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STATISTICAL ASPECTS OF THE
TRANSMISSION/DISEQUILIBRIUM TEST (TDT)

B Y WARREN J. EWENS

University of Pennsylvania

The transmission/disequilibrium test (TDT) was introduced as a direct test
of linkage which is not affected by the problem of population stratification. Such
a test is needed since much of the data used currently for linkage tests does come,
or might be suspected to come, from stratified populations. Also, the test is valid
when the data include relatives, since it overcomes the dependence properties
usually associated with such data. In practice, the main purpose of the procedure
is to test for linkage between a marker locus and a purported disease locus - a
link in the chain of activities whose ultimate aim is to locate disease loci. The
test differs from frequently used tests based on sharing of marker alleles between
affected relatives and, unlike sharing tests, is related to the population concept
of association. These differences are discussed. Many interesting questions arise
in the statistical theory of the TDT, some of which are still unresolved. One of
the aims of this paper is to raise and discuss these.

1. Introduction. The aim of this paper is to discuss both genetical and
statistical aspects of the so-called transmission/disequilibrium test (TDT) of
Spielman et al. (1993). The TDT is a test for linkage between a marker locus
and a disease locus, and may also, for some forms of data, be used as a test of
association between these loci. However, the properties of the test when used for
these two purposes are different. Although the test is naturally of more interest
to geneticists than statisticians, there are several statistical aspects of the test
that deserve attention, and also several for which the statistical theory is still
not complete. A discussion of some of these will be given in this paper.

2. Genetical background. Since this presentation is intended for statis-
ticians, we first give a brief definition of key genetical terms that will be used
in the sequel, as well as some population genetics theory.

Many characteristics which we have are controlled by the genes that we carry.
Genes may be thought of as beads on a string, the string in this case being the
chromosome, or gamete. Just as specific beads have given locations on the string,
so also genes occur at specific positions, or loci, on the chromosome. Thus we
might say: "The genes controlling eye color occur on chromosome 16, at a locus
in such and such a position on this chromosome."
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A gene is of one or other type, and the possible gene types at a locus are
called the alleles at this locus. We might thus define the allele for blue eyes
and the allele for brown eyes. Thus an allele is a type name whereas a gene is
an actual material object. Sometimes the words "gene" and "allele" are used
loosely and interchangeably, in particular in human genetics, so that one talks
about the gene for blue eyes, and talks about the transmission of an allele
from parent to offspring. In conformity with this we will sometimes adopt the
incorrect usage for these words.

Different allelic types are denoted by upper-case letters, often with suffixes,
such as Λi, D2, and so on. It is a convention to use the same letter, but different
suffixes, for possible alleles at the same locus.

The chromosomes in any individual appear in matched pairs, one deriv-
ing from the mother of the individual and one from the father. Chromosomes
are not necessarily passed on faithfully from parent to offspring - sometimes a
"crossover" will occur whereby a parent passes on part of one of his/her chro-
mosomes and the remaining part of the other. In such a case we say that a
recombination event has occurred at the crossover point. In fact two or more
crossovers can occur in the transmission of a chromosome. Genes at loci close
to each other, that is closely linked genes, tend to be passed on together from
parent to offspring, while genes far apart on the chromosome are passed on
almost independently.

Marker genes and marker loci are central to locating disease genes by linkage
analysis. These have two essential properties: (i) we know where the various
marker loci are on the chromosomes, and (ii) we can tell the allelic type of the
(two) marker genes any given individual has at a given marker locus. It is also
important to point out a third property, that there are now thousands of marker
loci scattered throughout the chromosomes we carry, so that the markermap is
"dense".

The main result of population genetics theory that we need is that the allelic
frequencies at closely linked loci tend to "co-evolve" - the evolutionary processes
at two closely linked loci are not independent. The frequencies of alleles that
are not closely linked evolve essentially independently. One outcome of this is
that if "Di" is an allele at some locus "D" and "Mi" is some allele at a closely
linked locus "M", then often

freq(D1M1) φ freq{Dι) X freqiM,)

When this inequality holds, we say that there is association between the alleles
at the two loci. Association is thus an essentially statistical concept, relating
to gene and chromosome frequencies in some population, and the coefficient
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of association, defined below, is closely related to the statistical concept of a
correlation coefficient.

If there are only two alleles (Dλ and D2) at a locus Z), and only two alleles
(Mi and M2) at a locus M, we may define the "coefficient of association" δ
between the alleles at the two loci by

δ = freq(DχMι) — freq(Dχ) x freq(Mι)

(The replacement of Dλ by D2j or Mx by M2, or both, might change the sign
of δ but not its absolute value. Since only this absolute value is important, no
loss of generality is implied by using Mi and Dι in the definition of δ.)

When δ is nonzero there is an association between the alleles at the two
loci. In the co-evolutionary example just described, this association has arisen
because of the linkage between the two loci. A better expression in this context is
that there is "association due to linkage", or (in the frequently used expression),
that the two loci are in "linkage disequilibrium".

If Dι is an allele causing some disease, or contributing towards causing some
disease, and Mi is an allele at a closely linked marker locus, then the event "5
not zero" implies

freq(Mχ among those with the disease)

Φ
freq(M\ among those free of the disease)

The inequality of these two frequencies is often a more useful way of stating
that there is association between the genes at the two loci, and testing for such
an inequality can then be used as a way of testing for such an association.

3. Linkage tests: historical background. Over the last eighty years link-
age analysis has gone through several phases. In the first of these, simple and
obvious linkages were observed, with no statistical testing being involved. As
an example, the location of a gene (more strictly, allele - here we adopt the
loose terminology of human genetics) for hemophilia was found very early on,
in part by using by simple association - hemophilia occurs much more often in
men than in women. (Another important component to this conclusion is the
pattern of inheritance of hemophilia.)

This form of argument that there is an association between gender and
disease status led naturally to the next type of test for linkage, also based on
the idea of association, namely case-control methods.

In case-control methods we compare the frequency of the gene Mi in a
sample of "cases" - individuals with the disease in question - with that in a
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sample of "controls" - those free of the disease. If these two frequencies differ
significantly, as judged by a contingency table chi-square calculation, we might
use this fact to argue that the disease locus is closely linked to this marker.

However such an argument involves a logical error. It might be true that
linkage between the two loci leads to association between them, but this does
not imply that an observed association implies that the loci are linked, since
agencies other than linkage are known to cause association. A case of particular
importance is that of population stratification. The population sampled might
consist of a mixture of two or more subpopulations, and some given marker gene
as well as the disease gene might occur at high frequency in one subpopulation
but not the other. This will imply a high value for the coefficient of association
between the genes at the marker and the disease loci, but clearly this associ-
ation does not necessarily imply linkage of the marker to the disease. This is
a cause for concern for linkage analysis in stratified populations deriving from
the admixture of recently arrived immigrant groups, and as a result, the case-
control method has fallen out of favor as a method for linkage analysis. Interest
moved, instead, to linkage analyses using marker gene sharing properties among
affected sibpairs - the third broad method used, historically, to test for linkage
between disease and marker loci.

As with case-control studies, sharing methods also focus on some marker
locus "M", of known location, and some putative disease locus "D", of unknown
location. In formal statistical language, we want to test the null hypothesis the
marker locus "M" is unlinked to the disease locus "D" against the alternative
hypothesis that the marker locus "M" is linked to the disease locus "Z>", the
interesting case being that disease and marker loci are closely linked.

This method operates by considering sharing properties of marker genes
among affected sib pairs. If the marker and disease loci are linked, we expect
an excess over random expectation of sharing of marker genes by affected sibs,
the argument being the following. Suppose as a simplifying example that the
disease is rare and recessive. Then if the two sibs in a family are both affected
by the disease, the most likely situation is that both affected sibs received the
disease gene D\ from their (heterozygous D1D2) parents, and thus they both
tend to share the same marker genes at any marker locus closely linked to the
disease locus. If marker and disease loci are unlinked, there will be no excess over
the 50% random expectation of sharing of marker genes by affected sibs, apart
from those caused by random statistical fluctuations. Note that by bringing the
testing procedure "within families" sharing methods overcome the problem of
population stratification.

Thus the "sharing" method of testing for linkage results in a simple "p = 5 "
binomial test, and it has been used very frequently, with substantial success,
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over the last thirty years or so for this purpose.

One problem, however, with this method is that there can be "too much"
sharing among sibs - leaving aside the sex chromosomes, sibs on average share
half their genetic material, and this creates significant "noise" in the sharing
procedure. This problem is particularly acute for diseases of most current inter-
est, namely complex diseases - for these, it is sometimes hard to pick out the
often faint signals of linkage for complex diseases amidst this quite large noise.

This problem, and the problem of stratification for case-control studies, led
my colleague R. S. Spielman and me to propose the transmission/disequilibrium
test (TDT), and later the sib transmission/disequilibrium test (S-TDT), as a
procedure that attempts to combine the beneficial features of the "sharing"
and case-control methods, while at the same time overcome their disadvantages
[Spielman et al. (1993), Spielman and Ewens (1998)]. The main aim of this
paper is to describe these tests and to discuss statistical questions to which
they give rise.

4. The TDT: introduction. The thinking behind the TDT goes back to
the previously discarded idea of testing for linkage via the case-control concept of
association. However, it uses case-control ideas in such a way as to overcome the
stratification problem described above. This is done by using, as the "control"
with whom we compare the marker genetic makeup of an affected individual,
the "non-person" created by the genes "thrown away" by the two parents when
the affected child was conceived. For example, suppose that the mother of a
child affected by the disease is of genotype MχM3 at some marker locus and the
father is of genotype M2M4. If the affected sib is of genotype MiM 2, we know
that this "non-person", never conceived, would have been of genotype M3M4.
It is against this genotype of this "non-person" that we compare the genotype
of the affected child actually conceived. This "within family" matching ensures
that the TDT overcomes the case-control population stratification problem.

5. The TDT: details and properties. The introduction to the TDT pro-
cedure given above shows that the test reduces, in essence, to a comparison of
what gene is transmitted and what gene is "thrown away", at a marker locus,
by the parent of an affected child. If there are two possible alleles, Mi and M2,
at the marker locus, this implies that the data matrix appropriate for the TDT
will be as in Table 1, where the numbers in the table refer to the numbers of
parents (of n affected children) in each of the four possible categories shown. We
denote the respective probabilities that the parent of an affected child falls into
one or other of the four cells of Table 1 by P( l , 1), P ( l , 2), P(2,1) and P(2,2).
When population stratification exists, then even if the mode of inheritance of the
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TABLE 1

Combinations of transmitted and nontransmitted marker alleles M\ and Mi among the parents of n
affected children.

Non-transmitted allele

Mi M2 Total
Transmitted Mi nn nι2 Πι

allele M 2 n 2 i n 2 2 n2

Total πι n 2 2n

disease is known, there are many unknown parameters defining these four prob-
abilities. For example, for a recessive disease the probabilities P ( l , l ) , P( l ,2),
P(2,l) and P(2,2) are

3

P(2,1) =

(5.1) P(2,2) =

In the expressions in (5.1), the summation is over different strata in the pop-
ulation, Gίj is the proportion of the population in stratum j , qj and pj are the
frequencies of M\ and the disease gene respectively in stratum j , δj is the coef-
ficient of association in stratum j , and θ is the recombination fraction between
marker and disease loci, that is, the probability that the genes inherited from
a given parent at the two loci come from different chromosomes in that parent.
When the two loci are unlinked 0 = 5 , while when they are linked, θ < | .

When the sample is taken from a population into which individuals from
these strata have migrated, with subsequent intermarriage, the expressions for
P ( l , 1), P ( l , 2), P(2,1) and P(2,2) become even more complicated. The above
expressions, however, are sufficient to make the points at issue.

Our aim is to test the null hypothesis that disease and marker loci are un-
linked, that is that the linkage parameter θ takes the value | . Initially it might
seem, given the large number of unknown parameters, that it will be impossible
to test this null hypothesis through a lack of degrees of freedom. This difficulty
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is overcome by noting that P(l,2) = P(2,l) when the null hypothesis is true,
whatever the population stratification situation, whatever the mode of inher-
itance of the disease (that is, dominant, recessive, intermediate, etc.), indeed
whatever the value of any parameter apart from θ might be. This comment
is also true when the population sampled is one where migration from differ-
ent strata, followed by intermarriage, has occurred. Further, in practice, this is
the only constraint on the four cell probabilities that will occur when the null
hypothesis is true.

Since there are many more parameters than degrees of freedom, the test of
the null hypothesis that disease and marker loci are unlinked, using the data
of Table 1, reduces to a test of the hypothesis P(l,2) = P(2,1). Standard
likelihood-ratio methods lead to a test statistic that depends only on ri\2 and
Π2i, and which is asymptotically given by the simple formula

(5.2)

Under the null hypothesis, and with the appropriate forms of data discussed
below, this statistic has approximately a chi-square distribution with one degree
of freedom. If one is not satisfied with this approximate test, one can test for
significance using an exact binomial procedure (the McNemar test). The main
statistical properties of the TDT test procedure are as follows.

(i) The most important question about the TDT concerns the circumstances
under which it is a valid test (i.e. has the nominated Type I error). The mo-
tivation for developing the TDT was to eliminate the possibility of artifactual
effects due to population structure. This aim is achieved: the TDT is valid as
a test of linkage whatever the population structure might be. This conclusion
follows from the fact that the TDT uses only data involving transmissions from
heterozygous MiM2 parents, and when marker and disease loci are unlinked,
the Mi and M2 genes are equally likely to be transmitted from such parents,
whatever the population structure.

(ii) Data that may be used in the test. The TDT is valid as a test of link-
age when the data come from families with one affected offspring, two or more
affected offspring, a mixture of the two, or multigenerational, provided spe-
cial cases such as identical twins are disallowed. This arises because, under the
null hypothesis that disease and marker loci are unlinked, transmissions from
one heterozygous parent to different affected children are independent, as are
transmissions from two heterozygous parents to the same child, as well as multi-
generational transmissions.

Combining (i) and (ii), the TDT may be used as a valid test of linkage, no
matter what the structure of the population from which the sample was taken,
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and no matter what the relationships between the individuals in the sample.

(iii) Unlike many test statistics in genetics using data in a 2 x 2 table, the
TDT is not a 2 x 2 chi-square test statistic. In fact, of the data in Table 1,
the TDT statistic uses only the data values Πι2 and ri2i. While this conclusion
derives from likelihood ratio theory, it has a natural genetical interpretation. It
is a standard result of genetics that linkage information can be found only from
heterozygous (here M1M2) parents, and it is only the data values riu and n 2i
in Table 1 that correspond to such parents.

(iv) Power. There are two reasons why calculation of the power of the TDT
test is difficult. First, as is seen in (5.1), there are many unknown parameters
involved in the sampling procedure and the power of the test is a function of
these. No simple power curve can be drawn describing the power of the test. Sec-
ond, even the situation described in (5.1), with many parameters describing the
structure of the population from which the sample was drawn, is oversimplified.
Diseases of interest currently are "complex", that is are caused in a complex
interactive way by the genes at many loci, and the description above relates to
only one single disease gene locus. In such a case the calculation of a unique
power of the test is, in practice, impossible.

From the statistical point of view, it is not known whether the TDT test
is uniformly most powerful (in comparison with other tests using the data of
Table 1). This is a matter that deserves investigation.

(v) Association. There are several properties of the TDT test which revolve
around the concept of association, two of which are explored here.

First, the TDT test has no power unless there is association between the
genes at the marker locus and those at the disease locus. This can be most
easily be seen in the case where there is no population stratification, for which
the probabilities in the four cells in Table 1 are of the form

(5.3)
P

In equations (5.3), p is the frequency of the disease gene in the population,
q the frequency of the marker allele M\, and δ is the coefficient of association
between these alleles. Clearly, when 5 = 0, there can be no power of a test of the
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hypothesis θ = | , since in this case the four frequencies in 5.3 are independent
of θ.

Second, there is a converse side of this coin. The more association there is, the
higher the power of the TDT as a test of linkage. To the extent that structured
populations sometimes create association the TDT will use this association and
gain increased power. This will not, of course, automatically happen. If the
data come from an area with recent immigration from different strata, followed
by intermarriage, the association within the original strata together with the
association caused by the admixture procedure itself will lead to an overall
association that might or might not increase the power of the TDT.

Third, one might want to test the null hypothesis δ= 0, i.e. that there is no
association between disease and marker genes, rather than test the hypothesis
that disease and marker loci are unlinked. The TDT is a valid test of this hy-
pothesis also, even using data from subdivided populations, provided that only
data from simplex families (that is, families with only one affected child) are
used in the test. The reason for this requirement is that the null hypothesis
distribution of the TDT statistic implicitly assumes independent transmissions
from parent to affected offspring, and even when there is no population associa-
tion, the alleles transmitted from a heterozygous parent to two affected children
are not independent. Martin et al. (1997) have overcome this problem by de-
vising a test for association which may use data from affected children within
the same family. The comparative properties of this test, and a TDT test where
only one affected child are used from each family, are explored and present much
statistical interest.

It sometimes causes confusion that, with data from simplex families, the
same statistic can be used for two purposes, i.e. as a test of linkage and as a test
of association. However, an investigator is free to state up-front what his/her
null hypothesis is, and indeed should make such a statement. Two investigators
working together and always using the same (simplex) data, one using the TDT
as a test of association and one using the TDT as a test of linkage, will accept
or reject their respective null hypotheses together (assuming that they use the
same Type I error). This is despite the fact that the two background populations
are different under these two different null hypotheses, as may be verified, for the
case of unstratified populations and a recessive disease, by reference to equations
5.3: when δ = 0 (no association) the four probabilities listed are different from
those arising when θ = | (no linkage).

Much the strangest situation arises when multiplex families are used to test
for linkage (but not association). Suppose we reject the null hypothesis that
disease and marker are unlinked. We may not use these (multiplex) data to
test directly for association between disease and marker, but we nevertheless
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know that the test for linkage, which rejected the hypothesis of no linkage,
only has power if there is such an association. Can we say we have evidence
for an association? Here is a paradox that deserves more investigation from
statisticians.

(vi) Historical factors. Suppose that the original disease gene mutation oc-
curred some 2500 years ago. This implies that it is about 100 generations since
the initial mutation first appeared. In such a case it is interesting to assess what
residual association might exist between disease and marker.

Suppose the disease mutation occurred on a Mi-bearing chromosome in a
population where M\ and M2 were equally frequent, and that the recombination
distance of the marker locus M from the disease locus is θ. Then the probability
that a chromosome now carries M i ? given it now carries the disease gene D\,
is approximately e~100θ. If θ = .001, this probability is approximately 90%. In
other words, we can still expect a high degree of association with the disease for a
closely linked marker. On the other hand, the passage of time quickly purifies out
associations of marker loci which are not closely linked to the disease, through
the recombination process. Since markers are now dense on the genome, we can
then hope that the association-based TDT will pick out only those markers that
are closely linked to the disease locus.

There is of course a converse side to this coin also, namely that a dense
set of markers might be necessary for one marker to be sufficiently close to the
disease locus for this historical association to be picked up, and problems of
multiple testing, so far unresolved for the TDT, will arise with such a dense set
of markers.

There are several population genetic comments of relevance to this discus-
sion. First, if there were multiple origins of the disease mutation the above
discussion of course needs some modification. Second, we are studying a condi-
tional evolutionary process: since we observe the disease now, it has continued
to exist since its mutational origin. The population genetics of conditional pro-
cesses - here, the condition being that the disease gene has survived so far -
is rather different from that of unconditional processes [Ewens (1979)], so that
the evolutionary statistics of the disease are quite complicated. Finally, a cru-
cial tool of modern evolutionary population genetics is that of the coalescent.
Now the disease genes in present-day sufferers of the disease have these genes
coalesce in the original mutation (or a more recent common ancestor), and the
coalescent process at a marker closely linked to the disease locus will resemble
that at the disease locus. Little population genetics theory is available to study
the details of this marker gene coalescent process, although given the current
interest in the coalescent process, we can expect that this situation will change
rapidly.
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6. Discussion points concerning the TDT. There are many interesting
statistical discussion points surrounding the TDT, of which we mention here
only a few.

First, the test uses aggregated data: the data entries in Table 1 give no
indication of the number of families involved and the number of affected sibs in
each. How much information is given up in this aggregation? What other test
statistics, possibly having properties more desirable than the TDT, could be
constructed taking family sizes, or other data, into account? To what extent is
the fact that the same (TDT) test statistic (5.2) arises no matter what mode
of inheritance is assumed, a matter discussed further below, dependent on this
aggregation?

Second, the TDT procedure assumes that parental genotypes are known
directly (since only heterozygous parents may be used in the test). Suppose
however that parental genotypes are not known directly, as might well be the
case for a disease of old age where both parents are likely to be dead. The data
then consist only of the marker locus genotypes of the affected sibs. However
both parental disease genotypes can be inferred unambiguously to be MχM2 if
there is at least one M\M\ sib and at least one M2M2 sib. In such a case, can we
proceed as though these genotypes were known directly? The answer is "no",
since an ascertainment bias arises for such families. This is most easily seen if
there are only two sibs in the family: here one sib must be Mi Mi and the other
M2M2. The binomial assumption implicit in the use of (5.2) as a chi-square
does not hold for such families, since the variance of the number of Mi genes
among the two affected sibs is zero. Here is a curious case where unambiguous
inference has a different consequence from that of direct knowledge.

If parental genotypes are unavailable, what use can be made of unaffected
sibs? In the situation just discussed, we may certainly use the TDT if the infer-
ence about the unknown parental genotypes is derived from unaffected sibs. But
can unaffected sibs be used in a more direct way? Spielman and Ewens (1998)
introduce the sib-TDT (S-TDT) test as a means of testing for linkage (and in
some cases for association) when parental genotype information is not available
but unaffected sib genotype information is. The details of the S-TDT proce-
dure are too long to discuss here, but some statistical points may be mentioned
briefly. If both parental and unaffected sib genotype information are available,
do we use the TDT or the S-TDT? How do we carry out a combined test when
some families provide parental genotype data, some unaffected sib data, some
both? These questions are related to a discussion of the relative powers of the
tests, itself a complicated matter. If one affected sib per family is the minimal
(and only) data allowed in a TDT when used to test for association, what is
the corresponding requirement for the S-TDT? These and further questions are
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still in the process of being answered.

The sometimes curious statistical questions surrounding the TDT have cau-
sed some controversial discussion among statistical geneticists. Here we mention
two such points.

First, it is sometimes claimed, since P(l,2) and P(2,1) in 5.3 are equal
when (θ — | ) ί = 0, that the only null hypothesis that may be tested by the
TDT statistic (5.2) is the hypothesis (θ — | ) ί = 0. My own view is that this
comment is incorrect. A researcher is not only entitled, he/she is indeed obliged,
to state up front what his/her null hypothesis and alternative hypothesis are
[Lehmann (1986)]. This statement is made on genetical grounds, and depends
on the genetical question of interest. It is thus appropriate to state up front,
for example, that one's null hypothesis is that disease and marker loci are un-
linked, rather than to infer what the hypothesis might be from the form of the
parameters involved in the distribution of the test statistic used to test this
hypothesis.

Of course this test of hypothesis happens to have no power if δ = 0. We
will then reject the null hypothesis with the same (Type I error) probability,
whether it be true or not. However this is a different matter from claiming that
we are never allowed to choose to test this hypothesis.

The second controversial point relates to the broad question of the relative
merits and disadvantages of parametric and non-parametric tests in human
genetics, particularly in linkage analysis, a matter hotly debated in some sections
of the human genetics community.

The claim has been made that if some parametric test which makes certain
assumptions (often about mode of inheritance - whether the disease of interest
is recessive or dominant, for example) is identical to some non-parametric test,
then in using this non-parametric test one is implicitly making the same mode
of inheritance assumption as is made in the parametric test. This claim has
been made, for example, by Whittemore (1996) and Greenberg et al. (1996),
and challenged among others by Kruglyak (1997).

The TDT procedure bears on this question. Any test that uses the statistic
(5.2) can be thought of as a simple non-parametric "p = | coin-tossing" test, as
is indicated by the discussion below (5.2). However, as noted above, the statis-
tic (5.2) can be derived, and initially was derived, using likelihood ratio theory
within the context of a parametric test. Although the theory for a recessive
disease only has been discussed above, the same test statistic (5.2) and test
procedure result whatever the mode of inheritance of the disease might be. It
follows from this that there can be no implication, when using the TDT, about
the mode of inheritance of the disease. This argues in favor of Kruglyak's chal-
lenge of the Whittemore and Greenberg et al. claim described above. Of course
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TABLE 2

Combinations of transmitted and nontransmitted marker alleles M\, M2,... , Mk among the parents
°f n affected children.

Non-transmitted allele

Mi M2 . . . Mfc Total
Mi nil n12 nlk nx

Transmitted M2 Π2\ 2̂2

allele :

Total ni n 2 n^ In

the overall question of when one should use a non-parametric test in linkage
analysis and when one should use a parametric test is extremely complicated,
and the above comments are not intended to bear on this question in a general
way. They are intended solely to discuss one aspect of this matter.

7. Generalizations and extensions of the TDT: many marker alleles.
In the above discussion it has been assumed that there are only two possible
alleles that can arise at the marker locus. Usually however there are more than
two possible alleles at any marker locus, and we now discuss the theory apply-
ing to the general fc-allele case. This generalization raises several questions of
statistical interest, some of which are still unanswered.

We denote the marker alleles Mi, M2,... , M^. Then the natural generaliza-
tion of Table 1, applying in the fc-allele case, is Table 2.

Consider first the question of using the data in this table in a test for linkage
between disease and marker loci. What do we use as test statistic?

There will be a k X k table of probabilities defining the probabilities for
the entries in this table, generalizing those given in (5.1), containing perhaps
hundreds of parameters, especially in stratified populations. This table of prob-
abilities is thus immensely complicated. However, as with the probabilities in
(5.1), it is possible to make one clear statement when the null hypothesis, that
disease and marker loci are unlinked, is true. This is that symmetrically op-
posite probabilities in this table will be equal: in other words, under the null
hypothesis that disease and marker loci are unlinked, symmetrically opposite
entries in Table 2 have the same mean value.

It is thus tempting to test this null hypothesis by testing for symmetry in
the data matrix. The standard methods to do this uses a test with k(k - l)/2
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df. However it is generally agreed in the genetic context that it is not wise to
use this test. It has too many degrees of freedom, and therefore comparatively
uninformative marker alleles might well swamp information about a real link-
age. We are thus in a position analogous to that sometimes arising in complex
ANOVA and MANOVA designs, that use of formal statistical testing theory is
not useful and a more ad hoc approach is required.

One broad category of such ad hoc tests uses the marginal data in Table
2. We test the hypothesis that disease and marker loci are unlinked by testing
whether the vector of row marginal totals (ni., n 2 . , . . . , Πk.) differs significantly
from the vector (n.i, n.2,... , n.*) of column marginal totals. Such a comparison
has the potential to lead to a useful test of the hypothesis that disease and
marker loci are unlinked, since under this hypothesis the two vectors have the
same mean vector. Any test based on these marginal totals has fc — 1 df and thus
largely removes the swamping effect inherent in the fc(fc — l)/2 df "symmetry"
test. Nevertheless, something in general must be lost in adopting a fc — 1 df
test, since these two vectors might, in some hypothetical situation, have the
same mean vector even when disease and marker loci are linked. Thus this new
procedure seems to be testing a weaker hypothesis than that of symmetry. It
would be important to know under what genetical circumstances the two forms
of test are equivalent.

There are several tests available in the literature of the linkage hypothesis
which use these marginal totals. Sham and Curtis (1995) and Duffy (1995)
provide log-linear computer-intensive tests and Harley et al. (1995) provide a
computer-intensive logistic regression model. We focus here however on three
other test statistics that have appeared in the literature and which are direct
analogues of the two-allele TDT in that they reduce to the two-allele TDT when
fc = 2.

The first of these is known in the statistical literature as the Stuart statistic
[Agresti (1990)]. In the genetical literature this is known as the generalized TDT
(or GTDT) test statistic of Schaid (1996).

Using this statistic one first calculates, for i = 1, 2,. . . , fc, the quantities d{,
defined by d{ = τii. — n.j. The sum of these quantities is necessarily zero, so that
without loss of information one ignores one arbitrarily chosen marker allele (say
allele fc) and forms a vector d' defined by

d' = (di,d 2 , . . . ,<4-i)

If the null hypothesis that disease and marker loci are unlinked is true, the
estimate of the variance of d{ is n .̂ + n.t — 2nn and the estimate of the covariance
between d{ and dj is — (n^ + n3i). These variance and covariance estimates are



TRANSMISSION/DISEQUILIBRIUM TEST 91

formed into a matrix V and the GTDT test statistic is then defined as

GTDT = d ' V M

Note that, as required for a test of linkage, this statistic does not use the values
^11,^22,..- ,nfcfc, since these values cancel out in the definition of d' and V.
Under the null hypothesis that disease and marker loci are unlinked, the GTDT
statistic has asymptotically a chi-square distribution with k — 1 df, and thus
can be used as a test statistic for linkage by referring the observed value of the
statistic to tables of significance points of this distribution. The data that may
be used in this test are identical to those for which the TDT may be used in a
test for linkage.

Although the GTDT statistic is possibly the most natural generalization of
the two-allele TDT statistic, its calculation requires the inversion of a large and
possibly sparse matrix, and indeed the inverse matrix might not exist for small
data sets. It is thus useful to have a test statistic that is very similar to GTDT
but which does not involve inversion of a matrix. Such a statistic was proposed
by Spielman and Ewens (1996). This statistic is W, defined by

, . - n,)7(n, + nt - 2nit]

As with the GTDT statistic, this statistic also does not use the data values
nn?^22? ->nkk It also has a distribution very close to chi-square with k — 1
df under the null hypothesis of no linkage, and like the GTDT statistic, also
reduces to the two-allele TDT statistic when k = 2. The data that may be used
in this test are identical to those for which the TDT may be used in a test for
linkage.

If Πij + Πji is the same for each independent (i,j) pair, W and GTDT are
identical. In this case W can be expressed as the sum of squares of k — 1 random
variables with null hypothesis mean 0 and variance 1, each a linear function of
a binomial random variable, verifying the chi-square approximation.

Although the tests based on GTDT and W to some extent overcome the
"swamping" problem associated with tests with a large number of degrees of
freedom, they do not completely overcome this difficulty. This leads us to con-
sider a third test statistic, also introduced by Schaid (1996), called maxTDT.
This statistic is computed as follows. For each z, (i = 1, 2,. . . , k) we lump all
alleles other than allele i as "non-i" and compute a "two-allele" TDT statistic
as prescribed in (5.2). We then choose as test statistic the largest of the k TDT
statistics so formed, denoting this statistic maxTDT. In terms of the entries in
Table 2, this statistic is the largest, as i takes successively the values 1,2,... , £;,
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of the quantities

(7.4) _(«•—..*

"X. ~r ' ^ . i ^ i i

This test statistic also reduces to the TDT statistic when k = 2.

Use of the maxTDT statistic largely avoids the swamping effect mentioned
above. However one may not use chi-square tables to test for its significance,
since such a deliberately chosen largest TDT statistic does not have a chi-square
distribution. Nor are simple Bonferroni corrections for the significance points
completely accurate for this test, because there is a simple linear constraint
between the terms that are squared in the numerator of each such statistic.

This is most easily seen in the case referred to above where n^ + rtji is the
same for all (i, j) pairs. In this case the denominator term in (7.4) is indepen-
dent of i. Now we have noted that the sum of the terms which are squared in
the numerator in (7.4) is identically zero, so that for the case we consider the
statistics in (7.4) are the squares of terms which must add to zero. Approximate
significance points of the maxTDT statistic can then be found by an adaptation
of the significance points given in Table 25 in Pearson and Hartley (1965). These
values have been confirmed by a binomial permutation procedure [Ewens and
Spielman (1997)].

This comment leads us to another class of A -allele TDT tests, namely per-
mutation tests. These been studied in the TDT context especially by Kaplan,
Weir and Martin (1997).

In a permutation procedure we consider any "sensible" test statistic com-
puted from the data of Table 2, for example one or other of the statistics GTDT,
W and maxTDT. We then permute the data in some way a large number of
times, compute the same statistic for each permutation, and then declare the
data to be significant at (say) the 5% level if the observed value of the test
statistic is within the most extreme 5% of values found under permutation. An
equivalent procedure is to find empirical tables of significance points from a
large number of permutations, and this is the procedure adopted by Ewens and
Spielman (1997) for the statistic maxTDT.

This approach raises the question of what one permutes over. In the tables
presented by Ewens and Spielman (1997), the value oiπij+Πji was kept constant
in each permutation. In other words, the permutation consisted of a collection
of binomial permutations, where for each permutation and each (i,j) pair, the
value of n t J was found from a binomial distribution with parameters rii3 + riβ
and | .

There were two reasons for adopting this approach, one genetical and one
statistical. The genetical reason is that the investigator has the power to choose
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the value of n2J +ny^ which is the number of heterozygous M{Mj parents in the
sample, and may well choose these numbers to be roughly equal in an attempt
to maximize the power of the test used. In such a situation it is reasonable to
regard Πij +riji as fixed and not subject to random variation, and thus not to
be varied in a permutation test.

The statistical reason for keeping n^ +riji constant under permutation is
that this sum is a sufficient statistic, in a multinomial distribution relating to
all k2 entries in Table 2, for the probability that an entry falls into one or
other of the (z, j) or the (j, ϊ) cells. This probability is not dependent on θ,
the parameter being tested, so conditioning on a sufficient statistic for this
probability is presumably appropriate.

Several points of statistical interest arise from these considerations. What is
the best test statistic, of those we have considered, for testing for linkage? As an
associated question, given that several interesting genetical questions do not fall
in the formalities of statistical theory, when should we ignore formal theory as
not being, in practice, the most suitable ones to use? What is the distribution of
maxTDT? What are the best permutation procedures for fc-allele permutation
tests of linkage?
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