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STOCHASTIC ORDERINGS IN RELIABILITY

By KARL-WALTER GAEDE

Technische Universitat Minchen

In this paper we give a short survey of topics in reliability and show how
stochastic ordering can be used in reliability theory: to describe aging, to com-
pare performance processes, and to find optimal replacement policies.

1. Introduction. Examples of the use of stochastic orderings in reli-
ability are numerous. Therefore, we do not attempt to give a survey of the
field, but we only describe some main ideas on how to use stochastic order-
ings in reliability theory. It should not be unreasonable to expect that readers
of this paper know the fundamentals of stochastic ordering as can be found
e.g. in Mosler (1982) and Stoyan (1983), but perhaps they are not already
familiar with the subject of reliability theory. Therefore we describe in Sec-
tion 1.1 a well known system with maintenance through spares and repair in
order to illustrate the typical topics and problems of reliability theory. Af-
ter the discussion of some problems which show that stochastic ordering is a
useful tool in reliability theory, we give in Section 1.2 a detailed description
of the further contents of the paper; aging, comparison of processes, optimal
maintenance through replacement. Section 1.3 gives the notation we will use
for the different kinds of stochastic ordering in Section 2. After introducing
the main concepts of aging, we give a summary of their generalization to the
multicomponent case and to the use of more complicated information about
the system. In Section 3 we give a detailed description of the performance
process of our standard reliability system and state sufficient conditions that
allow the stochastic comparison of standard reliability processes. We compare
these conditions with the conditions given by Shaked and Shantikumar (1988)
for the more special case of dependent coupled alternating renewal processes.
In Section 4 we give an example to show how stochastic ordering is useful, if
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one uses Markov decision processes for finding optimal replacement policies
for reliability systems.

In this survey we generally do not dwell on mathematical technical details.
If not stated otherwise, we start from a probability space (2, F, Pr). We make
the usual assumptions about the stochastic processes, e.g. that the state spaces
are complete, separable and metric, that the sample paths are continuous from
the right and have limits from the left. Partial orders < on the state space are
assumed to be complete and compatible with the linear structure on the state
space if there is any. (Sometimes only reflexive and transitive relations < are
necessary.) If Q is partially ordered, we suppose that for all w’ € Q the sets
{weR:w<w}and {w € Q:w <w} are measurable.

1.1. Topics in Reliability. We illustrate the terminology and some typical
problems in reliability theory.

ExaMPLE. Standard Reliability System (SRS). (See e.g. Barlow and
Proschan (1975), p. 204.) A system S consists of # units which can be “func-
tioning” (“up”) or “failed” (“down”) and o “service (or repair) facilities.” If
k of the units are up at time ¢ and if £ < m (where m < n is a given number),
then all £ functioning units are “working” (“operating”). If m < k, then k—m
of the functions units are “spares” (“in cold standby”). A unit in spare status
cannot fail. If unit ¢ is working, it has a positive random lifetime with given
distribution function F;. When a working unit fails, it is immediately replaced
by a spare, if available; the failed unit is immediately sent to a repair facility.
Repair begins immediately unless all o repair facilities are occupied. Each unit
¢ has positive random repair time with given distribution function G;. If at
time ¢ the number n — k of failed units is greater than o, then n — k — o units
have to “queue” for repair. All lifetimes and repair times are independent
random variables.

[-» Queue |-| Repair, o|»| Spares |-»| Working, m»l

Figure 1. System operation of SRS.

Each unit can be in one of the states ¢ (= queueing), r (= repair), s (=
spare), w (= working). So we take X = {q,r,s,w} as state space for each
unit and A" as state space for the SRS. The state X;(t) of unit ¢ at time ¢
is a random variable taking values in X, and the A™-valued random vector
X(t) = (X1(2),- -+, Xn(t)) is sometimes called the “performance process” of
the reliability system.

Let us define the system to be in down status at time ¢, if less than m
units are working at time ¢ (and to be in up status otherwise). Usually the
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up status (resp. down status) is indicated by “1” (resp. “0”). The status
Z(t) of the system at time ¢ is a random variable taking values in the set Z
of possible states of the system; here Z = {0,1} = {down, up}. Obviously
Z(t) = $(X (t)), where ¢ is a function from AX™ to Z. In our case ¢(z) = 0, if
the set {i: z; = w} =: W(z) of working units contains less than m elements
and ¢(z) = 1 otherwise. ¢ is called “structure function” of the system. If
a state space contains only two elements, one speaks of the “binary case”
or “two state case,” otherwise of the “multistate case.” In the two state case
Z = {0,1} the space X" is partitioned in two disjoint sets U := {z : ¢(z) = 1},
D := {z : ¢(z) = 0}. In other words, X(t) € D (resp. X (t) € /) is equivalent
to: the system is down (resp. up) at time 2.

It is convenient to introduce a partial order “<” in X = {q,r,s,w}:
g<s,g<w,r<s,r<wandin 2 ={0,1}: 0 <1 (down < up). (Of course
a < a for each element a of a partially ordered set.)

We extend the partial ordering “<” from X" to the product space X" by
component-wise ordering, i.e. by defining z <y iff 2; < y; foralle=1,-.- n.

Observe that the structure function ¢ is increasing with respect to these
partial orderings in X" and 2 : ¢(z) < ¢(y) for all z,y € A™ such that
z < y and ¢ is not constant. These are the two defining properties of the
structure function of a coherent system. (As usual we use the same symbol
“<” for different partial orderings if the meaning of the symbol is clear from
the context.)

The subset U (resp. D) of X" defined above is increasing (resp. decreas-
ing). (A set A is increasing (resp. decreasing) if a € A and a < b (resp. b < a)
implies b € A).

The description of the standard system is not yet complete since we have
given no rule for choosing the unit j which enters the repair facility first, if
more than one unit is queueing for repair. (The analogue question arises for
spares.) If we want to stick to the simple state space X = {q,r,s,w} we can
choose any rule that depends only on the set of the units in the queue. (E.g.
take j := min{i : X;(¢t) = ¢}.) If one wants to model the “first come first
served” policy, our simple state space would not suffice. Here one could think
of a “queueing facility” with n — o “cells” numbered from 1 to n — o, (number
1 next to repair) and with X;(t) = g if at time ¢ unit ¢ is in cell k. That
means that we have to replace the single state g by the set of n — o states
q1,° " *yqn—0-

The following characteristics of a reliability system S are of interest.

e Point availability (or reliability) at epoch to: Pr(X (o) € U).

o Interval availability in [to,%1]: Pr(X(¢) € U for all ¢ € [to, t1]).
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e Lifetime L of the system (supposing that it starts with X(0) e ): L =
inf{s > 0: X(s) € D}.

e Survival function Ff, of L (or of the system): Fr(t) = Pr(L > t) =
Pr(X(s) € U for all s € [0,t]). Then Fi(t) := 1— F(t) is the distribution
function of L.

e Mean time to First Failure of the system: E(L), where E denotes the
expectation.

e Survival function F; L(t | 9) of the Residual Lifetime py L of L past 9 € R .:

Fr(t|9)=Pr(L-9>t|L>9)
=Pr(X(s)eU forall s€[0,9+1]| X(s) €U, 0<s< D)
=: Pr(py)L > t) for all ¥ such that Pr(L > 9J) > 0).

e Mean residual lifetime past 9: E(pyL) — [~ Fr(t | 9)dt.

Also limiting cases of interest, e.g. the limit of the point availability;
lim oo Pr(X(t) € U). (This limit is often easier to obtain than the point
availability.)

Usually the distributions of the lifetimes and repair times of the units
are considered as given input data. But sometimes one wishes to establish the
type of lifetime distribution by using physical models. So physical models are
used to describe how cracks initiate, propagate, and cause the breakdown of
a unit (see e.g. Yao, et al. (1986)). Such physical processes are usually very
complicated. Therefore we consider only a very simple but popular example.

ExampLE. Shock Models. Shock models are often used to explain how
lifetime distributions arise. Let (S,,n € IN) denote a point process s.t. 0 <
S1 < S2 < --- a.s. and let N(t) denote the corresponding counting process
N(t) = 32, 1jo,4(Sn)- At Sn, n € N, the unit suffers a shock which induces a
damage Y, > 0. The unit is up at time ¢, iff X (¢) := f(Y1,---,Yn(),0,--7) < ¢,
where f is a given increasing function from IRI,,:I toR4+ and ¢ > 0.

Then the lifetime T of the unit has the distribution

Pr(T > t) = Pr(X(t) < ¢) = ) Pr(N(t) = n)- Py,

where P, = Pr(X(t) < ¢ | N(t) = n).
REMARK. Let F be the distribution of a positive random variable T. A
nonnegative function h such that F(t) = 1 — exp ( fot h(s)ds), t > 0, is called

the hazard rate of F' (or of T') or more specifically failure rate (resp. repair
rate) if T is a lifetime (resp. repair time).
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It is well known that a distribution F' with bounded hazard rate A(t) < A
can be generated by a shock model, where (S,,n € IN) is a Poisson process
with constant intensity A and the damages Y, are conditionally independent
{0,1}-valued random variables with Pr(Y, = 1| S,,n € IN) = A7'A(S,). The
unit survives as long as there has been no shock damage. This amounts to
taking X (t) = 3 ,<n(y) Yn and ¢ = 0 in the shock model. Given that a shock

with damage 1 has occurred at S one can start a new lifetime § instead of A(?),
etc. This shows a possibility to construct renewal processes (S n € IN) with
interarrival time distribution F by “thinning” the Poisson process (S,,n €
IN). In an analogue fashion, one can generate Markov processes and Markov
renewal processes, see e.g. Miller (1979), Sonderman (1980), Brown (1984),
Shaked and Shantikumar (1988), and the book of Stoyan (1983), p. 68.

1.2. Usefulness of Stochastic Ordering in Reliability. The first goal of
reliability theory is to deduce the probabilistic properties of the system from
the given information regarding its structure and its units. This is in most
cases a hard problem. Therefore simplified and easier to handle systems are
used to get approximations for the original system. This amounts to comparing
stochastic performance processes. By establishing a stochastic order of these
processes bounds for the characteristics of the original system are obtained.

Another problem in reliability theory is to examine which modifications
of a system result in an improvement. Again, the usefulness of the stochastic
comparison of the respective performance processes is obvious. But stochastic
ordering is also useful for the comparison of different input data, as can be
seen in our standard example. One would hope that the system is improved if
one uses shorter repair times. Since the repair times are stochastic variables,
stochastic ordering is needed to define the meaning of “shorter.”

Another modification which hopefully results in an improvement of a
system is the so called “preventive replacement.” This means that a working
unit is not only replaced upon failure, but also when its current working period
has a given age T (“age replacement policy”). another well known policy is to
replace a working unit upon failure and at times T°,2T,3T,---. This is called
“block replacement policy” because it is usual in practice to replace not only
a single unit but a block or set of units at times T,27,3T,--.. Of course
preventive replacement can only be useful it the residual lifetime of a working
unit is shorter than the lifetime of a new unit. Again stochastic ordering is
needed to compare the residual lifetimes of units with different age. This is
done by introducing several formal notions of “aging”.

1.3. Stochastic Order. We refer to Mosler (1982) and to Stoyan (1983)
for the background and the properties of stochastic orders.

Let (X, B, P'), i = 1,2, be two probability spaces and let X’ be endowed
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with a partial order. We write P! <4 P? iff f fdP; < f fdP; for all increasing
P! and P? integrable real functions f, P! <, P? iff X is convex and f fdP! <
[ fdP? for all increasing convex P! and P? integrable real functions f, P! <.,
P?iff X is convex and [ fdP' < [ fdP? or all increasing, concave P! and P?
integrable functions f. We write increasing instead of nondecreasing, better
instead of not worse, etc.

If X1, X? are X-valued random variables with distributions P!, P2, we
write X! <4 X? instead of P! <4 P?, etc. If P* has a distribution function
F* then F! <4 F? and P! <4 P? are defined to be equivalent.

Some other types of increasing functions are of interest in reliability. In
the two-state case, e.g. the lifetime L of a system without spares and repair
and with component lifetimes, Lq,---, L, is given by

L= m]axz;gg; L;=:((L1,-++,Ln)

where Py, - - -, Pi are the path sets of system, see Barlow and Proschan (1975).
(A path set P is a subset of the set of units such that the system is up if all
units in P are up.) Except when k = 1 (series system) or |P;| = 1 for all j
(parallel system) the function ( is increasing but neither convex nor concave.
So one can use the class R of functions f = go(, where ( : IR} — IR] is of the
type given above and g : R4y — IR, is increasing, to define a stochastic order
<Rr on the space of n-dimensional positive random vectors L = (Ly,---, Ly):
L' <p L? iff Ef(L') < Ef(L?) for all f € R such that these expectations
exist (see Arjas (1981)).

2. Notions of Aging. In this section we give an outline of the main
ideas used to get a mathematical description of aging of a reliability system.
First we introduce the well known and widely used classical notions of aging
for a single lifetime (see e.g. Barlow and Proschan (1975), p. 54, 84, 159). Then
we give a short survey of some generalizations. We stress the importance of
making clear which information about the system available up to time 4 is
used to describe the distribution of the residual lifetime (resp. lifetimes) past

9.

Let L denote a positive random variable, called lifetime, with distribution
function F and F(0) = 0. In reliability theory it is often convenient to describe
F by its cumulative hazard H(t) := —log(F(t)) where F(t) := 1—F(t) denotes
the survival function. If F is absolutely continuous with density f then the
hazard rate (or failure rate) h is defined to be h(t) := lims_oPr(L < t+ § |



K. W. GAEDE 129
L > t) = f(t)/F(t). So we have
F(t) = exp(—H(t)) = exp (— /Ot h(u)du) .

Let psL = max{0,L — 9} denote the residual lifetime of L past time
9. Then the conditional distribution F(t | 4) := Pr(psL <t | L > 9) =
F(t+9)/F(9) of psL is used to get formal notions of aging mentioned above.
It is clear that F(¢ | ¥) has the cumulative hazard H(t | d) = H(t+9)— H(9)
and the hazard rate h((t | 9) = h(t + 9).

The classical notions of aging which describe the case that the perfor-
mance of the system declines with increasing age ¥ are defined as follows:

F has the property:

— IFR (Increasing Failure Rate). If F(- | ¥93) <4 F(- | ¥;1) for all 0 < ¥; <
¥2. (If F has a density, this is equivalent to: the failure rate h is an
increasing function.)

— IFRA (Increasing Failure Rate Average). If ¢ — H(t)/t is an increasing
function. (Equivalent to: F(at) > F*(t)forall0 < a<1landt>0.)

— NBU (New Better than Used). If F(-|9) <4 F = F(-| 0) for all 4 > 0.

— DMRL (Decreasing Mean Residual Lifetime). If 4 — E(pgL | L > 9) =
Js° F(t | 9)dt is a real decreasing function.

— NBUE (New Better than Used in Expectation). If EL exists and E(pysL |
L>9)< EL forall 9 > 0.

~ If p = EL is finite and %ft‘x’ F(u)du < exp(—t/p) for all t > 0. (The
expression on the left hand side is the survival function of the time to next
failure in a stationary renewal process with failure lifetime distribution

F)

The intuitive meaning of these notions is clear. In an analogue way
notions of aging are defined to describe the case that the performance of the
system improves as the age ¥ increases.

The following implications are well known:

IFRA = NBU
IFR =

= NBUE = HNBUE.
DMRL

Applications of reliability theory show that it is worthwhile to generalize these
notions in the following way: Consider an n-dimensional vector (Lq,-- -, Ly,) of
lifetimes and/or use information gathered about the system up to time 9 other
than the fact that the system is up at time 9. So in the shock model introduced
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in Section 1.1 one could e.g. use the information L > 9 (as in the notions
above) or L > 1, Sla“',SN(t) or L > 9, S1,°'°,SN(t), Yla"',YN(t)' In the
general case let the sub o-field Fy of F describe the known information about
the reliability system up to age Y. Suppose {L; > 9} € Fyfori=1,---,n
Fy C Fy, for all 0 < 9 < 9;. (That means: At time ¥ it is known, whether
the unit ¢ is up and no information known at ¥ is lost later on.) Using the
joint conditional distribution F(ty,---,t, | Us) := Pr(pyLr < t1,--+, pyLly <
Fy) instead of F(t | 9) : Pr(pgLy <t | L > ¥) one can define and use in
straightforward manner the properties IFR, NBU, DMRL and NBUE. As to
IFR and NBU one could get further generalizations by taking <. or <, or
<R instead <q.

In many cases the lifetime L of a system is given by its performance
process X = (X(t),t > 0), with values in the state space X. Let U (resp.
D) denote the set of up-states (resp. down-states) of the system and suppose
D to be a nonempty decreasing set and D # X. Moreover, we assume that
X(0) € U. Then the lifetime of the system (defined as the time to first failure
of the system) has the survival function Fp(t) = Pr(X (u) € U for all u € [0,1])
and hence the distribution function Fp(t) = 1 — Fp(t).

In a natural way the notions of aging can be extended to the performance
process X by saying that the process X has the IFR (resp. IFRA, NBU) prop-
erty if Fp has the classical IFR (resp. IFRA, NBU) property for all nonempty
decreasing subsets D of X with D # X. Many authors have dealt with the
important problem of establishing aging properties for classes of performance
processes. See e.g. Esary, Marshall, and Proschan (1973), Abdel-Hameed and
Proschan (1975), Marshall and Shaked (1979), Ross (1979, 1981), Gottlieb
(1980), Block and Savits (1981), Klefsjé (1981), Savits and Shaked (1981),
Griffith (1982), Ohi and Nishida (1983), Marshall and Shaked (1986), and
Shaked and Shantikumar (1987).

A further point of investigation is to establish generalizations of classical
closure properties of aging, e.g.: If in the two-state case the structure function
of a system is increasing and if the lifetimes of the components are independent
and IFRA then the lifetime of the system is IFRA too. Many authors have
dealt with this topic, e.g. Ahmed (1990), Arjas (1981), Basu and Kirmani
(1986), Block and Savits (1979), Deshpande, Kocher and Singh (1986), Klefsjo
(1982), Launer (1984), Marshall and Shaked (1986), ad Shaked (1983).

Weaker orders have also been considered. For instance (Ahmed (1990))
F has the generalized HNBUE property if [;° [;° F(t + u)dudt < [;° F(t)dt -
_f_Q°° F(u)du._ (This can be considered as a generalization of: F is NBU if
F(t+u) < F(t)- F(u); F is NBUE if [° F(t + u)du < F(t) - [5° F(u)du.)

A typical result: If in the shock model of Section 1.1 the shock epochs
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form a Poisson process and the distribution given by Py, Py, ---is GHNBUE,
then the lifetime L is GHNBUE.

3. Comparison of Performance Process. As we have seen in Section
1.2, it is a natural and important problem of reliability theory to compare
performance processes of reliability systems.

3.1. Performance Process for the Standard Reliability System. We con-
sider here only a class of processes X = (X(t),t > 0) which arise in a natural
way from our standard reliability system in Section 1.1, if one supposes that
the lifetime distributions have densities f;(t) and hazard rates (failure rates)

pi(t) and the repair times have densities g;(T") and hazard rates (Repair rates)
Ai(t).

For simplicity we consider first the case n = 3 (units) m = 1 (working sta-
tion) and o = 1 (repair facility). Consider e.g. X(s) = (X1(s), Xa(s), X3(s)) =
(r,w,s) =: z (at time s unit 1 is in repair, unit 2 is working, and unit 3 is a
spare, see Section 1.1). So at time s units 1 and 2 are active and unit 3 is not
active. Let ©;(s) denote the age of the current active (resp. inactive) period
of unit ¢ at epoch s. Let O(s) = (01(s),02(s),03(s)). So in the situation
X(s) = (r,w,s) = = we have O(s) = (91,92,93) =: ¥ where 9, is the age
of the current repair period of unit 1 and 9, the age of the current working
period of unit 2. Let T, denote the epoch of the first transition of the per-
formance process X after time s. The transition is caused by the active unit,
which has the active period ending first past time s. Let pg, Ry (resp. psg,L2)
denote the residual repair time of unit 1 (resp. the esidual working time of
unit 2). If py, Ry < pg,L2 then a transition z = (r,w,s) — (s,w,s) = y
occurs, and moreover if py, Ry < t, then Ty < s+ t. If py,Ly < py,R,, then
a transition z = (r,w,s) — (r,q,w) =: z occurs, and moreover if py,Ls < t,
then T, < s +1t.

Now we use the assumptions of independence in the standard system
and the conditional survival functions F;(¢ | 9;), G(T | 9;), the conditional
densities fi(t | ¥;), gi(t | ¥;) and the corresponding hazard rates p;(t + 9;),
Ai(t + 9;) (see Section 2) of the working and repair times:

Pr(X(T,) =y, Ts <s+t| X(s)==z, O(s) =9, (X(u), O(u), 0<u<s))

¢
= [ o190 Fa(u] )i
u=1
t u u
= A1(u + Y1) exp (— / M(v+ 191)dv> - exp (—- / pa(v + 192)dv) du
u=1 0 0
t

= A](’U, + '191) exp (— Au(Al(U + ’01) + ﬂz(’v + 192))d'v) du.

u=0
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In the same way we have

Pr(X(T,) =2, T, < s+t| X(s) =z, O(s) =9, (X(u), O(u), 0<u<s))

i u
= / po(u + J2) exp (— / M(v+91) + pe(v + 02)dv) du.
u=0 0

To get a uniform notation, we put

ql‘y(ﬁ) = A1(/01)’ q,_-z(’ﬁ) = /"2('01)7 ey = 0 for g € Xs\{yax},

4z(9) = Z ¢z5(?) and e =(1,1,1).
JEXS

Then we have

P(X(Ty) =9, Ts <s+t| X(s)=2z, O(s) =9, (X(u), O(u), 0<Lu<s))
= /0 ¢z§(0 + ue) exp (—/0 I+ ve)dv) du.

Taking into account that for s < t < s + T no transitions occur, we
have X (t) + X(s) and O(t) = 9+ (t — s)e for s <t < s+ Ts. At epoch
Ts the X-process enters the new state X(T;) and O(T;). If we have e.g.
X(s)=2z = (r,w,s) and X(T;) = z = (r,q,w) then

the repair of unit 1 continues: 0,(T5) = V) + (Ts — 3),

unit 2 begins to queue (is not active): ©2(T,) = 0, and

unit 3 starts fresh for a working period: ©3(T;) = 0.

Generally speaking, O(T;) is a function of X(s), X(T}), O(s), and Ts — s:
O(T,) = ¥(X(s),X(Ts), O(s),Ts — s), where the function 9 results from
the description of the reliability system. Now we can construct the process
(X(t),0(t),t > 0) for T; <t < T, where T, denotes the next transition epoch
of z past T, etc. We say that (X(¢),0(t),t > 0) is a reliability process since
it describes a typical reliability system.

Along the lines of this simple example, we give a formal description of
what we call a reliability process. Let X™ be the state space of n units of
a reliability system where X is a partially ordered finite set containing a
nonempty subset A of “active states.” Let X;(t) denote the state of unit ¢
at time ¢ and put X () = (X1(t), -+, Xn(2)). If Xi(2) € A (resp. ¢ A), let
0;(t) denote the age of the current active (resp. inactive) period of unit 4
at time ¢, and let O(t) = (04(t),-:-,0,(t)). We assume that the process
(X,0) = (X(t),0(t),t > 0) with state space X™ x R]} has right continuous
sample paths and is constructed in the following way:

(1) (X(0),0(0)) has a given distribution 7g.
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(2) For all s > 0 let T; denote the epoch of the first transition of the process
(X(t),t > 0) after time s.
At time s the units j such that X;(s) € A have active periods. The

active period ending first causes the next transition at time T,. Let
v(z,y) denote the number of the unit which causes the transition from

X(s)=zto X(T,) =y.

Forz #y€ A" let 9 — ¢y(9) € R, J € RY, be locally bounded Borel
functions (transition rates) such that

Pr(Ts <s+t,X(Ts) =y | X(s)=2,0(s) = 9,(X(u),0(u); 0<u<s))
/0 9oy(P + ue) exp (—/0 ¢ (9 + ve)dv) du where ¢;(9)= Z 9oy (V)

yean
and e = (1,---,1) € {0,1}".
() X(t)=X(s),0(t) =0O(s)+(t—s)efor s <t < Ty
(4) O(Ts) = P(X(s), X(T5), 0(s), Ts — ), where (z,y,9,1) — ¥(z,y,9,t) €
Tz, y€ A", 9 € R, t € R} is a given function.
(5) If ¢-(9) = 0 the state z is absorbing, i.e. if the X -process enters state z
at epoch s, we have X(t) =z for all t > s.
REMARK. We see that (X (), 0(t);t > 0) is a Markov process and the law
of this process is given by , 1, and ¢ (9), z # y € A", where ¢, () can be
considered as the conditional transition rate of the X-process given O(t) = 9.

Of course (X (t),0(t),t > 0) could also be considered as a semi-Markov
process if one takes (Xp, Sn,n € IN) as an embedded Markov renewal process,
where S, denotes the nth transition epoch of the X-process and X,, = X(S,).

3.2. Stochastic Comparison of Two Processes. Now we wish to compare
stochastically two reliability processes (X,0) and ()? , @) An inspection of
the proofs of the comparison theorem of Sonderman (1980) for semi-Markov
processes X or the well known comparison theorem for Markov processes X
(see e.g. Stoyan (1983), p. 62-) without nuisance process © shows that the
proofs can be extended to the reliability process (X, ©).

THEOREM 1. Let (X, 0) and ()? , @) be two reliability processes according
to the description given above. If

X(0) <4 X(0), (1)

> gey(9) <Y day(9) forall o < 3, all 9, 9
yeU yeu (2)
and all increasingd C X™ such that s ¢ U, T €U,
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3 @y () 2D Gey(D) foralla < ¢, all 9,9
y€D y€D (3)
and all decreasing D C X™ such that = ¢ D, & ¢ D,

then there exist processes Y, Y defined on a common probability space such
that Y (resp. Y) has the same distribution as X (resp. X) and

Pr(Y(t) < f’(t) for all ¢ > 0) =1 and therefore X <, X.

REMARK. This theorem remains valid for a countable state space if one
adds some regularity conditions.

ExampLE. If we take in the standard reliability system F} = F; = --- =
F,, with repair rate A(t), the conditions (2) and (3) reduce to

A(t) < (@) for all ¢,i>0

u(t) > p(t) for all ¢, > 0.
This is equivalent to the following condition. There exist constants ¢, d such
that
A() < c < A(P) forall t,i>0
p(t)>d> iu(?) for all t,%> 0.

This means that there exists a system X with exponential repair times and
lifetimes which is stochastically “between” X and X: X <; X <4 X.

As Sonderman (1980) points out, the conditions (2), (3) of Theorem 1 are
very strong. Of course these assumptions can be weakened by making stronger
assumptions in some other respect. For instance, Shaked and Shantikumar
(1988) consider a reliability process with state space X" = {r,w}" where
both states » and w are considered active. This means e.g. that it is not
possible to have spares or to queue for repair (n = m = o in the standard
reliability system). As a trade-off for this restriction of the state space Shaked
and Shantikumar get a theorem with weaker assumptions for the transition
rates. Define J(w,z) = (¥1(w, ), -+, 9n(w,z)) € R}, where 9;(w,z) = ¥; if
z1 = w and = 0 otherwise; J(r, z) is defined in an analogue way. Moreover let

ai(z,d) = gzy(9) if v(z,y) =1,

that is, ¢ is the unit responsible for the transition from z to y. (See number
(2) of the description of a reliability process.)

TueorReM 2 (Shaked and Shantikumar, 1988). Consider two reliability
processes (X,0) and (X,0) as in Theorem 1. Assume that in these two
processes each unit of the system can be only in one of the states w (= working)
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or v (= repair). Assume that for all z, £ € A™ and 9, d e R’ such that
I w,z) < ¥ w,z) and ¥r,&) > ¥(r, &) we have

> T;=w
a;(m,ﬂ){s}a,(m ) if {x, .

Assume the initial conditions (X(0),0(0) = (z(0),9(0)) and (X(0),0(0) =
(2(0), 9(0)) such that z(0) < (0), 9(w,z(0)) < F(w,z(0)), I(r,(0)) >
H(r,2(0)). Then X <q X.

REMARK. Indeed Shaked and Shantikumar (1988) show more. Define on
A™ x R% the following partial order: (z,d) < (5:,19) ifz < & and d(w,z) <
d(w,z) and 9(r,&) > 9(r,2). Then (X,0) <4 (X, 0).

EXAMPLE. (Same assumptions as in the last example and additional n =
m = o: no spares and no queueing.) Here the conditions concerning o, &; in
Theorem 2 are equivalent to

u(t) > a(f) for all i

>t>
A(t) < A(d) forall t>%>

0
0.
Indeed these conditions are weaker than those in the last example. (But e.g.

in the important case of IFR lifetimes and repair times the conditions are
equivalent.)

REMARK. If one considers the standard reliability system (spares and
queueing allowed) with the assumption F; = --- = F, and Gy = --- = G,,, it
is not necessary to distinguish between the units. So it is convenient to use
the performance process X (t) := number of units in up state at time ¢. Again
(X, @) is a Markov process. Using the ideas of the proof of Theorem 2 one can
see that if the same conditions hold as in the last example and if both systems
start with fresh units, then X <y X.

REMARK. Apparently (see e.g. the proof of Theorem 2 and the papers
mentioned after the shock model in Section 1.1) a very frequently used tool to
get comparisons of performance process X and X with continuous time, is to
find a point process 0 = So < §1 < Sy - such that X($,) <4 X(S ) implies
(X(t),Sn <t < Sn41) <d (X(t) Sn <1< Spt1)-

Franken, Kirstein and Streller (1984) call (X (t), ©(t), Sn,t > 0,n € IN) a
process with an embedded point process (PEP). Then, according to the results
of Strassen (1965) and Kamae, Krengel and O’Brien (1977), to get the result
X <4 X one only has to establish the implication if X(S5n) <4 b'e (Sn), then
X (Sn+1) <d X (Sn+1)- Assumptlons that guarantee the implication are well
known if (X(S,)) and (X (85)) are (conditional) Markov chains.
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In many cases it is convenient for mathematical reasons to take a Poission
process (Sy,n € IN). For a reliability process (X, 0) such that ¢,(9) < A =
const. for all z € &A™, J € R] the following expansion holds

Pr(X(Ty) =y, Ts <t+s| X(s) ==z, O(s) =)
= /0 Qzy (9 + ue) exp (—- /: q+z(d+ ve)dv) du

t u
= / Gy (Y + ue) exp (/\u/ (1=-2"1g(9+ ve))dv) e Mdu
0 0

00 n-1
— ! -1 “ -1 1 (/\u)"_l
= ,?:1/0 [A oy (9 + ue) k|=|1 /(; 1=-A""g(9+ vke);duk] A (n— 1)!du.

As we will see, the last formula shows that (X,0) can be constructed as
follows. Transitions of X can occur only at the epochs of a Poisson process
(Sn,n € IN) with parameter A. If X(s) = z and the next epoch of (S,) after
s is at s + v, then let a transition X(s) = 2 — X(s + v) = y take place
with conditional probability A~'g,, (9 + ve) and let no transition take place
with conditional probability 1 — A~1g,, (9 + ve). If there is a transition, take
O(s +v) = ¥(z,y,d,v), otherwise take O(s + v) = ¥ + ve.

Then the term in the square brackets represents the conditional proba-
bility of the event that at the first n — 1 epochs of (S,) after s there is no
transition and at the nth epoch (at the time s + u) a transition z — y takes
place, given that the nth epoch of (5,) after s takes place at s + u. (If in
a Poisson process the nth epoch after s takes place at s + u, the first n — 1
epochs are conditionally independent and uniformly distributed on (s, s+ u).)
The term after the brackets is the probability (density) that the nth epoch of
(5, after s takes place at s + u. So the last representation of Pr(X(T) = v,
Ts < s+t| X(s) ==z, O(s) = V) shows that conditionally upon (S$,) and ©
the process (X (S»),n € INg) is a Markov chain with transition probabilities

PI‘(X(S,—H.]) =Y | X(Sn) =z, @(Sn) = '0, Sn+1 —In = 'U)
{ A—lq-"v‘y('ﬂ + ve) and @(Sn+1) + ¢(w7 Y, '0"0) if Y 79 z
(1= A"1gy(9+ ve)) and O(Sp41) =9 +veify=z.

Now the well known conditions which establish the implication X (S,) <4
(X(5n) = X(Sn41) <q X(Spy1) are used to get conditions (2), (3) in Theorem
1 (where one has taken into account the special form of the transition matrix
and the fact that the partial order is used: (z,9) < (2,9) if z < ).

Of course it is somewhat artificial to take a Poisson process ($.) to get
the embedded Markov chains (X (S,)), (X(S»)) because the Poisson process
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has only a mathematical and not a “physical” meaning with respect to the
processes X, X. To get another embedded point process, one could couple
the two independent processes (X,©) and (X, ©) and take (Sy,) as the joint
process of the transition epochs T1T%,--- and 1173, - - of (X, 0©), (.‘?, @)) due
to the construction given before Theorem 1. We have tried this embedded
point process for two alternating renewal processes X, X and indeed obtained
weaker (but more complicated) conditions.

4. Optimal Maintenance. The standard models can be found e.g. in
Barlow and Proschan (1975). Many problems in this field have the structure
of a stochastic dynamic programming problem (see e.g. Derman (1970)). As
an example we consider a Markov decision process with discrete time.

ExampLE. Optimal Replacement. Let S, be a system consisting of n two
state components. Here the state space is X : {0,1}" and let e = (1,---,1)
denote the best state. (z < y is interpreted as y is better than z.) The state
of the system is known at times ¢t = 0,1,2,.-. If the system is in state z at
time ¢, then one has the option to replace some of the components. Let z be
the state after replacement. Usually only 2z € A, is allowed, where A; is a
given subset of {z € A" : 2 > z}. A replacement gives rise to replacement
costs r(z, z) > 0, where r(z,z) = 0.

Moreover the system induces a cost ¢(z) per period if it starts at ¢ in
state z (after replacement). Given that the system is in state z at time ¢ (after
replacement), then let P(z,y) be the probability that the system is in state y
at time t+1 (before replacement), where P(z,y)) is a stochastic matrix. Then
the minimal expected discounted total costs v(z) given that S starts in state
z, satisfy the optimality equation

v(z) = zlgiﬁ r(z,2)+c(2) + a Z P(z,y)v(y)|,

where a is the discount factor.

Under reasonable conditions on r(z,z) and ¢(z) one gets that v(z) is
decreasing in z if
P(z,-) <q P(y,-) for all z <y,
where P(z,-) denotes the distribution B — 3 .5 P(z,2), B C &™.
In this case one has a chance to get good structures for the optimal

replacement rules (see e.g. Ross (1979), Gaede (1983), (1984), Ohnishi, Kawai
and Mine (1986), Tjims and van der Schouten (1984), and Hinderer (1982)).

If one has not full information about the state X (t) at time ¢, then it is
rather complicated to get v and the optimal replacement rule (see e.g. Schnee-
berger (1988)). Sometimes in this case a martingale representation of the two
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state process Z(t) = p(X1(t),- -, Xn(t)) = ¢(X(t)) is useful, where ¢ is the
structure function of a system with n components described by the processes
X1(t),- -+, Xn(t). A typical assumption is that only the state Z(¢) and some
of the components can be observed. In this case let X(t) be partitioned as
X(t) = (Xo(t), Xn(t)) where Xo(t) represents the observed components and
let us assume that we have a time ¢ the information

F: = o — algebra generated by (Xo(s),Z(s), 0<s<t).

Let p; be a process s.t. P(Z({ + dt) — Z(t) = -1 | F;) = pedt + o(dt). Then

we have .

2()= 20) = [ pds + M1(1),

where M(t) is a F;-martingale. This is used e.g. by Jensen (1986) to obtain
optimal replacement rules.

Acknowledgement. I thank the referees for many helpful hints and com-
ments.

REFERENCES

ABDEL-HAMEED, M. S. and ProscHAN, F. (1975). Shock models with underly-
ing birth processes. J. Appl. Probab. 12, 18-28.

AHMED, A.-H. N. (1990). The generalized HNBUE (HNWUE) class of life
distributions. Z. Oper. Res. 34, 183-194.

Arjas, E. (1981). A stochastic process approach to multivariate reliability
systems: notions based on conditional stochastic order. Math. Oper. Res.
6, 263-276.

BarLow, R. E. and ProscHAN, F. (1975). Statistical Theory of Reliability and
Life Testing. Holt, Rinehart and Winston, Inc. New York.

Basu, A. P. and KirMANI, S. (1986). Some results involving HNBUE distri-
butions. J. Appl. Probab. 23, 1038-1044.

Brock, H. W. and Savits, T. H. (1979). Multivariate increasing failure rate
average distributions. Ann. Probab. 8, 793-801.

Brock, H. W. and Savits, T. H. (1981). Multidimensional IFRA processes.
Ann. Probab. 9, 162-166.

BrowN, M. (1984). On the reliability of reparable systems. Oper. Res. 32,
607-615.

DERMAN, C. (1970). Finite State Markov Decision Processes. Academic Press,
New York.

DESHPANDE, J., KocHAR, S. and SINGH, H. (1986). Aspects of positive aging.
J. Appl. Probab. 23, 748-758.



K. W. GAEDE 139

Esary, J. D., MarsHALL, A. W. and ProscHaN, F. (1973). Shock models and
wear processes. Ann. Probab. 1, 627-649.

FRANKEN, P., KIRSTEIN, B.-M. and STRELLER, A. (1984). Reliability analysis
of complex systems with repair. J. Inform. Process. Cybernet. 20, 407-422.

GAEDE, K.-W. (1983). Verallgemeinerte Kontrollgrenzen bei Ersatzproblemen.
In Operations Research Proceedings 1982. (B. Fleischmann, et al., (eds).
Springer-Verlag Berlin, 433-438.

GAEDE, K.-W. (1984). Optimal replacement under differing amounts of infor-
mation. In Operations Research and Economic Theory. (Hauptmann, et
al., eds.) Springer-Verlag Berlin, 232-242.

GotTLIEB, G. (1980). Failure distributions of shock models. J. Appl. Probab.
17, 745-752.

GrirFrIiTH, W. S. (1982). Remarks on univariate shock model with some bi-
variate generalizations. Naval Res. Logist. Quart. 29, 63-74.

HINDERER, K. (1982). On the structure of solutions of stochastic dynamic
programs. Universitait Karlsruhe, Fak. f. Math., Ber. Nr. 20.

JENSEN, U. (1986). Optimale Stoppregeln fiir stochastische Prozesse in Semi-
martingaldarstellung. Habilitationsschrift Universitit Hohenheim.

KaMaE, 1., KRENGEL, V. and O’BRriEN, G. L. (1977). Stochastic inequalities
on partially ordered spaces. Ann. Probab. 5, 899-912.

KLEFsJO, B. (1981). Survival under the pure birth shock model. J. Appl.
Probab. 18, 554-560.

KLEFs36, B. (1982). The HNBUE and HNWUE classes of life distributions.
Nav. Res. Logist. quart. 29, 331-344.

LAUNER, R. L. (1984). Inequalities for NBUE and NWUE life distributions.
Oper. Res. 32, 660-667.

MARSHALL, A. W. an SHAKED, M. (1979). Multivariate shock models for dis-
tributions with increasing hazard rate avrage. Ann. Probab. 7, 343-358.

MARSHALL, A. W. and SHAKED, M. (1986). NBU processes with general state
space. Math. Oper. Res. 11, 95-109.

MiLLEr, D. R. (1979). Almost sure comparisons of renewal procceses and
Poisson processes with application to reliability theory. Math. Oper. Res.
4, 406-413.

MosLER, K. C. (1982). Entscheidungsregeln bei Risiko: Multivariate stochasti-
sche Dominanz. Springer-Verlag, Berlin.

Owmi, F. and NisHipa, T. (1983). Another proof of IFRA property of S. M. Ross’
generalized Poisson shock models. Math. Japon. 28, 117-123.

Onnisui, M., Kawai, H. and MiNg, H. (1986). An optimal inspection and
replacement policy under incomplete state information. European J. Oper.
Res. 27, 117-128.



140 STOCHASTIC ORDERS IN RELIABILILTY

Ross, S. M. (1979). Multivalued state component systems. Ann. Probab. 7,
379-383.

Ross, S. M. (1981). Generalized Poisson shock models. Ann. Probab. 9,
896-898.

Savits, T. H. and SHAKED, M. (1981). Shock models and the MIFRA property.
Stochastic Process. Appl. 11, 165-178.

SCHNEEBERGER, S. (1988). Optimale Instandhaltung fiir Systeme mit modu-
larem Aufbau bei unvollstdndiger Information. Diss., TU Miinchen, Fak. {.
Math. und Informatik.

SHAKED, M. (1983). Exponential life functions with NBU components. Ann.
Probab. 3, 752-759.

SHAKED, M. and SHANTIKUMAR, G. J. (1987). IFRA properties of some Markov
jump processes with general state space. Math. Oper. Res. 12, 562-568.

SHAKED, M. and SHANTIKUMAR, G. J. (1988). On the first failure time of

dependent multicomponent reliability systems. Math. Oper. Res. 13, 50—
64.

SONDERMAN, D. (1980). Comparing semi-Markov processes. Math. Oper. Res.
5, 110-119.

Stovan, D. (1983). Comparison Methods for Queues and Other Stochastic
Models. John Wiley & Sons, New York.

STRASSEN, V. (1965). The existence of probability measures with given margin-
als. Ann. Math. Statist. 36, 423-439.

TiMs, H. C. and VAN DER SCHOUTEN, F. A. (1984). A Markov decision algo-
rithm for optimal inspections and revisions in a maintenance system with
partial information. European J. Oper. Res. 21, 245-253.

Yao, J. T., KoziN, F., WEN, Y. K., YaNG, J. N., SCHNELLER, G. J. and
DITLEVSEN, O. (1986). Stochastic fatigue, fracture and damage analysis.
Structural Safety 3, 231-167.

LEHRSTUHL FUR MATHEMATISCHE STATISTIK
TECHNISCHE UNIVERSITAT MUNCHEN
ARCISTRASSE 21

D-8000 MUNCHEN 2, GERMANY





