimates of population parameters.

2) Tractability. Is the metric easy to compute? The footrule, Hamming and
rho are trivial to program, Cayley and tau require a bit of thought, and Ulam’s
metric can be tricky if n is large. Is the null distribution available for small
samples? Are useful asymptotics available? Ulam’s metric fares badly here — its
asymptotic distribution is unknown. Of course, null distributions can always be
simulated.

3) Invariance. In the application, is right or left invariance natural and
available?

4) Sensitivity. Does the metric effectively use its range or does it just take on
a few values? Among two sided invariant metrics this is a problem. Worst is the
discrete metric (d(s,t) = 0 or 1 as s = ¢t or not). Next is Hamming distance, which
effectively takes on only a few values around n under the uniform distribution.
Finally, Cayley’s distance takes about y/Tog n values effectively. It should be
possible to find bi-invariant metrics that naturally take on more values. Since
variance can be changed by multiplication by a constant, perhaps the limiting
coefficient of variation /o should be used to measure effective range.

5) Awvailable theory. Has the metric been studied and used enough so that its
strengths and pitfalls are known? Does it link into other aspects of the analysis?
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A nice example arises for continuous groups. Mathematicians seem to agree on
a unique bi-invariant way of metrizing Lie groups such as the orthogonal group.
When pushed “what makes that metric so natural?” they respond with theorems
like “there is a unique differential (smooth except at id, like |z|) bi-invariant
metric compatible with the Riemannian structure.” See Milnor (1976, Lemma
7.6). Metrics can sometimes be derived from axioms (as in Example A-8).

6) The bottom line. There is a fairly harsh test: did somebody actually use
the metric in a real application? Was it used to prove a theorem? Could this have
been done without the metric just as easily? Failing this, does the metric lead to
interesting theoretical questions or results?

A first pass through this list suggests Kendall’s tau as the metric of choice.
It’s easy to interpret and explain, having both an algorithmic and statistical
interpretation. It’s highly tractable because of the factorization. It’s been well
studied, tabled for small values of n, and widely used. It’s quite sensitive in
the coefficient of variation scale, and links into nice mathematics. It also has a
natural extension to partially ranked data. The bottom line judgement is left to
the reader.





