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RESULTS AND PROBLEMS IN GAMES OF TIMING

TADEUSZ RADZIK!
Technical University of Wroctaw

Abstract. This paper presents the history of investigations concerning
a subclass of zero-sum two-person games called duels, which were initiated
by David Blackwell and other mathematicians in the reports of the RAND
Corporation in 1948-52. The second part of the paper discusses mutual rela-
tionships between discrete and non-discrete duels, and gives a review of recent
more general results. The paper also discusses some open problems in the
general theory and makes hypothesis on them (strongly suggested by previous
results).

1. INTRODUCTION

In 1948 the RAND Corporation collected a team of mathematicians,
statisticians, economists, and social scientists to analyze “the uncertainties”
in the global world situation and to construct a blue-print for the optimal
operation against that. One of the results of this study, achieved within a
component of the program, was the solution of many problems formulated
in the form of some zero-sum two-person games, called duels, or games of
timing when considered in a more general sense. Particularly, David Black-
well, one of the members of that team, was very instrumental in formulating
and solving several versions of such games. He, together with M. Shiffman,
M. A. Girshick, L. S. Shapley, R. Bellman, I. Glicksberg and others, initi-
ated a new topic within zero-sum games at that time, and recognized the
wide scope of possible applications of games of timing, particularly in the
description and explaining of some conflict situations in economics. Since
then many new general problems in games of timing have been formulated
and many important and interesting results have been achieved. However,
to say more in detail about it, at first, we must give a definition of games of
timing in a sufficiently general form to include the whole rich collection of
all different duel-models studied in the literature. We will do it in a slightly
different (but equivalent) convention in comparison to that adopted by the
pioneers of this topic mentioned above.

Consider the following model of a zero-sum game: There are two Players
1 and 2 with initial amounts M; and M; of some homogeneous resources,
respectively. It is assumed that they should distribute some or all of their
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resources over a common one-dimensional continuum, say [0,1] as an time-
interval, so that each player’s distribution progresses over the time. As
the consequence of such a game will already be a pair (p1, #2) of measures
on [0,1] that describes the way in which the players have distributed their
resources. If (u1,p9) is such a resulting pair, Player 1 wins from Player 2
a value K(p1,p2), where K is some fixed payoff function. The purpose of
Player 1 is to maximize his winnings K (u1,p2), while Player 2 wishes to
minimize it.

In specifying and analyzing such a game, the next possible feature is
whether the opponent of Player i, 7 = 1, 2, constantly knows the exact history
of player #’s expenditures so far. If this is the case, Player ¢ is called a noisy
player, while at the opposite extreme (his opponent is completely ignorant
about that) Player i is called silent. Thus a situation of the indicated type
actually gives rise to three possible types of games: 'y, (noisy) in which
both players are noisy, I, (silent) in which both are silent, and I';,; (mized)
in which Player 1 is noisy and Player 2 is silent.

Obviously, the possible strategies of a player have much more complicated
structure when his opponent is noisy than when he is silent. Anyway, inde-
pendently of the possible types of the players, any such a generalized game
of timing has, as its starting game, the following basic game in normal form

'=<M;,My3,K >,

where for i =1, 2,

(A1) the strategy space M; of Player i is a specified subset of the set of
all measures p; on (the Borel sets) of [0,1] satisfying pi([0,1]) < M;; (Here
wi([0,%)) is interpreted as the quantity of Player i’s resource expended up to
time t);

(A2) K : M X M3 — R is the payoff kernel (from Player 2 to 1).

Obviously, the normal form of the game I's; coincides with that of the basic
game I, but this is not longer true for games 'y, and I'ys. It was shown
in Radzik & Goldman (1996) that the normal form of I'y, is completely
determined by its basic game I', and the same is true only for some cases of
I'nn. In general, the problem of mutual relationships between I' and Ty, is
very complex, and rather far from being completely solved.

Now, let us consider the next possible feature of the players’ resources
which can be in one of the two states: “indivisible” - when player’s resources
consist of only some finite number of indivisible “actions” of the same amount
1 each, and each of them can be distributed only at single moments of [0, 1];
and “divisible” - when a player is able to distribute his resources quite arbi-
trarily (in a continuous or discontinuous way) over the time interval. This
gives rise to the next three types of games of timing: discrete when both
the players have only resources of indivisible type, non-discrete when both
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have only divisible ones, and mized - in the situation where one of the play-
ers possesses only divisible while his opponent indivisible resources. So the
games of timing may be considered with various configurations of “noisy”,
“silent”, “discrete” and “non-discrete”. In the paper, we shall use the no-
tation Lpp(k,1), Tss(k,1) or Tpg(k,l) to denote a discrete game of timing
with & and ! indivisible actions at Player 1 and 2, respectively, and with an
appropriate type of actions (noisy, silent). Analogously, by T'yn,(Mj, M),
Tys(Mi, My) or T'py(My, My) such non-discrete games of timing will be de-
noted, where M; and M, are the amounts of resources possessed by the play-
ers. Finally, T, (k, M) and T';,(k, M) denote mixed games, where Player 1
is in possession of k indivisible actions and Player 2 has divisible resources
of amount M.

Historically, the notion of classical duels (discrete and non-discrete) is re-
served to a subclass of generalized games of timing such that the payoff
kernels K of their basic games I' (as expected payoffs of Player 1) are con-
sistent with the following five additional assumptions on a game. Namely,
fori=1,2,

(B1) Player i taking one his actions (an indivisible part of resources of
amount 1) at a single moment t, succeeds with a probability P;(t); here
P;(t),0 <t <1, the so-called accuracy function associated with that player
and known to both, is (usually) assumed to be nondecreasing and continuous
with P;(0) =0 and P;(1) =1,

(B2) the players act independently of each other in the game;

(B3) events that a player will not succeed in any disjoint subintervals of
[0,1], respectively, are always independent,

(BA4) the game ends at the moment of the first success of any of the players,
or at t =1, otherwise;

(B5) the payoff of Player 1 amounts +1, -1 or 0, respectively in the three
cases: (a) the game ends with Player 1’s success only; (b) Player 2 succeeds
alone; (c) both the players succeed or the game ends without a success of
either player.

For discrete duels of any of type 'y, (k,1), Tss(k,l) or T'yps(k,1), the five
additional assumptions introduced above uniquely determine the payoff ker-
nel K in their basic games I'. It can be given in an equivalent form as
a function K(Z, ;) of k + [ variables, defined on the product of the sets
X={Fe€0,1]f:0<z <13<...<7<1}and Y = {f € [0,1]" :
0 <y <y2 L... <y L1} here z; and y; describe the moments at which
Player 1 takes his i-th action and Player 2 takes his j-th action, respectively.
Now, after identifying vectors Zj; with the measures p; of total mass k and
concentrated equally at all points z; of Z; with mass 1 each (and analogously
for 7;), these discrete duels are quite in accordance with the convention of
the basic game T'.
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As far as a non-discrete duel is concerned, the payoff function K of its
basic game I' is not uniquely determined by the additional assumptions (B1) -
(B5) given above. But after adding some other ones (connecting very closely
discrete and non-discrete duels), the uniqueness of K can also be ensured.
This will be widely discussed in Section 3. In Section 2, we present the
history of investigations and achieved results in games of timing. Section 4
contains a review and discussion of some recent more general results related
to discrete and non-discrete duels. Section 5 is devoted to open problems
and some conjectures on them in the general theory of games of timing.

2. HISTORY OF ACHIEVED RESULTS

Since 1948, when the first models of discrete duels were formulated, many
interesting results have been achieved. The basic difficulty in studying such
games is that neither of the general theorems (known in the game theory)
answers the question about the possible existence of their value and optimal
strategies for the players. Even in the simplest cases of discrete silent du-
els, the payoff kernel is discontinuous. On the other hand, the structure of
duels with noisy actions is much more complex, since in general, the play-
ers’ strategies must depend on the information about the behavior of the
opponent within the time interval. In such a way, these games are in fact
extensive games with discontinuous payoff functions, and with continuum
possible alternatives in each position. This short explanation sufficiently
puts across the complexity of studying games of timing. Below, in seven
parts, we present the history of problems and achieved results in this field.

2.1. The beginning of the theory. Let us denote by I'(k, [) the class of discrete
duels (games of timing) involving such games with silent or noisy actions,
that is, Tpn(k,1), Tss(k,!) and Tys(k,l). The first cases of games I'(1,1)
were formulated and studied in 1948-53, in the RAND Corporation reports
of American mathematicians. Particularly Blackwell, Shiffman, Girshick,
Bellman, Glicksberg and Shapley were very instrumental in formulating and
solving several various duels. As far as the first more important papers on
duels of type I'(1, 1) are concerned, we can list here Blackwell (1949a, 1949b),
Blackwell & Girshick (1949) and Bellman & Girshick (1949). The first two
papers study duels under arbitrary accuracy functions P;(t) # P»(t). In the
first of them a solution of a general noisy duel I'y,(1,1) is given, permitting
the possibility of nonmonotonic accuracy functions, while the second one
solves the general silent duel I';4(1,1), by employing a suitable extension
of the equalizer strategy technique. The next two papers deal with slightly
enriched models of duels, under the assumption that Pj(t) = Py(t) = t.
Namely, the first of them studies I'y,;,(1,1) assuming the random actions at
the players, while the last one analyses the duel I';5(1,1) on a constrained
time interval [b, 1].
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2.2. Games of timing of class I and II. The complete results on general silent
games of timing of type I';5(1,1) (defined by the general form of payoff kernel
K(z1,y1) as a function on the unit square, increasing in z; and decreasing
in y; below and over the diagonal, and with possible discontinuities only on
it) belong toShiffman (1953) - the symmetric case (K (z1,¥1) = —K(y1,21)),
and to Karlin (1953) - the unsymmetric case. In the literature, such games
are called games of timing of class II. The first author showed that the
solution in the symmetric case , which is the same for each player, occurs in
four categories and can be obtained by solving a single integral equation of
the second kind. Karlin (1953) extended Shiffman’s result to unsymmetric
case, and showed that this leads to fourteen possible categories of solutions.
The method of solving games of timing in both cases appeals fundamentally
to the theory of positive integral transformations. It is worth mentioning
here that games of timing of class II in a non-zero sum version also were
studied, and some partial results can be found in Sudzute (1983).

The second general result concerning games I'(1,1) belongs to Glicksberg
(1950). He found a solution of a general discrete noisy game of timing of
type I'nn(1,1). These games, called in literature as games of timing of class
I, differs from that of class II in the payoff kernel that it is constant in each
variable over the diagonal. One should add here that an independent and
more complete determination of the solution was given by Karlin (1953),
where he solved those games by approximating a solution uniformly by a
sequence of games of timing of class II and then invoking a standard limiting
process. (For a non-zero-sum version, see Pitchik (1981)).

2.3. Noisy discrete duels. Now let us pass to more complicated discrete noisy
games of timing I'yy,(k,l) with numbers of actions greater than 1 for both
players. Unfortunately, there are no general results here, comparable (with
respect to degree of generality) to the results on games of timing of classes I
and II, found by Glicksberg and Karlin. In spite this, many interesting and
very difficult problems have been solved in this topic. The first result be-
longs here to Blackwell & Girshick (1954), where they found the solution of
noisy duels I'y,,(k, !) with general number of actions, k,! > 1, and with equal
accuracy functions P;(t) = P,(t) = t. These authors showed that then all
the duels I'y,,(k, 1) possessed values, and they constructed e-optimal strate-
gies with a recursive structure for both players. Unfortunately, their method
does not allow to solve that duel under P;(t) # P»(t). The further essential
generalization of the last result is due to Fox & Kimeldorf (1969), who solved
the noisy duel Iy, (k,l) with arbitrary continuous and nondecreasing accu-
racy functions, satisfying only the slight restriction, P;(0) = 0,P;(1) = 1
for 1 = 1,2. The e-optimal strategies found there are also of a recursive
type, but much more complex in comparison to the ones of the previous
case. However their method, although based on very subtle considerations,
does not enable them to find whether the duels 'y, (k,!) have values in the
general case, 0 < P;(0) < P(1) < 1,i=1,2 Zadan (1976) obtained the
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next important result in this direction. He showed with the help of a largely
complex theory, especially constructed for the need of the problem, that un-
der only the continuity of accuracy functions with P;(0) = 0, P;(1) < 1 for
i = 1,2, noisy discrete duels I'yn(k,{) still have values, and he found the
form of e-optimal strategies for the players. The assumption made by Zadan
has appeared to be necessary there.

In the last three papers discussed above and concerning the duel I'n, (k, 1),
the condition, P;(0) = 0,7 = 1, 2, is necessary because of the method adopted
there. e-optimal strategies found there have such a recursive structure which
cannot be transferred to duels I'p,(k,!) under P;(0) > 0, ¢« = 1,2. This
restriction was finally overcome in Radzik (1991), where a complete solution
of duels ', (k, 1) with k,1 > 1 was found, under the general assumption that
the accuracy functions are continuous and nondecreasing with 0 < P;(0) <
P;(1) <1, i =1,2. To this end, a special theory studying properties of
optimal strategies and equilibria in some matrix games with restricted set
of admissible pairs of the players’ pure strategies has been developed. In the
case, P;(0) > 0 for i = 1,2, the structure of e-optimal strategies has appeared
much more complex in comparison to the ones considered in the three papers
mentioned above. At the end, it is worth mentioning that some asymptotic
properties of noisy discrete duels were discussed in Fox & Kimeldorf (1970)
and of all types discrete duels in Kimeldorf & Lang (1978). However, in spite
of strong results found in this topic, we still do not know how to extend the
result of Glicksberg and Karlin for games of timing I';,,(1,1) of class I to
that of Ty, (k,1) with k,1 > 1.

2.4. Silent discrete duels. Now we shall treat of a general silent discrete duels
Iss(k,1) with k,1 > 1. The most famous result in this topic we find in Re-
strepo (1957). It is shown there that for all k, [, the silent duel I';4(k, 1), with
continuously differentiable accuracy functions satisfying P;(0) = 0, P;(1) =1
and P/(t) > 0 for i = 1,2 and 0 < ¢t < 1, always has a value, and optimal
strategies for the players have been found. In spite of large complexity of the
analysis adopted there, Restrepo’s method is insufficient to derive a theorem
involving a full extension of the general game of timing of class II, analogous
to that of Karlin for I'y5(1,1). Summarizing, the questions how to extend
Karlin’s results to general games of timing I's5(k,l) with k,I > 1, is still
an open problem. As yet Restrepo’s result has been extended only to two
somewhat modified models of I'y5(k,!) in Ciegielski (1986a, 19865). In the
first paper the assumption on a the model is weakened to a random num-
ber of actions at each player, while the second one deals with P;(1) < 1 for
i = 1,2, but still with the restriction P;(0) = 0 for i = 1,2 in both papers. It
is also worth mentioning here two other modifications of I'ss(k, ), where by
assumption, a duel ends with a “small delay” ( Orlowski & Radzik (1985)),
and, where, a possibility of a “retreat after the shots” is admitted to the
players (Trybula (1990, 1993)),
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2.5. Mized discrete duels. In the topic of mixed discrete duels I'y4(k, 1), there
are not more general results. It seems that this kind of duel is the most diffi-
cult to study. It is rather surprising that, for instance, even the duel I';,5(2,1)
with Pj(t) # Pa(t), still remains an open problem. Only partial and rather
particular problems (though mostly often very hard) have been solved here,
though the number of published papers is rather large. We can list only some
of them, representative in some sense. They concern different modifications
of duels with, mostly often, arbitrary accuracy functions. Kurisu (1991)
solved a class of duels I';,(1,1) with such a modification that the action of
Player 2 is noisy with a constant “time lag”; so that class contains the stan-
dard discrete duels I';,(1,1) and I's5(1,1) as its two extremes. In the next
interesting paper, Kurisu (1983) solved (with the help of computer calcula-
tions and graphs) a solution of duel I'y4(2,1) under P;(t) = Py(t) = t, but
the adopted method cannot be used to in a general analysis of such games.
Smith (1967) solved the duel, where Player 1 has one silent and one noisy
action while Player 2 has only one noisy action. Styszyriski (1974) found a
solution of mixed duel I, (k, 1) with £ > 1. The last two results were gener-
alized in Radzik & Orlowski (1982a) and Radzik & Orlowski (1982b), where
such a duel is studied, in which Player 2 has only one noisy action while
Player 1 is in possession of any fixed number of noisy and silent actions, and
by assumption, he must take them in an arbitrarily fixed order (known to
Player 2). Another modification of duels was studied in in Sakaguchi (1984)
considering a duel of type I'(1,1) with the uncertain knowledge about the
existence of players’ actions. Here one can also mention models of duels of
type I'(1,1), considered with a “random termination” of a duel in Teraoka
(1983, 1986), and with a “player detection probability” in Sweat (1971).

2.6. Silent non-discrete duels. The next subclass of games of timing studied
in the literature, are silent non-discrete duels of type I';s(Mi, M3). They
differ from the silent discrete ones in the possibility of quite arbitrary way of
distributing the players’ resources over the time interval. Early formulation
of such a game (called the two machine-gun duel) with a partial solution was
given by Danskin & Gillman (1953), but the first rigorous solution was due
to Karlin (1959). In that model the players were allowed to distribute his
resources in a continuous way over [0, 00), but only with a bounded intensity.
Yanovskaya (1969) studied a more general version considered by Karlin. But
the construction of the payoff kernel in the non-discrete duels discussed in the
last three papers, was rather far from that of discrete duels. The first close
relation between these two kinds of duels was noticed by Lang & Kizneldorf
(1975, 1976) who formulated a slightly another model of I's;(M;, M2) and
solved it in two versions. In the first paper the authors considered the silent
non-discrete duel with P;(t) = Py(t), under the restriction that the players
have the possibility of only continuous distributing of their resources. The
second paper contains a solution of the same duel without that restriction,
under P, (t) # P(t). The optimal strategies found there are independent of
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each other and, consequently, they remain optimal also in duels Ty, (M1, M3)
and Pnn(Ml,M2). Next, in Positielskaya (1984), one can find an optimal
strategy for Player 2 in a duel I‘n,(Ml,Mz), that is an equalizer against
almost all continuous strategies of Player 1. It is also worth mentioning that
asymptotic properties of non-discrete duels were discussed in Kimeldorf &
Lang (1977).

As far as the two models of I‘“(Ml, Mz) discussed above are concerned,
they belong (when considered on [0,1]) to the same class of non-discrete
silent duels. The only difference is that the accuracy functions satisfy P;(1) =
1—e~! in Karlin’s model, and P;(1) = 1 in the model of Lang and Kimeldorf,
i = 1,2.(The equalities P;(0) = 0 are common to both.) This fact is widely
discussed in Section 3, where payoff kernel for I';s(Mj, M3) is constructed
in a new axiomatic way. The last result concerning silent non-discrete du-
els was obtained in Radzik (1988a), where such games were solved under
total general assumptions: P;(0) > 0,P;(1) < 1 for i = 1,2. A complete
characterization of optimal strategies found there is analogous to that of
Karlin for games of timing of class II. It is rather surprising that in the case,
Pi(1) < 1,P,(1) = 1, Player 2 has only e-optimal strategies. The method
exploited there is a strong extension of that one from Lang & Kimeldorf
(1976). At the end, it is worth adding here that some new modification of
these duels was analyzed in Radzik & Orlowski (1985).

2.7. Silent mized duels. The next very natural subclass of games of timing
are silent mixed duels of type I"ss(l,M ), where Player 1 possesses one in-
divisible action and behaves as in a discrete duel, while Player 2 with his
divisible resources of amount M acts as in a non-discrete duel. There are
rather few results here, and this topic lacks any coherent theory. The first
authors who were instrumental in formulating and solving some different
examples of such games were Gillman, Blackwell, Shiffman, Bellman and
Karlin. They all studied the first version of this game called the fighter-
bomber duel, where in the model Player 2 was allowed to distribute his
resources only in a continuous way, and with a bounded intensity. Its con-
nection with the classical discrete duels was rather loose. At first, that
problem was studied and solved in Blackwell & Shiffman (19494, 1949b) and
in other unpublished papers of Weiss, Bellman and Blackwell. The interpre-
tation of it as an advertising campaign was conceived by Gillman (1950). It
was also studied in Karlin (1959), where the author applied a new method,
relying heavily on the Neyman-Pearson lemma, to find the optimal strategy
for Player 1. Besides, there are only two results in this topic, and they be-
long to Radzik (1988b, 1989). Both these papers study mixed silent duels of
type T's5(k, M), but in a slightly different version to that discussed above,
more closely related to discrete duels. The first of them gives the complete
characterization of solutions for the duel I';5(1, M), where Player 2 can dis-
tribute his resources without any restrictions. A more general duel of type
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Tys(k, M) with k > 1 is analyzed in the second paper. It is shown there that
such duels always have values and the form of an optimal strategy for Player
2 was found.

2.8. Final comments. It follows from the above discussion that no general
coherent theory has been found in the topic of games of timing during the
last 35 years. In this period a lot of problems have been solved, but we must
critically admit that very many of them concern rather various particular
and strongly detailed models. It has been caused by not only a large degree
of complexity of models and huge theoretical difficulties with information
that arise there. We are still lacking general and effective methods in this
topic. To find here a solution of any general problem, most often one has to
construct a special theory devoted only to it. As yet there is no homogeneous
theory for more general games of timing that would be satisfactory. Practi-
cally, there is such a theory only for the very narrow case of Karlin’s games
of timing of classes I and II, where the payoff kernel is determined not by ac-
curacy functions but in more general form of a function K(z,y) on the unit
square. Unfortunately, this beautiful theory is quite powerless in more gen-
eral problems, where payoff kernels are defined on multi-dimensional spaces
or on a set of pairs of measures. Hence the question: are there any chances
to change this situation? It seems that we can risk the answer YES!, and
this is strongly motivated by all the more general results achieved just during
the last 35 years. We shall say more about it in Section 5.

3. RELATIONSHIPS BETWEEN DISCRETE AND NON-DISCRETE DUELS

Let us consider any duel, that is, any game of timing with its basic game
T satisfying assumption (A1)-(A2) and (B1)-(B5) from Introduction. Let
P;(t),0 <t <1, be an accuracy function of Player i. By definition, P;(t) de-
scribes the probability that Player ¢ succeeds at a moment ¢, in the situation
when he expends one unit of his resources (an action) exactly at ¢.

For any vector Z, = (21,22,... ,2m) With0< 2, <2< ... <z, <1, let
I(Zy,) define the measure on [0, 1] of total mass m and concentrated exactly
at points 21, 29, ..., 2, with masses 1 at each.

Further, for any strategy p; of Player ¢ and for any subinterval D C [0,1],
we define @Q#i(D) as the probability that Player i, distributing his resources
according to u;, succeeds in D.

It appears that in general, Q*:(D) is not uniquely determined by the
accuracy function P;(t) and assumptions (B1)-(B4) mentioned above. On
the other hand, @Q*i(D) is basic in constructing of the payoff kernel K (11, pu2)
of the basic game I'. Namely, under the notation

def

(1) Qi(t) & @ ([0,1)), Qi(t) & 1-Qut),
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the payoff kernel can be easily derived as

(2) K(p1,p2) = /[01] Q2dQ; — ]QldQ2-

[0,1
To justify this formula, notice that Q;(t) represents the probability that
Player i does not succeed in [0,t]. Therefore, the quantity Q2(t)dQ:(t) is
the probability that Player 1 succeeds in the interval (¢,t+ dt), given neither
succeed by the time ¢. Then the limit sum of these probabilities (equal to the
first integral in (2)) is the probability that Player 1 succeeds before Player 2,
ensuring himself payoff +1 (by assumption (B5)). Similar arguments apply
to the second integral in (2).

By definition, in a discrete duel the players can distribute their resources
only according to measures of the form I(Z,), and it is easy to show with
the help of assumptions (B1)-(B4) from the introduction that

Qo) =1-J[1 - P(z)l,  0<t<1L
s<t
Thus, in view of (1) and (2), assumptions (B1)-(B5) uniquely determine the
basic game I' of any discrete duel. But this is not the case for non-discrete
duels, and to determine Q*i(t) for all p;, some new assumption must be
considered. Below we analyze three approaches to Qi (t).

3.1. Model I. This model was considered in two equivalent versions, on [0, 1]

and on [0, 00), as time intervals, in Blackwell & Shiffman (19494, 1949b) and

in Karlin (1959). Here we present it on [0, 1] in a slightly more general form.
It is assumed that Qi (t) satisfies:

(3)
Q¥ ([t,t + h]) = pi([t,t + R) - Ai(t) + o(h), a.e, 0<t<1,

for any absolutely continuous measure p; on [0, 1], where A;(t) is a continu-
ously monotone function with

(4) Ai(0) =0, Ai(1)=1

(The function A;(t) does not coincide with the accuracy function P;(t), and
is called a modified accuracy function.)
Condition (3), by the standard limit procedure, leads to

(5) Q%) =1-exp (-— /[0 ; Ai(u)dﬂ'i(“)) ; 0<t<1,

for any absolutely continuous measure u;. Now, if we formally extend for-
mula (5) to the set of all measures p;, then after substituting u; = I(t), we
shall obtain

(6) Fi(t) = 1 - exp[-A4i(1)], 0<t<1,
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because of the obvious equality, P;(t) = Q®(t). Therefore (see (6) and
(4)), this model is consistent with such discrete duels, where the accuracy
functions satisfy: P;(0) =0 and P;(1)=1—e" 1.

3.2. Model II. Lang & Kimeldorf (1975) proposed to change the function
A;(t) in (3) for another one, defined on [0,1) and satisfying
Ai(0) =0, A;(1-)=oo.

Now we can repeat the considerations of Model I to get the conclusion that
Model II is consistent with discrete duels, with P;(0) = 0 and P;(1) = 1.

3.3. Model III. Both the approaches in Models I and IT have some deficiency.
Namely, though formula (5) on @*i(t) can be well defined for all measures u;,
the starting condition (3) is consistent with (5) only for absolutely continuous
wi. It is not difficult to check that for discontinuous measures, (3) may
contradict (5), as for instance, for p; = I(t) with A — 0. On the other hand,
in Model II, Q*(t) and thereby non-discrete duels, are defined on [0, 1)
instead of [0,1]. In Radzik (1988b) another model was proposed without
these deficiencies, and we present it below.

Let P;(t) be any accuracy function on [0,1] with 0 < P;(0), Pi(1) < 1,
not necessarily monotone or continuous. It is very natural to require that
the function

e\ de )

(M) Q¥(D) € 1- Q¥(D)
satisfy the following four conditions:

(C1) for any measurable set D C [0,1] and for allt € D and o > 0,

0< Q"9 <1, QD) =1-R();
(C2) for any measurable set D C [0,1] and for allt € D and o, 8 > 0,
QEP1O(D) = @' (D) - Q" (D) ;

(C3) for any measure p on [0,1] and for all nonempty measurable sets

D co,1],

e 50l(t) < O* < Aal(t)
inf Q; (D) LQi(D) < ngQz (D),

where a = p(D);
(C4) for any sequence {Dy,} of disjoint measurable subsets of [0,1], and
for any measure p on [0,1],

Q:‘(U Dp) = HQi‘(Dm) .

Notice that in fact, conditions (C1) and (C4) are a repetition of assump-
tions (B1) and (B3) from the introduction. The remaining two are new.
These four conditions have a very natural interpretation. Now we present
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the main result related to them that gives a rigorous answer about the pos-
sible form of the function Q#(t).

THEOREM 3.1. For any measurable accuracy function Pi(t) on [0,1], condi-
tions (C1)-(C4) uniquely determine the function Q*(t) in the form

(8) QU(t)=1-exp ( /[0 t]

)

log[1 — B(u)]rhz(u)) ; 0<t<1,

for all measures p on [0,1]. (Here, by definition: exp(—oo) =0, log0 =
—00, 0:(-~00)=0.)

PROOF. In view of (7), to show (8) it suffices to verify that conditions
(C1)-(C4) are equivalent to the following: for all measures x on [0,1] and
for all measurable sets D C [0, 1],

9) (D) = exp ( [ 10gl1 - R(wlduw) )

Namely, it is not difficult to check that (C1) and (C2) imply (9) for all
measures of the form p = aI(t) with o > 0, 0 < ¢ < 1. After this, we can
show by the definition of Lebesgue integral that conditions (C3) and (C4)
are sufficient for (9) to hold for all measures. The converse implication is
immediate. -

REMARK 3.1. If P;(t) is monotone, Theorem 3.1 holds after replacing mea-
surable sets D and D, in (C1)-(C4) by intervals.

This ends our construction of Model III, since we have shown that formula
(5), extended to the set of all measures, is the unique solution determined
by conditions (C1)-(C4). This fact is an immediate consequence of (8), (7)
and (6).

4. RECENT GENERAL RESULTS

In this section we present some recent general results about discrete and
non-discrete duels. They are fundamental in our discussion about open
problems related to general theory of games of timing (in Sect. 5), where
also some hypothesis about them are made. Here we present four results,
two for discrete and two for other types of duels.

4.1. A basic system for T'yn(k,l). Here we present the results of Radzik
(1991), where the noisy discrete duel I'y,,(k,!) was solved, with k,I > 1 and
with continuous nondecreasing accuracy functions, satisfying
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That paper generalizes earlier results of Blackwell & Girshick (1954) and
Fox & Kimeldorf (1969). The first of these papers treats the problem under
P;(t) = t, while the second solved it under P;(0) = 0 and P;(1) = 1 for
1=1,2.

At first, introduce the notation of the modified noisy duel I's,(k,1) to
describe the noisy duel I'p,(k,!) played on the time interval [a,1] instead
of [0,1]. Now, it is not difficult to see that the solution of Iy, (k,!) under
(10), can be easily concluded from the solution of some modified noisy duel
I'¢. (k,l) with some 0 < a < 1, where (10) is replaced by

(11) P‘l(O) =0, -Pz(l) <1, i1=1,2.

As it will appear, this way of studying of noisy discrete duels is more con-
venient, so we fix (11) as our assumption instead of (10). The solution of
duel T'%, (k,!) will be presented in two stages, with & = 0 and next, with a
general 0 < a < 1. At first, we must introduce the following constant

ts=max{t:0<t<1 and (Pi(t) =0 or Py(t) =0)},

which is very essential for duels 'S, (k,I). This is seen in the context of
the next theorem which determines some constants v;; and t;;, basic for

Ton(k, ).

THEOREM 4.1. Under (11), there exist a set {t;;} of numbers from [t.,1]
and a unique set {vi;}, 3,5 =0,1,..., such that

tio=1toj =1 and vy =0, 1,5 2 1,

vij = Pl(tij) + [1 - Pl(tij)]'vi—l,j, 1>1,57 >0,

vij = —Py(ti5) + [1 — Pa(tij)]vij—1, 20,5 >1.
Furthermore, for 1,5 > 1 we always have

£ < min(ti_l,j,ti,j_l) if min(ti—l,j,ti,j—l) > iy,
) = min(ti_l,j,t,-,j_l) if min(ti_l,j,t,-,j_l) =1,.

REMARK 4.1. The above theorem generalizes and slightly corrects a corol-
lary of Fox & Kimeldorf (1969). The solutions ¢;; are basic in construct-
ing optimal strategies in I'2,(i,5). We shall show later that the equality
t;j = min(¢;_; j,t; j—1) can occur even in non-trivial cases. Just this possi-
bility was overlooked in that paper.

4.2. Optimal strategies in 0, (i,5). Let {v;;} and {¢;;} be any solution of
Theorem 4.1. We shall define two sets {{;;} and {#;;} , i,5 = 0,1,..., of
e-optimal strategies for Players 1 and 2, respectively, in the games I'%, (i, ).
At first, we define the set {£;;} as follows:

(1) for all 7 > 1, the strategy ;o prescribes Player 1 to take all his ¢ actions
at time ¢ = 1 with probability 1;
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(2) for i > 1 and j > 1, the strategy £;; has the following structure: At the
beginning, if ¢;; = t«, Player 1 should take s of his actions with probability
1 at moment t., where s = max(r : t;_r; = t«), and next, apply §;s,; in the
time interval (t,,1]. If t;; > t., &; consists of the following steps;

(a) Player 1 chooses t in any time interval (;;,t;; + 7i;) according to the
uniform distribution such that 0 < 73; < min(¢;—1,%ij—1) — tij;

(b) if Player 2 has taken s his actions at a moment ¢; < ¢, Player 1 changes
&ij for & j—s in (81,1);

(c) if Player 2 has not taken any of his actions before time £, Player 1
should take one of his actions at this moment, and next apply &;,_1 ; in (¢, 1].
In the analogous way, the strategies 7;; of Player 2 are defined.

Now, we can formulate the main theorem on the games I'%, (3, j).

THEOREM 4.2. Let € > 0,4 > 0 and j > 0. Then, under (11), the game
I'%,.(i,7) has the value v;j, and for sufficiently small 7,5 for r < i and s < j,
&ij and n;; are e-optimal strategies for Players 1 and 2, respectively, in this
game.

EXAMPLE 4.1. Consider the games I', (i, j), 45 > 1, where accuracy func-
tions are of the following form:

2t f 0<t<1/4 0 if 0<t<1/4
P(t)=< 1/2 if 1/4<t<1/2 P(t) = 2t—-1/2 if 1/4<t<1/2
t if 1/2<t<1, t if 1/2<t<1.

Here t, = 1/4, and by Theorem 4.1, we can easily get:

ta =1/44+1/241 i>1,
tij = ta, . 1>21,5>1,
v=1-1/271, i>1j>1

According to a corollary in Fox & Kimeldorf (1969), the strict inequalities,
tij < min(¢;_yj,t; ;1) for all 4,5 > 1, should hold. But our example con-
tradicts that. On the other hand, it is a very surprising fact that the values
v;j of duels . (3,7), ij > 1, do not depend on the number j of actions of
Player 2.

4.3. Optimal strategies in I'S,(k,1). Here, for fixed 0 <a <1, k,l > 1, and
for all 0 <4 < k and 0 < j < [, we construct some strategies (¢ and n; for
Players 1 and 2, respectively, in the game I3, (k,!). Namely, strategy ¢ has
the following structure:

(1) At first, Player 1 should take 3 of his actions at the starting moment
t = a, and next (if Player 2 has taken s of his actions at a),

(a.]) (if tx—i1—s > a) Player 1 acts according to &x—; ;s in the time interval
(a,1];
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(b) (if tx—iy—s < a) Player 1 chooses a moment ¢ in the time interval
(a,a+ 7) according to the uniform distribution and takes r of his actions at
this moment, where

r=min{u > 0:tg_j_yj_s—p >t}
and p is the number of Player 2’s actions taken by him in the open interval
(a,t). Next, Player 1 adopts &x—i—r1—s—p as his strategy in (¢, 1].
In the analogous way, for all 0 < j <, the strategies 7} for Player 2 in the
game I'%. (k,l) are defined.
To formulate our main theorem in this subsection, we need the successive
notation. For any probability vector (A,1 — A) and for two strategies £; and

&; of a player, A{; + (1 — A)€; denotes such his strategy which prescribes him
to adopt & with probability A and &; with probability 1 — A.

THEOREM 4.3. Lete >0, k > 0 and ! > 0 with (k,l) # (0,0) and0 < a < 1.
Then, under (11), the game T'%, (k,l) has a value and there ezist 0 < p <k,
0<qg<l, 0<A<1and0 < v <1 such that for sufficiently small
parameters 7;; and 7, the strategies

=2 +(1-NE  and 0" =5+ (1 - 7)ng41,

are e-optimal for Players 1 and 2, respectively, in the game IS, (k,1).
For p and q, the inequality: tx_p1_q > a holds.

REMARK 4.2. In Radzik (1991),a procedure is found which allows to find
the values of parameters p, ¢, A and +, basic for the last theorem. To this
end, a special theory of equilibria in constrained matrices was constructed
there.

EXAMPLE 4.2. Consider the duel I'%3(3,1) for which P;(t) = P(t) = t. By
Theorem 4.1, we easily get

1 (i-1)

t' —_ e— ] o= —

PG+ T G+

Since ¢33 = 1/4 < 0.3, the games I'%3(3,1) and I'%,(3,1) are different. By

the procedure related to Theorem 4.3, one can find the e-optimal strategies

£* = 0.500£93 + 0.500£9- and 7* = 0.733n3 + 0.26779-3 for Players 1 and
2, respectively. The value of our game I'%:3(3, 1) is equal to 0.5215.

for i>0, and tpop=1,vp=1 for i > 1.

4.4. General silent discrete duel. Here we present the result of Ciegielski
(1986b) (generalizing slightly the famous paper of Restrepo (1957)), where
the silent discrete duel I';4(k,!) was solved under (11), with k,I > 1. (Un-
fortunately, the solution under (10) is still not known.) We begin with some
notation and definition.

Denote the mixed strategies of Players 1 and 2 in the duel I'y4(k,!) by F
and G, respectively. So F and G are probability distributions over the sets
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X and Y of the form
(12) X={ze[0,1]f:0<z; <22 <... <3 < 1},

(13) Y={g€[0,1]':0<y <y <... <y <1}

DEFINITION 4.1. We say that the strategy F' belongs to the class Fy if:
(i) F(z) = HLI F;(z;), where F; is a probability distribution of z;;
(ii) there are some 0 < a1 < a2 <...<ag<qgy1 =qgy2 =...= Q41 =
1 for some q,1 < q < k, such that suppF; = [ai,ai+1] fori=1,2... ,k;
(i11) all F; are absolutely continuous on (0,1).
In a similar way, we define the class G with 1,Gj,b; and r instead of k, F;, a;
and g, respectively.

So, for instance, a mixed strategy F' from the class Fj, prescribes Player 1
to behave as follows. He should take his q first actions (for some ¢) indepen-
dently, in a continuous way in the intervals (a1, a3),... ,(aq, 1), respectively,
with the possible positive probability at ¢ = 1 for the last action in this
group. The rest of his actions Player 1 should take at ¢t = 1 with probability
1.

THEOREM 4.4. Assume that (11) holds. Then for any k,l > 1 the silent
discrete duel T's5(k,l) has a value, and there are optimal mized strategies
F € Fi, and G € G for the players in this game such that a; = by and Fy, or
G is continuous at t = 1.

REMARK 4.3. It follows from the above theorem that in some duels I'y4(k, 1)
with (11), the optimal strategy for one of the players may be such that
more than one action is concentrated at the point ¢ = 1. This is con-
trary to the result of Restrepo (1957) because of the stronger assumption
P;(1) = Py(1) = 1 considered there. On the other hand, one can expect that
under (10), it may happen that an optimal strategy of a player in I'y4(k, 1)
prescribes him to take some of his actions also at moment ¢ = 0.

4.5. General silent non-discrete duels. The most general result in this topic
was achieved in Radzik (1988a). It studies the duel F,S(Ml, M2) under very
weak restrictions. Namely, it is assumed on the accuracy functions P;(t)
that they are absolutely continuous and strictly increasing on [0,1], and are
restricted only by condition (10). On the other hand, both the players in this
game are allowed to distribute their divisible resources quite in an arbitrary
way over the time interval [0,1]. To present that result, we must begin with
some notation and definitions.

For fixed M;, Mz > 0 (quantities of the players’ resources), let M} de-
note the set of all measures p; on [0,1] satisfying p;([0,1]) < M;, i = 1,2.
Therefore, the normal form of the considered silent non-discrete duel is

(14) Tys(My, My) = < M} M3 K >,
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where K is the payoff kernel defined by (8) and (2).

Further, for any o, > 0 and 0 < a < 1, let (aly , f% BI1) denote the
measure on [0, 1] described by two masses o and 8 concentrated at points
0 and 1, respectively, and by its continuous part on the subinterval (a,1)
determined by density function f°.

Now we are ready to formulate the result of Radzik(1988a).

THEOREM 4.5. Assume that (10) holds. Then the silent non-discrete duel
['ss(My, My) of the form (14) has a value, and both players have optimal pure
strategies p; € M} and p3 € M3 of the form p; = (aily , 2, Bil1), 1 = 1,2,
with the exception that Player 1 or 2 has only e-optimal strategy of that form
when [Pi(1) = 1, P2(1) < 1] or [Pi(1) < 1, Py(1) = 1], respectively. The
parameters (1 and By satisfy: f1B2 = 0.

REMARK 4.4. In Radzik(1988a) a complete characterization of optimal stra-
tegies is given, and it is presented in 18 cases in a similar way to that of given
in Karlin(1959) for games of timing of class II on the unit square. For one of
these cases, P;(0) =0, P;(1) =1fori=1,2, weget a; =f; =0fori=1,2,
which coincides with the result of Lang & Kimeldorf(1976).

4.6. General silent mized duels. Here we present the last result. It concerns
the duel F,,(I,M2) with one indivisible action for Player 1 and divisible
resources of amount M, for Player 2. In Radzik (1988b) that game was
completely solved. We preserve all the notation and assumptions made in
the previous subsection. So the normal form of our duel is

(15) Ty(1, M) = < [0,1], M} ,K >,

where the payoff kernel K is defined by K(t, u2) = K(I(t), p2), and next,by
(8) and (2).

THEOREM 4.6. Assume (10) holds. Then the silent mized duel T'55(1, M3)
of the form (15) has a value. Player 1 has an optimal mized strategy p}
(a probability measure on [0,1]) and Player 2 has an optimal pure strategy
s € Mj of the form pf = (oslo , f2,B:iIh), @ = 1,2, with the ezception
that Player 2 has only e-optimal strategy of that form when Py(1) = 1. The
parameters [y and Po satisfy: (162 = 0.

REMARK 4.5. In Radzik(1988b) a complete characterization of optimal stra-
tegies is given, and the problem of their uniqueness is discussed.

5. OPEN PROBLEMS AND HYPOTHESIS IN THE GENERAL THEORY

The theory of games of timing is still lacking a coherent theory involving
rather a rich set of different, more or less detailed models of duels studied



286 T. Radzik

in the literature. In this section we discuss some open problems related to
such a theory.

In connection with the results presented in the previous section, some
questions about the possibility of their further generalization arise. Namely,
it is natural to ask in case of those four theorems how wide is the class of
games of timing, for which the type of optimal strategies for the players found
there still remains valid. It seems that those results are sufficiently general
and rich to make some real hypothesis that could be seen a multi-dimensional
extension of Glicksberg and Karlin’s theorems on games of timing of classes
I and II on the unit square (chapts 5 and 6 in Karlin (1959)).

At the beginning, we must introduce some notation and definitions. For
fixed natural k£ and [, let the sets X and Y be of the form (12) and (13).
Further, for 1 = 1,2,... ;k and j = 1,2,...,1, let Q;(¢), Ri(t), Si(t) and
T;(t) be functions defined on [0, 1] with S;(¢), Ti(¢) > 0.

For Z € X and § € Y with z; # y; for all 4,5, let Z = (21,22,... , Zk41)
denotes the vector whose components are z1,z3,... ,zx and y1,¥2,... , %1 ,
rearranged in increasing order. Now, let

| Qi(zi) if zy=ugz _f Si(zi) if zu=u;
’l"(Zu) = { Rj(?/j) Zf 2y = Uj S(zu) - { T’i(yj) 1,f Zy = Yj

Finally, 4(Z) is defined recursively as follows:

1/}(21’ 22y . ,Zu) = ’I'(Zl) + 8(21)’(/)(22, oo ,zu),
P(z2,-.. ,24) =1(22) + 8(22)9¥(23,. .. , 24),

..............................

Y(2) = r(24),

foru=1,2,..., m+n.
Now, let us define a basic game ['* = < X, Y, K >, with the payoff kernel
K = K (Z,7) satisfying the following three assumptions (D1)-(D3):

(D1) For any z € X and § € Y with z; # y; for all i and j, K(Z,9) =
¥(Zk41), where

(a) fori=1,2,... ,kandj =1,2,...,1, the functions Q;(t), R;(t), Si(t)
and Tj(t) are continuous on [0,1], and S;(t) and T;(t) are nonnegative;

(b) for u = 1,2,... ,k + 1 the functions ¥(z1,22,... ,2y) are strictly in-
creasing or strictly decreasing in variable z; in the interval (2;—1,2i4+1) if
2 = x¢ or z; = y; for some t, respectively, i =1,2,... ,u;

(D2) foranyz €e X and yeY withzy =... =z, =0andy, = ... =
yu = 0, there hold the inequalities:

(16) K(z,7) > lin3+ K(z,9) > K(z,9) >
Tg—

lim
(Zs—1,25)—(0F,0%)

D lim K(z,9),
- (21)127"'1za)—'(0+)0+1"-a0+) ($ y)
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17) K(z,y) < lim K(z,9) < lim K(z,9) <
(17) K(z,9) oS (Z,9) R, oA (z,9)
.. < li K(z,9);

- (yl)y2y---yyu)_l’r?d+ao+f°"’0+) (x y)
(D3) foranyz € X and e Y withz, =...=zr=landyp = ... =
y1 = 1, there hold the inequalities:
(18) K(z,9) < lim K(z,7) < i K(z,§) <
Ta—1— (za;Ta41)—(17,17)

. < lim K(Z,7),

- (zasza-}-l’---,zk)_’(l_ 11—1-"11—)

19 K@5)> lm K@g)> lm K@) >
yb_’l— (yb,yb-}-l)-"(l—;l_)
2 lim K(z,9).

zZ 1
(yb1yb+1s"-syl)""(1- ,1_,...,1-)

In spite of the fact that the payoff kernel of the our basic game I'* does
not have the most general form (it is of a recursive form), almost all the
models of discrete duels studied in the literature, have their basic games as
detailed subcases of I'*. On the other hand, assumptions (D1)-(D3) can be
seen as only a slightly simplified version of multi-dimensional generalization
of assumptions (a)-(c) from Sect. 5.2 of Karlin (1959)), given for games of
timing of class II on the unit square (after adding the differentiability of
Qi(t), R;j(t), Si(t) and Tj(t)). So, these two arguments sufficiently motivate
the importance of game I'* defined above.

Now, we are ready to present the first two problems that generalize all
the studied (hitherto) models of discrete duels with more than 1 action for
each player. Namely, at first, consider the general game of timing I} (k,1)
with I'* as its basic game. The results of paper Radzik (1991)), cited in the
previous section, strongly suggest the validity of the following conjecture.

CONJECTURE 5.1. Under assumptions (D1)-(D38), the noisy discrete game
of timing I}, (k,1) has a value, and there are e—optimal strategies for the
players in this game that are of the form constructed in Theorem 4.3.

The second conjecture concerns the game of timing I'},(k,!) with ['* as its
basic game. It can be expected by the results of the papers Restrepo (1957)
and Ciegielski (1986b), that optimal strategies for the players will be of the
form slightly extended in comparison to that of found there. To describe it,
we need some new notation.

Denote the mixed strategies of Players 1 and 2 in I'},(k,!) by F and G,
respectively.

DEFINITION 5.1. We say that the strategy F' belongs to the class F if:
(i) F(z) = ]—[Ll F;(z;), where F; is a probability distribution of z;;
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(ii) there are some p,0 < p<kand 0<a; < a3 <...<ag < Qg1 =
Gg+2 = ... = ag_py1 =1 for some q,1 < ¢ < k—p+1, such that
(1) suppF; = {0} fori=12,...,p,
(2) suppFpq1 2 [a1,02] and suppFpy; C {0} U [a1,a2),
(3) suppr+j = [a'ja aj+1]aj =2,3,...,k—p;
(iii) all F; are absolutely continuous on (0,1).
In a similar way, we define the class G with l,r,s and b;s instead of k,p,q
and a;}s, respectively.

So, any mixed strategy F from the class F; prescribes Player 1 to behave
in the following way. Some number p of his first actions should be taken at
moment ¢ = 0 with probability 1. His (p+ 1)-th action should be taken with
some probability at ¢ = 0 while with the rest probability in the time interval
[@1,a2] in a continuous way. Next, Player 1 takes ¢ — 1 (for some ¢) his suc-
cessive actions continuously in intervals [as,as3),... ,[aq, ag+1], respectively,
with the possible jump at ¢ = 1 for the last action in this group. The rest
of his actions Player 1 should take at ¢t = 1 with probability 1.

CONJECTURE 5.2. Assume that (D1)-(D3) are satisfied and additionally,
let all the functions Q;(t), Ri(t), Si(t) and T;(t) be absolutely continuous.
Then, the silent discrete game of timing I's,(k,l) has a value, and there are
optimal mized strategies F € F;; and G € G| for the players in this game
such that a; = by and F or G is continuous at t = 1.

The third conjecture concerns a generalization of silent non-discrete games
of timing of type I';s(M;, M;) and is strongly suggested by the result of
Theorem 4.5. To express it rigorously, we must introduce the next definition.

DEFINITION 5.2. Let F(u) be a function defined on a set measures p on
[0,1], and let S be a subinterval of [0,1]. The function F is said to be be
S-increasing (S-decreasing) if for all measures p and for every increasing
function f : [0,1] — [0,1] such that f : S — S,f(z) > z forz € S, and
f@) =z forz ¢ 8,

F(u) > F(pf™) (F(p) < F(pf™)),
if only p# pf=t. :

_Now, for fixed My, Mz > 0, let us consider a new basic game ™ =<
My, Mz, K >, where, for i = 1,2, M; is the set of all measures wi with
©([0,1]) £ M;, and the payoff kernel K = K(u1, u2) satisfies the following
five assumptions (E1)-(E5):

(E1) for any two measures py € My and py € My having no common
discontinuity points in [0,1], the functions K( - ,p2) and K(uy, - ) are
continuous at the points py and pg, respectively (in the topology of weak
convergence);
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(E2) Let v > 0, p2 € My and v,vym € My with v + vy € M, for
m=12,.... Then
limp, 00 K(v + v, IJ'2) < K(V + 1o, p2) as vy — 71,
limy, o0 K(V + v, p2) > K(v + 714, p2) as vy — vh;
(E3) Let v > 0, p1 € M and v,vy € My with v + vy € M, for
m=1,2,.... Then
limy; 00 K(ﬂ‘lyy + Vm) 2> K(”’l,l’ +7I0) as Vm — ’YIO’
im0 K(p1,V + vm) < K(p1,v +vI1) as vy — vl;

(E4) for any py € M, and py € Ma, and for all [a,b] C [0,1] \ suppps
and [c,d] C [0,1] \ suppu1, the functions K( - ,pz) and K(p1, - ) are [a,b]-
increasing and [c, d]-decreasing, respectively;

(E5) the payoff kernel K(p1,p2) is concave in p1 and convez in pa.

All the assumptions (E1)-(E5) proposed above are satisfied by the silent
non-discrete duel I‘s,,(M 1 Mz) considered in Theorem 4.5 under P;(1) < 1 for
i = 1,2, and they are essential there. On the other hand, these assumptions
can be seen as a counterpart of the assumptions made for games of timing
of class II in Sect. 5.2 in Karlin (1959). Therefore, one can expect that the
result of that theorem will also be true under more general assumptions.

CONJECTURE 5.3. Assume that [ = < My, My, K > satisfies (E1)-(E5)
and is the basic game of a silent non-discrete game of timing T'*,(My, My).
Then F:s(Ml,Mg) has a value, and there are pure optimal strategies pi for
Player 1 and pj for Player 2 of the form pf = (il , f#,Bi1), 1 = 1,2, in
this game. The parameters 31 and B3 satisfy: (162 = 0.

The last conjecture concerns silent mixed games of type I';s(1, M3), and
is suggested by Theorem 4.6 under P»(1) < 1. It is quite analogous to
Conjecture 3. We preserve all the notation introduced before.

For a fixed M, > 0, consider a new basic game I'* = < [0,1], Ma, K >,
where M, is the set of all measures pg with p3([0,1]) < My, and the payoff
kernel K = K(z, p7) satisfies the following assumptions (F1)-(F5):

(F1) for any = € [0,1] and measure uy € My continuous at z, the func-
tions K( - ,u2) and K(z, - ) are continuous at point  and measure ps,
respectively;

(F2) For all py € /\:(2
lim;_, o+ K(:L‘, /‘2) < K(O, /‘2)’
hm:t—» 1- K(z,ﬂz) 2 K(IHUQ);
(F3) Let v > 0 and v,vy, € My with v+ vy € My form = 1,2,....
Then
lim,, 00 K(0,v + vy) > K(0,v + 1), as vy — vlp,
limy 00 K(1,v + vm) < K(1,v + 1), as vm — vl;
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(F4) for any measure pg € My the function K( -, pu3) is strictly increasing
in any subinterval of [0,1] disjoint with supppus;
for any 0 < t < 1, the function K(t, - ) is [0,t) and (t,1]-decreasing;

(F5) the payoff kernel K(t, u2) is convez in ps.

CONJECTURE 5.4. Assume that T* = < [0,1], Ma, K > satisfies (F1)-(F5)
and is the basic game of a silent mized game of timing f‘;s(l,Mz). Then
I=(1, Mz) has a value, and there is a mized optimal strategy u; for Player 1
and a pure optimal strategy p} for Player 2 of the form p; = (oslo , f{, Bil1),
1= 1,2, in this game. The parameters $1 and [ satisfy: B1B2 = 0.
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