Chapter 1

Note on the notation: Throughout, Professor Bahadur used the symbols ¢(s),
©1(8), @a(s), ... to denote functions of the sample that are generally of little impor-
tance in the discussion of the likelihood. These functions often arise in his derivations
without prior definition.

Lecture 1

Review of L? geometry

Let (S, A, P) be a probability space. We call two functions f; and f; on S EQUIVA-
LENT if and only if P(f; = f2) = 1, and set

V =L*(S, A, P) = {f: f is measurable and E(f?) = / f(s)?dP(s) < oo},
s

where we have identified equivalent functions. We may abbreviate L?(S, A, P) to
L%(P) or, if the probability space is understood, to just L. For f, g € V, we define

IfIl = ++/E(f?) and (f,g) = E(f - g), so that ||f||* = (f, f). Throughout this list f
and g denote arbitrary (collections of equivalent) functions in V.

1. V is a real vector space.

2. (+,-) is an inner product on V' —i.e., a bilinear, symmetric and positive definite
function.

3. CAUCHY-SCHWARZ INEQUALITY:

I(F, ol < A1 Tlgll,
with equality if and only if f and g are linearly dependent.

Proof. Let x and y be real; then, by expanding ||-|| in terms of (-,-), we find
that

0 < |lzf +ygll* = 2%||fII” + 22y (£, 9) + ¥*[l9I%,
from which the result follows immediately on letting z = ||g|| and y = ||f]|. O
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4. TRIANGLE INEQUALITY:

ILf+gll < A1+ Mlgll.
Proof.

1S + 91l = [IIF1* + 2(f, 9) + lgll?| < HFIP + 201511 gl + gl

again by expanding ||-|| in terms of (-,-) and using the Cauchy-Schwarz inequal-
ity. O

5. PARALLELOGRAM LAW:
1+ gl + 11 = glI* = 271> + llgl)-
Proof. Direct computation, as above. O

6. ||-|| is a continuous function on V, and (-,-) is a continuous function on V' x V.

Proof. Suppose f, 7N f; then
(fall S NN+ = £ = WA = @mi] fal] < NIFID)

and
(A< Wl + 11fn = fI1) = @m | fa]] 2 [£]]).
From these two statements it follows that lim || f,.|| = || f]|- O
7. V is a complete metric space under ||-|| - i.e., if {g,} is a sequence in V and

llgn — gm|| = 0 as n,m — oo, then 3y € V such that ||g, — || = 0.

Proof. The proof proceeds in four parts.
1. {gn} is a Cauchy sequence in probability:
Pllgm=gal > €) = P(lgm—al" > &) < B (lgm=nl) = S llgm P
2. Hence there exists a subsequence {g,, } converging a.e.(P) to, say, g.
3. geV.
Proof.
E(9P) = [ (Jim ¢2,)4P < lim [ ¢2,aP

by Fatou’s lemma; but { [ g2 dP = ||gn,||*} is a bounded sequence, since
{llgnll} is Cauchy. O



4. ||gn —gH — 0.

Proof. For any € > 0, choose k = k(e) so that ||gm — gn|| < € Whenever
m,n > k(g). Then

[ 1P = [ (im lon = g0 )aP
Fatou

< klggo/ |gn — Gni|*dP = Jim {|g, — gnl* <,
provided that n > k(). O

Let W be a subset of V. If W is closed under addition and scalar multiplication,
then it is called a LINEAR MANIFOLD in V. If, furthermore, W is topologically closed,
then it is called a SUBSPACE of V. Note that a finite-dimensional linear manifold
must be topologically closed (hence a subspace).

If C is any collection of vectors in V, then let C; be the collection of all finite
linear combinations of vectors in C and C, be the closure of C;. Then Cj is the
smallest subspace of V' containing C, and is called the subspace SPANNED by C. C
is called the linear manifold spanned by C.

Let W be a fixed subspace of V', and f a fixed vector in V. We say that the vector
g € W is an ORTHOGONAL PROJECTION of f to W if and only if

1 = gll = inf ILf =l
8. There exists a unique orthogonal projection g of f to W.

Proof. Let £ = infrew ||f — h||, and let {gn} be a sequence in W such that
l|f — gn|| — ¢; then we have

2

2
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>¢

from which we see that ||gm — gn||> = 0 as m,n — oo. Thus {g,} is a Cauchy

sequence; but this means that there is some g such that g, — g. Since W is a
subspace of V, it is closed; so, since each g, € W, so too is g € W. O
Lecture 2

Definition. For two vectors fi, f» € V, we say that f; is ORTHOGONAL to f», and
write f1 L f5, if and only if (fi, fo) = 0.

Throughout, we fix a subspace W of V and vectors f, fi, fo € V.
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9. PYTHAGOREAN THEOREM (and its converse):
AL e llfi+ AP =AIP+ 1l

10. a. Given the above definition of orthogonality, there are two natural notions
of orthogonal projection:

(*) v € W is an orthogonal projection of f on W if and only if
1 =l = ik {1f = gll.
(**) v € W is an orthogonal projection of f on W if and only if
(f-7)LgVgeW

These two definitions are equivalent (i.e., 7 satisfies (*) if and only if it
satisfies (**)).

b. Exactly one vector v € W satisfies (**) —i.e., a solution of the minimisation
problem exists and is unique.

e |IFI = 11y + IIf = ~II”
Proof of (10).

a. (=) Choose h € W. For all real z, v + zh € W also. Therefore, if (*)
holds, then (setting 6 = f — )

(If = (v +2h)|P 2 [If = AII* = 18l|* — 22(8, B) + =®[|]|* > [|8]?
= 22| |h||? — 22(6,h) > 0) Vz € R.

This is possible only if (4, ) = 0. Thus (**) holds.
(<) If (**) holds then we have
9
((F=7) L (r=h) BUIF = Bl = 1If =21+ Iy = h?
= |lf = hl? 2 |If = ~II*) Vhe W

Thus (*) holds.

b. Suppose that both 7; and 7, are solutions to (**) in W. Since y; —y2 € W,
(f —m1) L (71 — 72) and hence, by (9),

=l =If =l +n - Yll?.

By (a), however, ; and 7, both also satisfy (*), so
12 = i o2 = f — a2
£ =mll min || f gllF = 11f = ll
and hence |71 — %[> =0 = 7 = 7.
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c. Since y € W,

F=7) Ly AP = 1F =P+ 1P

as desired. d

Definition. We denote by my f the orthogonal projection of f on W.

Note. ||[mw f|| < ||f]l, with equality iff mw f = f - ie., iff f € W. (For, by 10(c),
AP = llmw 112 + 11f = 7w f1I%)

It’s easy to see that

W={feV:mwf=Fft={mwf:feV}

Definition. The ORTHOGONAL COMPLEMENT of W in V is defined to be

Wt:={heV:hlgVge W}

Note that W+ = {h € V : mwh = 0}.

11.
12.

13.
14.

W+ is a subspace of V.

mw : V — V is linear, idempotent and self-adjoint.

Proof. We abbreviate my to m. Let aj,a2 € R and f, f1, fo € V be arbitrary.
Then we have by (10) that f; — 7 f; and fo — 7 f; are in W+ and hence by (11)
that

(a1 f1 + asfo) = (a7 fi + agmfo) = ar(fr = 1 f1) + ao(fo —7fo) €WH (%)

Since 7 f1, 7 fo € W and W is a subspace, a;7 fi + as7 fo € W therefore, by (10)
and (*) above, m(a1f1 + a2f1) = ey f1 + agmfo. Thus 7 is linear. We also have
by (10) that 7(7f) =« f, since 7 f € W; thus 7 is idempotent.

Finally, since 7 f1, 7 fo € W, once more by (10) we have that (f; — 7 f1, 7 f2) = 0;
thus

(funfe) = (i + (nfy = 7fi),nfo) = ((fL — nf1) + 7fr, 7 fa)
= (fi = nfi,7f2) + (vfr,7fo) = (7 fr, 7 fa).

Similarly, (7 f1, f2) = (nf1,7f2), so that (fi,7fs) = (nf1, f2). Thus 7 is self-
adjoint. O

We have from the above description of my that Wt ={f —mw f: f € V}.

(This is a converse to (12).) If U : V — V is linear, idempotent and self-adjoint,

then U is an orthogonal projection to some subspace (i.e., there is a subspace
W' of V so that U = my).



15. Given an arbitrary f € V, we may write uniquely f = g + h, with g € W
and h € W+. In fact, ¢ = mwf and h = Ty f. From this we conclude that
TwLomy =0 =mwomyr and (W)L =W.

16. Suppose that W; and W, are two subspaces of V such that Wy, C W;. Then
mwyf = Tw,(Tw, f) and ||mw, f|| < ||7w, f]|, with equality iff 7w, f € WS.

Lecture 3

Note. The above concepts and statements (regarding projections etc.) are valid in
any Hilbert space, but we are particularly interested in the case V = L%(S, A, P).

Note. If V is a Hilbert space and W is a subspace of V, then W is a Hilbert space
when equipped with the same inner product as V.

Homework 1

1. If V = L*(S, A, P), show that V is finite-dimensional if P is concentrated on a
finite number of points in S. You may assume that the one-point sets {s} are
measurable.

2. Suppose that S = [0,1], A is the Borel field (on [0,1]) and P is the uniform
probability measure. Let V = L? and, for I, J fixed disjoint subintervals of S,
define

W=W;:={feV:f=0ae onl and f is constant a.e. on J}.

Show that W is a subspace and find W+. Also compute 7y f for f € V
arbitrary.

3. Let S =R!, A = B! and P be arbitrary, and set V = L%. Suppose that s € V is
such that E(e%) < oo for all ¢ sufficiently small (i.e., for all ¢ in a neighbourhood
of 0). Show that the subspace spanned by {1,s,s? ...} is equal to V. (HINT:
Check first that the hypothesis implies that 1, s, s?,... are indeed in V. Then
check that, if g € V satisfies g L s? for r =0,1,2,..., then g = 0 a.e.(P). This
may be done by using the uniqueness of the moment-generating function.)

Definition. Let S = {s} and V = L%*(S, A, P). Let (R,C) be a measurable space,
and let F : S — R be a measurable function. If we let @ = P o F~! (so that
Q(T) = P(F~[T])), then F(s) is called a STATISTIC with corresponding probability
space (R,C,Q). W = L*(R,C, Q) is isomorphic to the subspace W = L?(S, F~[C], P)
of V.



Application to prediction

Let S = R¥*! A4 = B**! be the Borel field in R¥*!, P be arbitrary and V = L2. Let
S = (Xl,,Xk,Y)

A PREDICTOR of Y is a Borel function G = G(X) of X = (X,...,Xx). We
assume that F(Y?) < oo and take the MSE of G, i.e., E(|G(X) —Y|?), as a criterion.
What should we mean by saying that G is the “best” predictor of Y?

i. No restriction on G: Consider the set W of all measurable G = G(X) with
E(|G|?) < co. W is clearly (isomorphic to) a subspace of V and, for G € W,
E(G-Y) =Y -G

Then the best predictor of Y is just the orthogonal projection of Y on W, which
is the same as the conditional expectation of Y given X = (Xi,..., X).

Proof (informal). Let G*(X) = E(Y | X). For an arbitrary G = G(X) € W,
Y = GI* =Y =GP + |G - G*| +2(Y - G*,G" - G),
but
Y -GG -G)=E(Y - G")(G*-G))

= B[B((Y - 6")(G" - G) | X))
= B[(G" - G)E(Y - G" | X)] =0,

so that ||Y — G||? = ||Y — G*||* + ||G — G*||?>, whence G* must be the unique
projection.

ii. G an affine function: We require that G' be an affine function of X — i.e.,
that there be constants ag,ay,...,a; such that G(X) = G(Xy,...,Xy) =
ag + Zle a; X; for all X. The class of such G is a subspace W' of the space
W defined in the previous case. The best predictor of Y in this class is the
orthogonal projection of Y on W', which is called the LINEAR REGRESSION of
Y on (Xl, .. .,Xk).

Lecture 4
We return to predicting Y using an affine function of X. We define

W .= Span{1, X1, ..., X}

and denote by ¥ the orthogonal projection of ¥ on W. Y is characterized by the two
facts that

(*) Y-Y 11, and



)Y -Y LXfori=1,....k

where X? = X; — EX;. Since W = Span{1, X1,..., X;}, we may suppose that ¥ =
ﬁ0+zz— B;X?. From (*), B = EY; and, from (**) Y8 = ¢ (the ‘normal equation’),
where 8 = (B1,...,8:)7F, ¢ = (cl,...,ck)T, Y = (0y4), ¢ = BE(Y°X?) = Cov(X,,Y),
oy = E(X?X]) = Cov(X;,X;) and Y® = Y — EY. We have (by considering the
minimization problem) that there exists a solution 8 to these two equations; and
(by unlqueness of the orthogonal projection) that, if 8 is any such solution, then
Y =08+ Zl L BiX3. 9. ¥ is positive semi-definite and symmetric.

Homework 1

4. Show that ¥ is nonsingular iff, whenever P(a; X? + -+ a;, X2 =0) =1, a; =
-+ = a5 = 0; and that this is true iff, whenever P(by+b; X1+ - -+, X = 0) = 1,
bp=by=---=b=0.

Let us assume that ¥ is nonsingular; then = X~'cand ¥ = EY + ¢ 8, X?0.
Note.

i. Y is called the LINEAR REGRESSION of Y on (Xj,...,Xx), or the AFFINE
REGRESSION or the LINEAR REGRESSION of Y on (1, X, ..., X).

ii. Y0 =% B,X? is the projection of Y° on Span{X?,..., X?}. Thus
VarY = [|[Y°)2 = [|[Y° = YO |2+ ||Y°||? = Var(Y = V) + Var ¥
or, more suggestively, Var(predictand) = Var(residual) + Var(regression).
A related problem concerns

R:= sup Corr(Y,a:X; + -+ axXx) =

A1,.-,0)

We have that

Corr (Y, Y aiXi) = Corr (Y, Y a:X?) = W‘JIIIIW Cov(Y?, L)

1 1 L
= Tvonnrn YoaL = (Y07 )7
ey B = e\

where L = 3 a;X?. Since YO = (Y0 — V) + Y?,

L N L N
YO — 1 =(Y0 =) < |IY°
( ’IILH) ( ’||L||)—” I

with equality iff I_I—éﬂ = dY? for some d > 0 (we have used the Cauchy-Schwarz in-
equality). In particular, ¢(8, ..., Bx) (with ¢ a positive constant) are the maximizing
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choices of (ay,. .., ax). Plugging in any one of these maximizing choices gives us that

R= “52” and hence that R? = X‘;)’C, from which we conclude that

(1 — R®)VarY = Var(Y - Y).

From the above discussion we see that Hilbert spaces are related to regression,
and hence to statistics.

Note. Suppose that £k = 1, and that we have data

Serial #
1 (.’1?1 ) yl)
2 ($2a y2)
n (Tns Yn)-

We may then let S be the set consisting of the points (1; z1,%1), - - -, (7 Zn, Yn), to each
of which we assign probability 1/n. If we define X (4, z;,y;) = z; and Y (4, 23, vi) = ¥
fori=1,2,...,n, then EX =T and EY = 7. Y is the affine regression of y on z
and R is the correlation between x and y, which is

k| (o) -]

This extends also to the case k£ > 1.

Lecture 5

Classical estimation problem for inference

In the following, S is a sample space, with sample point s; A is a o-field on S; and
P is a set of probability measures P on A, indexed by a set © = {6}. We call © the
PARAMETER SPACE. (The distinction between probability and statistics is that, in
probability, © has only one element, whereas, in statistics, © is richer.)

Suppose we are given a function g : © — © and a sample point s € S. We are
interested in estimating the actual value of g using s, and describing its quality.

Ezample 1. Estimate g(6) from iid X; = 6 + ¢;, where the e; are iid with distribution
symmetric around 0. We let S = {X;,...,X,} and © = (—00,00), and define g by
g(8) = 0 for all # € ©. We might have:

a. X;siid N(0,1).

b. X;s iid double exponential with density 1e~1*~% (for —co < z < 00), with
respect to Lebesgue measure.
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c. X;s iid Cauchy, with density m

Possible estimates are ¢;(s) = X, t2(s) = median{X,..., X, } and
t3(s) = 10% of the trimmed mean in {X1,..., X,};

there are many others.

In the general case, (S, A4, P), 8 € O, an ESTIMATE (of g(f)) is a measurable
function ¢ on S such that

Eo(t?) = [St(s)QdPg(s) < ooVl e O.

What is a “good” estimate?

Suppose that the loss involved in estimating g(#) to be t when it is actually g is
L(t, g). (Some important choices of loss functions are L(t, g) = |t — g| — the absolute
error — and L(t,g) = |t — g|> — the square error.) Then the EXPECTED LOSS for a
particular estimate ¢ (and 6 € ©) is

R(6) = Eo(L(t(s), 9(6)))-

R, is called the RISK FUNCTION for t. For t to be a “good” estimate, we want R;
“small”.
We consider now a heuristic for the square error function:

L

T t
g

Assume that L > 0 and that, for each g, L(g,g) = 0 and L(-, g) is a smooth function
of t. Then

L{t,6) = 0+ (t = 6) 5rL{t, )| + 50(o)(t — 9 + - = salg)(t = g)? + -

where a(g) > 0. Let us assume that in fact a(g) > 0; then we define
1
Ry(6) = Sa(9)Ea(t(s) ~ 9(9))",

so that R; is locally proportional to Ey(t — g)?, the MSE in ¢ at 6.
Assume henceforth that R;(f) = E4(t — g)? and denote by b;(6) = Ey(t) — g(6)
the ‘bias’ of ¢ at 6.
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1. Ry(6) = Vare(t) + [0:(6)]”.

Note. It is possible to regard Py(|t(s) — g(6)| > €) (for € > 0 small) - i.e., the
distribution of ¢t — as a criterion for how “good” the estimate t is. Now, for Z > 0,
EZ = [° P(Z > z)dz; hence

RA®) = [ Pu(lte) - 9] > V3

There are several approaches to making R; small. Three of them are:

ADMISSIBILITY: The estimate ¢ is INADMISSIBLE if there is some estimate t' such
that Ry (6) < Ry(6) for all § € ©, and the inequality is strict for at least one 6. t; is
admissible if it is not inadmissible. (This may be called the “sure-thing principle”.)

MINIMAXITY: The estimate o is MINIMAX if

sup Ry, (6) < sup R:(6)
90 0€O

for all estimates t.

BAYES ESTIMATION: Let A be a probability on © and let R, = [, R.(6)d) be the

average risk with respect to A. The estimate t* is then BAYES (with respect to \) if
Rt* = inft ﬁt.

2. If t* has constant risk, i.e., Ry« (6) = c for all § € ©, and t* is Bayes with respect
to some probability A on O, then t* is minimax.

Proof. Let t be arbitrary; then

¢ =sup R (0) = Ry < Ry < sup Ry(6).
9 6

O

3. If t* is the essentially unique Bayes estimate with respect to a probability A on
©, then t* is admissible.

Proof. Suppose that ¢ is such that R;(6) < Ry (6) for all § € ©; then R, < R;..
Hence, by the definition of essential uniqueness,

Po(t* = t) =1Vl € 06;
it follows that R (0) = R:(6) for all § € ©. O

Another approach to making R; small is:

UNBIASEDNESS: We require all estimates ¢ to be unbiased — i.e., Ey(t) = g(6) <
b:(6) =0 for all € ©.
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Several questions arise:
i. Are there any unbiased estimates at all?

ii. If so, which ¢, if any, has minimum variance at a given 87 (We call such a ¢t a
LOCALLY MINIMUM-VARIANCE UNBIASED ESTIMATE.)

iii. If there is a locally minimum variance unbiased estimate, is it independent of
6?7 (If so, then it is the uniformly minimum-variance unbiased estimate. If this
estimate exists, what is it?)

There are two approaches: (I) general; and (II) sufficiency (i.e., via complete
sufficient statistics).
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