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DUALITY FOR A NON-TOPOLOGICAL VERSION

OF THE MASS TRANSPORTATION PROBLEM

BY VLADIMIR L. LEVIN*

Russian Academy of Sciences

Summary. A duality theorem is proved for a non-topological version of
the mass transportation problem with a given marginal difference. The theorem
describes the cost functions for which the duality relation holds.

1. Introduction. The present paper is concerned with a non-topological
version of the mass transportation problem. Before stating the problem, I will
recall its topological version (Levin (1984,1987,1990a) and Levin and Milyutin
(1979); for the case of compact spaces and continuous cost functions see also
Levin (1974, 1975, 1977, 1978)).

Given a topological space X, a Radon measure p on it with p{X) = 0,
and a cost function c : I x I -^ β 1 U {+oo}, the problem is to minimize the
functional

(μ) := / c(x,y)μ(d(x,y))
JXxXc
IXxX

over all positive Radon measures μ having the given marginal difference /?. In
other words, the optimal value of

Λ(c, p) := inf {c(μ) : μ > 0, τriμ - π2μ = p} (1)

is to be determined, where

(τnμ)(J?) := μ(B X X), (π2μ)(B) := μ(X X B)

for any Borel set B in X.
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Another (in general, non-equivalent) form of the mass transportation
problem is the problem with fixed marginals. It consists in finding the optimal
value

C(c, σi, σ2) := inf{c(μ) : μ > 0, πxμ = σu π2μ = σ2} (2)

for given positive Radon measures, σ\ and σ2, on X with (J\(X) = σ2(X).

Extremal problems (1) and (2) are often referred to as two forms of
the (general) Monge-Kantorovich problem. The classical Monge-Kantorovich
problem, extending the old (1781) "deblais et remblais" problem of Monge,
answers the case when X is a compact metric space and the cost function c is
its metric. The classical version of problem (2) was first posed and examined by
Kantorovich (1942), and the classical version of problem (1) was investigated
later by Kantorovich and Rubinstein (1957, 1958) (see also Kantorovich and
Akilov (1984)). These two forms of the classical Monge-Kantorovich problem
are equivalent in the sense that A(c,σ\ — σ2) = C(c,σ\,σ2) and in problem
(1) there exists an optimal measure μ satisfying π\μ = σi,τr2μ — σ2; see
Kantorovich and Akilov (1984). However, in the general setting, these two
forms of the Monge-Kantorovich problem are not equivalent, and the equality

A(c,σx -σ2) = C(c,σi,σ2)

for all σ\ > 0,σ2 > 0 with σ\X — σ2X holds if and only if c satisfies the
triangle inequality; see Levin (1990a, Theorem 9.2).

Problem (1) in the general case is much more difficult than the corre-
sponding problem (2), so in the sequel I will concentrate on it, i.e., on mass
transportation problems with a fixed marginal difference.

The main result for problem (1) is a duality theorem characterizing cost
functions for which the duality relation A(c,p) = B(c,p) holds for all p G
Vb(X), where B(c,p) stands for the optimal value of the dual problem and
Vo(X) denotes the set of measures p satisfying p(X) = 0.

Before formulating the dual problem and the duality theorem, I will spec-
ify the classes from which the space X and the cost function c are chosen.

A space X is said to be in the class Co if it is homeomorphic to a Baire
subset of some compact space. Clearly, Polish spaces and σ-compact locally
compact spaces belong to CQ. Also it is easily seen that X xY £ Co whenever
X G Co and Y € Co, hence the class £0 is wide enough.

A cost function c is said to belong to the class C if it is bounded below
and if its Lebesgue sublevel sets {(x,y) : c(x,y) < a} (a G R1) can be
represented as results of the application of the A-operation to Baire sets in
X X X. Any Baire function that is bounded below belongs to C.
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A cost function c is said to belong to the class C* if for all x, y with x φ y

a representation

c(x, y) = suv{u(x) - u(y) : u G Q}

holds, where Q is a nonempty set in the space Cb(X) of all bounded continuous

real-valued functions on X. Any continuous metric on X belongs to C*. It

follows from the results of Levin and Milyutin (1979) that if X is compact and

c(#, x) = 0 for all x G l , then c G C* if and only if c is lower semicontinuous

and satisfies the triangle inequality

c(x,y) + c(y,z) > c(x,z) for all x,y,z£X.

The dual problem to (1) consists in finding the value

B(c,ρ) := sup < / u(x)p(dx) : u G Q(c) > ,

where

Q(c) := {u G Cb(X) : u(x) - u(y) < c(x, y) for all x, y G X}

(by definition, B(c,p) = — oo if Q(c) = 0).

Given a cost function c, a reduced cost function c*, connected with it,

can be defined on X x X as follows:

c*(x, y) := min < c(a, y), inf inf {c(x, zΎ) + c(zuz2) + ...

+ c(zn,y) : zu...,zn G X} >.

If c(x, x) = 0 for all x G X, this formula can be rewritten as follows:

c*{x,y) = lim inf{c(x,^i) + c(zuz2) + ... + c(zn,y) : zλ,.. , , 2 n G X } .
n—> o o

The duality theorem for the topological version of the mass transportation

problem can be now formulated as follows:

THEOREM 1.1 (Levin (1987, Theorem 2, 1990a, Theorem 9.4)). Let X G

CQ and c G C. Then the following statements, (A) and (B), are equivalent:

(A) The duality relation A{c,p) = B(c,ρ) holds for all p G Vo(X);

(B) Two conditions, (i?i) and (B2), are satisfied as follows:

(Bι) A(c, p) - limΛΓ^oo A(cΛN, p) for all p G VQ(X), where (cAN)(x, y) :=

min(c(a?,y),JV);
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(B2) either c* G C* (and this is the case when A(c,p) = B(c,p) —

C(c*,p+,pS) > —00 for all p = p+ - />_ G Vb(-X')), or c* is unbounded from

below (and this is the case when A(c,p) — B(c,p) = -00 for all p G VQ{X)).

REMARKS: 1. The fulfillment of the condition (B\) is obvious when c is

bounded above. Also, (#1) may be abandoned provided that c satisfies the

triangle inequality (which implies c — c*) and that there exists a bounded

universally measurable function υ : X —• R1 such that υ(x) — v(y) < c(x,y)

for all x,y G X. Moreover, under these assumptions on c, the equivalence

(A) O (B2) holds even if X and c are chosen from broader classes than Co

and C: X may be homeomorphic to a universally measurable subset in a

compact space while c may be bounded below and universally measurable; see

Theorem 9.2 in Levin (1990a).

2. In general, the assumption (Bι) cannot be omitted even if c is a

nonnegative continuous function X X X —> Λ1. For X = {0,1,2,...} an

example is given in Levin (1990a, p. 147) of such a function c together with

a measure p G Vo(X), for which A(c,p) = +00 and A(c Λ TV, p) — β(c,p) = 0

for aU N > 0.

The duality theorem 1.1 has applications to measure theory and to some

aspects of utility theory in mathematical economics (see Levin (1981, 1983a,

1983b, 1985a, 1986, 1990a). Some stochastic applications of this theorem and

of similar duality theorems for closely related extremal problems may be found

in Rachev (1984) and Levin and Rachev (1989).

The goal of the present paper is to study the duality for an abstract (non-

topological) version of the mass transportation problem. In this version, X is

an arbitrary nonempty set, all measures under consideration are assumed to

be finite linear combinations of Dirac measures, and the Banach space Cb(X)

in the statement of the dual problem is replaced by the linear space R of

all functions u : X —> R1. The main result is a duality theorem asserting the

validity of a duality relation similar to (A).

2. Duality Theorem for a Non-Topological Version of the Mass
Transportation Problem. Let X be an arbitrary nonempty set and let

E(X) denote the linear space Rx of all real-valued functions on X. Equipped

with the product topology, E(X) is a Hausdorff locally convex linear topo-

logical space. The conjugate space E(X)* consists of functions σ : X —> R1

with finite supports suppσ = {x : σ(x) φ 0}. Any such σ will be treated as

a (signed) finite measure on the σ-algebra 2X. This measure is represented

as a linear combination with coefficients σ(x) of Dirac measures at points
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x € suppσ. The pairing between E(X) and E(X)* is given by

{ψ, σ) = / φ(x)σ(dx) =

Let 2?(X)+ (resp. E(X x X)+) denote the convex cone of nonnegative
measures in E(X)* (resp. in E(X x X)*) and let £(X)o stand for the linear
subspace in E(X)* consisting of measures σ with σ(X) = 0.

Given a cost function c : X x X —> l ^ U l + o o } and a measure /> G
£ ( X ) Q , two linear extremal problems are considered. One of them, a version
of the mass transportation problem with a given marginal difference, consists
in finding the optimal value

Λ 0 ( c , p ) : = i n f < / c ( z , y ) μ ( d ( x , y ) ) : μ £ E ( X X X ) + , π x μ - π 2 μ = ρ \ .

The other problem, dual to the first one, is to find the optimal value

B0(c,p) := sup I / u(x)p(dx) : u G Q0(c) > ,

where

Q0(c) :={ue E(X) : u(x) - u(y) < c(x,y) for aU x,y e X}.

Clearly B0(c, p) < Λ0(c, p) for aU p

Together with the original cost function c, the reduced cost function c*
defined by formula (3) will be considered.

THEOREM 2.1 (DUALITY THEOREM), (i) Ifc*(x,y) < +oo for all ϊ , ι / 6 l ,
then either c*(x,y) > —oo for all x,y € X or c*(x,y) = —oo for all xyy G X.
In the first case, Qo(c) is nonempty,

c*(x, y) = sup (u(x) - u(y)) for all x, y G Xwith a : / | / , (4)
ueQo(c)

and
Ao(c,ρ) = B0(c,ρ) > -oo whenever p G E(X)Q. (5)

In the second case, Qo(c) is empty, and

Ao(c,p) = Bo(c,p) = -oo wienever p G

(ii) IfQo(c) — 0 but c* ^ -oo, then there exist x and y in X, x / y, such that
Ao(c,ex - €y) = +oc and Bo(c,ex - ey) = -oo. (Here and below ex denotes
the Dirac measure at x.)
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REMARKS: 1. An optimal measure for the mass transportation problem
need not exist even if QQ{C) is nonempty. For the topological version of the
problem, a very simple counterexample is given in Levin (1974) as follows:
X = [0, l],c(z,y) = (x - y)2, and p = e0 - €χ. The same counterexample
applies to the non-topological version as well.

2. The case (ϋ) actually occurs, which may be illustrated by the following

example (cf. Levin and Milyutin (1979, Remark 2.2)):

ί + o o Ίΐxφy,

- 1 ifx = y .

Clearly QQ(c) = 0 and

{ +oo if x φ y,

-oo if x = y.

The following result supplements the duality theorem.

THEOREM 2.2 Suppose c*(x, y) < -foo for all x , ί / G l . Then the following
statements are equivalent:

(&) Qo(c) ^ nonempty;

(b) c*(α, y) > -oo for all x,y G X;

(c) c*(α, x) > 0 for all x e X;

(d) Σ ^ l c(xi-lixi) > ° for e a C ^ cyCle XQ,Xl,...<,Xn = XQ

In the case when c(#, y) < +00 for all #, y G X and c(#, x) = 0 for all x G

X, this theorem is proved in Levin (1990b, Lemma 2). In the general case the

proof is practically the same. In Levin (1990b) applications of the theorem to

the mass transportation problem with a smooth cost function and to cyclically

monotone operators are given. Applications to dynamic optimization problems

and to mathematical economics will be given elsewhere.

3. Proof of the Duality Theorem. Let c be any function X X X —>
R1 U {+00}.

LEMMA 3.1. B0(c,p) = B0(c*,p) for all p G E(X)Q.

This follows from the obvious equality Qo(c) = ζ?o(c*).

Note that c* may take the value -00, so if for a given μ the integral

c*(μ)= / c*(χ,y)μ(d(χ>y))
JxxX
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makes no sense — that is, \ίc*+(μ) = c*_(μ) = +00 —,then it will be assumed,
that by definition, c*(μ) = +00. With this convention the value Ao(c*,p) is
determined for every p £ E(X)Q and Ao(c,p) > Ao(c*,p).

LEMMA 3.2. For any μ £ E(X x X)+ and any integer n there exists a
measure μn £ E(X X X)+ such that πiμn - π2μn = π\μ - π2μ and

f cm(μ) + (l/n)μ(X X X) ifc*(μ) > -00,
c(μn) < \

[ -dn(μ) ifc*(μ) = -00,

where dn(μ) —• 00 as n —>- 00.

PROOF. We assume c*(μ) < +00 since otherwise the statement is trivial.
Let

k=l

where α̂  > 0, k = 1,..., m; hence

Using the definition of c*, choose points ^ n i , . . . , Zknm(k,n) m X such that

(k,yk) / ( k , y ) ,
} , (kniikni+l) < Hn -= \

i=o { ~n i f c*(χk, Vk) = - 0 0 ,

where zkno = ^^km(fc,n)+i = ϊfc Denote

M = {(x,y) £ supp/i : ^(x,!/) > -00}

and take into account that c*(μ) = — 00 implies μ((X X X) \ M) > 0. It is
easily seen that the measure

m m(k,n)

has all the required properties with

dn(μ) = nμ((X xX)\M)- ί (cm(x,y) + f ) μ(d(x,y))

LEMMA 3.3. Ao(c,ρ) = >lo(c*,p) for every p £

This is a simple consequence of Lemma 3.2.
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Let us extend Ao(c, •) to the whole space E(X)* by setting

Λo(c,p) = +00 if p

Observe that the extended functional is sublinear (we assume by definition

+00 + (—oo) = +oo). The following lemma describes its sub differential

0Λ>(c, 0(0) : - {u £ E(X) : (u, p) < A0(c, p) for aU p £ E(X)*}

= {ue E{X) : (u,p) < Ao(c,p) for all p £

LEMMA 3.4. M 0 ( c , )(°) = Qo(c).

PROOF. The inclusion Qo(c) C &4o(c, )(0) is obvious. On the other

hand, if u £ d*4o(c

5 0(0)? then for any x,y £ X

u(x) - u(y) = (u,εx - ey) < A0(c,ex - ey) < c(e^y)) = c(x,y),

that is u € Qo(c).

LEMMA 3.5. Assume c*(x,y) > —oo for all x,y £ X. Then for any p £
E(X)Q there exists a measure μo £ E(X X X)?j_ such that πiμo = /9+,π2/io =
p_ ? and

^//) : μ 6 £ ( X X X)+

where p — p^. — p- is the Jordan decomposition of p. In particular,

ί c*(x,») if xφy (μo = ^ .y)) ,

[ 0 if a: = y (μ 0 - 0).

PROOF (cf. proof of Lemma 5 in Levin (1978)). The result will follow if,
for each μ £ E(X x X)\ with πiμ — π 2μ = /?, a measure μ' £ J E ( X X X)+ can
be found such that πiμ' = p + , π 2 μ / = p_, and ^ ( μ ' ) < c*(μ). (Indeed, in such
a case the problem consists in finding inf{c*(μ') : μ' £ E(X X X)̂ j_,7Γiμ/ =
/>_!_, π2μ7 = />-}, and since this is a finite-dimensional linear program with a
compact constraint set, the infimum is attained.)

A triple of points in X, {zo^Cb^o}, is said to be a transshipment with
respect to μ if z0 φ £o,^o φ Vo and μ(xo,zo) > 0,μ(zo^yo) > 0. If μ has such
a transshipment, then form a new measure μi by setting

μ(x0, zo)-α if x = x0, y = z0,

μ(z0, yo)-α if x = z0, y = y0,

μ(a?o, yo) + α if ar = ^o, y = yo,

k μ(x, y) in all other cases,
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where a :— min(μ(x0, 2O),μ(.zo,yo)) It is easily seen that μi £ E(X X X)+,
πχμi — 7Γ2μi = πiμ — π2μ = p, and μi has at least one transshipment less than
μ. Further, since c* satisfies the triangle inequality, we have

c*(μi) = c*(μ) - αc*(z0, *o) - αc*(2:o,yo) + ac*(xo,yo) < c*(μ).

After repeating such a procedure several times, we get a measure with no

transshipments, μn £ JB(X X X)+, such that τriμn - π 2 μ n = /? and c*(μn) <

c*(μn-i) < . < c*(μi) < c*(μ).

Now define the measure μ1 £ £ ( X x X)!J., via

(μn(x,y) Ίϊxφy,

[0 if x = y,

and observe that

suppπiμ' Π suppπ2μ' = 0 (6)

and

(since c* > -00, one has ^(a:,^) > 0 for all x £ X). Clearly τriμ' - π 2μ' =

n = /> and, in view of (6), this means πiμ' = /)+, τ^μ' — p~.

PROOF OF THEOREM 2.1. (1) It follows easily from the triangle inequality

for c* that either c*(x,y) > -00 for all x,y £ X or c*(x,y) = -00 for all

x , y £ X .

If c*(#, y) > —00 for all #, y £ X, then c* takes only finite values. In this
case the set Qo{c) is nonempty because it contains the functions u*,u*(x) =
c*(x, x*) for x φ x* and w*(#*) = 0, where x* is any fixed point in X.

Let us verify (4). Assume the contrary. Then

c*Oo, y0) > sup (tt

()
for some #o, j/o € X with XQ Φ yo The function

ίc*(s,Sfo) if x / 2/o5

t*o(a?) = <
1 0 if x = yOj

belongs to Qo(c), hence

Bo(c,eXQ -€yo)> uo(xo) - Mvo) = c*

a contradiction.
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Let us verify (5). Note that the space E(X)* is topologized in a natural
way as the topological direct sum of real lines Rιx\,x € X As is well known,
this topology — denote it by t — is the finest locally convex topology on
E(X)*, and (E(X)*,t)* = E(X). Since

where l(x) = 1 for all x G X, E(X)Q is a closed hypersubspace in E(X)* and
the induced topology t \ E(X)Q is obviously the finest locally convex topology
on E(X)Q. Since c*(x,y) < +00 for all x,y G X, we have

-00 < #o(c*,p) < Ao(c*,p) < +00

whenever p G E(X)Q. The restriction of Ao(c, •) = A>(c*, •) on E(X)Q is thus
a proper sublinear functional E(X)Q —• β 1 , hence the functional is continuous
with respect to the topology / | E(X)Q. NOW, because E(X)Q is closed in
E(X)*, Ao(c, •) is lower semicontinuous as a functional on the whole space
(E(X)*, t). As is known from convex analysis (see, e.g., Levin (1985b, Theorem
0.3 and its Corollary 3)), in such a case the equality

A)(c, p) = sup{(u, p) :ue

holds for all p G E(X)Q which, in view of Lemma 3.4, may be rewritten as

A0(c,p) = β o(c,p) for every p G E(X)Q.

If now c*(x,y) = —00 for all x,y G X, then, by Lemma 3.3, Ao(c,p) =

-00 for all p G £(X)o Also B0(c,ρ) = -00 for all p G J5(X)5 because QQ(c) =

The statement (i) is now completely proved.

(it) If Qo(c) = 0 but c* ^ - 0 0 , then c*(xo, yo) = +00 for some #0,2/0 € X
with x 0 φ yo Because Qo(c) = 0 , we have Bo(c,cXQ - eyo) = - 0 0 . On the
other hand, applying Lemma 3.3 yields

,€XQ - €yo).

— e
yo.

Let μ be an arbitrary measure in E(X x X)!j. with 7Γχμ — 7Γ2/i =
Arguing as in the proof of Lemma 3.5, we obtain a measure with no transship-
ments, μ* G £(XxX)Uj_, such that πiμ, ) e -π2μ* = eXo -eyo and c*(μ*) < c*(μ).
(Notice that the supposition of Lemma 3.5 that c* > —00 is not used in this
argument.) It follows that
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where a(x) > 0. Since c*(xo,yo) = +00, we have c*+(μ*) = +00 hence
c*(μ*) = +00, and in view of the arbitrariness of μ, Ao(c*,€Xo - eyo) = +00.
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