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Abstract
Our goal is to devise an efficient, possibly optimal method for

identifying all defective units or determining that there aren't
any among N given units. To do this, we use adaptive group-
testing methodology assuming a binomial random sample of N
independent and identically distributed units with known prob-
ability q of each unit being good. The optimality desired is to
minimize the expected number of tests required. But this op-
timality may be infeasible. Two procedures {RHLB and R\A)

for the group-testing problem are studied. Procedure RHLB is
based on the Huffman lower bound and Shannon-entropy crite-
ria." All of the algorithms introduced have low design complexity
and yet provide near-optimal results. Both procedures are adap-
tive in the sense that the present test can depend on the results
of any or all previous tests. For N = 5, one of the procedures
introduced can be shown to be optimal for selected values of q.
It is conjectured that this procedure is optimal for all values of
q. It is conjectured that this procedure is optimal for all values
of q and N > 5.
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1. Introduction. In the problem of group testing, we are con-
cerned with the classification of each one of a number N of given units
into one of two distinct categories which we call satisfactory and un-
satisfactory (or simply, good and defective). The characteristic feature
of a group-test is that a simultaneous test of x units (1 < x < N) is
performed with only two possible results: (i) either all x are good or
(ii) at least one of the x units is defective. In the second case, it is
not known (unless x = 1) which one or how many of the x units are
defective, and we call this set of size x a contaminated set The model
considered is that the N units are the realization of N independent
and identically distributed Bernoulli random variables with common,
known probability q of being good and p = 1— q of being defective;
any such set for which we have no further knowledge about the units
will be called a binomial set The ideal goal is to devise an adaptive
strategy for identifying all the defective units or determining that there
aren't any among the given N units with the minimum expected num-
ber of groups tested. An unqualified reference to optimality implies
optimality in this sense.

The first published paper on the group-testing problem (in the
present-day context) was by Dorfman (1943). Under Dorfman's pro-
cedure, for a prevalence rate of defectiveness equal to.01, there is a
savings of close to 80% over testing one at a time. Sobel and Groll
(1959) developed a nested procedure, called i2j. Under this procedure,
for p = .01, there is a savings of 91.68% over testing one at a time.
Sobel (1967) proposed a procedure i?oo which allows mixing (i.e., test-
ing a mixture of units from a binomial and a contaminated set) only
when the size of contaminated set is two or three. However, i?^ is not
an optimal procedure. Friedman (1982) wrote a dynamic programming
optimality algorithm for the group-testing problem. However, although
Friedman's recursive algorithm is not complicated, the amount of com-
putation required for its solution is enormous, even for small values of
N. With advanced computers it was only possible to obtain results
for N < 5 and for selected values of q. Thus, the optimal procedure
remains unknown in general.

It is conjectured that the construction of an optimal group-testing
procedure is a NP-complete problem and a heuristic approach to this
problem is therefore desirable. NP-completeness is defined as the class
of all problems that are in NP and in NP-hard. NP is defined as the
class of all problems that can be solved by nondeterminististic algo-
rithms that run in polynomial-time. NP-hard is the class of problems
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for which a deterministic polynomial-time algorithm for its solution can
be used to obtain a deterministic polynomial-time algorithm for every
problem in NP. For examples of NP-complete problems, see Chapter 9
of Reingold, Nievergelt, and Deo (1977). Chen, Hsu and Sobel (1987)
proposed a procedure Rι based on the Shannon-entropy criteria that
was based on such a heuristic approach. The Shannon-entropy criteria
was described in Section 2. They showed that Rι is optimal at every
stage with respect to the Shannon-entropy criteria, but it is not neces-
sarily optimal with respect to the expected total number of group tests
required.

In this paper we apply some coding theory concepts to obtain an
improved heuristic procedure. Starting with n binomial units, we can
regard them as ordered. Since each unit is good or defective, there are
2n possible states of nature, one of which is true. If we represent each
test that succeeds by the digit 'zero' and each test that fails by the
digit 'one', then a particular set of tests outcomes is identical with a
particular 'word' of a binary code. Then the expected number of tests
required is identical with the expected word length (i.e., the cost) of
the code. Huffman (1952) gives a routine (i.e. an encoding scheme) for
finding the code with the smallest cost which we call the Huffman cost
(HC). We describe a Huffman lower bound procedure, RULE in Section
2 that is based on choosing a sample size x for the next group test that
minimizes the average Huffman cost over the possible actions for the
next group test. It can be seen that RHLB is not optimal with respect
to the expected total number of group tests required. In Section 3, we
introduce a procedure, R\A, that is based on a combination of both
the Huffman lower bound and the Shannon-entropy criteria. Explicit
instructions for carrying out RHLB and R\A

 a r e given in Tables 1 and
3, respectively, for all q when N = 1 through 5.

2. The Huffman lower bound testing procedure. The Huff-
man lower bound testing procedure, RHLB, is based on choosing a sam-
ple size x for the next group test that minimizes the average Huffman
cost over the possible actions for the next group test. The following
three lemmas play a fundamental role in the derivation of the RHLB

procedure which is described below. Let G be the current situation.
By the phrase all states of nature, we mean the collection of possible
sets of binomial and contaminated sets consistent with G. An action is
the action of selecting a binomial set, a contaminated set, or a subset
of these for testing.
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LEMMA 1 [Sobel (1967)]. Given a contaminated set C of size m >
1, and given also that a proper subset of C of size x with 1 < x < m
contains at least one defective, then the conditional distribution associ-
ated with the m — x remaining units is precisely that of m — x indepen-
dent Bernoulli random variables with common original probability qof
being good.

LEMMA 2 [Chen, Hsu and Sobel (1987)]. The list of the sets cur-
rently (i.e., at stage G) known to be contaminated determines the dis-
tribution PQ of the states of nature conditional on being in stage G,
and this list is a sufficient statistic for all information gathered up to
stage G.

LEMMA 3 [Chen, Hsu and Sobel (1987)]. The list of the sets known
to be contaminated at stage G determines the number t of all possible
actions at stage G.

Using the above three lemmas, we define the RHLB procedure.

2.1 Derivation of the Huffman lower bound testing procedure. By-
Lemma 2, there exists a conditional distribution PG = (pi, <>Pk) for
each stage G, where k is the number of states of nature consistent with
G and Pi, i = 1,..., fc, is the probability of the ith state; of course

Furthermore, Lemma 2 tells us that PG contains all the information
about the current stage G. By Lemma 3, there exists an action space
AG = (Aι, ...,-At) where A^i = 1, ...,ί, are all the possible actions that
may be taken in the current situation G. An action Ai is a success if
all items tested under Ai are not defective.

Let Sa(Ai) and FG(Ai) be the probabilities that Ai is a success or
a failure, respectively, and let PA^SG and PAUFGI respectively, be the
probability vectors associated with success and failure at stage G when
we take action A given P G HC{PΛΪ,S G } and HC{PΛΪ,F G } are defined
to be the Huffman cost after applying the Huffman (1952) encoding
scheme to PA^SQ and i \ , F G , respectively. AΆC(PG\A) denotes the
average Huffman cost for taking action Ai when the initial probability
vector is PQ'
(2.1)

AHC(PG\A) = SG(A)HC{PAitSG} + FG(A)HC{PAUFG}.
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The procedure RHLB is defined by choosing i* such that

(2.2)

AHC(PG|Λ.) = mmiAHCiPelA)},

and then taking action Ai* at stage G. Note that, if T is the number of
group-tests required for identifying all defective items in given G, then
the expected value of T under RHLB is
(2.3)

E(T\PG,RHLB)

= 1 + SG(A.)E(T\PAiSa, RHLB) + FG(A*)E(T\PAtιFa,RHLB).

REMARK 1. Note that (2.3) does not require recursive calculation
back to the first action in order to find A^. At each stage, optimiza-
tion is based only on the current possible actions. Hence, RHLB is
substantially easier to implement than the procedure that is optimal
with respect to the expected number of group-tests required.

REMARK 2. Although the RHLB procedure is optimal with respect
to the Huffman Lower Bound criteria given above, it is not necessary
optimal with respect to the expected number of group-tests required.

REMARK 3. Clearly, if E(T\PG,RHLB) in (2.3) were equal to
HC(PG) [i.e., if E(T\G,RHLB) attains the Huffman cost by applying
the Huffman (1952) encoding scheme to PG], then RHLB would be the
optimal group-testing procedure. However, E(T\PG,RHLB) ^ HC(PG)

does not mean that RHLB is n°t optimal because the Huffman cost is
not always attainable for a group-testing problem.

REMARK 4. Explicit instructions for carrying out the RHLB pro-
cedure are given for N = 1 through 5 for all q in Table 1.

REMARK 5. The numerical results indicate that RHLB is the op-
timal procedure for q close to 1, but this remains to be proved.

2.2 Illustration of the RHLB procedure. Suppose we have N = 5
units and know that the probability a unit is good is q = 0.98. As
indicated in Table 1, the first test-group is to be of size x = 5, i.e.,
testing all 5 units simultaneously will give the smallest average Huffman
cost at the initial stage. If a success occurs, the experiment is over. If
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Table 1.
Test size and polynomial coefficients* for the expected number of tests

required to classify a binomial set of size N under RHLB procedure

n

2

3

4

5

Test

Size

X

1

2

1

2

2

3

3

1

1

1

2

2

4
4
4
1

2

2

2

2

2

2

5
5
5

Range of q

0.0000 - 0.6180

0.6180 - 1.0000

0.0000 - 0.5970

0.5970 - 0.6180

0.6180 - 0.7071

0.7071 - 0.8385

0.8385 - 1.0000

0.0000 - 0.5970

0.5970 - 0.6180

0.6180 - 0.6358

0.6358 - 0.7071

0.7071 - 0.7777

0.7777 - 0.8385

0.8385 - 0.8532

0.8532 - 1.0000

0.0000 - 0.5893

0.5893 - 0.5970

0.5970 - 0.6180

0.6180 - 0.6358

0.6358 - 0.7071

0.7071 - 0.7778

0.7778 - 0.8034

0.8034 - 0.8385

0.8385 - 0.8827

0.8827 - 1.0000

1

2

3

3

4
5
5
7

4
5
6

7
7
7
9

10

5
6

7
8

9

9

9

10

12

14

q

-1

-1

-3

-2

-3

-1

-3

-5
-4
-3

—4
-5

-1

-2

-4
-7
-6

-5

-5
-6

-8

<z
2

-1

-1

-1

-1

-6

-1

-1

0

-1

-1

-6

-7

-1

-2

-2

1

0
-1

-2

-7
-8

1

-1

3

1

1

-1

3

3

1

0

-1

-1

-1

3

4

-1

1

-1

-1

-1

1

-1

-1

-1

-3

q
δ

1

-1

1

2

* The integer shown is the coefficient of the power of q at the top of
the column and the terms are then added to form the expected number
of tests required for classifying a binomial set of size n. The entry
x indicates that the next test is on x units taken from the only set
available, i.e., the binomial set.
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a failure occurs, then it follows from equation (2.2) that the next test-
group will be ofsize 2, chosen at random from the 5. Label the sequence
of groups tested at the initial stage by α,6, c,d, e and the sequence of
groups tested at the second stage by α, b. If (α,6) yields a collective
failure, then (α, b) contains a contaminated set and hence is a binomial
set. Continuing in a similar manner yields the diagram in Figure 1. To
derive the diagram, start with a binomial set of size 5 : {α,6, c,d, e}:
the tree branches at each experiment with one path for success and
another for failure; the sets that follow are distinguished with braces
indicating a binomial set and the parenthesis indicating a contaminated
set; the star indicates that the continuation of the procedure follows as
given above or to the left for the same state of nature.

From Table 1, we obtain the expected number of group-tests re-
quired to identify defective items when q = 0.98 and N = 5:

(2.4)

E(T\RHLB) = 14 - 8g - 8q2 + 4g3 - 3g4 + 2g5 = 1.2823.

This expectation for RHLB is the same as that found by Sobel
(1967) and later by Friedman (1982) for the optimal procedure. Hence,
for N — 5 and q = .98 the RHLB is optimal.

3. A combined Huffman lower bound and Shannon entropy
based procedure. Chen, Hsu and Sobel (1987) proposed a procedure

Rι based on choosing that sample size x for the next group test which

maximizes the Shannon-entropy reduction was defined there in terms

of PG = (pi,...,p*) andAG = (A1,...,A1) by
(3.1)

i{PG\A) = - S

where Sc(Ai) and FG(AΪ) are the probabilities that Ai leads to success
and failure, respectively. The expected number of tests, E{T\R\)} are
given for N = 1 through 5 for all q in Table 2. The resulting value of
E(T\RHLB) and E(T\Rι) is a function of q, and in particular, they are
piecewise polynomials in q. At some point (for example, q = .8827 for
iV = 5), E(T\RHLB) "jumps" from one polynomial to another. We refer
to the polynomial expressions on each side of such a jump as adjacent
polynomials. Not only may E(T\RHLB)

 a n d E(T\R\) be discontinuous
in q they need not be decreasing in q. To eliminate these negative
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Figure 1.

(a,b,c,cU)

END (a,b,c,d,e)
x=2

(c,d,e) (a,b), {c,d,e}
x-2 x=(l,3)

s ' \ ; s

END (c,d)({e) END (a,b), (a.c.d.e), (b,c,d,e)

) x=d,O,O)

S / \F

END (c,d),(c,e),(d,e) (c,d,e) (b,c,d,e)
xΓ(l,O,O) * x=2

•Λ
(d,e) (d,e) (b,c), {d,e}
x=l * x-d,2)

END {e} END (b,c), (b,d,e), (c,d,e)
x=l x=(d)

7
E N D E N D (b,c),(b,e),(d,e) (b,c), ( e )

{) denotes binomial sets.
() denotes contaminated sets.
x=(l,y,z) indicates that a test of size 1 from the first set, size y from the
second set and size z from the third set is to be performed.
* Continue as designated to the left for this set.
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Table 2.
Test size and polynomial coefficients* for the expected number of tests

required to classify a binomial set of size N under R\ procedure

n
2

3

4

5

Test
Size
X

1
2
1
2
3
1
2
3
4
1
2
3
3
3
5
5

Range of q
0.0000 - 0.6180
0.6180 - 1.0000
0.0000 - 0.6180
0.6180 - 0.7549
0.7549 - 1.0000
0.0000 - 0.6180
0.6180 - 0.7549
0.7549 - 0.8192
0.8192 - 1.0000
0.0000 - 0.6180
0.6180 - 0.7549
0.7549 - 0.7759
0.7759 - 0.8192
0.8192 - 0.8484
0.8484 - 0.8567
0.8567 - 1.0000

1
2
3
3
5
5
4
7
7
8
5
9
10
10
10
11
11

q

-1

-3
-2

-5
-3
-4

-7
-6
-6
-5
-7
-7

q2

-1

-1
-1

0
-2
-2

1
-2
-3
_3
-2
-2

1
-1

1
-2
-1

0
-4
-1
-2
-1
0

-1
2

-1
7
4
2

-1
0

1
-3
-2

2
-1

* The integer shown is the coefficient of the power of q at the top of
the column and the terms are then added to form the expected number
of tests required for classifying a binomial set of size n. The entry
x indicates that the next test is on x units taken from the only set
available, i.e., the binomial set.
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features, we introduce here a modified procedure R^A- The cases in
which q is and is not close to one are considered separately.

• CASE 1: q is not close to 1. The R\A procedure is carried out
in a manner similar to R\ with but one modification. Suppose
I\ = [α,6] and I2 = [6, c] are the intervals of q for two adjacent
polynomials, and suppose these polynomials are not continuous
at their common boundary point b. Then we extend their range
so that they overlap and look for a new dividing point qo where
two adjacent polynomials are equal. If there is one such qo in
[α, c], we use the 7i's polynomial on [α, qo] and the fys polynomial
on [ίojc]. If there is no such go i n [α>c]> w e eliminate one of
those two polynomials completely (whichever is uniformly larger)
and repeat the process by looking at the resulting two adjacent
polynomials.

• CASE 2: q is close to 1. For any given N, compare the poly-
nomial from the RHLB procedure for the highest range of q with
the corresponding polynomial obtained in Case 1. Suppose the
polynomials for the highest range of q covers the interval [1,1]
for the RiA procedure given for Case 1 and [6,1] for the RHLB

procedure and let a < b. We equate these two polynomials and
proceed as in Case 1, looking for a new dividing point q0. If there
is no point qo in [6,1] for which the two polynomials are equal, we
eliminate one of these two polynomials completely (whichever is
uniformly larger) and repeat the process by looking at the poly-
nomials for previously intervals, say, [α, b]. We then use the new
dividing point to define the strategy for RIA for q close to 1.

There are four main consequences of these modifications to the RIA

procedure:

1. E(T\R\A) is continuous at all values of q\

2. E(T\R1A) is decreasing in <?;

3. For q < .0618, we test one unit at a time. This agrees with Ungar
(1959), and the fact that one-at-a-time testing is known to be
optimal for these q values;

4. E(T\R1A) < E(T\RHLB), and E(T\R1A) < E{T\Ri) for all values
of q.
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As an illustration, suppose we start with N = 3 units. From Chen,
Hsu and Sobel (1987), polynomials for the expected tests required to
classify a binomial set of size 1 through 5 using the R\ procedure are
given in Table 2. A portion of Table 2 is reproduced here to give
the polynomials defining the expected tests required to identify the
defective items in a binomial set of size 3 for all q :

X

1
2
3

0
0
0

Range
.0000 -
.6180 -
.7549 -

of q
0.6180
0.7549
1.0000

1
3
5
5

q

- 3
- 2

q1

_2

- 1

93

1
- 1

Since E(T\Rλ) jumps at q = 0.7549, proceed to create E(T\R1A)
by examining the polynomial for [.6180, .7549] and [.7549,1]. Since they
match at no point in [.7549,1], we examine the interval [.6180, .7549]
and find a match at .7071. Thus we obtain the new dividing point
q0 = .7071 where two adjacent polynomials are equal. To make the
required modification for Case 2, compare the polynomial defining
E(T\RHLB) for the highest range of q with the corresponding one ob-
tained in Case 1. Polynomials for the expected tests required for classi-
fying a binomial set of size 1 through 5 using RHLB procedure are given
in Table 1. Since the polynomials for the highest range of q covers the
interval [.7071,1] for the RIA procedure given in Case 1 and [.8385,1]
for the RHLB procedure, we equate these two polynomials and find a
new dividing point go = 8431. We then use the new dividing point to
define the strategy of RIA for q close to 1. The explicit instructions for
carrying out RIA procedure are given in Table 3 for all q and for N = 1
through 5.

4. Concluding remarks. For N < 5, the RIA procedure agreed
with a result by Friedman (1982) for all the 9 values of q that he used
for the calculation. Hence R\A is optimal for these 9 selected values of
q. It is believed that RIA is the optimal procedure for all values of q
and JV, but this has not been fully confirmed.

Since Sobel's (1967) procedure i?oo is the best known, we define the
efficiency of the procedures RHLB and RIA by

Re(RHLB\q) = {E(T\ROO)/E(T\RHLB)} * 100%;
Re(RiA\q) = {E(T\ROO)/E(T\R1A)} * 100%.

The values of E^R^), E(T\RHLB), E(T\R1A) and Huffman cost
(HC) are given in Table 4 for N = 3,4,5, and for q = 0.75, 0.80,

259



Table 3.
Test size and polynomial coefficients* for the expected number of tests

required to classify a binomial set of size N under i?i^ procedure

n
2

3

4

5

Test
Size
X

1
2
1
2
3
3
1
2
2
4
4
1
2
2
3
3
5
5
5

Range of q
0.0000 - 0.6180
0.6180 - 1.0000
0.0000 - 0.6180
0.6180 - 0.7071
0.7071 - 0.8431
0.8431 - 1.0000
0.0000 - 0.6180
0.6180 - 0.7071
0.7071 - 0.7862
0.7862 - 0.8431
0.8431 - 1.0000
0.0000 - 0.6180
0.6180 - 0.7071
0.7071 - 0.7549
0.7549 - 0.7834
0.7834 - 0.8186
0.8186 - 0.8431
0.8431 - 0.8910
0.8910 - 1.0000

1
2
3
3
5
5
7
4
7
7
8
10
5
9
9
9
10
11
13
14

q

-1

-3
-2
-3

-5
-4
-4
-5

-7
-6
-5
-5
-7
-8
-8

q2

-1

-1
-1
-6

0
-1
-2
-7

1
0

-1
-3
-2
-7
-8

1
-1
3

1
-1

3

0
-1
-2
-5
-7
-8
-8

qA

-1
1

-1
1
1
7
0
0

-3

q5

1
-1

-2
-1
-1
2

* The integer shown is the coefficient of the power of q at the top of
the column and the terms are then added to form the expected number
of tests required for classifying a binomial set of size n. The entry
x indicates that the next test is on x units taken from the only set
available, i.e., the binomial set.
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9
.75
.80
.85
.90
.95
.99

Table <L
Expected number of group tests required*.

N = 3

Roo
RHLB

R\A
2.51562
2.24800
1.95737
1.62700
1.30712
1.06030

HLB

2.46875
2.18400
1.89325
1.59800
1.30700
1.06000

JV = 4

•Roo

RHLB

R\A

3.33203
3.008001

2.534872

2.01700
1.50463
1.10020

HLB

3.27343
2.96320
2.47986
1.97020
1.46900
1.09100

N = 5

•Roo

RHLB

R\A

4.15723
3.73568
3.155293

2.44868
1.71354
1.14059

HLB

4.08870
3.68960
3.07193
2.40097
1.68100
1.13100

* E (T) is the same for i?oo, RHLB and R\A to 5 decimal places and
efficiency with respect to HLB is 100.00%,except as noted:
1 For RHLB, E (T) = 3.03840 with 98.99% efficiency.
2 For RHLB, E (Γ) = 2.58536 with 98.05% efficiency.
3 For RHLB, E (T) = 3.16287 with 98.76% efficiency.

0.85, 0.90, 0.95 and 0.99. Note that, if E(T\RΪA) is not equal to the
HC, it does not necessarily mean that R\A is not optimal. The reason
is simply that the Huffman cost is not always attainable for a group-
testing. Since procedure RHLB achieves 100% efficiency for N = 3, 4,
and 5 and q > 0.90, it indicates that RHLB is the optimal procedure
for q close to 1, but this remains to be proved. For N = A and 5,
and q = 0.80 and 0.85, the efficiency of RHLB drops below 100%; hence
RHLB is not optimal for all q. The efficiency of R\A is 100% to 5 decimal
places. Therefore, R1A is the best explicitly known procedure (to date)
in the sense of minimizing the expected number of tests required to
classify a binomial set of size < 5.
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