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ON STOPPING RULES FOR THE SETS SCHEME:
AN APPLICATION OF THE SUCCESS RUNS THEORY

BY GIOVANNA CAPIZZI

University of Padua

A stopping rule is proposed for the SETS scheme (Chen, 1978). The meth-
ods of generating functions and partial fractions are applied to the theory of the
success runs. Under the hypothesis that a change in intensity of a Poisson pro-
cess occurs very far from the origin of the observations, two different expressions
are derived for the average delay in detecting increases in birth defect rates.

Comparisons are made with the CUSUM scheme, which appears to be more
efficient than the SETS scheme, in detecting increases in malformation rates.

1. Introduction. Suppose we are monitoring the rate of occurrence of
a rare health event in a specified community, e.g. a specific congenital malfor-
mation in a single hospital.

Under the null hypothesis ϋΓ0 of a homogeneous rate of birth defects,
the number of normal births per unit of time is very large and the number
of malformed births is small. Therefore the malformed births occur according
to a realization of a Poisson process with parameter: λo The constant λo is
the baseline rate of failures under the null hypothesis, i.e. λo represents the
expected number of births with the same malformation, per unit of time.

Suppose an epidemic situation occurs at an unknown instant of time and
the normal rate is subject to an increase of 7 > 1 times the probability of a
birth defect, i.e. λi = 7λ0. Let v be this change-point. The situations v — 0
and v = 00 correspond to the situations of a change at the initial time of
observation and of no-change or stationarity, respectively.

Sequential surveillance systems can make easier the detection of increases
in the rare diseases intensity. Since the interarrival times for a homogeneous
Poisson process are i.i.d. exponential random variables, inspections schemes
with exponentially distributed observations arise naturally in the context of
monitoring the occurrence rate of rare events. Therefore let Xt , (i = 0,1,2,..),
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be the waiting times between consecutive events of the Poisson process. They
are independent random variables with a common exponential distribution FQ.
Under the hypothesis that exactly one change occurs at v, we have:

H\ : XL, ...,Xu ~ Fo and X^+i,X^+2, ~ Fi

tions with parameters λ̂ "1 and λ]where Fo and F\ are exponential distributions with parameters λ̂ "1 and λ]"1

respectively.

Monitoring procedures to detect changes in the parameters of distribu-
tions are designed to minimize the delay between the increase and its detection
and to optimize the probabilities of real and false alarms. These conditions
are satisfied by two different techniques, currently used for the surveillance
of rare health events. The first, called SETS scheme (Chen, 1978), has been
conceived specially for health monitoring. In this kind of surveillance system,
analyses are carried out sequentially as soon as a new case is diagnosed and
the decision is based on a fixed number of previous observations. The second
procedure constitutes an adaptation of CUSUM scheme (Page, 1954), widely
used in quality control systems. The decision that a change has occurred is
based on all previous observations.

The problem of detecting the change at v as soon as possible can be
formalized for both these procedures by devising a stopping rule, i.e. a random
variable N taking non negative integer values. For any observation a certain
condition must be satisfied when the process is "in control" state while its
violation implies that the process is "out of control" and an alarm should be
declared as soon as possible. It is shown that a stopping rule N that minimizes
the functional:

f(N) = s u p EV[N -v\N >v] ( 1 )
0<ί/<oo

subject to a restriction on the frequency of false reactions:

EJ^N] > Δ, Δ > 0 (2)

is optimal for detecting changes in v (Lorden, 1971; Moustakides, 1986). More-
over, it has been shown that under certain conditions CUSUM and SETS
schemes are "equalizer rules" (Pollak and Siegmund, 1975 and Radaelli, 1988),
that is the upper extreme of the right part of (1) is equal to the average run
length (ARL) out of control, E0[N], Therefore, for a fixed large value of the
ARL in control, Eoo[N] (i.e. the expected number of observations until a first
alarm, when v = oo), the efficiency of different rules can be established in
terms of minimum Eo[N]. This approach is based on the assumption that the
epoch of the change v is near zero.
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However, it can be reasonably argued that a monitoring system starts in
a control situation and therefore v is usually large. Under the last assumption,
this paper uses the theory of success runs (Feller, 1968) to define the optimality
of a stopping rule for the SETS scheme.

Section 2 contains a brief description of the SETS procedure for a small
scale system. In Section 3 the methods of the generating functions and the
partial fractions are used to derive for Chen's procedure two different approxi-
mations for the out of control ARL, under the hypothesis that v is very far from
the origin. The CUSUM scheme is discussed in Section 4. Finally, optimal val-
ues for both procedures are compared. The results show that, even if a more
reasonable hypothesis about the time of change is introduced, the CUSUM
scheme is more efficient than the SETS scheme for any value of gamma and
for the hypotheses of v near the origin and far from it.

2. Set Technique. A small scale SETS scheme is based on the analysis
of the number of consecutive normal births occurring between the birth of
an infant with a specific malformation and the birth of another infant with
the same malformation. These sequences of consecutive observations are called
Sets. An alarm is declared whenever a full sequence of n sets, or time intervals,
occurs such that each set has a size smaller than some specified reference
value i2, generally defined in terms of a multiple k of the expected interval
-E[ΛΊ ] = 1/λo This monitoring system is reset to zero after each alarm. The
number of included intervals n and the k value represent the SETS parameters.
They are related to two basic characteristics of the surveillance schemes: the
risk of false alarms and the expected delay for an alarm.

Under the null and the alternative hypotheses respectively, the probabil-
ities Pj, (j = oo,0), that a sequence of n consecutive time intervals signals an
alarm are:

Poo(n) = p% = [l-ex]>(-k)]n (3)

Po(n) = rf = [1 - exp(-*7)]n. (4)
Chen (1978,1987) proposed combinations of the parameters n and &, imposing
that under stable conditions the realization of the appearance of n consecutive
short sets is rare, and relatively common in epidemic situations.

Kenett and Pollak (1983) introduced an equation to find the expected
number of diagnoses between alarms for the Chen's procedure. This expected
value, under the hypotheses Ho and Hi respectively, is equal to:

E-"ίN] = Ί& (5)

with s = oo, 0 and qj = 1 - p J 5 j — 0 , 1 .
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A suitable stopping rule N for the SETS scheme might be the random
variable counting the number of sets before the first alarm. The optimality of
this stopping rule, considering the waiting times for the appearance of adjacent
sets of consecutive events, with a preassigned integer size, can be evaluated
solving problem (1) and (2). Gallus and Radaelli (1988) find in this class
the following stopping rule. Let r(m) be the waiting times for the occurrence
of a specified number m > 1 of consecutive events. The stopping rule is
N = mf[s > n : maxί = s +i_ n r , . ) S r | m ^ < T], For this procedure these authors
evaluate an analytical expression for the ARL, which is equivalent to (5) with
Pj = Fj(T) = P?[r(m) < Γ], j = 0,1. They also use an iterative procedure
to find optimal combinations of the parameters n and k. This combination
allows to obtain the minimum value of the delay Eo[N].

On the basis of all these previous works, it may be concluded that of
the SETS and the CUSUM methods, the first procedure is to be preferred for
detection of relatively large increases in the incidence of rare diseases. However
observe that the CUSUM parameters, used in these comparisons, were taken
from Ewan and Kemp's tables (1960). These approximate values are those
associated with an expected interval of about 500 observations between false
alarms and an expected delay until detection of about 3 or 7 units of time,
but they are not the optimal values of parameters for a fixed level of the in
control ARL.

In the next paragraph a stopping rule JV, for a different form of the
problem (1) and (2), is proposed using two different methods of the recurrent
events theory. An analytical expression of the ARL, equivalent to (5), is
derived. Values of the parameters n and k which minimize Eo[N]y for a fixed
large value of EOQ[N], are determined. Then the results are not compared with
the CUSUM values listed in Ewan and Kemp's tables, but with the "optimal"
values of the stopping rule associated to this scheme, which were obtained by
the Markov-chain approach (Brook and Evans, 1972).

3. A Stopping Rule for the SETS Scheme. Define as "success"
the event S = {the time interval, between two consecutive events of a Poisson
process, is shorter than the reference value R = k/λo}. The alarm situation
can be considered equivalent to the recurrent event: ζ = {α success run of
length n occurs}. It is possible to associate with ζ two sequences of numbers
defined for s = 1,2..., us = P(A) = P{e occurs at the sth trial} and fs =
P(B) = P{the first success run of length n occurs at the sth trial}. For
convenience UQ = 1 and /o = 0.

The generating functions are F(ά) = Σ £ o / * α * a n d U(α) = Σ»~ott«αt"
respectively. Events like A are mutually exclusive and so we have / = F(l) =

ΣΓ fi < i



70 STOPPING RULES FOR THE SETS SCHEME

It is possible to introduce a random variable Γ representing the number of
trials up to the first occurrence of ζ and having distribution fs = P{T = s}.
The random variable T is an improper random variable because, under the
hypothesis that ζ never occurs, it does not assume a numerical value with
probability (1 - / ) . The r.v. T is by definition equivalent to the stopping rule:

T = mf{s:Xs<kE0[Xi],Xs-1<kE0[Xi), ,X.-»+i < kE0[Xi]}. (6)

It is proved that the relationship existing between the generating functions of
{us} and {fs}, can be used to find the generating function of the recurrence
times Tr, standing for the waiting times between the successive occurrence of
ζ (Feller, 1968):

=

- a
(7)

where pj and qj are given by (3) and (4) for j = 0,1.

Differentiation of (7) leads to the mean of the recurrence times of runs
of length ra, respectively under Ho and J?i, that are equal to the in and out
ARL, derived by Kenett and Pollak (1983) and Gallus and Radaelli (1988).

It can be useful to show the same results for the general Markov chain
associated to the success runs. The SETS procedure forms a discrete Markov
chain with (n + 1) possible states i,i = 0,l,..,n. Beginning from the state
i = 0 (counting as a failure) the system, after each observation, goes to the
state (i + 1) with probability p, if the observed time interval is shorter than
i2, or comes back to i = 0 with probability q. Finally, when i is equal to n, an
alarm is declared and the system is reset to zero, i.e. i = 0. The corresponding
transition matrix is

~q

q

q

-q

P

0

0

P

0

P

0

0

... o-

... o

. . . p

••• 0 .

(8)

The long-run stationary distribution corresponding to (8), π, determines the
relative frequency of the possible states. The (n + 1) elements of the vector π
are

1 - p i = 0

The relative frequency of alarms is represented by the element τrn, while the
expected number of diagnoses until an alarm is declared is equal to D = π " 1 ,
which is equivalent to (5).
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Under stationary conditions and starting from the state zero (or n), D

represents the in control average run length. On the other hand, supposing

there is an abrupt change in the baseline rate, when the system is in the state

zero, the number of diagnoses until an alarm is declared is equal to the out of

control average run length, that is D with p given in (3) and (4) respectively.

Several papers (Kenett and Pollak, 1983, Gallus and Radaelli, 1988) are based

on this assumption.

However the change point v can occur in any unknown instant of time so

it may be convenient to consider the probability that the system is in a certain

state i before an increase occurs and the expected number of further obser-

vations until an alarm is declared, given the number of consecutive successes.

Let £„ be the state of the observed process at time z/, that is the number of

consecutive successes ending at the trial corresponding to the time v. For a

fixed v, the delay between the rise in the incidence and the first alarm may

be expressed by EU[T - v \ T > v\. We define the optimality of the stopping

rule T solving a problem similar to the (1) and (2) and defining two different

forms for the functional (1). In order to reduce the delay, we propose for the

original SETS procedure the minimization of the following functional

n - l

Urn Ey[T - i/ I Γ > i/] = V l i m Pv{ξv = i\T> v}E0[T \ ξ0 = i] ( 1 0 )
v»oo ^ - - ' v—+oo

subject to

v—
i=0

with B a positive large constant and T given by (6).

Suppose {£, = i}. An alarm is declared if, after time t>, a success run of

length (n — i) occurs. We can describe any possible results in the following

scheme:

Observed frequency Number of trials Probability
after ξμ = i until ζ occurs (T - u)

(n — i) successes (n — i) p™~%

(n-i-1) successes (n - i) + EXl[T \ ξ0 = 0] P?~*~V
1 failure
(n - i - 2) successes (n - i - 1) + Eχλ[T | & = 0] Pι~*~2qi
1 failure

1 success 2 + EXl [T \ ξ0 = 0] p1q1

1 failure
1 failure 1 +EXl[T \ζ0 = 0] qx
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where Ext[T \ ξ0 = 0] = [1 - Pι]/[qiPin] stands for the "start over". In fact,
when an interval larger than the reference value occurs after the i-th success,
the monitoring system is re-set to zero.

The distribution P{ξv = i \ T > u} can be approximated by following
two different approaches. The first approach uses, as a reasonable approxima-
tion justified by Pollak and Siegmund (1986), the stationary distribution π.
Therefore the functional (10) can be expressed as follows:

n-l

EU[T - v I T > v\ 2 Σ πi1

i=0

(12)

Another expression for the functional (10) can be derived using the method
of partial fractions, proposed by Feller (1968), to find an approximation for
the probability of no success run of length n in s trials. Let W be a random
variable assuming values 0 and 1 with probabilities q0 and p0 when a failure and
a success occurs respectively.. The event {&, = i} is equivalent to the situation
in which we have observed i consecutive successes at times ι/—i+l,i/—i+2,...v
and a failure at time v — z, that is it is equivalent to the event:

Au%i = {Wu = . . . = Wv-i+1 = l9Wy-i = 0 I T > v}

The probability P{ξu = i \ T > v} is equal to:

PSA I rp . τ / 1 _ Pcθ{Ay%i Π T > v} PpojA^j Π T > V ~ i}

PjAj n τ > u i l } P j A ^ P i T > u i l } { }

Poo{T > v] PooiT > u}

The probability Poo{A^i) is equal to qop^ while the other two components,
qu-i-\ = Poo{T > v-i — l) and qv = Poo\T > ^}, may be easily computed by
the method of partial fractions. This method provides good approximations
for the probabilities of no success runs of length n in {y - i - 1) and in v trials
(Feller, 1968). In particular we find:

[n + 1 — nx)q§xv~x \n + 1 — nx)qoxu^1

where x is the smallest root greater than one of the equation: l-x+qopQXn+1 =
0.

Given these approximations the probability (13) is equal to:
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Pv{AVti I T > v)

and another approximation for the functional (10) may be obtained:

ra-l

EV[T -v\T>v] = Σ Pv{Av,i I T > v}Ev[ξv = i | T > v] «
« = o

(14)

4. Computation of CUSUM Parameters. Consider a CUSUM
scheme with exponentially distributed random variables. The stopping rule for
this scheme is: T = infi{i : 5, > Λ}, where Si = max{0, Si-i + k-Xi}, So = 0
and xt are the observed data. A Markov chain approach (Brook and Evans,
1972) may be used to obtain the average run length. The Markov chain is
based on m + 2 states; each state is defined by a reference value U{ (u{ = 0 if
i = 1, m + 2 and (i - 1)Δ otherwise with Δ = 2h/[2m + 1]) and an interval Jt

(ii = (-oo,Δ/2], h = (Δ/2,3Δ/2],...,Jm +i = (Λ- Δ,Λ],Jm+2 = (Λ,+oo)).
This approach leads to the exact average run length of the approximating
process: 5* = /w(5*_1) + k — X{, where u(y) is equal to Ui, if y G /;. Since
the scheme is reset to zero whenever an alarm is declared, the reference value
of the last state (out of control situation) is equal to zero. By the standard
Markov theory, it is possible to derive the stationary distribution, π, of the
Markov chain formed by the sequence of intervals reached by 5*, and the av-
erage number of steps to reach the (m + 2)-th state, starting from the state i,
μ;(7). Therefore the ARL*, that is the analogous of (12), is given by:

(TΓI + πm+2)μi(7) + 7Γ2/i2(7) + + πm+1μm+1(-f).

Observe that 7rm+2 multiplies μι(j) since we are assuming that the CUSUM
is reset to zero when an alarm is declared.

5 Results and Discussion. Let B\ and B2 denote two larges val-
ues of the constant 2?, 500 and 750. First, we find values (n,k) such that
(11) is equal to B{,i = 1,2. Then for fixed values of the increase rate 7, i.e.
1.5,2.00,..., 7.00, minimum values D* of (12) and (14) are derived (Tables I
and II). It is possible to observe that as 7 increases, n and k decrease until
7 = 5.00, while after that threshold their values begin to be constant while the
corresponding values of (12) and (14) are still decreasing. Observe that (12)
and (14) lead to close values of n and k. Indeed, (12) and (14) give almost
similar results for all values of n and k with (14) typically smaller. This is
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probably due to the dependence of (14) only on z/, while the approximation
(12) assumes that both v and B diverge. Tables I and II also show the corre-
sponding optimal values of the CUSUM scheme (h,k,ARL*) obtained setting
m = 120. It should be noted that the performance of this scheme is better
than (12) and (14) for all values of 7.

Moreover, recall that a minimax criterion was used in the stopping rule
solving problems (1) and (2). This formulation has the drawback that an
optimal value of the functional is attained when the true change-point is equal
to zero. Table III gives the corresponding values of n and k and the functional
denoted by ARLQ. It is evident, from tables I, II and III that the different
criteria do not lead to essentially different results when 7 is greater than 3. In
other words, in order to detect a large increase, the solutions of problems (1),
(2) and (10), (11) are nearly optimal for all change-points, both close to zero
and close to infinity.

Furthermore, observe that CUSUM and SETS schemes are usually com-
pared for specific values of B and 7. However, since the true value of 7 is
unknown, it is important to evaluate a procedure which is optimal for one
choice of 7, at other values of 7 as well. As the two criteria (12) and (14)
lead to identical schemes, for two values of 7, i.e. 2 and 5 and for B equal to
750, these values have been chosen to compare the performance of both pro-
cedures. In particular the optimal CUSUM and SETS schemes are compared
for all values of 7, in terms of expected number of observations until an alarm
(Tables IV and V). The result show that the optimal values of CUSUM always
lead to a more efficient solution over the optimal SETS method, for any 7.

Table I. Minimum values of (12) and (14) and corresponding values
of the parameters n and fc, for B = 500

7

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

n

25
15
12
9
8
7
7
6
6
5
5
5

k

1.8232
1.2686
1.0496
0.7922
0.6959
0.5937
0.5937
0.4855
0.4855
0.3720
0.3720
0.3720

Dh)
59.69
27.59
18.03
13.67
11.18
9.61
8.53
7.69
7.09
6.61
6.18
5.85

n

25
16
12
10
8
7
7
6
6
5
5
5

k

1.8232
1.3347
1.0496
0.8830
0.6959
0.5937
0.5937
0.4855
0.4855
0.3720
0.3720
0.3720

DU)
59.59
27.56
18.02
13.67
11.17
9.60
8.58
7.69
7.09
6.60
6.17
5.84

h

8.3296
4.8451
3.4347
2.6572
2.1679
1.8270
1.5818
1.3922
1.2415
1.1128
1.0179
0.9344

k

0.8529
0.7309
0.6459
0.5815
0.5312
0.4901
0.4565
0.4275
0.4025
0.3795
0.3617
0.3447

ARL*

33.81
17.42
12.23
9.72
8.23
7.25
6.56
6.03
5.62
5.29
5.02
4.79
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Table II. Minimum values of (12) and (14) and corresponding values
of the parameters n and k, for B = 750

n D(12) n D (14) ARL*

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

29
18
13
11
9
8
7
7
6
6
6
5

1.8925
1.3742
1.0541
0.9025
0.7334
0.6414
0.5441
0.5441
0.4415
0.4415
0.4415
0.3345

72.97
32.06
20.49
15.35
12.46
10.64
9.39
8.48
7.77
7.21
6.80
6.39

27
18
13
11
9
8
7
7
6
6
6
5

1.8116
1.3742
1.0541
0.9025
0.7334
0.6414
0.5441
0.5441
0.4415
0.4415
0.4415
0.3345

73.01
32.03
20.47
15.34
12.45
10.6
9.38
8.48
7.76
7.20
6.80
6.39

9.0120
5.2122
3.6815
2.8461
2.3189
1.9567
1.6880
1.4861
1.3268
1.1982
1.0895
0.9939

0.8460
0.7259
0.6413
0.5778
0.5278
0.4872
0.4532
0.4247
0.4000
0.3786
0.3594
0.3417

38.60
19.37
13.45
10.62
8.96
7.87
7.10
6.52
6.07
5.70
5.40
5.15

Table III. Minimum values of ARLQ and corresponding
values of the parameters n and k, for B = 500 and B — 750

n
= 500
k ARLQ n

= 750
k ARLQ

1.5
2.0
2.5
3.0

21
14
11

1.6262
1.1992
0.9686
0.7922

66.45
30.75
20.05
15.12

25
16
12
10

1.7257
1.2549
0.9803
0.8204

80.48
35.46
22.62
16.87

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

8
7
6
6
5
5
5
5

0.6959
0.5937
0.4855
0.4855
0.3720
0.3720
0.3720
0.3720

12.34
10.54
9.29
8.39
7.72
7.12
6.67
6.33

8
8
7
6
6
6
5
5

0.6414
0.6414
0.5441
0.4415
0.4415
0.4415
0.3345
0.3345

13.67
11.65
10.21
9.19
8.39
7.81
7.28
6.84
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Table IV. Comparison of SET and CUSUM schemes
optimal for 7 = 2, B = 750

7

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

ARL0

750.00
83.23
35.77
24.92
21.10
19.47
18.72
18.36
18.18
18.09
18.04
18.02
18.01

SET
P(12)
735.91
78.06
32.06
21.68
18.06
16.53
15.82
15.48
15.31
15.23
15.18
15.16
15.15

^(14)

735.73
78.03
32.04
21.67
18.04
16.51
15.81
15.46
15.30
15.21
15.17
15.15
15.14

CUSUM
ARLo

750.00
48.70
22.39
16.37
13.80
12.40
11.51
10.90
10.45
10.12
9.85
9.64
9.46

ARL*
733.78
44.01
19.37
13.95
11.70
10.48
9.72
9.20
8.82
8.54
8.31
8.13
7.98

Table V. Comparison of SET and CUSUM schemes
for 7 = 5, B = 750

7

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

ARLo

750.00
132.22
49.65
27.16
18.33
14.04
11.66
10.21
9.277
8.645
8.205
7.892
7.665

SET
£(12)

744.73
129.94
48.10
25.94
17.29
13.11
10.79
9.389
8.484
7.874
7.450
7.149
6.931

£(14)

744.72
129.97
48.10
25.94
17.29
13.11
10.79
9.387
8.482
7.873
7.449
7.147
6.929

CUSUM
ARLo

750.00
110.58
36.50
19.23
13.13
10.30
8.75
7.79
7.13
6.67
6.32
6.05
5.83

ARL*
744.86
108.36
35.07
18.15
12.23
9.52
8.04
7.13
6.52
6.08
5.76
5.51
5.31
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