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COMPARATIVE PROBABILITY AND ROBUSTNESS1

BY GlULIANA REGOLI

Universitά di Perugia

In this paper we propose the comparative approach as a natural ap-
proach in a probability elicitation process and we show that Bayesian
robustness analysis is the way to quantify comparative probabilities.
Special cases of comparative probability assessments, derived from Sav-
age's almost-uniform partitions, are considered.

1. Introduction. In a probability elicitation process, comparative prob-
ability judgments seem to be particularly natural and close to common lan-
guage and mental categories. Therefore such judgments seem more reliable
than numerical ones, typically either when the experts of the field under
consideration are unaware of statistics or probability theory, or when the
considered problem is new. Imagine, for example, to ask a physician about
the transmission rate of Ebola virus. Depending on his/her knowledge of
the epidemic, he/she can easily and firmly state some comparisons among
the probabilities of possible values (or interval of values) of the rate, while
numerical judgments could be nearly impossible.

The classical comparative probability theory essentially deals with two
problems: 1) Are the assessments compatible with a probability measure? 2)
If this is the case, are they so detailed that they can single out a probability
measure without ambiguity? and which one?

When thinking about applications, the unrealistic traditional axiom of
completeness in comparative judgments has to be abandoned. The conse-
quent unicity of the numerical representation fails and a new problem arises:
are the comparative assessments enough to grant a sufficiently accurate an-
swer to a given problem? Following the "Doogian" point of view (see Good
1950 and following), Giron and Rios (1980) seem to be the first who explicitly
propose to carry out a Bayesian analysis with the whole family of probabil-
ities compatible with a set of comparisons and join the Robust Bayesian
point of view with Comparative Probability.

In this paper, we will see that the family of probabilities representing a
set of comparisons turns out to be a particular moment class, namely the
convex closure of a set of quantile classes. Therefore it can be treated with
all the facilities tuned up for this (see Moreno and Cano 1991, Berger 1994).
Here a direct treatment of a robust analysis is suggested and then used to
examine some special cases: the n-almost uniform partitions. These are re-
alistic and quite natural to assess. Furthermore, it is shown that they are
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computationally cheaper than the general case and they can give a quite

accurate analysis.

2. Preliminaries and notation. Let T be a σ-algebra of subsets of
a set Θ and Pr(Q) the set of all probability measures on T. A comparative
probability on T is a finite or infinite list, C, of comparisons among events,
equivalently it is a partial binary relation on T. For every (2?, A) £ C
we denote by B < A the assertion that "B is not more probable than A".
A comparative probability is said to be consistent on T if there exists a
probability measure P on T such that

B < A => P(E) < P(A).

In such a case we say that P represents (or is compatible with) C.

Starting from de Finetti (1931) and Savage (1954), the traditional lit-

erature on this field gives different conditions for a comparative probability

to be representable by a finitely additive probability. Villegas' continuity

condition makes the probability σ-additive (for reviews see Fishburn, 1986,

and Regoli, 1994). We will use the condition given by Buehler (1976):

PROPOSITION: A set of comparisons, C = {Bj •< Aj,j £ «/}, is not

representable by any finitely additive probability measure if and only if there

exist in C a finite set of comparisons, {Bj X Aj, j £ F}, F C J, and y £ ΊZF,

y > 0, such that

(1) sup

where I A denotes the indicator of the event A.

When C is finite, the corresponding events Bj,Aj (j £ J ) generate a

finite algebra Ac- If C is consistent on Ac, then it is clear that a σ-additive

extension of P to T φ Ac exists but need not be unique. Therefore the

problem of robustness arises naturally.

In the next section, we will determine the range of a posterior expec-

tation of a given function, using the following Lemma which is essentially

known (see for instance Berger 1985, Sivaganesan and Berger 1989).

LEMMA 1 Let φ be defined by

( Θ k[lldf[θ2 * with h and k bounded, k > 0.
JΘ k(θ)dP(θ)
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Let P be α mixture of α family of probability measures, {Pt, t G T}, for
some set T. Then ψ(P) is a mixture of φ(Pt), and vice versa.

PROOF: Let P be given by:

(2) P(A) = ί Pt(A)dμ(t) \JA 6 T.
JT

First note that if

ζ(P) = ί k(θ)dP(θ),
JΘ

then the function |Wf is positive and T-measurable, with fτ Qpldμ(t) = 1.

If v is defined by

then v is a probability measure on T and verifies

(3) Ψ(P) - / Φ{Pt)dv{t).

Vice versa, given z/, define a probability measure, μ, by setting

μ(S) = fs l/ξ(Pt)

3. The comparative class. In this section we consider the general
case of a finite comparative probability: we describe the whole family of
compatible probability measures, which is called comparative class, and we
determine the range of given posterior quantities of interest.

For a finite set of comparisons C — {Bj ^ Aj,j = 1,2,...JV}, where
Bj,Aj G T, the family, Γ, of probability measures representing C is given by

Γ = {P G Pr(θ), P(Bj) < P(Aj), j = 1,2,..JV}.

Let {Ci,C2, ...Cn}, be the partition generated by {Aj,Bj,j — 1,...7V}.

Then P G Γ if and only if

Let 5 C TZn be the set of non negative normalized solutions to the system

Pi' Σ Pi>0,j = l,2,...N
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Then Γ = {P G Pr(Θ), P(d) = pu ( P ί , i = 1,2,..., n) G 5}.

If Δ = {Qα,Q 2, ...Qm} denotes the finite set of the extreme points of

S, and T = Π?=i Ci, then P G Γ if and only if there exist μ G Pr(T) and

6j > 0, with Σ!j=i bj = 1? s u c h t t ι a t for every 4 E F

(5)
772 - Π

where Q J = (gj, ...g^) G Δ, (j — 1,2, ...m), ίt G C t and where ^ denotes the
probability measure degenerate at t.

Obviously, the system above does not have any solution if and only if C

is not representable by any probability measure.

Now, let / be the likelihood function which we assume bounded for the
given data. Suppose the quantity of interest, ψ, is the posterior expectation
of a bounded function, /ι, that is

,(Pλ f&h(θ)f(θ)dP(θ)

Lemma 1 and (5) yield

3=1

where v is defined as in the proof of Lemma 1 and the α/s are defined
in a similar way, being P a convex combination of probability measures.
Therefore the next Theorem holds.

THEOREM 1 IfT is a comparative class, the supremum ofψ(P), as P ranges
over T, is given by

sup{V>(P)} = sup

An analogous formula holds for the infimum.

REMARK 1. In the general case, the computation of Δ is not polino-
mial (e.g. Chvatal, 1983 and Dyer, 1983). In some special cases, simplified
algorithms or particular kinds of assessments can play a key role to reduce
the complexity, as we shall see in the next section. Once computed, Δ can
be used without loosing any information on Γ, at least in many kind of
problems, such as sequential updating or comparison of different (posterior)
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expected values.

REMARK 2. When C is directly elicited and its cardinality is reasonably
small, an alternative way to deal with Γ is via Generalized Moment Theory
(Kemperman 1987, Salinetti 1994, Liseo, Moreno and Salinetti 1995): this
allows to avoid the computation of Δ. In fact, rewriting Γ as

Γ = {P e Pr(Θ), j {IBj(θ) - IA}{θ)}dP{θ) <0,j = 1 , 2 , ...N},
J 0

the infimum of φ(P), as P ranges over Γ, is given by the solution in λ of the
equation

sup
dj>0, j=l,2,..JV

- λ)f(θ) -Σd3{IB3{θ) - IA3{Θ))}\ = 0.

An analogous expression gives the supremum of φ(P).

REMARK 3. It is possible to join C with some quantitative judgments
of the kind P(A) < &i or P(D{) > α;, i = 1,...M, just by using these
constraints to define Γ and including them either in system (4), which has
to be written down considering the related partition of Θ, or in the equation
of Remark 2.

4. Almost uniform partitions. This section is devoted to almost
uniform partitions which are a special kind of comparative assessment; we
will see how the analysis of the previous section can be conveniently used in
this case.

The concept of almost uniform partition has been introduced by Sav-
age (1954), as a technical tool to deduce an "unambiguous assignment of
a numerical probability" from a comparative probability, avoiding the de
Finetti's postulate of uniform partitions (i.e. there exist partitions of Θ in
arbitrary many equivalent events). The idea of uniform partition is easy to
understand, but only very rarely can be applied to real problems. This idea
can be replaced by the more ductile and realistic idea of almost uniform
partition. Following Savage, a partition of Θ, {C2 ,i = l,...n}, is said an
n-αlmost uniform partition (n-a.u. partition, for short) if

r r+1

(6) U CH 1 U C*;> Vr < n; V*,-,*,- € {l,...n}.
3=1 3=1

EXAMPLE 1. Even if I am not convinced that the coin in my wallet is
totally fair, I can claim that, for a quite great particular n, all sequences of
heads and tails of length n form a 2n-almost uniform partition.
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EXAMPLE 2. Suppose that several experts have similar, yet different
opinions about the shape of the prior density on Θ. Nevertheless they may
find a common almost uniform partition, for example by selecting an uniform
partition from one of the elicited densities. Since the comparative approach
does not require the choice between discrete and continuous models, this
solution can be accepted also by those experts who prefer a discrete model.

In fact, under some algebraic conditions, including completeness, either

de Finetti's or Savage's postulate implies the existence of a unique finitely

additive probability representing a comparative probability.

We can add that, if Cα, a £ J, is a net of comparative probabilities, such
that C = \JaCa verifies the de Finetti's or Savage's postulate, the net of the
corresponding families, ΓΛ, converges to the unique P which represents C.
Moreover if / = N, and Ca contains an α-uniform or an α-almost uniform
partition, for every a G /, then it can be shown that the imprecision of Ca

converges to 0, where imprecision of C -or of Γ- is defined as

I(Γ) = sup ( s u p P ( A ) - iπf P ( A ) 1 .
AeΛc {Per Per J

This encourages the use of partial -rather than complete- judgments in

an actual elicitation process, but the problem of the consistency of C arises

again.

For this reason, we will consider only a.u.partitions which are proper,

where we say that a partition, {C2 ,i = 1, ...n}, is proper in C, if C does not

contain any comparison of the following type:

Actually, proper partitions are always consistent, as the following The-

orem proves, while if an a.u. partition is not proper, its consistency has to

be directly checked. Of course, if C is non-contradictory, a proper n-a.u.

partition is representable by means of every probability measure for which

P(d) = 1/n, for all ί.

THEOREM 2 Given an arbitrary set of comparisons C, if it contains a proper
partition {C{,i = l,...n}, then it is consistent on the algebra generated by
such partition.

PROOF: Suppose that C is not consistent on such algebra. Then, condi-
tion (1) holds. Without loss of generality, we can suppose that yj are natural
numbers and write, for some finite set, F, Bj •< Aj, j G F,
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This is equivalent to

card{J e F : d C A,-} < card{j G F : C, C Bj} Vt = l...n

Therefore, for some j 0 ,

r = card{i : d C A j o} < card{ί : d C Bjo} = s.

Since Ajo and Bjo are logically dependent on {C;,i = 1, ...n}, then

Since r < 5, and the comparison "Bjo < Ajo" is contained in C , then the
given partition is not a proper partition in C. •

Now, we use the same notation as in Section 3, and prove a theorem
which describes the family Γn representing a general almost uniform parti-
tion. To do so, we need a lemma which can also be used to describe the
family Γ£ representing an almost uniform partition with particular addi-
tional comparisons between the C t 's.

LEMMA 2 Let Γ^ be the set of all probabilities compatible with the two as-
sessments that {Ci,C2, .-Cn} is an a.u. partition of Q and that C\ < C2 ^
... •< Cn. Then the set A cTZn of all the extreme points of S is given by

A = {Qf" f '+ 1, 0 < 2% < n - 1, Q j ' n - j , 0 < 2j < n - 1},

where

n-k

"'n(i+l)-k' n(i + 1) - kJ'" n(i + 1) - k

P R O O F : Given the constraints pi < P2 < ...pn, the system derived from

(6) reduces to

n k+1

Pi ^ y^ft'j with 1 < k < n — k
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To complete the proof, the method given by Classens et al. (1991) can be
adapted. O

THEOREM 3 Let Tn be the set of all probabilities compatible with the only
assessment that {Cχ,C2, ...Cn} is an a.u. partition of Θ. Then the set
Δ C 1Zn of all the extreme points of S is given by

A =

where

V{~j) = (q{), with q] = 0, and q\ = l/(n - 1), if i φ j

and

VW = (q{), with qj = 2/(n + 1), and q{ = l/(n + 1), if i φ j .

Therefore

p W ) } = sup (sup
Per u,eCi j=i,...

PROOF: In order to determine Δ, consider the result of Lemma 2 for all
possible orderings on {Ci}. The union of the relative families Γ£'s gives Γn.Π

The next Example shows how the previous results can be applied.

EXAMPLE 3. Given Θ = {^1,̂ 2^3,̂ 4}? suppose we can choose among
three actions, #, h and fc, each of which costs $ 3 and that can bear respec-
tively g = (5,2,4,2); h = (3,2,4,3); k = (2,3,4,3). Asking several experts
in the field, their opinions agree just on assessing that {02 } is an almost uni-
form partition and that #i •< Θ2 ^ #3 ̂  Θ4. Let Γ be the set of probabilities
representing their common opinions, that is the convex envelop of Δ, which
(by Lemma 2) is given by

Δ - j f H ί IV fO I I IVΓ1 i ^ ^ W 1 i i 2U
^ — U 4 M M M / ' V U ' 3 ' 3 ' 3 / ' V 6 ' 6 ' 6 ' 6 / ' V 5 ' 5 ' 5 ' 5 / J

An experiment is performed whose result, y, yields likelihood (3,4,6,5).
It is easy to compute the posterior means w.r. to each of the points of Δ,
and to deduce that k is the best action for each probability in Γ. Moreover
the ranges of posterior means are respectively: r(g) = (2.80,3.16); r(h) =
(3.09,3.28); r(k) = (3.13,3.4). Note that the posterior means of h are always
greater than the cost while those of g can be smaller. If we had replaced Γ
with only the uniform probability distribution instead, we could have chosen
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indifferently action g or k, as, in that case: E(k\y) = E(g\y) = 3.16 versus
E(h\y) = 3.T.

REMARK 4. As already noticed in Remark 1, the direct specific treat-
ment by means of extreme points of a comparative class, could be, in general
too hard, because of the dimension of the problem. In an almost uniform
partition instead, the cardinality of Δ is 2n (respectively n if the comparisons
among the sets of the partition are known as in Lemma 2) and the extreme
points of the family Γ are explicitely computed in Theorem 3. Notice that,
in this case, the cardinality of C is fairly large (see (6)).

REMARK 5. When the elicitation is too rough for a robust conclusion,
any additional comparison (possibly numerical) gives a refinement of the ini-
tial family: of course it is important to look for some kind of new assessment
which robustifies the conclusion and avoids an excessive increase in the di-
mension of the problem. Unfortunately, so far, there is no natural procedure
to refine an n-a.u.partition to an ra-a.u.partition, with n < m. It seems to
be convenient to pick out a Ct and elicit an a.u.partition of it. If the most
probable C% is chosen, after comparing the events of the algebra generated
by the new partition, a much more precise family is obtained and it may
make the original partition "more uniform". On the other hand, it could
be more convenient to choose, each time, the Ct which makes the quantity
of interest more sensitive; in fact, this should increase the robustness more
rapidly.
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