
Chapter 1

Note on the notation: Throughout, Professor Bahadur used the symbols φ(s),
Ψi(s), Ψ2(s), . . . to denote functions of the sample that are generally of little impor-
tance in the discussion of the likelihood. These functions often arise in his derivations
without prior definition.

Lecture 1

Review of L2 geometry

Let (S, A, P) be a probability space. We call two functions /i and /2 on S EQUIVA-

LENT if and only if P(fχ = /2) = 1, and set

V = L2(S, Λ P) := {/ : / is measurable and E(f2) = [ f(s)2dP(s) < oo},
Js

where we have identified equivalent functions. We may abbreviate L2(S, A, P) to
L2(P) or, if the probability space is understood, to just ZΛ For f,g G V, we define
| | / | | = +y/Eψ) and (/,g) = E(f g), so that | | / | | 2 = (/, /) . Throughout this list /
and g denote arbitrary (collections of equivalent) functions in V.

1. V is a real vector space.

2. ( , •) is an inner product on V - i.e., a bilinear, symmetric and positive definite
function.

3. CAUCHY-SCHWARZ INEQUALITY:

with equality if and only if / and g are linearly dependent.

Proof. Let x and y be real; then, by expanding || | | in terms of ( , ), we find
that

0 < | | x / + yg\\2 = x2\\f\\2 + 2xy{f,g) + y2\\g\\2,

from which the result follows immediately on letting x = \\g\\ and y = | | / | | . D



4. TRIANGLE INEQUALITY:

Proof.

|2
5

again by expanding | | || in terms of ( , •) and using the Cauchy-Schwarz inequal-
ity. D

5. PARALLELOGRAM LAW:

Proof. Direct computation, as above. D

6. 11 | | is a continuous function on V, and ( , •) is a continuous function on V x V.

L2

Proof. Suppose fn —> /; then

and

From these two statements it follows that l im| | / n | | = | | / | | . Π

7. V is a complete metric space under || | | - i.e., if {gn} is a sequence in V and

Wΰn — 9m\\ -> 0 as n, m —» oo, then 3j eV such that \\gn — j \ \ —> 0.

Proof. The proof proceeds in four parts,

l {9n} is a Cauchy sequence in probability:

P(\9m-9n\ > ε) = P{\gm-gn\
2 > e2) < —E(\\gm-gn\\2) = -^\\gm-9n\\2'

2. Hence there exists a subsequence {gnk} converging a.e.(P) to, say, g.

3. g e V.

Proof.

E(\g\2) = j(\ιmjlk)dP < ljmjglkdP

by Fatou's lemma; but {f g^kdP = ||^nfc||
2} is a bounded sequence, since

|} is Cauchy. •



Proof. For any ε > 0, choose k = k(ε) so that \\gm - gn\\ < ε whenever

m,n > fc(ε). Then

j \gn - g\2dP = I(Hm \gn - 9nk\
2)dP

Fatou /*

< lim / \gn - gnk\dP = lim \\gn - g

provided that n > ft(ε).

D

Let W be a subset of V. If VF is closed under addition and scalar multiplication,
then it is called a LINEAR MANIFOLD in V. If, furthermore, W is topologically closed,
then it is called a SUBSPACE of V. Note that a finite-dimensional linear manifold
must be topologically closed (hence a subspace).

If C is any collection of vectors in V, then let CΊ be the collection of all finite
linear combinations of vectors in C and C<ι be the closure of C\. Then C2 is the
smallest subspace of V containing C, and is called the subspace SPANNED by C. C\
is called the linear manifold spanned by C.

Let W be a fixed subspace of V, and / a fixed vector in V. We say that the vector
g e W is an ORTHOGONAL PROJECTION of / to W if and only if

H / d l m f H / Λ | |

8. There exists a unique orthogonal projection g of / to W.

Proof. Let ί — vnίhew 11/ — ̂ | | , and let {gn} be a sequence in W such that

11/ ~ 9n\\ -> ̂  then we have

- - /

>t
converges to t converges to i

from which we see that \\gm - gn\\* -> 0 as m, n -> 00. Thus {gn} is a Cauchy
sequence; but this means that there is some g such that gn —>• g. Since W is a
subspace of V, it is closed; so, since each gn e W, so too is g eW. D

Lecture 2

Definition. For two vectors fuf2 G V, we say that /i is ORTHOGONAL to /2, and
write /i _L /2, if and only if (fu /2) = 0.

Throughout, we fix a subspace W of V and vectors /, fu f2 G V\



9. PYTHAGOREAN THEOREM (and its converse):

10. a. Given the above definition of orthogonality, there are two natural notions
of orthogonal projection:

(*) 7 G W is an orthogonal projection of / on W if and only if

(**) 7 (= VF is an orthogonal projection of / on W if and only if

(/ - 7 ) JL g Vg G W.

These two definitions are equivalent (i.e., 7 satisfies (*) if and only if it
satisfies (**)).

b. Exactly one vector 7 G W satisfies (**) - i.e., a solution of the minimisation
problem exists and is unique.

= ιi7iι2+ιι/-7iι2

Proof of (10).

a. (=$) Choose h 6 W. For all real x, 7 + xh € W also. Therefore, if (*)
holds, then (setting δ = f — 7)

^x2\\h\\2-2x(δ,h) >0) VzeR.

This is possible only if (<5, h) = 0. Thus (**) holds.

(-Φ=) If (**) holds then we have

( ( / - 7) J- (7 - Λ) S ||/ - h\\2 = ||/ - 7 | | 2 + 1 | 7 - ̂ ll2

=> \\f - h\\2 > \\f - Ί\\2) Vh e W

Thus (*) holds.

b. Suppose that both 71 and 72 are solutions to (**) in W. Since 71—72 £ W,
(/ - 7χ) _L (71 - 72) and hence, by (9),

By (a), however, 71 and 72 both also satisfy (*), so

| | / 7 l | |
gew

and hence H71 - 7 2 | | 2 = 0 => 71 =



c. Since 7 G W,

as desired. Π

Definition. We denote by πwf the orthogonal projection of / on W.

Note. \\πwf\\ < 11/11, with equality iff πwf = / - i.e., ififeW. (For, by 10(c),

II/II2 = IKw/ll 2 + l l / "
It's easy to see that

W = {/ G V : ττwf = /} = { W :feV}.

Definition. The ORTHOGONAL COMPLEMENT of W in V is defined to be

W±:={heV:h±gVgeW}.

Note that WL = {/ι G V : πw/ι = 0}.

11. W-1 is a subspace of V.

12. TΓVK V -ϊ V is linear, idempotent and self-adjoint.

Proof. We abbreviate πw to π. Let a^a2 G R and /, Λ,/2 G F be arbitrary.
Then we have by (10) that /1 — ττ/i and /2 — π/2 are in VF1- and hence by (11)
that

(αi/i + 02/2) - (αiπ/x + α2π/2) = αi(Λ - π/χ) + α2(/2 - τr/2) G ̂  (*)

Since ττ/i, τr/2 G W and W is a subspace, θχπ/i + α2τr/2 G Ŵ ; therefore, by (10)
and (*) above, π(aιfι + α2/i) = αiτr/i + α2π/2. Thus π is linear. We also have
by (10) that τr(τr/) = π/, since π/ G VF; thus TΓ is idempotent.

Finally, since π/i, π/2 G W, once more by (10) we have that (/1 — π/i, π/2) = 0;
thus

(Λ, π/2) = (/1 + (TΓ/! - π/x), τr/2) = ((Λ - π/0 + 7r/1? τr/2)

= (/1 - τr/i,π/2) + (τr/i,π/2) = (πfι,πf2).

Similarly, (πfuf2) = (πfι,πf2), so that (/i,τr/2) = (πfuf2). Thus π is self-
adjoint. D

13. We have from the above description of % that W-1- = {/ — πw/ : / G

14. (This is a converse to (12).) lΐU :V ^-V is linear, idempotent and self-adjoint,
then U is an orthogonal projection to some subspace (i.e., there is a subspace
W of V so that U = πw>).



15. Given an arbitrary / G V, we may write uniquely / = g + Λ, with g G VF
and h G W^. In fact, g = πwf and h = πw±f. From this we conclude that
τr\γ± o TΓW Ξ O Ξ πw o πw±. a n d (VF1)-1" = W.

16. Suppose that W\ and W2 are two subspaces of V such that W2 C Wi. Then
) a n d Ikwa/ll < IKwi/H, with equality ΊfiπWlf G W2

Lecture 3

Note. The above concepts and statements (regarding projections etc.) are valid in
any Hubert space, but we are particularly interested in the case V = L2 (5, *4, P).

Λfoίe. If V is a Hubert space and W is a subspace of V, then VF is a Hubert space
when equipped with the same inner product as V.

Homework 1

1. If V = L2(5, .A, -P), show that V is finite-dimensional if P is concentrated on a
finite number of points in S. You may assume that the one-point sets {s} are
measurable.

2. Suppose that S = [0,1], A is the Borel field (on [0,1]) and P is the uniform
probability measure. Let V = L2 and, for 7, J fixed disjoint subintervals of 5,
define

W — Wjtj := {/ G V : / = 0 a.e. on / and / is constant a.e. on J}.

Show that W is a subspace and find WL. Also compute πwf for / G V
arbitrary.

3. Let 5 = R1, A = i?1 and P be arbitrary, and set V = L2. Suppose that s G V is
such that E(ets) < oo for all t sufficiently small (i.e., for all t in a neighbourhood
of 0). Show that the subspace spanned by {1, s, s2,...} is equal to V. (HINT:

Check first that the hypothesis implies that 1, s, s2,... are indeed in V. Then
check that, if g G V satisfies g _L s2 for r = 0,1, 2,..., then p = 0 a.e.(P). This
may be done by using the uniqueness of the moment-generating function.)

Definition. Let S = {s} and V = L2(5, ̂ 4, P). Let (R,C) be a measurable space,
and let F : S —> R be a measurable function. If we let Q = P o F " 1 (so that
Q(Γ) = P(F~1[T])), then F(s) is called a STATISTIC with corresponding probability
space (i?, C, Q). W = L2(#, C, Q) is isomorphic to the subspace W = L2(5, F " 1 ^ ] , P)
of V.



Application to prediction

Let S = Rk+\ A = Bk+1 be the Borel field in R*+1, P be arbitrary and V = L2. Let

s = (Xu...,Xk;Y).
A PREDICTOR of F is a Borel function G = G(X) of X_ = (Xi,. . . ,Xk) We

assume that £ ( F 2 ) < oo and take the MSE of G, i.e., E{\G{X) - Y\2), as a criterion.
What should we mean by saying that G is the "best" predictor of YΊ

i. No restriction on G: Consider the set W of all measurable G = G(X) with
E(\G\2) < oo. VF is clearly (isomorphic to) a subspace of V and, for G G W,
E(G-Y)2 = \\Y-G\\2.

Then the best predictor of Y is just the orthogonal projection of Y on W, which
is the same as the conditional expectation of Y given X_ = (Xι,...,

Proof (informal). Let G*(X) = E(Y \ X). For an arbitrary G = GQQ G

| | y - G\\2 = \\Y - G*| |2 + | |G - G*| | 2 + 2(Y - G\ G* - G),

but

(F - G*, G* - (?) = E((r - G*)(G* - G))

= £?[((?* - G)E(Y - G* I 20] = 0,

so that | | F - G| | 2 = \\Y - G*| |2 + \\G - G*| |2, whence G* must be the unique
projection.

ii. G an affine function: We require that G be an affine function of X_ - i.e.,
that there be constants α 0 , α i 5 . . . , a k such that G(X_) = G(Xχ, . . . ,Xk) =
α0 + Σi=ι diXi for all X_. The class of such G is a subspace W of the space
W defined in the previous case. The best predictor of Y in this class is the
orthogonal projection of Y on W7, which is called the LINEAR REGRESSION of
Yon(Xu...,Xk).

Lecture 4

We return to predicting Y using an affine function of X_. We define

and denote by Y the orthogonal projection of Y on W. Ϋ is characterized by the two
facts that

(*) Y-Ϋll, and



(**) Y-Ϋ(

where X? — X{ — EXit Since W = Span{l, Xι,..., Xk}, we may suppose that Ϋ =
βo + ΣLi βiχi F r o m (*)> βo = ̂ ^ and, from (**), Σβ = c (the 'normal equation'),
where β = (ft,..., ft)Γ, c = (cu . . . , c,) τ, Σ = (σy), Q - £ ( ^ ° ) = Cov(X, , F),
cry = E(XfX^) = Cov(Xi,Xj) and F° = Y - EY. We have (by considering the
minimization problem) that there exists a solution β to these two equations; and
(by uniqueness of the orthogonal projection) that, if β is any such solution, then
Ϋ = β0 + Σi=ι βiXi Σ is positive semi-definite and symmetric.

Homework 1

4. Show that Σ is nonsingular iff, whenever P[aιX^ + + Uk^t = 0) = 1, αi =
... = a*; = 0; and that this is true iff, whenever P(bo+bιXι + - +bkXk = 0) = 1,
bo = h = = bk = 0.

Let us assume that Σ is nonsingular; then β = Σ - 1 c and Ϋ = EY + Σ*=1 βiXi>

Note.

i. Ϋ is called the LINEAR REGRESSION of Y on (Xu...,Xk), or the AFFINE

REGRESSION Or the LINEAR REGRESSION of Y on (1, Xu . . . , Xk).

π. y° = Σ*=ι β{χf is the projection of Y° on S p a n ^ 0 , . . . , X%}. Thus

VarF = | |y°| |2 = ||y° - y°| |2 + | |y°| |2 = Var(y -Ϋ) + Vary

or, more suggestively, Var (predict and) = Var (residual) + Var (regression).

A related problem concerns

R := sup Corr(y, aλXλ H h akXk) = ?

We have that

=
\\y°\\\\L\\

where L = £ α^f. Since F° = (Y° - Ϋ°) + Ϋ°,

J~V ' Ϊ M J -

γ° L \
ΊWI

with equality iff TT̂TT = dY° for some d > 0 (we have used the Cauchy-Schwarz in-

equality). In particular, c(βι,..., βk) (with c a positive constant) are the maximizing



choices of (α x , . . . , ak). Plugging in any one of these maximizing choices gives us that

R = jjl̂ ij and hence that R2 — ̂ y, from which we conclude that

Prom the above discussion we see that Hubert spaces are related to regression,
and hence to statistics.

Note. Suppose that k = 1, and that we have data

Serial #

1
2

n

X2,y2)

cn,yn)-

We may then let S be the set consisting of the points (1; xi, j/i),..., (n; xn, yn), to each
of which we assign probability 1/n. If we define X(i,Xi,yi) = X{ and Y{i,Xi,yi) — yι
for 2 = 1, 2,..., n, then £"X = x and 2?F = y. F is the affine regression of y on x
and i? is the correlation between x and ?/, which is

1

SχSy

This extends also to the case A; > 1.

Lecture 5

Classical estimation problem for inference

In the following, S is a sample space, with sample point s; A is a σ-field on 5; and
V is a set of probability measures P on A, indexed by a set θ = {#}. We call θ the
PARAMETER SPACE. (The distinction between probability and statistics is that, in
probability, θ has only one element, whereas, in statistics, θ is richer.)

Suppose we are given a function g : θ -> θ and a sample point s € S. We are
interested in estimating the actual value of g using 5, and describing its quality.

Example 1. Estimate g(θ) from iid X{ = θ + e*, where the e» are iid with distribution
symmetric around 0. We let S = {Xι,..., Xn} and θ = (-00,00), and define g by
g(θ) = θ for all θ G θ . We might have:

a. Xi8iidN(θ,l).

b. XiS iid double exponential with density \e~\χ~~θ

respect to Lebesgue measure.
(for -00 < x < 00), with

10



c. XiS iid Cauchy, with density

Possible estimates are tι(s) = X, t2(s) = median{-XΊ,..., Xn} and

ts(s) = 10% of the trimmed mean in {Xu ..., Xn};

there are many others.

In the general case, (S,Λ,PΘ), θ e θ , an ESTIMATE (of g(θ)) is a measurable
function t on S such that

Eθ(t2) = ί t(s)2dPθ(s)< o o V 0 e θ .

What is a "good" estimate?
Suppose that the loss involved in estimating g{θ) to be t when it is actually g is

L(ί, g). (Some important choices of loss functions are L(ί, g) = \t — g\ - the absolute
error - and L(t,g) = |ί — g\2 - the square error.) Then the EXPECTED LOSS for a
particular estimate t (and θ e θ ) is

J2t is called the RISK FUNCTION for t. For t to be a "good" estimate, we want Rt

"small".
We consider now a heuristic for the square error function:

Assume that L > 0 and that, for each g, L(g,g) = 0 and L{ ,g) is a smooth function
of ί. Then

L(t,g)=0 + (t-g)-L(t,g)
1

= \a{g){t-g)2

where a(g) > 0. Let us assume that in fact a(g) > 0; then we define

Rt{θ) :=\a{g)Eθ{t{s) - g{θ))\

so that Rt is locally proportional to Eg(t — g)2, the MSE in t at θ.
Assume henceforth that Rt(θ) = Eθ(t - g)2 and denote by bt(θ) = Eθ(t) - g(θ)

the 'bias' of t at θ.

11



= WΆτθ(t)+[bt(θ)]2.

Note. It is possible to regard Pβ(\t{s) - g(θ)\ > ε) (for ε > 0 small) - i.e., the
distribution of t - as a criterion for how "good" the estimate t is. Now, for Z > 0,
EZ = Jo°° P(Z > z)dz\ hence

ifc(0)= / Pθ{\t{8)-g{θ)\>y/Z)dz.

Jo

There are several approaches to making Rt small. Three of them are:
ADMISSIBILITY: The estimate t is INADMISSIBLE if there is some estimate tf such
that Rtfίβ) < Rtiβ) for all 0 G θ, and the inequality is strict for at least one θ. to is
admissible if it is not inadmissible. (This may be called the "sure-thing principle".)

MINIMAXITY: The estimate t0 is MINIMAX if

supi?ίo(0) <suipRt(θ)
θee θee

for all estimates t.

BAYES ESTIMATION: Let λ be a probability on θ and let Rt = JθRt(θ)dλ be the
average risk with respect to λ. The estimate t* is then BAYES (with respect to λ) if
Rt* = inft it!*.

2. If t* has constant risk, i.e., Rt* (θ) = c for all ί e θ , and t* is Bayes with respect
to some probability λ on θ, then t* is minimax.

Proof. Let t be arbitrary; then

c = sup Rt* (θ) = Rt* <Rt< sup Rt(θ).
Θ Θ

D

3. If t* is the essentially unique Bayes estimate with respect to a probability λ on
θ, then t* is admissible.

Proof. Suppose that t is such that Rt(θ) < Rt*(θ) for all θ G θ; then ~Rt < ~Rt*.
Hence, by the definition of essential uniqueness,

it follows that Rt* (θ) = Rt(θ) for all θ eθ. D

Another approach to making Rt small is:

UNBIASEDNESS: We require all estimates t to be unbiased - i.e., Eθ(t) = g(θ) o
bt(θ) = 0 for all θeθ.

12



Several questions arise:

i. Are there any unbiased estimates at all?

ii. If so, which ί, if any, has minimum variance at a given 0? (We call such a ί a
LOCALLY MINIMUM-VARIANCE UNBIASED ESTIMATE.)

iii. If there is a locally minimum variance unbiased estimate, is it independent of
ΘΊ (If so, then it is the uniformly minimum-variance unbiased estimate. If this
estimate exists, what is it?)

There are two approaches: (I) general; and (II) sufficiency (i.e., via complete
sufficient statistics).
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