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We consider the continuous time change-point model of Shiryayev (1973)

and study its structure. We also derive an asymptotic expansion of the Bayes

risk when the costs of observation become small. This approach is then extended

to related other problems.

1. Introduction and General Setup. A problem of sequential de-
tection in continuous time is considered. Let B denote a standard Brownian
motion. Let θ be a fixed and known real number. We study the process

Wt = Bt + θ(t-τ)+ ί € [ 0 , o o ) ,

where τ is an unknown change-point in a Bayesian framework. This means
that r is a random variable with a known law. Following Shiryayev (1973) we
assume that τ is independent of B and has a prior distribution with
P({r = 0}) = p and P({τ > t}) = (1 - p)e~λί, where p G [0,1) and λ > 0.

The statistician observes W and seeks for a stopping time T depending
on W that detects r as soon as possible. Here a stopping time means that

{T <t} € Γ? = σ(W8;s <t) .

The quality of a stopping time T is measured by the following risk function
R(T):

R(T) = P(T <τ) + CE(T - r)+ ,

where C > 0. We seek for a Bayes solution Γ*, that is a stopping time T*
with

The infimum on the right hand side is taken over all stopping times T.
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Let 7Γt denote a continuous version of the posterior probability (which
exists in the situation we consider) that the change has already occurred given
the observations up to time t

*t := P(τ < t\F?) .

For all finite stopping times T holds

R(T) = Ell-πτ + C ί πsds\ .

It turns out (see Shiryayev (1973)) that in the above problem T* is of the
form

T* := inf {ί > 0| πt > p*} ,

where p* G (0,1) is properly chosen. The key step to prove this without using
results of the general theory of optimal stopping is to find a function g for
which g(x) + 1 — x assumes its minimum over [0,1) uniquely at p* such that
for a sufficiently large class of stopping times T holds

Since πt is continuous in t one can stop exactly in the minimum. This method
is well adapted to optimality proofs in sequential testing even in the case of
composite hypotheses (see Lerche (1985)). A similar approach can be applied
to the continuous time version of the Bayes problems of Ritov (1990) (see
Beibel (1992)).

2. Shiryayev's Problem - Exact Solution. In Shiryayev (1973)
Theorem 1 below is proved using the general theory of optimal stopping of
Markov processes. Shiryayev considered a certain generalized Stefan problem.
The solution of this free-boundary problem is time independent. Therefore
it is possible to carry out our approach. Our arguments are modifications of
Shiryayev's original reasoning.

7Γt satisfies the equation (see Shiryayev (1973))

dπt = λ(l - πt)dt + θπt(l -

where τro = p and W is a standard Brownian motion.

Let #(•) denote the function - /' ψ*(u)du, where ^* is defined as in
Shiryayev (1973, p.163 equation (4.172)). Then g solves the differential equa-
tion

—x 2 ( l - x)2g"{x) + λ(l - x)g\x) = Cx for x € (0,1) .
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THEOREM 1. (Shiryayev) Let p* denote the unique solution in (0,1) of
g'(x) = 1. Then

T* :=inf{ί > 0 | πt > p*}

is a Bayes solution.

PROOF. Ito's formula implies that for all bounded stopping times T holds

= E{g(πτ)+l-πτ} .

A straightforward calculation shows that g is convex and that g(x) + 1 — x
assumes its minimum over [0,1) at a unique point p* £ (0,1).

If τr0 = p < p* we immediately obtain the optimality of Γ*. An easy limit
argument yields that for all finite stopping times T holds R(T) > g{p*) + l-p*.
πt converges almost sure to one as t tends to infinity and thus T* < oo and
TΓ̂  = p*. Another limit argument yields now R(T*) = g(p*) + 1 — p*.

In the case p > p* one starts beyond the minimum and the best strategy
is to stop immediately.

3. Shiryayev's Problem for Small Costs. Theorem 1 unfortunately
gives no explicit expression for the optimal threshold p*. The implicit equation
g'(p*) — 1 can only be solved numerically. Hence we will now study the
behaviour of R(T*) and p* in Shiryayev's problem for fixed λ and θ as the
costs tend to zero. We now write c instead of C. We like to indicate the
dependence of iί( ), Γ* and p* on c and write Λc( ), Γ* and p*.

Using elementary calculus to study the behaviour of g(x) for x —• 1 one
can show that

where / = λ + γ A similar expansion can be obtained for JRC(Γ*). The
analytical arguments provide no probabilistic interpretation of the terms in the
asymptotic expansions which they yield. We now give a stochastic argument
which perhaps reveals more what happens for c —• 0.

The stochastic differential equation for TΓ* implies that

-rflog(l - τrt) = λdt + —π2

tdt + θπtdWt .

Then for all stopping times T with ET < oo it holds

RC(T) = E {g(πτ) + 1 - τrΓ} + cEVτ - g(p) ,
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1 θ2 /*
where c = - , ^(x) = clog ex and Vt = — (π s - 7Γ*)ds .

/ 1 — x 2 7Q

Obviously Vi | Kx> a s * —* °° f° r some random variable V^ with JEFOO < oo .

The function g(x) + 1 - x is convex on [0,1) and assumes its unique minimum

over [0,1) at x = (c + I ) " 1 . Let

T c :=inf{*>θ| πt> (f

For c -> 0 it holds Γ* ~> oo P-a.s.. This yields £(Vτc ~ ^rc*) -^ 0 as c -> 0.
Together with some additional arguments we obtain from that

0 < -C(RC{TC) - ΛC(ΓC*)) < J{EVTC - EVTc*} ^ 0

Thus Tc is asymptotically optimal and it holds

PROPOSITION 1.

as c -+ 0 .

= c log - + c < EVQO - log h p > + o(c) as c -» 0 .

c ^ 1 - P J

The asymptotic expression in Proposition 1 for the minimal Bayes risk

RC{T*) has an important consequence. If we rewrite iZc( ) &s

ΛC(Γ) = P(T < T) + eΪE(T - r)+

we can see, that taking the costs for the delay proportional to /, standard-

ises the problems with different values of θ such that they are asymptotically

for small costs in first order of equal difficulty. This unsual cost structure

( λ + γ ) ( Γ - r ) + for the delay term raises the question, wether it is possible to

modify the problem such that γ(T — r)+ is the correct standardisation. This

might be more natural, because y is the KuUback-Leibler-Information of a

normal distribution with mean θ and variance 1 relative to a normal distribu-

tion with mean 0 and variance 1. Let P ^ denote the measure corresponding

to no change at all. Let

LC{T) = PUT < oo) + c ^

A continuous version of
jr^

is given by φt with
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φt satifίes the equation

dlog(φt) = —τ2

tdt + θπtdWt ,

where φo = 1 and thus for all stopping times T with ET < oo it holds

LC(T) = E^ΦT1 + clog(φτ) + cVτ) .

Let Sc := inf It φt > c" 1 j for c > 0 . Let S* denote a Bayes solution cor-
responding to Lc('). The existence of S* can be shown using results of the
general theory of optimal stopping of Markov processes. Similar arguments as
before yield for c —> 0 the following result.

PROPOSITION 2.

LC(S*C) = LC(SC) + o(c)

= c + clog - + cEVoo + o(c) as c -» 0 .
c

It is interesting to compare this statement with the exact results in the
problem of optimal power one tests for simple alternatives (see Lerche (1985)).
One can write the risk function considered there in a way similar to i c ( ). Then
the minimal risk is equal to c + c log(l/c) and for a large class of stopping times
T the risk is the expectation of 1/lτ + clog/χ, where lt is the likelihood ratio
at time t of Brownian motion with drift θ to Brownian motion with drift 0.

4. The Case of Unknown θ for Small Costs. We finish with a short
remark about the case of small costs and unknown θ for the loss structures
Λ( ) and £(•). We therefore like to indicate the dependence of the distribution
of W on θ and write in the sequel pW and E(θ) instead of P and E. The
arguments of Section 3 on asymptotic optimality can be extended to handle
the case when θ is unknown and has a prior distribution. We take the costs
proportional to λ + —• or y for R( ) or £(•) and consider

/

+OO

or
r+oo -i

LC(T) = PTO(Γ < oo) + c / ±θ2εW(T - τ)+G{dθ) ,

where G denotes a normal distribution function. We obtain similar results
as Lerche (1985). An additional term of order | log log i plus a term c times
certain constants appear in the asymptotic expressions for the minimal Bayes
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risks as c —• 0. These terms result from not knowing θ and when the change

occurs.
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