
Distributions with Fixed Marginals and Related Topics
IMS Lecture Notes - Monograph Series Vol. 28, 1996

ISOTONIC REGRESSION ON PERMUTATIONS
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Motivated by an approach to qualifying potential judges, we study isotonic
regression problems on a partially ordered set of permutations. We consider the
partial orders discussed in Block, Chhetry, Fang and Sampson (1990) which
are used for comparing the dependence of bivariate empirical distributions with
fixed marginals. We give a method to generate permutations and their inversion
numbers, and develop a technique to input these orders. We discuss methods
of finding predecessors and immediate predecessors in the sense of these orders.
Then, we develop an algorithm to search for isotonic regressions on a set of
permutations under these orders.

1. Introduction and Motivation. This paper presents the algorithms
and programs necessary to solve isotonic regression problems involving partial
orders on permutations. Our solution depends on some approaches to identi-
fying predecessors for three partial orders given in Block, Chhetry, Fang and
Sampson (1990) and utilizes results of Block, Qian and Sampson (1994) for
computing isotonic regressions over partially ordered sets. The partial orders
of Block et al. (1990) are used for comparing the dependence of bivariate em-
pirical distributions. These distributions have fixed marginals putting mass
1/n at 1, . . . , n where n is the sample size.

One motivation for considering the isotonic regression problem of this
paper is a new approach for qualifying potential judges by utilizing one known
expert's rating of k distinct objects according to some criteria. While we
present the necessary computations for implementing this approach, we do
not present any formal statistical modeling.

Suppose that we wish to evaluate a number of different possible judges
who will be expected to rank individuals in a given setting, e.g., wine tastings,
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athletic competitions or "beauty" contests. To test potential judges, we sup-
pose that we have a single known expert's ranking of k distinct objects from
worst to best according to some qualitative criteria. For example, suppose that
we have a wine expert who provides a rank ordering for the quality of eight
1989 Bordeaux wines from worst to best with no ties permitted. For conve-
nience, we label each wine by its expert ranking, i.e. 1 = worst,..., 8 = best.
The evaluator of the potential judges now picks T distinct reorderings of the
expert's order (T < 8!). Each of these T reorderings can be described by the
corresponding permutation. These reorderings are then presented, one at a
time, to a potential judge, who is asked to provide, according to his opinion,
a percentage score for correctness of the presented reorderings. This process
using the T reorderings is repeated for each of the potential judges.

The evaluator develops the T reorderings of the expert's evaluation by
following one of three partial orderings on the set of permutations. That is, one
particular partial ordering is selected and the evaluator takes T reorderings
of the expert's ranking according to the rules of the partial ordering. We
now describe in detail how the evaluator would utilize each of these partial
orderings to obtain the T reorderings.

As an example of our approach, we consider the wine tasting setting.
Initially, the bottles of the eight wines are lined up in the expert's order from
worst (1) to best (8). Then the bottles of wine are moved around according
to the rules of the selected partial order until a reordering is obtained. A
photograph of this reordering is taken and this is one of the T reorderings
presented to the subject. This process is repeated to obtain the other T — 1
reorderings. Each of these photographs is then presented to a potential judge
who is told that this is a ranking from worst to best (physically ordered from
left to right) and is asked to give a grade for how good this ranking is. If the
judge has good ability, we would expect high scores to be given to rankings
similar to the expert's rankings and low scores to those which are quite different
from the expert's ranking. Moreover, if one ordering is "closer" to the experts
order than another, then the former score should be higher than the latter.

We now describe the three partial orders (designated &i,&2 or 63) which
would be used to obtain the reorderings. The b\ ordering involves a finite
sequence of switches, where the evaluator may switch out of order any two
wine bottles among the eight, which are in the expert's original order, (e.g.,
(13546278) may be switched to (13546872)). The second ordering, the b2

ordering, only permits the evaluator to sequentially switch wine bottles which
were originally adjacent in the expert's original order (e.g., (13546278) may
be switched to (13547268)). This allows for the reordering of the wine where
changes are very subtle, and is of use in discerning a potential judge's ability to
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make fine discriminations. The third (63) ordering that we consider permits the
evaluator to sequentially switch neighboring bottles out of the expert's order
(e.g., (13546278) can be switched to (13564278)). This latter ordering can
be viewed as an ordering for switching convenience, i.e., moving neighboring
bottles. A more rigorous treatment of these three partial orderings can be
found in Block, Chhetry, Fang and Sampson (1990).

Let i and j be two of the evaluator's T reorderings which were arranged
according to one of the three orderings 61,62 or 63. A potential judge will be
in concordance with the expert according to a particular partial ordering if i
is better ordered than j implies that the potential judge scores the ordering i
at least as high as that of j . Note that i is better ordered than j if i is in some
sense closer to the expert's rating than is j , according to that partial order.

If the evaluator has chosen many test permutations, then it is unrealistic
to expect the potential judge to be in perfect concordance with all these per-
mutations with respect to the fixed partial ordering under consideration. To
measure each potential judge's degree of discrepancy, we use the measure

min 5 > ( i ) - /(i))2

where the sum is over all T permutations and the minimum is taken over all
functions / which are isotonic with respect to the ordering, that is, i better
ordered than j implies /(i) > /(j), and where s(ϊ) is the potential judge's
score for permutation i subject to 5(1) being constrained in some way so that
the scores are comparable across potential judges. From this measure, we
can see how far the potential judge is from the closest scoring which is in
perfect concordance with the given ordering. To compute this measure, we
need to find the isotonic regression of the judge's score function on the set of
T given permutations with respect to the selected partial order. One could
then use this measure, computed for each judge, to decide if each judge should
be qualified or not.

We note that we motivate and apply our results in the context of quali-
fying judges. However, in the spirit of Block et al. (1990) one could consider
any function defined on the set of bivariate empirical rank distributions and
one of the four orderings for positive dependence and then isotonize that func-
tion with respect to the given ordering. Our methods would apply to such a
problem.

In Section 2, we formulate the problem and in Section 3 study methods
of finding an immediate predecessor of a permutation in Sn with respect to
certain partial orders. Sections 4 and 5 prove further computational details.
In Section 6 specific computations are given for various choices of the function
s. The program for our algorithm is given in the Appendix.
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2. Problem Formulation. Let Sn be the set of all permutations of the
n integers {1,2,.. . ,n}. Partial orders on Sn have been studied in statistics,
computer science, discrete mathematics and other areas. Block, Chhetry, Fang
and Sampson (henceforth BCFS) (1990) gave a unified approach to three well
known partial orders on Sn and introduced a new one. They called these partial
orders the 6i, 62, &3 and 64 orders. BCFS (1990) showed that the 61,62? &3 and 64
orders correspond to the more concordant, more row regression, more column
regression and more associated orders on the class of bivariate empirical rank
distributions, respectively. While our motivation was based on the three orders
61,62 a nd 63, we include results for 64 for completeness.

Let i = (ii, Z2,..., in) € Sn. An inversion of i is a pair of indices (fc, /)
of i with k < I and ik > i/. An inversion (&,/) of i is said to be of type 2
if ik - i\ = 1. An inversion (&,/) of i is said to be of type 3 if / = k + 1,
i.e., ik and i\ are adjacent elements in the permutation. The inversion number
of a permutation i is the number of inversions contained in i, and is denoted
as m(i). It is well known that 0 < ra(i) < n(n — l)/2, for any i £ Sn. An
interchange of two components ik and iι of a permutation i is said to be a
correction if (fc, /) is an inversion of i.

A permutation i is said to be better ordered than j in the sense of 6χ-
order, written as i >χ j , if i = j or i is obtainable from j in a finite number of
steps, each of which consists of a correction of an inversion. A permutation i
is said to be better ordered than j in the sense of 62-order, written as i > 2 j ,
if i = j or i is obtainable from j in a finite number of steps, each of which
consists of interchanging an inversion of type 2. A permutation i is said to be
better ordered than j in the sense of 63-order, written as i >3 j , if i = j or i is
obtainable from j in a finite number of steps, each of which consists of inter-
changing an inversion of type 3. A permutation i is said to be better ordered
than j in the sense of 64-order, written as i > 4 j , if i = j or i is obtainable
from j in a finite number of steps, each of which consists of interchanging an
inversion of type 2 or type 3.

BCFS (Theorem 2.5, 1990) showed that the 62- and 63-orders are not
equivalent and each implies the 64-order; and that the 64-order implies the
61-order.

A real valued function / on Sn is said to be isotonic with respect to a
6rorder, if /(i) > /(j), whenever i >t j , where t = 1,2,3 or 4. The class of
all isotonic functions on Sn with respect to a 6rorder is denoted as It. A real
valued function s* on Sn is said to be an isotonic regression of a given function
s with nonnegative weights w, if s* is the solution of the following problem:
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min ^2 (s(x) - f(x))2w(x) subject to / G It- (2.1)
χesn

For any given function s on Sn with positive weights w(-), the objective
functional is continuous and strictly convex. Hence, there exists a unique
isotonic regression of s with weights w.

Problems of the form (2.1) are called isotonic regression problems on the

set of permutations subject to the ί^-orders. These problems can arise in the

evaluation of ranking problems and evaluating disorder in computer sorting

algorithms. A comprehensive reference for isotonic regression is Robertson,

Wright and Dykstra (1988). Recently, Block, Qian and Sampson (henceforth,

BQS) (1992, 1994) gave a unified approach to a wide class of algorithms for

isotonic regressions and developed some new efficient algorithms, especially

for partial orders.

A partial order on a finite set X can be represented as a directed graph

without cycles, but this representation is not unique. The representation with

a minimum number of edges is called a Hasse diagram. In this diagram, each

edge is a pair of elements in X such that one of them is an immediate prede-

cessor of the other. The advantage of this representation is that the depiction

of the partial order is compact and easy to handle. Additionally, in compu-

tation, this representation saves a significant amount of computer memory.

Consequently, it is commonly used in algorithms for partial orders. The IBCR

algorithm developed by BQS (1994), which searches for an isotonic regression

on a partially ordered set is able to use this representation to facilitate the

computation of various partial orders. In order to utilize this representation,

we must know all immediate predecessors of each element in X. Therefore, it

is basic to find the immediate predecessors of each element in Sn, in order to

apply the IBCR algorithm to problem (2.1).

3. Immediate Predecessors Under the 6t-Orders. In this section

we study methods for finding immediate predecessors of permutations in Sn

with respect to the 6rorders.

Let t = 1,2,3 or 4, and let j , i 6 Sn. The permutation i is said to be a

predecessor of j in the sense of 6rorder, if j >t i and j φ i; the permutation

k is said to be an immediate predecessor of j in the sense of ί^-order, if k is

a predecessor of j and no permutation is between k and j in the sense of the

same 6rorder. Recall that m(i) is the inversion number of the permutation i.

LEMMA 3.1. Let i be a predecessor of j in Sn in the sense ofbt-order with

t e {1,2,3,4}. Then m(i) > m(j).
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PROOF. When j is obtained from i by correcting an inversion, it is well

known that m(i) > m(j). If i is a predecessor of j in the sense of i^-order, by

transitivity, we have ra(i) > ra(j). The proposition is true for other 6 rorders,

because each of them implies the 6i-order. |

COROLLARY 3.2. Let t = 1,2,3 or 4, and let i be a predecessor of] in Sn

in the sense ofbt-order. Then ra(i) - ra(j) = 1 implies that i is an immediate

predecessor of j in the sense of the bt-order.

LEMMA 3.3. if i is an immediate predecessor of j in Sn in the sense of one

of the bf-orders, then j is obtained from Ί by a correction of an inversion.

LEMMA 3.4. A permutation j is obtained from a permutation i by a

correction of an inversion if and only if ra(i) > m(j) and i and j differ by

exactly two different components.

PROOF. The necessity of the condition is proved by Lemma 3.1. If i and

j differ by exactly two different components, k and /, then j is obtained from

i by interchanging the fc-th and /-th components of i. Since m(i) > ra(j), we

have (k — l)(ik — U) < 0. Hence, j is obtained from i by a correction of an

inversion (&,/). I

LEMMA 3.5. Let j be obtained from i by interchanging the k-th and l-th

components of i with k < I and i* > iι, i.e., j is obtained from i by a correction

of an inversion. If for each index u between k and /, iu > ik, or ίu < ίι, then

m(ϊ) - ra(j) = 1.

PROOF. Assume for u between k and / that iu > ik- Since ίu > h > iu^u

is responsible for only one inversion with respect to ik and i\ in i. Similarly

in j,if and iu are ordered, and iu and i* are disordered, so ik causes only one

inversion in j . If iu < i/, the argument is similar. Consequently the net change

from i to j is one, i.e., the correction of the inversion in the k and / positions.

I

COROLLARY 3.6.

(1) If j is obtained from i by a correction of an inversion of type 2, then

ra(i) - m(j) = 1;

(2) If j is obtained from i by a correction of an inversion of type 3, then

m(ϊ) - m(j) = 1.

THEOREM 3.7. A permutation i is an immediate predecessor of a permu-

tation j in the sense ofb\-order on Sn, if and only if,

(1) ra(i) - ra(j) = 1; and

(2) there are exactly two different components between i and j .
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PROOF. Sufficiency follows from Corollary 3.2. Let i be an immediate

predecessor of j . By Lemma 3.3, j is obtained from i by a correction of an

inversion. Hence, by Lemma 3.4, ra(i) > ra(j) and (2) is satisfied. Assume

there exists an index u between the two different components k and / with

k < /, otherwise m(ϊ) — m(j) = 1. Now we assume m(ϊ) — τn(j) > 1. By

Lemma 3.5, i\ < iu < ik Let j 1 be obtained by interchanging A -th and u-

th components of j° = i; let j 2 be obtained by interchanging u-th. and /-th

components of j 1 ; then j 3 = j is obtained by interchanging A -th and u-ih

components of j 2 . Because i\ < iu < ij., each j * is obtained from j * " 1 by a

correction of an inversion. Thus j 1 and j 2 are between i and j in the sense of

6χ-order. This contradicts i being an immediate predecessor of j . |

If we know the inversion numbers for all permutations in 5 n , we can easily

find all immediate predecessors for each element in Sn in the sense of the b\-

order by Theorem 3.7. For any permutation j , each immediate predecessor of

j has inversion number ra(j) + 1. If a permutation with the inversion number

(ra(j) + 1) has exactly two different components from the permutation j , it is

an immediate predecessor of j . All immediate predecessors of j in the sense of

the 6i-order can be found in this way. Conditions 1) and 2) in Theorem 3.7

can be easily implemented in a program.

For &2?̂ 3 a n d 64 orders, we have similar theorems for their immediate

predecessors. We summarize the results below.

THEOREM 3.8. (a) For t = 2,3,4, a permutation i is an immediate prede-

cessor of a permutation j in the sense of the bt-order on Sn if and only if j is

obtained from i by a correction of an inversion of type t.

(b) Necessary and sufficient conditions for i to be an immediate prede-

cessor of j are:

(1) m(i) - m(j) = 1;

(2) i and j differ in exactly two components;

(3) for the two components k and I of 2);

\h ~ U\ — 1 (f° r b2-orderings) ,

\k — /| = 1 (for b^-orderings) ,

\ik — %ι\ = 1 , or \k — l\ = 1 {for b^-orderings) .

4. Generating the Elements of Sn and Their Inversion Numbers.
From Section 3, it is clear that the inversion numbers of the permutations play
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an important role in searching for immediate predecessors of an element in Sn

in the sense of ^-orders. The inversion number of a permutation can be

computed by its definition, but we develop in this section an efficient way of

finding the inversion numbers for all elements in 5 n , utilizing the structure of

Sn. While there are many algorithms to generate permutations we know of

none to find inversion numbers. The set of permutations, 5 n , has n\ elements,

and the range of the inversion numbers for i G Sn is {0,1,...,b) with b =

n(n — 1)12. We begin by using the inversion numbers to divide Sn into 6 + 1

subsets. The subset containing all the permutations with inversion number

u is called the ^-th layer of Sn and is denoted as SU}U. For example, for

5 2 = {(1 2), (2 1)}, {(1 2)} is the 0-th layer and {(2 1)} is the 1st layer of S2.

We use a recursive method to generate Sn from 5 n_i, where a = (n -

l)(n — 2)/2 is the maximal inversion number of Sn-\. Assume that we have

obtained Sn-\ with layers Sn_i fo, 5^-1,1? ? £71-1,0? a n ( i assume the k-th layer

Sn-\,k has wn_i,fc elements. For each permutation i in 5 n , we can view i as

obtained by inserting the integer n into a permutation j of order (n — 1).

For each permutation j = (jΊ, J2, ., j n - i ) , there are n locations available for

inserting the integer n. Let h be an integer between 1 and n. We define an

inserting function φh on £ n _i to Sn as follows:

Φh(j) = ( j Ί , . . . , JΛ-i,Π, JΛj ? jn-l)

Let A be a subset of 5 n , and φh(A) denote the range of φh on A. Obviously

the function φh is a one to one correspondence from 5n_i onto φh(Sn-i) =

{i G Sn : %h — n}. The set Sn is a union of φh(Sn-\),h = l , 2 , . . . , n , i.e.,

THEOREM 4.1. Let h be an integer between 1 and n inclusive, and let

j G Sn-i Then

m(j) + (n-h) .

PROOF. The function φh inserts n into the h-th. location of j , which

generates n — h inversions for integer n, and the inversions of other integers

do not change after the insertion. Hence, m(φh(})) = πi(j) + (n — h). |

COROLLARY 4.2. Let wUyX be the numbers of elements in Sn,xi the x-th

layer of Sn and α = (n - l)(n - 2)/2.

(1) Forx = 0 , l , . . . , n - 1 ,

Sn,x = Φn(Sn-l,x) U ̂ n-lC^n-l^-l) U . . . U φn-x{Sn^0), and
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(2) For x = n, n + 1,. . . , α,

Sn,X = Φn(Sn-!,x) U φn-l(Sn-hx-i) U . . . U 0 l ( 5 n -

™n,x = Wn-l,a? + ^n-l,x-l + + Wn-l,x-n+l

(3) For a; = α, α + 1,. . . , n(ra - l)/2,

n-l,α) U φn-x+a-l (Sn-l,α-l) U . . . U

and

Wn,* = Wn-l,α + ^n-l,α-l + + ^ n - l ^ -

By the above analysis we can generate Sn with layers by our recursion

method. We can search for immediate predecessors of a permutation j in

the (m(j) + 1) - st layer of Sn. This reduces the number of candidates for

immediate predecessors of j . Based upon the results in Sections 3 and 4, we

develop a program called IBCRb to generate Sn with layers, find immediate

predecessors in the sense of 6 rorders, and search for the isotonic regression

on Sn for a given function g with non-negative weights w. This program is

described in the Appendix.

5. The &rOrders on a Subset of 5 n . Let X be a subset of Sn with

only a few permutations. In order to increase the efficiency of computing the

isotonic regression, we do not want to generate the whole permutation set

Sn. In this situation, we cannot utilize the structure of Sn to find immediate

predecessors in the sense of δ rorders. The inversion numbers of permutations

still play an important role in this case. We calculate the inversion number

of a permutation by counting its inversions. In order to find immediate pre-

decessors of a permutation in X in the sense of δ rorders, we have to find its

predecessors in X. By Lemma 3.1, we know that i is a predecessor of j implies

ra(i) > ra(j).

Let i = (ii,*2? > n̂) G Sn. If we sort the first /(< n) elements

ii, 2*2,..., iι of i, then the resulting sequence is called the increasing rearrange-

ment of the first / components of i, denoted as i( l , /) < i(2, / ) < . . . < i(/, /).

THEOREM 5.1. A permutation i is a predecessor of j in the sense of

bi-order, if and only if, m(ϊ) > m(j) and for each I = 1,2, . . . , n , we have,

j(k, I) < i(k, /), k = 1,2,.. ., /, where j(k, /), k = 1,2,. . . , / and ί(Jfe, /), k =

1,2,...,/ are the increasing arrangements of the first I components of} and i,

respectively.

Theorem 5.1 is due to Yanagimoto and Okamoto (1969).
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THEOREM 5.2. A permutation i is a predecessor of j in the sense ofb2-
order, if and only if, m(ji~1) = m(i) - ra(j) > 0? wiiere i " 1 is the inverse of i,
that is, ii"1 = (l,2,...,rc).

THEOREM 5.3. A permutation i is a predecessor of} in the sense of 63-
order, if and only if, m Q " 1 ! ) = ra(i) - m(j) > 0.

Proofs of Theorems 5.2 and 5.3 can be found in BCFS (1993). According

to these theorems, we can easily check whether a permutation i is a predecessor

of j in X in the sense of 6χ, 62 and 63 orders.

It seems to us that identifying a predecessor of a permutation in the sense

of 64-order is not as easy as the other 6 rorders. For a permutation j in X, we

know that predecessors of j in the sense of b2 oτ 63 order are predecessors of

a j in the sense of 64-order, but there are some predecessors of j in the sense

of the 64-order that are not predecessors in the sense of the b2 or 63 orders.

In order to find all predecessors of a j in the sense of 64-order, we can use the

predecessors of j in the sense of the 6χ-order as the candidates for predecessors

of a j in the sense of the 64-order, and then check these using the definition of

the 64-order. It is easy to find a candidate to be a predecessor of j in the sense

of the 61-order, but it is difficult to identify whether or not this candidate is

a predecessor of j in the sense of the i^-order. We must try every possibility

before we say that a candidate is not a predecessor of j in the sense of kj-order.

EXAMPLE 5.4. Let i = (4,3,5,1,2), j = (3,1,5,4,2) and X = {i,j}. It

is easy to see that ra(i) = 7 and ra(j) = 5. Thus ra(i) - m(j) = 2. Since

i " 1 = (4,5,2,1,3) and j " 1 = (2,5,1,4,3), we have, j i " 1 = (4,2,1,3,5) and

m ( j i - i ) = 4; i j " 1 = (4,1,3,2,5) and m(ij- 1 ) = 4. Therefore, by Theorems

5.2 and 5.3, i is not a predecessor of j in the sense of the b2 or 63-order. It is easy

to see that i is a predecessor of j in the sense of the δi-order by Theorem 5.1.

Now we check to see whether i is a predecessor of j in the sense of 64-order. In

£5, i has 3 immediate successors in the sense of δ4, (3,4,5,1,2), (4,3,1,5,2)

and (4,2,5,1,3). For two of these elements, there are more than two compo-

nents differing from those of j , and the difference of the inversion number is

exactly 1. For the third, correction of the inversion to reach j is not of type 2

or 3. Therefore, i is not a predecessor of j in the sense of the 64-order.

After we find predecessors for all elements in X, we can use the definition

to find immediate predecessors, that is, i is an immediate predecessor of j if

and only if i is a predecessor of j and there is no other permutation in X

between i and j .

6. Comparison of Potent ia l Judges . The preceding sections pro-

vided both the motivation and the techniques necessary to utilize our measure
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of discrepancy to evaluate a potential judge. However, as noted in Section 2, to
compare two or more potential judges by the proposed measure of discrepancy,
we need to provide some type of constraints on the scores that the potential
judges may utilize. The reason for this is that the measure of discrepancy is
sensitive to the scaling that the potential judges would be using in assigning
their scores, s{\). For instance, two judges assigning scores in the same order
pattern, but with one using a narrow range of scores and the other using a
large range of scores, would have different degrees of discrepancies although
their scores would have the same order pattern. There are several techniques
for standardizing the scores to take into account the variability of the po-
tential judges' scores. In the example presented in this section, we consider
the following approach in order to avoid this scaling problem. When asking
a potential judge to assign scores to T orderings, we require that the judge
use one of T scores pre-specified by the evaluator. Furthermore, once one of
these pre-specified scores is used by a potential judge that score is removed
from further possible usage by that judge. In application, the judge would be
given a box of T chips with percentages marked on the chips and the judge
would pick and assign one of these chips to each of the presented T orderings.
Moreover, we would allow the judge to see all T orderings before assigning the
prescribed scores.

For our example, we consider Ss and judiciously select a subset S consist-
ing of 30 permutations chosen with respect to the 63-ordering. A schematic of
these 30 permutations as well as descriptions of each of their immediate pre-
decessors in S is given in Table 6.1 and in Hasse diagram format in Table 6.2.
Intuitively, one can describe the choice of these 30 permutations or reorderings
as being along four "strings" with each string beginning at the perfect order
and ending at the complete reverse order. Moreover, there are levels along each
of these strings, where these levels correspond to the inversion number of each
reordering. On each of the four strings there is one reordering or permutation
at each level or inversion number.

Motivated by the structure of these 30 reorderings, the preassigned scores
we allow the judges to chose from are the following: 1, 2, 2, 2, 2, 3, 3, 3, 3,
4,.. .,4,.. .,8, 8, 8, 8, 9. These thirty scores can be viewed as one score of 10%,
four scores of 20%, . . . , four scores of 80%, and one score of 90%.

Our example concerns two types of potential judges, "good" judges and
"bad" judges. The good judges have differing levels of variability by which
they assign their scores, as described below, and the bad judge is one without
any discriminating ability. Specifically we simulated the bad judge's chosing
of the scores by randomly assigning the 30 scores 1 , . . . , 9 to each of the thirty
orderings under consideration. The good judges were simulated in the follow-
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ing manner. To each of the thirty orderings depicted in Table 6.1 we assigned
a random variable by adding a normal error quantity to the inversion num-
ber assigned to each permutation. The normal error had mean 0, and three
possible standard deviations, σ = 1, 1.5 and 2. For example, to the permuta-
tion 36241857 the assigned random quantity was 10 + e, where e is distributed
according to a normal with mean 0 and standard deviation σ. For each of
the three chosen values of σ, we then preceded in the following manner. We
rank ordered these thirty random quantities. The permutation corresponding
to the highest ranked random quantity was assigned the score of 9, the next
highest four ranked random variables were assigned the score of 8,..., and
the lowest random quantity was assigned the score of 1. Tables 6.3 b), c), and
d) provide outcomes of a single simulation of assigned scores corresponding,
respectively, to σ =1, 1.5, and 2, along with the isotonized version (s*) of
these scores. The format of the Table corresponds to the diagramatic struc-
ture of the thirty chosen permutations. Also given for these three tables is the
discrepancy measure. Not surprisingly the discrepancy measure increases as
σ increases. An example of a score assignment for the bad potential judge is
given in Table 6.3a, along with its isotonized version and the corresponding
discrepancy score.

As a matter of interest, we simulated 10,000 assignments of random
scores, i.e., bad judge's scores. Table 6.4 provides a frequency histogram of
the 10,000 discrepancy measures corresponding to these 10,000 simulations.
Another viewpoint of this histogram is seeing it as the null hypothesis distri-
bution corresponding to a totally uninformed potential judge. According to
this distribution the three good potential judges are obviously seen as "non-
guessers."
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Appendix
PROGRAM IBCRb

A program for finding isotonic regressions on a set of permutations

NAME: IBCRb.EXE

LANGUAGE: C

DESCRIPTION AND PURPOSE:

Positive dependence orderings have been studied extensively in recent
years. Block et al (1990) pointed out that many dependence orderings can be
modeled using partial orderings on a set of permutations. These orderings are
called the 61,62^3 a n d &4 orderings. Here we present an algorithm for calcu-
lating the least squares regression function which is restricted to be isotonic
with respect to one of the bt orderings on the permutation set Sn.

THEORY: See Sections 2 and 3 in this paper.

The IBCRb algorithm generates the permutation set Sn with a partition
by inversion numbers for a given order. Then for each 6rordering, it finds
immediate predecessors for each element of Sn. If a function g(x) on Sn

is given with weights w, the IBCRb algorithm provides the solution to the
following problem:

min 2_\ (β(x) ~ f(x))2/w(x) subject to / G It,
χesn

where It is the class of all functions on Sn such that i >* j implies /(i) > /(j),
for t — 1,2,3 or 4. In the current program IBCRb, the function g(x) is defined
as

n

g[x) — ̂ 2 \χ(k) - k\ for each x £ Sn .

The function generating g(x) is implemented as function gef( ). Users can
easily change the function gef( ) for other definitions of g(x).

SYNTAX: ίbcrb outputfile

INPUT:

There is only one input data value, nn, the order of the permutation.
After the screen displays "Enter the order of permutation," use the keyboard
to input the integer; then press the return key.
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SCREEN OUTPUT:

After entering the order of the permutations, "The order of permutations
is nn." is displayed on the screen.

After finishing the calculation of the four isotonic regressions, it prints
"Success." on the screen.

FILE OUTPUT:

1. Accumulation number of elements in each level.

2. The permutations with codes in each level.

3. Four tables. Each table is for a ^-ordering, and has more than 4 columns.

Column 1: code of each permutation;

Column 2: the original function g(x)',

Column 3: the weight functions w(x)m,

Column 4: the isotonic regression g*(x) of g with weights w\

Column 5 and up: the codes of immediate predecessors of each per-
mutation.
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Table 6.1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Permutations
87654321
86745231
87634521
86475321
68745321
86452713
86345721
68347521
68453271
82645173
86234571
63824751
36845271
26458173
82631457
63248517
36814527
26145873
26381457
36241857
13684527
26143587
21638457
32416857
13645287
21436587
12364857
23416578
13456278
12345678

Inversion Numbers
28
25
25
25
25
21
21
21
21
17
17
17
17
13
13
13
13
10
10
10
10
7
7
7
7
4
4
4
4
0

Immediate Predecessors

0
0
0
0
1 3
2 3
2 3 4
3 4
5
1 6
7
1 6 7 8
4 9
10
6 8 11
12
13
8 11 14
12 15
16
8 17
9 18
19
20
21
19 20 22
10 23
24
25 26 27 28
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Table 6.2
Hasse Diagram Corresponding To Table 6.1

129)12345678

21436587 (25)

26143587 {21)

26145873 {17)

26458173(13)

82645173 (9)

86452713 (5)

86745231 (1)

[27)23416578

(23)32416857

(19)36241857

(15)63248517

(11)63824751

(7) 68347521

(3) 86475321

(0) 87654321



H. W. BLOCK, S. QIAN, A. R. SAMPSON 61

Table 6.3

s(x) : original score

s*(x) : the isotonic regression of g(x)

a) "Bad" Potential Judge

s(x) 7 s*(x) 7
4 6 3 2 5§ 6 5| 5±

7 6 4 9 5§ 6 5 | f>\
6 6 3 3 5§ 6 5± 5|
1 5 8 5 A\ h\ h\ b\
2 4 4 8

 4
3
 5
β
 5
β
 5
β

8 7 8 3 4 I 5 β 5 δ 4 i
5 5 2 7 4^ 5 2 4 |

2 2
VΛ/ / \ o * / \ \ 2 11/1 1

2—11 o l *C I ~~" o I «C I I — l l τ c 7;
\ V / V / / O

(b) "Good" Potential Judge (σ = 1)

s(x) 9 s*(x

8 8 7 8
7 8 6 6
5 7 6 4
5 4 5 5
6 4 4 7
2 3 3 2
3 2 2 3

1

ΣO(a ) - s*{x)f = 6 \

8
7

si

5§nn

9

8
8
7
4
4
3
2

1

7
6
6
5
4
3
2
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(c) "Good" Potential Judge (σ = 1.5)

s(x)
7

8

6

6

2

4

2

7

8

8

5

4

4

4

7
9

6

5

5

3

2

3

1

s~{x)
5

8

7

6

3

3

2

Σ(β(s) - s*(x))
2

2
7l
2
6

6

3

3

2

=
 I* β

8
7|

7§
7§
5

4

4

3

1

8

6

5

5

3

3

3

6|

6
3

61
6

3

3

2

(d) "Good" Potential Judge (σ = 2)

s(x) 9 θ ( c) 9

6
8

7

5

5

3

3

8
6

7

8

2

2

5

3

8
4

6

6

1

5

3

7
7

4

4

4

2

2

7
7

7

5

5

3

3

8
7

7

7

3

3

3

8
5
3

5
3

5|

3

3

2|
oi
Z
2

7
7

4

4

4

CM

^2

Σ(s(z) - 5*(z))2 = 21 I
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Table 6.4
Frequency Histogram of 10,000 Discrepancy Measures

50
Frequency

100 150

40 -,

60 -

<Λ

φ

o
cΰ
Q.

80 -

I 100 H

120 -

140 -1

200
I
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