
Stochastic Inequalities
IMS Lecture Notes — Monograph Series
Volume 22 (1993)

HYPERBOLIC-CONCAVE FUNCTIONS AND
HARDY-LITTLEWOOD MAXIMAL FUNCTIONS

By ROBERT P. KERTZ1 and UWE ROSLER

Georgia Institute of Technology and Georg-August Uniυersitάt Gδttingen

A class of generalized convex functions, the hyperbolic-concave functions,

is defined, and used to characterize the collection of Hardy-Little wood max-

imal functions. These maximal functions and the probability measures as-

sociated with these maximal functions, the maximal probability measures,

are used in representations and inequalities within martingale theory. A

related collection of minimal probability measures is also characterized,

through a class of hyperbolic-concave envelopes.

1. Introduction

In this paper, a new class of functions, the collection of hyperbolic-
concave functions, is introduced to give natural characterizations of the col-
lections of Hardy-Littlewood maximal probability measures (p.m.'s) and a
related collection of minimal p.m.'s. These collections of probability mea-
sures play an important part in martingale theory and other areas of prob-
ability theory.

The Hardy-Littlewood maximal p.m.'s can be described as follows. Let
μ be any p.m. on IR with distribution function Fμ = F and left continuous
inverse i ^ 1 , satisfying f£° xdμ(x) < oo. The Hardy-Littlewood maximal
function associated with μ is the function H~~ι = H"1 defined by

F'\t)dt.

As a random variable on [0,1], with Borel sets and Lebesgue measure, H~x

has an associated p.m. μ*, called the Hardy-Littlewood maximal p.m. asso-
ciated with μ. These maximal p.m.'s appear in many areas of probability
theory (Blackwell and Dubins (1963), Dubins and Gilat (1978), Hardy and
Littlewood (1930), Kertz and Rosier (1990)).

In martingale theory the maximal p.m.'s appear in the following char-
acterizations, see Blackwell and Dubins (1963), Dubins and Gilat (1978),
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Kertz and Rosier (1990): for any p.m. μ on IR with / \x\dμ(x) < oo,

(1.1) μ* = sup^s{ι/ : there is a martingale (Xt)o<t<i satisfying

X\ = μ and sup Xt = v}
o<t<i

and

{y : there is a martingale (Xt)o<t<i satisfying X\ = μ

and sup Xt = v) = {y is a p.m. on 1R : μ <s v <8 μ*}.
o<t<i

Here -<s denotes the stochastic order on p.m.'s, and Y = μ denotes that Y
has associated p.m. μ. Two collections of p.m.'s important for the charac-
terizations in (1.1) are

(1.2) V* := {v is a p.m. on H : v <8 μ*

for some p.m. μ with / xdμ(x) < oo}

and

V* := {ί/ is a p.m. on R : v = μ* for some p.m. μ
roo

with / xdμ(x) < oo}
Jo

In Kertz and Rosier (1991a), it was shown that V*, the set of p.m.'s domi-

nated by maximal p.m.'s in the stochastic order, equals the set of p.m.'s v on

1R satisfying limsup^^QQ xz/[a:,oo) = 0 (see also Kertz and Rosier (1991b)).

The collection VQ is the set of Hardy-Littlewood maximal p.m.'s.

In the main section of this paper, Section 4, connections between maxi-

mal p.m.'s and hyperbolic-concave functions are given. In Theorem 4.2, it

is shown that Vζ is isomorphic to the set of hyperbolic-concave functions

μ*[., oo) associated with p.m.'s in V*. Theorem 4.3 shows that maximal

p.m.'s can be expressed in terms of their hyperbolic derivatives,' as defined

in (2.7).

A related collection of 'minimal' p.m.'s is described as follows. For each

p.m. v G V* (i.e., each p.m. i / o n E with limsup^oo #*/[#, oo) = 0), the

minimal p.m. v& associated with v is the p.m. on IR satisfying

ΛOO

ι/A := inf^c{μ is a p.m. on IR : / xdμ(x) < oo and v -<s μ*}.
Jo

Here -<c denotes the convex order on right-tail-integrable p.m.'s. The
existence of minimal p.m.'s v& was proved in Theorem 2.4 of Kertz and
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Rosier (1991a). Also the importance of these minimal p.m.'s in martin-
gale theory was made explicit there through the following characteriza-
tions: for any p.m. v on IR satisfying limsup^^^xί/fx,^) = 0 with finite
x0 := inf{z : v(-oo,z] > 0},

v& = inf^c{μ : there is a martingale (Xt)o<t<i satisfying

Xι = μ and sup Xt = v}
0<<l

and

{μ : there is a martingale (Xt)o<t<i satisfying X\ = μ and sup Xt = v}
0<t<l0<t<l

= {μ is a p.m. on IR : / xdμ(x) = x0 and v& <c μ <s v}.

In Theorem 4.4 it is shown that the minimal p.m.'s are characterized by the
hyperbolic-concave envelopes of p.m.'s in V*.

The concept of hyperbolic-concave functions is defined in Section 2.
Through a natural connection to convex functions, given by the map x —•
1/x, properties of convex functions carry over to give desirable properties of
hyperbolic-concave functions. Some of these properties are listed in Sections
2 and 3. In particular, hyperbolic-concave envelopes are defined, and their
properties are identified, in Section 3. The results in Sections 2 and 3 are
applied to give characterizations and identifications in the central Section 4.

2. Hyperbolic—Concave Functions

In this Section, the concept of hyperbolic-concave functions is defined
(Definition 2.2); and properties of these functions are given (Lemmas 2.5
and 2.7 and Proposition 2.6). Proofs are facilitated through a key equiva-
lence between hyperbolic-concave functions and convex functions, given in
Theorem 2.3. Standard definitions and properties associated with convex
functions are used throughout this paper; for reference see Roberts and Var-
berg (1970) and Rockafellar (1970). Within this paper, intervals in the real
numbers IR may or may not contain their endpoints, are nonempty, but may
be a singleton.

For any real numbers a and b with a < 6, fc( ,α,δ) denotes the hyperbolic
function from IR into (0, oo] given by

k(x] α, 6) = (6 - a)/(x - a) if x > α, and = +<x> if x < α.

Let Wo denote the collection of such functions. The following two properties
of these hyperbolic functions are easily verified.
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LEMMA 2.1 (%) Let (#1,2/1) and (#2,2/2) ^ αn2/ P&irs °f rea>l numbers sat-
isfying x\ < X2 and 2/1 > 2/2 > 0. Then there exists exactly one pair of
real numbers a and b with a < b for which the function fc( ;α,6) satisfies
fc(xi;α,6) = y\ and k(x2]a,b) = 3/2- The numbers a and b are given by
a = (xiyi - X2y2)/(yι - ί/2) and b = (xχyi - x2y2 + 2/12/2(22 - x\))l{yi - 2/2).

(ii) Let kι(-) = k(-;aι,bι) and Λ^ ) = K''ia2jh) be two different func-
tions in Wo Then there is some number x for which either (a) k\(x) < £2(2)
if a\ < x < x, and £2(2) < kχ(x) if x < x < 00; or (b) £2(2) < k\(x) if
c&2 < x < x, and kι(x) < ^ ( x ) if x < x < 00.

Function g from R into [0,00] is said to be nondegenerate if g takes on
at least one value in (0,oo). Let Q denote the collection of nondegenerate,
nonincreasing functions from 1R into [0,oo]. For each function g in £?, let
wo := sup{x : g(x) = ]imy-+-co g(y)} if this set φ 0, and = —00 otherwise;
and xo := inf{x : g(x) = 0} if this set φ 0, and = +00 otherwise. Observe
that iϋo < xo if g is not identically constant; if —00 < tϋo, then g(x) =
liπiy-H.-oo g{y) for all x G (—oo,wo); and if x0 < 00, then g(x) = 0 for all
x G (xo,oo) For each g in Q, the function 1/(7 is defined on the interval
Ig := Όom(l/g) = {x : 0 < g(x) < 00}. Observe that Ig is nonempty. Also,
let w\ be the extended real number

(2.1) W\ \— sup{x : g(x) = limit of g(y) as y I inf(Ig) over y in Ig}

if this set is nonempty, and = WQ otherwise.

To aid in understanding these definitions, consider the following function:

g(x) = +00 if x G (-oo,0], = l i f x G (0,2], = -(l/2)(x - 3) if x G (2,3],

and = 0 if x G (3,00). For this function Wo = 0, wi = 2, and ar0 = 3.

DEFINITION 2.2 Let / be any function in Q. We say that / is a hyperbolic-
concave function if for any two pairs (#,/(#)) and (2/,/(y)) with x < y and
0 < f(y) < f(x) < °° a n d any associated function k( ) = A;( ;α,6) from Tio
satisfying k(x) = f(x) and k(y) = /(2/), it follows that k(z) < f(z) for all z
in [x,y].

Let H denote the collection of hyperbolic-concave functions. The ap-

proach taken here in defining the hyperbolic-concave functions is analogous

to the approach taken to define /"-convex functions (see Roberts and Var-

berg (1970, Section 84)). The following result is very useful in the analysis

of hyperbolic-concave functions.

THEOREM 2.3 Let f G G. Then f is a hyperbolic-concave function if and
only if 1// is a convex function.

PROOF This equivalence follows in a straightforward way, upon observing

the following. Let X\ and x2 be in IR with x\ < x2 and 00 > f(x\) > f{x2) >
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0, and let k(x) = fc(x;α,δ) be in Ho with fc(x, ) = /(x, ) for i = 1,2. Then
for all z in [xi,X2],

- 1

2 - #1/ f(xl) \X2 - %\) f(?\

(from substituting into k(z; α, b) the expressions for a and b given in Lemma

To obtain another useful characterization of hyperbolic-concave func-
tions as a corollary of Theorem 2.3, we introduce the following definition.
We say that function g in Q has a hyperbola of support at x in Ig if there is
a function fc in HQ for which fc(x) = g(x) and g < k.

COROLLARY 2.4 Lei / G {/. ΓΛen / t* α hyperbolic-concave function if and
only if, for each x in (tui,£o)> tAcre is a hyperbola of support for f at x, and
f is right continuous at w\, if [w\,w\ + e) C If for some e > 0.

PROOF TO prove this equivalence, observe only that

/ has hyperbola of support at x, for all x in

O for each x G (u>i,a?o) there is a function l(y) = ((y — α)/(δ - «))+?

for some α < 6, with l(x) = l//(x) and / < 1// on //

<̂  for each x G (wi,#o), 1// has a line of support at x. D

Using Theorem 2.3, one sees that the following are hyperbolic-concave
functions: functions in Ί~LQ\ the functions f(x) = x~a if x > 0, and = oo if
x < 0, for α > 1; the functions e~x and (1 + c*)""1; the constant functions
/(x) = α, for α > 0; the function f(x) = +oo if x < c, = a G (0,oo) if
x = c, and = 0 if x > c; and the function /(x) = 1 if x < 0, = 1 - x if
0 < x < 1, and = 0 if x > 0. For comparison, some functions in Q\H are
the following: g(x) = x"α if x > 0, and = oo if x < 0, for 0 < a < 1; the
function g(x) = (logx)"1 if x > 1, and = oo if x < 1; and the function g
given immediately after Expression (2.1). The following closure properties
also follow from Theorem 2.3:

(2.2) (i) if / G H and 0 < α < oo, then α/ G H',

(ii) for any index set Γ, if fΊ G H for each 7 G Γ and if

f(x) := inf /7(x) is nondegenerate, then f £H.
7€Γ

The following lemma contains properties of hyperbolic-concave functions.

LEMMA 2.5 Let f eH.
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(i) The function f is continuous on the interior oflf. If WQ is the left
endpoίnt oflf, Wo G //, and — oo < WQ < XQ < oo, then f is right
continuous at WQ.

(ii) For the number w\ of (2.1), f(x) is identically constant if x < w\,
x G //, and f(x) is strictly decreasing ifwι<x,x£lf.

(Hi) For wx < x < y < x0, (yf(y) - xf(x))/(f(y) - f(x)) is nondecreasing
in x and y; for wι < x < x1 < y < y1 < x0,

yf(y)-xf(x) y'f(y')-x'f(x')

Sis)-f{χ) - fiy')-fiχ') '

PROOF The conclusions are straightforward from Theorem 2.3 and prop-
erties of convex functions. •

For each nonconstant function g in Q, define sets <S_ = S-(g) and 5+ =
by

(2.3) S- := {x : x > WQ and g(x) < g(y) for all y < x}

<S+ := {x : g(y) < g(x) < oo for all y > x}

and define functions A~g and Λ+^ on S- and <S+ respectively by

(2.4) Λ~g(x) := sup (wg(w) - xg(x))/(g(w) - g(x)), and

h+g{χ) := inf (yg(y) - χg(χ))/(g(y) - g(χ)).
y€(χ,oo)

Observe that sets S- and <S+ are contained in [ti7χ, xo]. From Lemma 2.5(iii),
it follows that if / G W, then (^i,^o) C <S__ Π <S+. Let D~g(x) and D+g(x)
denote respectively the left-hand derivative and the right-hand derivative
of function g at x, and let Dg(x) denote the derivative of g at x.

PROPOSITION 2.6 Let f be any nonconstant function in 7ί.

(i) Functions Λ" / and Λ+ / have representations

(2.5) A-fix) = \xm_iyf{y)-xfix))lifiy)-fix))and

Λ+/0Ό = yl^+(yf(y) - *f(*))/(f(v) - /(*))•

Functions Λ~/ and Λ"1"/ are finite-valued and nondecreasing.

(iv) Λ+/ is π'fifΛί continuous on S+\{xo}. Λ~/ 25 /e/t continuous on S-\{xo}>
If f is left continuous at XQ, then so is Λ"/.
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(v) Λ"/ and A* f have representations

(2.6) A-f(x) = x-

and

ifx£ S+\{x0}, and Λ+/(z 0 ) = xo if xo E <S+.

(vi) Λ+/(z) < A"/(y) i/z < y; /or x G (tι>i,xo), Λ~/(z+) = Λ+/(x) and

PROOF Conclusions (i), (ii) and (iii) follow directly from Lemma 2.5(iii).
For conclusion (iv), use also Lemma 2.5(i); and for conclusion (v), use (2.5).
For conclusion (vi), again use Lemma 2.5(iii), and use part (iv). •

For any nonconstant function / in 7ί, define the hyperbolic derivative Λ/
for x in <£_ Π «S+ by

(2.7) Af(x) = lha(yf(y) - xf(x))/(f(y) - /(*)), if this limit exists.

LEMMA 2.7 Let f be any nonconstant function in Ύi.

(i) Within <S_ Π <S+, the set of discontinuity points of Λ + / and of Λ~ /
coincide, and equals the set of discontinuity points within <S_ Π <S+ o/

+ and of D~~ f. This set, denoted by V, is countable.

(ii) Within S-ΠS+,

x e (S.ΠS+)\V

<£> Λ~ f(x) = Λ+/(x),Λ/(x) exists and equals this common value

O there is a unique hyperbola of support for f at x.

In this case,

) = x -

and the unique hyperbola of support at x is given by

k(y;a,b) = f(x)(x-Af(x))/(y-Af(x)) if y > Λ/(z), and = +00 otherwi

(iii) For all x,y with W\ < x < y < XQ,

(2-8) /(»)//(«) = exp Γ{Λ+/(ί) - ty'dt,

and f can be identified from its hyperbolic derivative.
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P R O O F TO obtain (2.8), use Theorem 2.3, Lemma 2.6(v) and standard
results on convex functions found, e.g., in Freedman (1971, pp. 359-363).
To verify the other conclusions, use Theorem 2.3 and Corollary 2.4, the
representations in (2.6), and standard results for convex functions. D

3 Hyperbolic-Concave Envelopes

In this Section, hyperbolic-concave envelopes are defined (Definition 3.1),
and properties of hyperbolic-concave envelopes are given. These hyperbolic-
concave envelopes have a direct connection to convex envelopes of functions,
given in (3.5). For this comparison, we recall the definition of convex en-
velopes; and for a class of functions of interest here, we recall some proper-
ties of these convex envelopes (for references to these results, see Rockafellar
(1970, pp. 36, 51, 103, 157) and Roberts and Varberg (1970, p. 21). For any
function / from an interval / to 1R which majorizes at least one affine func-
tion on /, the convex envelope of / , written env /, is the function defined
on / by

(3.1) (env f)(x) = sup{A(x) : A is an affine function, A < /} .

The basic class of functions of interest in this paper is the class Q1, the
subset of Q given by

(3.2) Q1 := {</(•) : g is a left-continuous, nonincreasing

function from IR into [0,1] with lima;_,_ooflf(x) = 1

and limsup^^QQ xg(x) = 0}.

Observe that if g E (71, then g is nondegenerate and lim^-^oo g(x) = 0;

and if WQ and XQ are the numbers associated with g in Section 2, then

wo = sup{x : g(x) = 1} if this set φ 0, and = — oo otherwise. For any

function g in Q1, the function env(l/(7), defined on Ig := Όom(l/g) through

(3.1), is a closed function. Thus it follows from the defining properties of Q1

and properties of convex envelopes that for g G ί/1,

(3.3) (i) env(l/g) is the greatest convex function which is majorized

by 1/g on Ig;

(ii) env(l/<7) is cont inuous^ Ig;

(iii) (eτιv(l/g))(x) = inf{μ : (#,μ) is in the convex hull of the

epigraph of 1/g} = inf{X(l/g)(x1) + (1 - X)(l/g)(x2) :

Xxi + (1 - X)x2 = 1 for some 0 < A < 1, x\ < x < #2}; and

(iv) if l/<7 is convex in J 5 , then 1/g = env(l/g).
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Let H1 := G1 Π 7ΐ, the collection of hyperbolic-concave functions in
G1. Numbers WQ,W\ and XQ associated with each function / in H1 satisfy
—oo < wo = w\ < XQ < +00; it is the case that WQ = xo if and only if
f(x) = 1 if x < c, and = 0 if x > c, for some c G IR. If / G H1 and x 0 G IR,
then // = Dom(l//) = (-00, xo) if /(xo) = 0, and = (-00, xo] if /(xo) > 0;
<S_ = (WO,XQ\, and if also wo G IR, then 5+ = [wo,xo) if /(#o) = 0, and
= [wo,zo] if f(xo) > 0.

DEFINITION 3.1 For each g in G1, the hyperbolic-concave envelope of 5 is

the function g from IR into [0,1] defined by

(3.4) g(x) := inf{k(x) :fceWo,ff< *}.

(Observe that the set in (3.4) is nonempty.) The collection of hyperbolic-

concave envelopes of functions in G1 is denoted by G1* We show that Gι = Hi

in Theorem 3.4. Connections between hyperbolic-concave envelopes and

convex envelopes, together with some other properties of hyperbolic-concave

envelopes are given in the following.

LEMMA 3.2 Let g e G1 and let Ig = Dom(l/ff). The hyperbolic-concave
envelope g has the following properties:

(i) g takes values in [0,1]; g is nonincreasing; limJ.«»«Oo5(x) = 1 and
limsup^^^x^a?) = 0; w0 := wo(g) = wo(g), x0 := xo(g) = xo(d), and
Ig = Dom(l/g) = Dom(l/g) = I~ with g(x) = 1 for all x in (-00, wo] and

g(x) = 0 for all x in (XQ>OO)/ and g is continuous on Πt\{xo} and is left
continuous at xo;

(n) 9 < 9! if 9(χ) = 1 for x < xo, and = 0 for x > XQ, for some xo G IR,
then g = g;
(Hi) on Ig,

(3.5) env(l/ 5) = 1/g;

and

(iv) For each x G Ig, one and only one of the following hold:

(a) g(x) = g(x) and l/g(x) = env(l/5)(x); and for some a < b, k(-) =
fc( ; α,δ) is in Ho with g < k and g(x) = k(x), and l(y) = ((y — a)/{b — α))+

satisfies ί < 1/g and ί{x) = l/g(x); or
(b) g(x) < g(x) and l/g(x) > env(l/g)(x); and for some a < b} and

^1)^2^3? ^4 withxi < X2 < x < X3 < X4, k(-) = fc( ;α,&) in Ho satisfies g <
k, g(xi) = g(xi) = k(xi) for i = 1,... ,4, g(y) = k{y) for y G [XI9XA], 9{V) <

k{y) for y G (Ig\[xι>X4]) U (xo,oo), and g(y) < k(y) for y G (^2,^3); and
% ) = ((y - o)/(b - α))+ satisfies ί < env(l/ f f), l/g(xi) = env(l/ 5)(x t ) =

l(xi) for i = 1,... ,4, env(l/flf)(y) = /(y) /or y G [xi, a?4], env(l/flr)(y) > /(»)

/or y G (/^\[a?i,a?4]) U (a?o,oo), απrf l/ff(ί/) > % ) Λ>r y G (32,33).
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P R O O F From the definition of y, it is immediate that g < g and g is
nonincreasing; thus, also 0 < g. The limit property limswpx^ooxg(x) = 0
follows easily from the analogous property of g.

We show g < 1. For any 0 < e < 1, there is an N > 1 sufficiently
large such that, for all x > JV, g(x) < ex" 1 = fc(x;0,e). Let x < JV,
and let 6 be chosen sufficiently small so that 0 < δ < 1 and x + (1 +
2δ)δ~λ > N. Let k( ) = A;( ;α,δ) be the function in Ho passing through
(zi,ϊ/i) = (x- 6^,1 + 2δ) and (2:2,1/2) = ( ί , l + *). Then g(x) < k(x) for
all x (since i f x < i V r < x + ( l + 2£)V 1 , g{x) < 1 < *(a?); and if x > N,
g(x) < ex" 1 < k(x) by Lemma 2.1(ii)); and thus g(x) < k(x) for all x. Also,
for x > x, p(x) < fc(x) = 1 + δ; since this can be done for each 0 < δ < 1
small, it follows that g < 1. It is immediate that ^(x) = 1 for all x in
(-00, wo], where wo := u>o(<7) From the definition of g and appropriate
choice of fc's in T~LQ majorizing g, it similarly follows that g(x) = 0 for all x
in (xo?oo)? where xo := ^0(5); and that if flf(x) = 1 for x < xo? and = 0 for
x > xo, for some xo G R, then g = g.

Next, to obtain (3.5) observe that for all x 6 /^ := Dom(l/flf),

(3.6) env(l/flf)(x) = sup{A(x) : A is an affine function, A < 1/g}

:A(x) = ((x-a)/(b-a))+

for some and a < b,A < 1/g}

As immediate consequences of (3.3), (3.5), and the properties of g, one ob-

tains that wo(g) = ί^o(?), ^0(5) = #o(<7), and Dom(l/flf) = Dom(l/^); and

that g is continuous on R\{xo} and left continuous at xo By exploiting the

correspondence between functions fc( ;α,fc) in Ίio with g < k and functions

l(y) = ((y - α)/(6 - α ) ) + with ί < I/5, as in (3.6), and by using the non-

negativity and left continuity of g and the property l i m s u p ^ ^ x#(x) = 0,

one obtains that Lemma 3.2(iv) holds. •

PROPOSITION 3.3 Let g £ G1. The hyperbolic-concave envelope g is in H1

and is the smallest hyperbolic-concave function which majorizes g. The func-

tion g has representation

(3.7) g{x) = sup{fc(x) : k is in 7ί0 and passes through (xi,#(#i))

and (x2,9(χ2)) for some x1 < x < X2}.

If g is a hyperbolic-concave function, then g = g.

P R O O F Use Lemma 3.2(i) to obtain that g is in Q1. The results that g is

hyperbolic-concave, and is the smallest hyperbolic-concave function which
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majorizes g, follow from g < g and (3.5), (3.3)(i), and Theorem 2.3. The
remaining conclusions follow from (3.5) and (3.3)(iii),(iv). D

THEOREM 3.4 The collection of hyperbolic-concave functions in Q1 and the
collection of hyperbolic-concave envelopes of functions in Qι are equal; that

PROOF If g G G1 for some g G ζ}1, then g £ H1 from Proposition 3.3. If
h 6 W1, then h = Λ, from Proposition 3.3, and thus h EG1- •

4. Characterizations of the Sets P*, VQ, and the Set of
Minimal p.m.'s

From the Introduction, recall the definitions of the collections of p.m.'s
V*, the set of p.m.'s dominated by maximal p.m.'s (in the -<s order); and Vζ,
the set of Hardy-Littlewood maximal p.m.'s. Also recall, from Section 3, the
collections of functions G1 of (3.2); and^W1, the set of hyperbolic-concave
functions in (71, which equals the set G\ of hyperbolic-concave envelopes
of functions in Gι by Theorem 3.4. In this Section, the sets V* and VQ
are shown to be isomorphic to the sets Q1 and H1. Moreover, an explicit
identification between minimal p.m.'s z/̂ , associated with p.m.'s v in "P*,
and hyperbolic-concave envelopes /, associated with functions / in Q1, is
given in Theorem 4.4.

LEMMA 4.1 There is an isomorphism between Q1 andV* identified by g(x) =
v[x,oo) forge G1,veV*.

PROOF AS stated in the Introduction, Proposition 2.1 of Kertz and Rosier
(1991a) gives that V* = {v is a p.m. on H : ]imsupx^00xu[x,oo) = 0}.
From this representation and the usual identification of p.m.'s on H and
distribution functions (see e.g., Section 10 of Loeve (1963)), the conclusion
is immediate. •

THEOREM 4.2 There is an isomorphism between H1, the set of hyperbolic-
concave functions in Q1, and VQ, the set of maximal p.m. 's on R, identified
by f(x) = μ*[s,oo) for f G H\μ* G V£.

PROOF In Lemma 2.6 of Kertz and Rosier (1991a), it was shown that for
any p.m. v on R, v G Vζ if and only if the following holds

(4.1) (i) l imsuP t z ; / 1(l - w)F~\w) = 0, and

(ii) (1 - w)F~ι(w) is a concave function.
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Now, assume v = μ* G Pζ; so, also F~x satisfies (4.1). First, observe that if

#o = ^o(^) < oo, then l i m s u p ^ ^ xz/[x,oo) = 0; and if XQ = +oo, then

lim sup xv[x, oo) = lim sup F~1(Fί/(x))(l - Fv(x))

= limsup(l — w)F^'1(<w) = 0.
w/Ί

Second, observe that

(4.2) (1 - w)F~1(w) is concave iff 1/(1 - Fu(x)) is convex,

for example, from a calculation based on the definitions of convexity and
concavity for functions; and so f{x) := J/[#,OO) is a hyperbolic-concave
function, from Theorem 2.3. Thus / is a hyperbolic-concave function in Q1,
from Lemma 4.1, i.e., / G Tί1.

On the other hand, assume / G H 1 , i.e., / is a hyperbolic-concave func-
tion in Q1. Let i/[x,oo) := /(#); then v is a p.m. in P*, from Lemma 4.1.
From Lemma 2.5, / is continuous on (—oo,#o) &nd strictly decreasing on
[κ;o,£o] It follows that limsup t i ; /^1(l — w)F~1(w) = 0 if w\ < 1; and if
wx = 1,

limsup(l - w)F~ι(w) = limsup(l - Fι/(x))F~1(Fl/(x))

= lim sup xv\x, oo) = 0.
X—» OO

From the hyperbolic-concavity of i/[x, oo), Theorem 2.3, and (4.2), it follows

that (1 - w)F~1(w) is concave. Thus F'1 satisfies (4.1), and v eP£. •

The following theorem shows that any Hardy-Littlewood maximal p.m.

can be identified through its hyperbolic derivative.

THEOREM 4.3 Let μ be any p.m. onM with /0°° xdμ(x) < oo, with associated

Hardy-Littlewood maximal p.m. μ*; and let f denote the function in Tί1

defined by f(x) — μ*[x,oo) for all x G H. Then μ* can be identified through

its hyperbolic derivative Λ/ by

O tx \

' (A/(ί) - tyλdt) for all x G [wOl x0].
WQ /

P R O O F Let w0 = wo(μ) and XQ = xo{μ). The representation (4.3) follows
immediately from Lemma 2.7, since the function / is in Tί1. E

THEOREM 4.4 (i) For each v G P*, the minimal p.m. v& satisfies

(ί/Δ)*[x,oo) = g(x) for all x G IR, where g is the function in Q1 defined

) := v\x, oo) for all x G IR
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(ii) For each g £ G1, the hyperbolic-concave envelope g satisfies g(x) =
(I/A)*[X,OO) for all x G R, where v is the p.m. in V* defined by i/[x,oo) :=
g(x) for all x G E .

Thus, the following diagram commutes:

v in V* •* g in Q1

P R O O F Let v G V*, so that v is a p.m. on R satisfying lim s u p ^ ^ xv[x, oo)

= 0, and consider the associated minimal p.m. I/A? as defined in the Intro-

duction, and p.m. (J 'Δ)*; thus, v& is the unique p.m. on IR satisfying

(4.4) (i) f™xdvA(x)<oo;

(ii) v <s (Ϊ^Δ)*; and

(iii) if μ is any p.m. on IR with f£° xdμ(x) < oo and v -<s /ϊ*,

then (i/Δ)* -<s μ*.

(see Theorem 2.4 of Kertz and Rosier (1991a) for verification that such a
p.m. I/Δ exists). Define g(x) := ι/[x,oo) for all x G R; from Lemma 4.1,
this function g is in Q1. From Proposition 3.3, we know that g is the unique
function on R satisfying

(4.5) (i) g is a hyperbolic-concave function in (71;

(ii) g(x) < g(x) for all x G R; and

(iii) if h is any hyperbolic-concave function in Qι satisfying

g(x) < h(x) for all x G R, then g(x) < h(x) for all x G R.

Now, define g(x) := (v&)*[x,oo) for x G R. We claim that g = g. From
Theorem 4.2, g is a hyperbolic-concave function in Qλ\ and from (4.4)(ii), it
follows that g{x) < g(x) for all x G R. To verify (4.5)(iii), we let h be any
hyperbolic-concave function in Qι satisfying g(x) < h{x) for all x G R. From
Theorem 4.2, there exists a p.m. μ o n E with f£° xdμ(x) < oo for which
h(x) = (/ϊ)*[a:,oo) for all x G R; and we have that z/[x,oo) = g(x) < h(x) =
(μ)*[z,oo) for all x G R. It follows from (4.4)(iii) that g(x) = (i/Δ)*[x,oo) <
(μ)*[a:,oo) = Λ(x) for all x G R. Thus, y(«) = (i/Δ)*[x,oo) for all x G R.

For part (ii), let g be a function in ί/1; g denotes the hyperbolic-concave
envelope of g. From Lemma 4.1, ί/[#,oo) := g(x) defines a p.m. v in V*;
and from Theorem 4.2, there is a p.m. p on R with f£° xdp(x) < oo and
/>*[#, oo) = <7(x) for all x G R. We claim that p = J-Ά; and thus 5(2:) =
(^Δ)*[^?OO) for all x G R. Now, z/[z,oo) = 5(2) < g(x) = p*[x,oo) for all
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x E IR from (4.5)(ii). Also, if μ is any p.m. on IR with f£° xdμ(x) < oo and
v -<s fi*, then h(x) := μ*[x,oo) is in H1 and satisfies g(x) < h(x) for all
x E IR. It follows from (4.5)(iii) that />*[x,oo) = g(x) < h(x) = (μ)*[x,oo)
for all x E IR. Thus, p satisfies (4.4) and we have that p = i/&. •

We remark that the second part of the proof of Theorem 4.4 gives another
proof of the existence of the minimal p.m. v& associated with a p.m. v E V*.

To illustrate these ideas, we include the following example. For n > 1,
let v — Σ?=oPi€yi where yo < ... < yn and 0 < pi < 1 for i = 0 , . . . , n with
Po+... +pn = 1? and ez = point mass at z. Then i/[x, oo) = 0 if yn < x < oo;
= ΣΓ=fc+i Pi if ίte < z < ί/fc+i for k = 0 , . . . , n - 1; and = 1 if -oo < x < y0.
From the definition of ι/*, one obtains that

ι/*[x,oo) =

n n

]Pt<X < Σ PiVi/

for fc = 0 , . . . , n — 1
n

= 0 if yn < x < oo, and = 1 if - o o < x < y^p t y t ;

and /(x) = i/*[«, oo) is a hyperbolic-concave function in ^ . One can obtain
for example from Kertz and Rosier (1991a) that v± = Σi=o πi€\(χi) and

where

if x^ < x < X£+i for ^ = 0, . . . , k - 1

= 0 if xjς < x < oo, and = 1 if — oo < x <

Λ(x) = inf {(yi/[y, oo) - xι/[x, oo))/(i/[y, oo) - φ , oo))};

xo, . . . , Xk are chosen as follows: xo = 2/o, and having chosen x0 = y0 < xι =
yix < . . . < Xj = 2/t>, the next number Xj+i = yt>+1 is the maximal number
yi > Xj for which

and the last number x*. = j / n ; and τr0 = i/(-oo,xi) = Σ%£^Pi, πj =
1 ^ for j = l,...,fc - 1, and τrfc = i/[a?jb,oo) = pn.
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The function h(x) := (v&)*[x,oo) is the hyperbolic-concave envelope of
g(x) := φ , o o ) .

In particular, let v = \e0 + \e± + ^2 Then g(x) = u[x^oo) = 0 if
2 < x < 00, = 1/3 if 1 < x < 2, = 2/3 if 0 < x < 1, and = 1 if x < 0;
h(x) = i/*[x,oo) = 0 if 2 < z < 00, = (3(x - I ) ) " 1 if 3/2 < x < 2, and
= x'1 if 1 < x < 3/2, and = 1 if x < 1. Also, vA = | ε_ 2 + | 6 0 + \e2 and
?(») = (^Δ)*[*,OO) = 0 i f 2 < z < o o , = (2/3)χ-1 if 1 < x < 2, = 2( 1

if 0 < x < 1, and = 1 if x < 0.
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