Chapter 2

Comparing posterior
distributions to Gibbs priors

2.1. BOUNDS RELATIVE TO A GIBBS DISTRIBUTION

We now come to an approach to relative bounds whose performance can be
analysed with PAC-Bayesian tools.

The empirical bounds at the end of the previous chapter involve taking suprema
in 6 € O, and replacing the expected margin function ¢ with some empirical coun-
terparts @ or @, which may prove unsafe when using very complex classification
models.

We are now going to focus on the control of the divergence ﬂC[p, Texp(—f R)]. It
is already obvious, we hope, that controlling this divergence is the crux of the
matter, and that it is a way to upper bound the mutual information between
the training sample and the parameter, which can be expressed as fK[p,]P’(p)] =
fK[p, wexp(_gR)] — K[P(p),wexp(_gm], as explained on page 14.

Through the identity

(2.1) K[p, Texp(—pr)] = B[P(R) = Texp(—pr) (R)]
+ :K(P, 77) -X [’”exp(—ﬂR)v 7T] »

we see that the control of this divergence is related to the control of the difference
P(R) — Texp(—gr) (R). This is the route we will follow first.

Thus comparing any posterior distribution with a Gibbs prior distribution will
provide a first way to build an estimator which can be proved to reach adaptively
the best possible asymptotic error rate under Mammen and Tsybakov margin as-
sumptions and parametric complexity assumptions (at least as long as orders of
magnitude are concerned, we will not discuss the question of asymptotically opti-
mal constants).

Then we will provide an empirical bound for the Kullback divergence ZK[p,
Texp(—3 R)] itself. This will serve to address the question of model selection, which
will be achieved by comparing the performance of two posterior distributions possi-
bly supported by two different models. This will also provide a second way to build
estimators which can be proved to be adaptive under Mammen and Tsybakov mar-
gin assumptions and parametric complexity assumptions (somewhat weaker than
with the first method).
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52 Chapter 2. Comparing posterior distributions to Gibbs priors

Finally, we will present two-step localization strategies, in which the performance
of the posterior distribution to be analysed is compared with a two-step Gibbs prior.

2.1.1. COMPARING A POSTERIOR DISTRIBUTION WITH A GIBBS PRIOR. Similarly
to Theorem 1.4.3 (page 37) we can prove that for any prior distribution 7 € M! (0),

(2.2) P{% ® %{exp [—Nlog(l — Ntanh(3)R')

— 1’ — Nlog[cosh(%)]m H} <1

Replacing 7 with mey,(—gr) and considering the posterior distribution p®meyp(—r),
provides a starting point in the comparison of p with mey,(—gr); we can indeed state
with P probability at least 1 — € that

(2.3) - Nlog{l — tanh (%) [p(R) - ﬂexp(_ﬁR)(R)] }
<A[p(r) = Texp(—pr) ()] + Nlog[cosh(F)] [p ® Texp(—pr) ] (M)
+X [/% chp(fﬁR)] — log(e).

Using equation (2.1, page 51) to handle the entropy term, we get

(24) = Nlog{1 — tanh(3) [p(R) = exp—pm) (B)] } = Blo(R) = Texpi o) (R)]
< ’Y[p(r) — Texp(—BR) (T)} +N lOg [COSh(%ﬂ P& Texp(—BR) (m/)
=+ K(pa ﬂ-) - jc[ﬂ'exp(—BR)v 7T] - log(e)
We can then decompose in the right-hand side y[p(r) — Texp(—gr) (r)] into (y —

M [p(r) = Texp—pr) ()] + A]p(r) — Texp(—pr)(r)] for some parameter A to be set
later on and use the fact that

Alp(r) = Texp(—pr)(r)] + N log [cosh(F)] p & Texp(—pr) (M’
+ X(p,

m’)
7) = K[Mexp(—pr) 7]
< Ap(r) +XK(p,m) + log{ [exp{ —Ar + N log[cosh()] p(

)]} }
= K[, Texp(—rr)] +10g{7Texp( Ar) [GXP{Nlog[COSh(%)] (m')}”,

to get rid of the appearance of the unobserved Gibbs prior e, (—gr) in most places
of the right-hand side of our inequality, leading to

THEOREM 2.1.1. For any real constants 3 and ~y, with P probability at least 1 —€,
for any posterior distribution p: Q — M}r(@), for any real constant A,

[N tanh() — 5] [P(R) - ﬂ-cxp(fﬁR)(R)]
< ~Nlog{1 ~ tanh(3) [ p(R) ~ Texp(—am) (F)] }
— B[p(R) = Texp(—pr) (R)]
< (v =N [p(r) = Texp(—pr) (1] + K[, Texp(—an)]
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+108{ Mexp(-r) [exp{ N Tog[cosh(3)] p(m') }] } ~ Tog(e)
= X[, Texp(—r)]
+108{ Tesp(—r) [exp{ (7 = N7 + N log[cosh(F)] o(m') }] }
— (7 = M) Texp(=sr) (1) — log(e).

We would like to have a fully empirical upper bound even in the case when A # ~.
This can be done by using the theorem twice. We will need a lemma.

LEMMA 2.1.2 For any probability distribution m € Mi(@), for any bounded mea-
surable functions g,h : © — R,

Texp(—g)(9) = Texp(—1) (9) < Texp(—g) (h) = Texp(—n) (h).

PROOF. Let us notice that

0 < K(Texp(—g)s Texp(~h)) = Texp(—g) (h) + IOg{W[eXP hﬂ} + K(Texp(—g) )

= Texp(—g) (M) = Texp(—n) (h) = K(Texp(—n)> T) + K(Texp(-g), T)
= Texp(—g) (1) = Texp(—n) () = K(Texp(=n), T) = Texp(=g)(9) — log{m [exp(~g)] }.
Moreover
—log{m [exp(=9)] } < Texp(—n) (9) + K(Texp(—n), ),

which ends the proof. [J

For any positive real constants # and )\, we can then apply Theorem 2.1.1 to
P = Texp(—ar), and use the inequality

A
(25) B [ﬂ-exp(fx\r) (’I") — Texp(—BR) (T)] < Texp(—Ar) (R) — TMexp(—fBR) (R)

provided by the previous lemma. We thus obtain with P probability at least 1 — ¢

~ N1og{1 — tanh ()3 [Fexp(-rn (1) = Texp—am ()] }
— Y [Texp(-2r) (1) = Texp(—r) ()]
< 10g{ Texp(ar) [exD{ N 10g [c0sh(F) | Tesp(-rn (m')}] } = Tog(e).
Let us introduce the convex function
F, o(z) = —=Nlog[1 — tanh(%)z] — az > [N tanh(%) — o]z.
With P probability at least 1 — ¢,

~ R (1) < it { Ty )
B

+ XFAY_%,TW {log{ﬂexp(_/\ﬂ [exp{Nlog [cosh( )] Texp(—ar) (m’)}] }

~tox(o)| }.

Since Theorem 2.1.1 holds uniformly for any posterior distribution p, we can apply
it again to some arbitrary posterior distribution p. We can moreover make the result
uniform in 8 and 7 by considering some atomic measure v € M#(R) on the real
line and using a union bound. This leads to
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THEOREM 2.1.3. For any atomic probability distribution on the positive real line
v € ML(RQ, with P probability at least 1 — €, for any posterior distribution p :
Q — ML(O), for any positive real constants 3 and v,

[V tanh(%) = 5] [p(R) — Texp( s (R)]
< F’Yﬂ [p(R) — Texp(—BR) (R)} < B(ﬂ? ﬂv P)/)a where

B(p7ﬂ77) = >\1€le,f)\1§’y {K[p, ﬂ-eXp(_XlT)]

A2€RA2> &Y tanh(F) !
+ (7 = A) [p(7) = Texp(—ram) (7)]
108 { Texp( a1 [exp{ N log [cosh ()] p(m) }| } — og ev(B)v(+)]

B
Jr('yf/\l))\—zFAflf_W log{
T A2

Texp(—Aar) {exp{Nlog [cosh( )] Texp(—ar) (m')}] }

— log [EV(ﬂ)V(v)]] }

IN

A ERL M <y
A2€R 2> 52 tanh() ™

=+ (’Y - )‘1) [p(r) — Texp(—Aar) (7‘)]
+ log{ﬁexp(,hr) {exp{Nlog [cosh(%)]p(m’)}} }
g (1=

A2 [% tanh(;) — /\%

exp{ N log [cosh(%)]Wexp(—Aar)(m')}] }

- {1 + B i} log [ev(B)v(7)] }

inf {x[l)v 7T'exp(*AlT)]

] log{ﬁexp(f,\ﬂ) [

)\72 [% tanh(%)—%]
where we have written for short v(B) and v(y) instead of v({B}) and v({7}).

Let us notice that B(p, 3,v) = +oo when v(8) = 0 or v(y) = 0, the uniformity
in 8 and « of the theorem therefore necessarily bears on a countable number of
values of these parameters. We can typically choose distributions for v such as the
one used in Theorem 1.2.8 (page 13): namely we can put for some positive real ratio

a>1
1

(k+1)(k+2)’

or alternatively, since we are interested in values of the parameters less than N, we
can prefer

v(ak) = keN,

Z/(Ozk) IOg(a> 0<k IOg(N)

log(aN)’ shs log(a)

We can also use such a coding distribution on dyadic numbers as the one defined
by equation (1.7, page 15).
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Following the same route as for Theorem 1.3.15 (page 30), we can also prove the
following result about the deviations under any posterior distribution p:

THEOREM 2.1.4 For any e €)0, 1(, with P probability at least 1—e¢, for any posterior
distribution p : @ — MY (©), with p probability at least 1 — &,

’Y; [ (A) 7Texp(fﬁR)(R)] S inf {IOg [dfp(g)]

ALERL A <y, dﬂ_exp(—)\ﬂ')
A2€R 2> & tanh(F) !

+ (7 - >‘1) [T(/o\) - 7Texp(—>\2r) (T)]
108 ] Mesp(-ur) [exp{ N 1og cosh(3)]m' ()} | } — log e€v(B)v(+)]

+ (- Al)ﬂF by {bg{

7>\2

Texp(—Aar) [GXP{Nlog [COSh(ﬁ)]Wexp(—m-)(m/)}} }

— log [eV(ﬂ)V(v)]] }

The only tricky point is to justify that we can still take an infimum in A; without
using a union bound. To justify this, we have to notice that the following variant of
Theorem 2.1.1 (page 52) holds: with P probability at least 1 — €, for any posterior
distribution p : @ — M} (©), for any real constant A,

p{ Py [R = mexpm) (R)] } < K[, Fexp( )]
N p{lnf 108 { Texp( ) [exp{ (7 = M) + Nlog[eosh(3)]m'(.9)}] }
(0= s ()] — 1os(e)
We leave the details as an exercise.

2.1.2. THE EFFECTIVE TEMPERATURE OF A POSTERIOR DISTRIBUTION. Using
the parametric approximation Texp(—ar)(r) — infer ~ ‘i—e, we get as an order of

magnitude

B(ﬂ—exp( A7) ﬂ? ) ('7 Al)de [)‘El _)\171}
A1

+ 2d.1
<08 A1 — Nlog[cosh(%)
A1

J
R G0 B A2
% [tanh(3) - 2]\ A2 — Nlog[eosh(7)]«
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Therefore, if the empirical dimension d. stays bounded when N increases, we are
going to obtain a negative upper bound for any values of the constants A\; > Ay > 3,
as soon as v and ¥ are chosen to be large enough. This ability to obtain negative
values for the bound B(Texp(—x,r);7,3), and more generally B(p,7, 3), leads the
way to introducing the new concept of the effective temperature of an estimator.

DEFINITION 2.1.1 For any posterior distribution p : @ — M () we define the
effective temperature T(p) € RU {—o00, 400} of p by the equation

p(R) = R).

exp(—% (
Note that (8 — Texp(—gr)(R) : RU {—00,4+00} — (0,1) is continuous and strictly
decreasing from esssup, R to essinf, R (as soon as these two bounds do not co-
incide). This shows that the effective temperature T'(p) is a well-defined random
variable.

Theorem 2.1.3 provides a bound for T'(p), indeed:

PROPOSITION 2.1.5. Let

B(p) = sup{B € R; inf B(p,8,7) <0},

B(p) = sup{p vt BB < i
where B(p, 3,7) is as in Theorem 2.1.3 (page 54). Then with P probability at least
1—¢, for any posterior distribution p : @ — MY (0), T'(p) < B(p) ™', or equivalently
PR) S Tl By (B)-

This notion of effective temperature of a (randomized) estimator p is interesting
for two reasons:

e the difference p(R) — Texp(—gr)(R) can be estimated with better accuracy
than p(R) itself, due to the use of relative deviation inequalities, leading to
convergence rates up to 1/N in favourable situations, even when infg R is not
close to zero;

e and of course Teyp(—gr)(R) is a decreasing function of 3, thus being able to
estimate p(R) — Texp(—gr)(R) with some given accuracy, means being able
to discriminate between values of p(R) with the same accuracy, although
doing so through the parametrization 3 +— Texp(—gr)(R), which can neither
be observed nor estimated with the same precision!

2.1.3. ANALYSIS OF AN EMPIRICAL BOUND FOR THE EFFECTIVE TEMPERATURE.
We are now going to launch into a mathematically rigorous analysis of the bound
B(Ttexp(—r,r),8,7) Provided by Theorem 2.1.3 (page 54), to show that infpeMi(@)

7r (R) converges indeed to infg R at some optimal rate in favourable sit-

exp|~B(p) R
uations.
It is more convenient for this purpose to use deviation inequalities involving M’

rather than m/. It is straightforward to extend Theorem 1.4.2 (page 35) to

THEOREM 2.1.6. For any real constants 3 and vy, for any prior distributions w, i1 €
Mi(@), with P probability at least 1 — n, for any posterior distribution p :  —
M} (O),

P& Texp(—BR) [\II% (R/a M/)] < Y& Texp(—BR) (T/) =+ K(p7 p’) - 10%(77)
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In order to transform the left-hand side into a linear expression and in the same
time localize this theorem, let us choose p defined by its density

Z—i(@l) = 071 exp |:ﬂR(091)

—7/{ %[R (61,62), M'(61,62)]
e

- % Sinh(%)R/(eh 92)}7rexp(fﬁR) (daQ):| 5
where C' is such that u(0) = 1. We get

K(p, 1) = Bp(R) +7p @ Texp(—pm) [V 2 (R, M) — T sinh(F)R'] + K(p, 7)

+ log{ /@ exp {,BR(Gl)

—’Y/e{ 2 [R'(61,62), M'(61,65)]

_ % sinh(% )R/ (61, 92)}7Texp(753) (d92)} W(dﬁl)}

= B[p(R) — Texp(—pr) (R)]
+ 7P @ Texp(-pm) (V3 (B, M') — - sinh ()R]
+ JC(/% 7) = K(Texp(-pR) )

+log{/®exp[—’y/e{ %[ "(61,62), M'(61,62)]
— & sinh(F) R’ (61, 92)}7Texp(—ﬂR) (d92)} Wexp(—ﬁR)(d91)}~

Thus with P probability at least 1 — 7,

(26) [N Sll’lh(%) - ﬁ] [p(R) — Texp(—AR) (R)]
[ — Texp(—BR) (’/‘)] + K(ﬂ? 7T) - :K(Trexp(f,BR)v 7T) - IOg(n) + C(ﬂ) 7)

where C(8,7) log{/@exp [’y/@{ =+ [R(01,02), M/ (01, 02)]
— Nsinh(F)R/ (6, 92)}7rexp(,ﬁ3) (dﬁg)} Texp(— BR)(dol)}.

Remarking that

X [pa 7Texp(fﬁR)] = ﬁ [p(R) — Texp(—BR) (R)] + j(:(p, 7T) - j<:(ﬂ-exp(fﬂlﬁ’,)a ﬂ-)a

we deduce from the previous inequality

THEOREM 2.1.7. For any real constants 3 and vy, with P probability at least 1 —n,
for any posterior distribution p : Q — M}i— (©),

N sinh(F)[p(R) = Texp(—pr) (R)] < 7[p(r) = Texp(—sr) ()]
+X[p, Texp(~sr) ] — log(n) + C(8,7).
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We can also go into a slightly different direction, starting back again from equa-
tion (2.6, page 57) and remarking that for any real constant A,

Ap(r) = Texp(—sr) ()] + K(p, ) = K(Texp(—pR)> T)
< )\,0( ) :K(p7 7T') + log{ﬂ-[exp(iAT)]} = iK[pa ﬂ-exp(—kr)] .
This leads to

THEOREM 2.1.8. For any real constants 3 and v, with P probability at least 1 —n,
for any real constant A,

[N sinh(3) — 8] [p(R) = Texp(—pr) ()]
< (v =N [p(r) = Texp(—pr) (1)] + K [P, Texp(—ar)] —log(n) + C(B,7),
where the definition of C(8,7) is given by equation (2.6, page 57).
We can now use this inequality in the case when p = 7y, (—ar) and combine it

with Inequality (2.5, page 53) to obtain

THEOREM 2.1.9 For any real constants 3 and vy, with P probability at least 1 — 7,
for any real constant X,

[]\éA Slnh( ) - ’7] [ﬂ—exp(—kr) (T) - Wexp(—ﬂR)(r)] < 0(57’7) - log(ﬂ)~

We deduce from this theorem

PROPOSITION 2.1.10 For any real positive constants B1, B2 and v, with P probabil-
ity at least 1 — 1, for any real constants A1 and Az, such that o < (27 Sinh(%)_1
and Ay > 13 sinh(3) 1,

Texp(—A17) (r) — TMexp(—Aar) (T) < Texp(—B1 R) (T) — Mexp(—pF2R) (T)
C(Br,7) +log(2/n) n C(B2,v) +log(2/n)

]\;j‘l sinh(F) — v v — N)‘Z sinh( )

Moreover, Texp(—g, ) ad Texp(—g, ) being prior distributions, with I probability
at least 1 — 7,

Y [Texp(—p1 &) () — Texp(—s21) ()]
S ’77Texp(—B1R) ® 7rexp(—ﬁz]{) [ 7% (R/ /)] - IOg(n)

Hence

PRrROPOSITION 2.1.11 For any positive real constants (1, P2 and 7y, with P prob-
ability at least 1 — n, for any positive real constants A1 and Ao such that Ao <
P23 sinh(3) ! and Ay > (1% sinh(F) 71,

7TeXp(—)\17") (T) - ﬂ—exp(—kzr) (7")
< Moxp(—iR) @ Texp(— ) [¥— 2 (R, M')]
L og(3) | C(0) +Iog() | (B +106(3)

v % sinh(§) —~v 7 — N’\2 sinh(%)

2R
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In order to achieve the analysis of the bound B(Texp(—x,r), 3,7) given by Theo-
rem 2.1.3 (page 54), it now remains to bound quantities of the general form

IOg{Trexp(—)\r) {exp{N log [COSh(%)] Texp(—Ar) (m/)}} }
= Ssup NlOg [COSh(%)] pe Texp(—\) (ml) - :K[pv Trexp(—)\r)] .
pEML (O)

Let us consider the prior distribution u € Mi(@) x ©) on couples of parameters
defined by the density

dup B /
d(r @ ) (01,02) =C 1 exp{—ﬁR(t%) — BR(6:2) + adP_ o [M (91,32)] }’

where the normalizing constant C'is such that p(© x ©) = 1. Since for fixed values of
the parameters 6 and 6’ € ©, m’(6,0'), like r(9), is a sum of independent Bernoulli
random variables, we can easily adapt the proof of Theorem 1.1.4 on page 4, to
establish that with IP probability at least 1 — 7, for any posterior distribution p and
any real constant A,

P @ Texp(—ar) (M) < AP @ Texp(—ar) [P 2 (M')]
+ K(p ® Texp(~xr), 1) — log(n)

=X [p, Texp(=pr)] + K[Texp(-ar): Texp(—sR)]
+ log{ﬂexp(_ﬁm ® Texp(—BR) [exp(o@_% oM')] } — log(n).

Thus for any real constant § and any positive real constants a and v, with P
probability at least 1 — 7, for any real constant A,

(2.7) log{ﬂexp(_)\,.) [exp{N log[cosh(3)] ﬂexp(_/\r)(m')}} }

< sup (X 10g[cosh(F)) {K[p T )] + K [Fesp(y: T
pEML (©)

+108{ Texp(—pR) ® Texp(—or) [exp(a®_g o M) }

- log(n)} - Xp, Wexp(—mﬂ)-

To finish, we need some appropriate upper bound for the entropy
fK[p, Wexp(_gR)]. This question can be handled in the following way: using The-
orem 2.1.7 (page 57), we see that for any positive real constants v and g3, with P
probability at least 1 — 7, for any posterior distribution p,

K[p, Texp(—pr)| = BIP(R) — Texp(—pr) (R)] + K(p,7) — K(Texp(—pR), T)

p
< Wb(%) 7[/’(7") — Texp(—AR) (T)]
+X [p7 7Texp(fﬁR)] - log(n) + C(ﬁa 7)
+ :K(,O, 7T) - jc(7"-exp(fﬁR)7 77)
< K[p’ 7Texp(fﬁl%)r)jl
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p

+ m{x[pa 7T-exp(f,BR)] + C(ﬁvﬁ) - IOg(n)}

In other words,

THEOREM 2.1.12. For any positive real constants B and 7y such that 3 < N X
sinh(3), with P probability at least 1 — ), for any posterior distribution p : Q —
ML(0),

K[p, Texpl-p3 simn(z)-171] | C(8,7) — log(n)
9(:[;07 Wexp(fﬁR)] < N/@ X + NSlIlh(%) 5

"~ Nsinh(2) —5 !

where the quantity C(5,7) is defined by equation (2.6, page 57). Equivalently, it will
be in some cases more convenient to use this result in the form: for any positive real
constants X\ and vy, with P probability at least 1 — n, for any posterior distribution

p:Q—ML(O),

ZK[p,weXp(,M)] (—smh(%) 7v) — log(n)

X [p7 Trexp[—)\% sinh(%)Rﬂ <

) By
1-2 3-1
N log|cosh(+
Choosing in equation (2.7, page 59) o = M and 3 = )\% sinh(3),
N sinh( )
N log[cosh()] o -
so that a = — ] x we obtain with PP probability at least 1 — n,
Ty

log{wexp(_kr) {exp{Nlog [cosh(%)]ﬂexp(_,\T)(m’)}} }
< 2[0(8,7) +log(2)]

+ (1 - —) {log{wexp( 8R) ® Texp(—AR) [exp(afID aoM )]}
+ log(f])].
This proves

ProprosITION 2.1.13.  For any positive real constants A < ~y, with P probability at
least 1 —n,

10g{ e (- [exp{ N Tog [cosh ()] Texp(-ar) (')} |}

< 2 [C(22 sinh(3),7) + log(2)]

(1“_)1g{”m;—ﬂémmw”>m{

Y
N log[cosh( 7+
eXp(M@ logcosh( )] OM/H }
Ty R

7-l- (1 - %) log(%).
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We are now ready to analyse the bound B(Texp(—x,r),3,7) of Theorem 2.1.3
(page 54).

THEOREM 2.1.14. For any positive real constants A1, A2, B1, B2, B and v, such
that

A <7, B < T sinh(F),
A2 <7, Bo > N)‘z sinh(3),

g < N)‘Q tanh(3F),

with P probability 1 —n, the bound B(Texp(—r,r),3,77) of Theorem 2.1.8 (page 54)
satisfies

B(ﬂ—exp(—klr)vﬂa ’Y)
7

log(;)

Y
C(Br,7) +log(7)  C(B2,7) +log(])
]\23)1\1 sinh($)—v v -— ]\23)2‘2 sinh(3)

2)\1
+

= [C(NM sinh(3),7) + log(%ﬂ

_ M ®2
+ (1 Y ) IOg{Trexp[—¥ sinh(%)R] |:

N1 h( 2
eXp(ogl[ioi_l(ZV)}Q_lgg[cOSh(%)] OM/)} }

v A
1- 21

S (7 - Al){ﬂ-exp(—ﬁlR) & 7Texp(—ﬁzl’%) [ —%(R, /)] +

5

+ (1= 22) 108(2) ~ 1og [v({B)w({7})¢]

{% (C(*22 sinh(3). ) +og(})]

_ 22 ®2
+ (1 > ) 10g{77c pl= 222 Ginh(2)R }[

N log[cosh( L]
€xp <1_&Nq)_ loglcosh ()] oM’

A2
1— 22
v Y

+ (= M) E

Sz~

+ (1= 22) 108(%) ~ og[v({8)V({1})e] }
where the function C(0,7) is defined by equation (2.6, page 57).

2.1.4. ADAPTATION TO PARAMETRIC AND MARGIN ASSUMPTIONS. To help un-
derstand the previous theorem, it may be useful to give linear upper-bounds to the
factors appearing in the right-hand side of the previous inequality. Introducing 6
such that R(f) = infe R (assuming that such a parameter exists) and remembering
that

~!sinh(a)p + 2a~ " sinh(%)*m, a€ Ry,

m) < a
< a 'exp(a) - 1]p, a€Ry,
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W, (p,m) > a” ' sinh(a)p — 2a~" sinh(%)*m, a€Ry,
M'(61,05) < M'(61,0) + M'(65,6), 61,0, € O,
M'(61,0) < xR (61,0) + (), xRy, 0, €O,

the last inequality being rather a consequence of the definition of ¢ than a property
of M’, we easily see that

Texp(—pR) @ Texp(— 1) [ V-2 (R, M")]
< & sinb(3) [Texp(—py 1) (R) — Texp(— 521 (R)]
+ % Sinh(%)zﬂ'exp(_glpb) ® Wexp(—ﬁzR)(M/)
% sinh( ) [Texp(—p, 7) (R) — Texp(—pa 1) (R)]
2z N D )
+ smh(lN)Q{chp(fﬁlR) [R'(-,0)] + Texp(—a ) [R(,0)] }

Y
4N
+ —7 smh(—?v) o(z),

IN

that

C(B.7) < log{wcx,)(gm{exp (2 sinh (%)’ wcxp<,ﬁR>(M’)} }}

< log{wexp(_gR){exp {ZN sinh(ﬁ ] }
+ 2N sinh(5% ) exp(—ar) [M' (-, 0)]
< log{ﬂ'exp( 5R){exp [QxN sinh(5% )R/ (- ] }

+ 22N sinh(5% ) * Texp(—pr) [ R ,9)] + 4N sinh(5}; )¢ ()

B ~
= / Texp(—aR) [Rl('a 9)] da
B—2xN sinh (5% )?

+ 2N Slnh(lN) Texp(—AR) [R'(-, 5)] + 4N sinh(%)%p(x)
<4zN Slnh(%) Texp[—(B—2aN sinh(5%)2)R] [R,('v g)}

+ 4N sinh(5% )¢ (),

and that

1og{ Texp(—BR) [exp(No@_aoM’)}}
< 210g{770xp(,53) [exp(N lexp(a) — 1] M'(-, 5))] }
< 22N [exp(a) = 1] Texp|— (5-aN[exp(a)-1))R) [B (-, 0)]
+ 22N [exp(a) — 1] p(x).

Let us push further the investigation under the parametric assumption that for
some positive real constant d

(28) BET Bﬂ-exp( BR) [R/( a)] :d?
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This assumption will for instance hold true with d = § when R: © — (0,1) is a
smooth function defined on a compact subset © of R™ that reaches its minimum
value on a finite number of non-degenerate (i.e. with a positive definite Hessian)
interior points of ©, and 7 is absolutely continuous with respect to the Lebesgue
measure on © and has a smooth density.

In case of assumption (2.8), if we restrict ourselves to sufficiently large values of
the constants 3, (1, B2, A1, A2 and « (the smaller of which is as a rule 3, as we
will see), we can use the fact that for some (small) positive constant 4, and some
(large) positive constant A,

(2.9) g(l —0) < Texp(—aR) [R’(-,é)] < E(l +9), a> A

QU

Under this assumption,
Texp(~61R) © Texp(~R) [P - 2 (R, M)]
< %Slnh(%)[ (1+6)— —(1 —6)]
+ 22 sinh(55) (1 +6) [£- + 4] + ¥ sinh(5k)p(x).
C(B,7) <d(1+4) 10%(#;}1(%)2)

+2zN smh(iN)2 A+0d | 4N sinh(5%)%¢().

1og{ T eep(—BR) [exp(NaCD_aoM'ﬂ}

< 2zN [exp(a) — d(l +9)

1
N el — 1
Thus with P probability at least 1 — 7,

+ 2N [exp(a) — 1]¢(z).

B(T‘—exp(—klr)vﬁa ’7) < _(’7 - )‘1)% Slnh(%)g_dg(l - 6)

= A 2 sinn ) 522

N g : log( 1)
+ @ sinh(5%)%(1 + 6) [511 + L%] + % sinh(5%)2p(x) + ’yn
8)d
N 4xN sinh(5%)? W + 4N sinh (5% )%¢(z) + log(%)
1\2?1 sinh(F) —
N 49:Ns1nh(lN) Wm + 4Nsmh(lN) o(x) + 10g(777)}
v — 22 sinh(3)
24 { (1+48)d
+ —=<4xN sinh(5%
v (k)" N;“ sinh(F)—22N sinh(5%)?

+ 4N sinh (5% )%¢(x) + log(%)}

—1
Sl

+ 2N [exp(—log[mbgf N)]) 1} (p(ac)}

B
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+ (1 — %) log(%) —log[v({B})v({~})e]

A1
+ 5 t:nh(vl) — { 22/\2 {49:N sinh (%)% g sinh(l(tzldzvsinh(i)z
By N v N N
+ 4N smh(lN) o) + log(%)}
1
+(1- A2) 2d(1 + ) ( AI{‘h((%_))] - 1)
Y xy [exp(lii%zl\’)—l}

+ 2N [exp(ilcg[cos};i N )]> 1} go(x)}

5

n (1 _ %> log (1) — log[v(8)v(7)e] }

Now let us choose for simplicity S = 2Xo = 45, B1 = A\1/2 = /4, and let us
introduce the notation

N
Ci = —sinh(%),
Y
= — h —
Cg ~ tan (N),

N 2
Cs = Pl [eXP(’y—g) —1]

N
2N?(1 - 2B 2
_ ol i _
and (4= 72 [exp(2N2(1 — %)) 1}’
to obtain
C
B(Wexp(—)\lr),ﬁv')/) _8;67(1 — §)d

c
+ %{4“”)‘1 task(1+0)[2 + &)+ %w(fc)} + 3 log(7)

T (1 +0)a(585 1) Lo o)+ 41 (2)]

20, — 1 2zC1y Lo ) T 3 logly

1 8N N 72

e [2(1+5)d(lcﬂg —1) +O

+2x'y(1+5)d
N —xvy

_|_

o)+ log(})|

+C1 () + log(T)

T -1 2 lo 7
ra+ 0% (%—%) + Lot + 250 Crog [

+ (402—2) {475{ Loyl +6)d (2ﬁ01 —xcl%)fl

+ %rp() +log(%)}

26 xy [48C 26 vy |
(-2 TR (7))
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This simplifies to

Cq 0

B(’]Texp(—klr)vﬁa ’7) < —;(1 - 5)d5

1428

+2C1 (1 +6)d+ log(%) {2 + (4C1732()j(12701) + 4C, _72]

— (14 352=5) log [v(B)v(v)e]

(14 90)dzy 2\ 1
te— CNcmnﬁ(ﬁ‘%)

-1
23 1 4C 23 2z
() wialg0-2) 5

2
Y 3C C
+N<P(9C){—21 +—40112+2 & +Cs+ 402 2)+4C2 2}

This shows that there exist universal positive real constants A,, As, B, By, Bs,
and By such that as soon as %{ml} < A1% < Ay,

B(ﬂ—exp(—hr)a ﬂa 7) < 7B1(1 - 5)d% + B2(1 + 5)d
2
— Bzlog[v(B)v(y)en] + B4N<P( z).
Thus Texp(—x,r) (R) < Texp(—pr) (R) < infe R+ (Hé)d as soon as
8 B,
7T g0t 34%4,;(1»)—53_ loglv (e

Choosing some real ratio o > 1, we can now make the above result uniform for
any

(2.10) ﬂ,fyeAadﬁf{ k ke N, o<k<113gg(<f>)}

by substituting v(8) and v(y) with 152%&?\)7) and —log(n) with —log(n) + 2 x
log [SEL20) .
Taking 1 = € for simplicity, we can summarize our result in

THEOREM 2.1.15.  There exist positive real universal constants A, By, Bs, B3
and By such that for any positive real constants a > 1, d and 6§, for any prior
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distribution T € ML (©), with P probability at least 1 — €, for any 8,y € A (where
A, is defined by equation (2.10) above) such that

B .
su — | Texp(—g'ry(R) —inf R| — 1| <&
| @ Moo () gl

and such that also for some positive real parameter x

7’71113)({37’ 1} < ﬁ and E < 2 b log(N) ] ?
N Y Y (1+68) , Bafre(x)—2Bslog(e)+4Bs log[ ost )]

By (1=9) (1=0)d —

the bound B(wexp(_%r), B,7) given by Theorem 2.1.3 on page 54 in the case where we
have chosen v to be the uniform probability measure on A, satisfies B(Trcxp(—%r)v 0,

~) <0, proving that B(ﬂ'exp(_%r)) > [ and therefore that

(1+6)d
5

What is important in this result is that we do not only bound ﬂcxp(,%r)(RL
but also B(wexp(,%r),ﬁ,v), and that we do it uniformly on a grid of values of 3
and -y, showing that we can indeed set the constants 3 and ~ adaptively using the
empirical bound B(Texp(— 21y, 85 7)-

Let us see what we get under the margin assumption (1.24, page 39). When
k=1, we have ¢(c™!) < 0, leading to

Texp(—5) () < Texp(—pr) (R) < 1nf R +

COROLLARY 2.1.16. Assuming that the margin assumption (1.24, page 39) is sat-
isfied for k = 1, that R : © — (0,1) is independent of N (which is the case for
instance when P = P®N ) and is such that

A B [Mexp(-gm) (R) — tnf B] = d,

there are universal positive real constants Bs and Bg and N1 € N such that for any
N > Ny, with P probability at least 1 — €

, Bsd Bs log(N)\1°
<inf R4+ =2 |14 S og( =2
(R) <in R+ N [ + 7 og( ; ,

Texp(=75)
where ¥ € argmaxqca, max{ﬂ € Ag; B(Texp(—~z), 8,7) < 0}, where Ao is defined
by equation (2.10, page 65), and B is the bound of Theorem 2.1.3 (page 54).

__1
When x > 1, p(z) < (1 — H_l)(HCLL') =~*, and we can choose vy and z such that

l;cp(m) ~ d to prove

COROLLARY 2.1.17.  Assuming that the margin assumption (1.24, page 39) is sat-

isfied for some exponent k > 1, that R : © — (0,1) is independent of N (which is
for instance the case when P = P®YN ) and is such that

A B [Mexp(—grm) (R) — tnf B] = d,

there are universal positive constants By and Bg and N1 € N such that for any
N > Ny, with P probability at least 1 — €,

R)ging+B7cﬁ[H%log(log(N)ﬂ "~ <g> -

Mexp(—75) p N
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where § € argmaxyca, max{ﬁ € Ao; B(Texp(—~z), 8:7) < O}, Ao being defined by
equation (2.10, page 65) and B by Theorem 2.1.3 (page 54).

We find the same rate of convergence as in Corollary 1.4.7 (page 40), but this
time, we were able to provide an empirical posterior distribution Texp(=3%) which
achieves this rate adaptively in all the parameters (meaning in particular that we do
not need to know d, ¢ or k). Moreover, as already mentioned, the power of N in this
rate of convergence is known to be optimal in the worst case (see Mammen et al.
(1999); Tsybakov (2004); Tsybakov et al. (2005), and more specifically in Audibert

(2004b) — downloadable from its author’s web page — Theorem 3.3, page 132).

2.1.5. ESTIMATING THE DIVERGENCE OF A POSTERIOR WITH RESPECT TO A
GIBBS PRIOR. Another interesting question is to estimate fK[p, chp(—ﬁR)] using
relative deviation inequalities. We follow here an idea to be found first in (Audib-
ert, 2004b, page 93). Indeed, combining equation (2.3, page 52) with equation (2.1,
page 51), we see that for any positive real parameters 8 and A, with P probability
at least 1 — ¢, for any posterior distribution p : @ — M (),

j(:[p, 7Texp(fﬁR)} < ﬁh(){’}/[/)(’r) — TMexp(—BR) (7")]

s
N
+ Nlog [Cosh(%)]p & Toxp(—BR) (m')

+ K[Pa ﬂ-cxp(fﬂR)] - 10g(6)} + X(p, ) — :K[WCXp(*BR)’ 77]

sy S

§5K[p,7r =
N

By

exp[— Ntanh( )

) log [cosh(%)]p(m’)} }} :

p
: —
+log [WGXP[#},(%)T] P tanh(%

We thus obtain

THEOREM 2.1.18. For any positive real constants 8 and v such that § < N X
tanh(5), with P probability at least 1 — €, for any posterior distribution p : Q —
ML(O),

B Y
fK[p, Wexp(,ﬁR)} S <1 — N tanh (N) )

p
X :K[p’ 7Texp[f%’ tanh(%)*lr]] - Ntanh(%) 1Og(€)

+ log{ﬂcxp[_% tanh(3)~17] [exp{ﬁ tanh(%) ™" log[cosh(%)]p(m’)}} } }

This theorem provides another way of measuring over-fitting, since it gives an
upper bound for X [wexp[i% tanh(3)~1r]’ Wexp(_gR)]. It may be used in combination
with Theorem 1.2.6 (page 11) as an alternative to Theorem 1.3.7 (page 21). It will
also be used in the next section.

An alternative parametrization of the same result providing a simpler right-hand
side is also useful:
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COROLLARY 2.1.19. For any positive real constants 3 and v such that § < 7,
with P probability at least 1 — €, for any posterior distribution p : Q) — Mi(@),

By 8
J<"[p’ﬂ—exp[ngtanh(%)R]] < <1 - ;) {:K[p7 WEXP(—BT)] - ? IOg(G)

+ log{wexp(_m) [exp{N% log [Cosh(%)]p(m’)}] }}

2.2. PLAYING WITH TWO POSTERIOR AND TWO LOCAL PRIOR DISTRIBUTIONS

2.2.1. COMPARING TWO POSTERIOR DISTRIBUTIONS. Estimating the effective
temperature of an estimator provides an efficient way to tune parameters in a
model with parametric behaviour. On the other hand, it will not be fitted to choose
between different models, especially when they are nested, because as we already
saw in the case when © is a union of nested models, the prior distribution mex,(—sr)
does not provide an efficient localization of the parameter in this case, in the sense
that 7exp(—gr) (1) does not go down to infg R at the desired rate when 3 goes to
400, requiring a resort to partial localization.

Once some estimator (in the form of a posterior distribution) has been chosen
in each sub-model, these estimators can be compared between themselves with the
help of the relative bounds that we will establish in this section. It is also possible
to choose several estimators in each sub-model, to tune parameters in the same
time (like the inverse temperature parameter if we decide to use Gibbs posterior
distributions in each sub-model).

From equation (2.2 page 52) (slightly modified by replacing 7 ® 7 with 7! @ 72),
we easily obtain

THEOREM 2.2.1.  For any positive real constant X\, for any prior distributions
Tt € M}F(@), with P probability at least 1 — €, for any posterior distributions py
and ps : Q@ — ML (O),

- Nlog{l —tanh(%) [pQ(R) — pl(R)}
+ N log [cosh(

< Mpa(r) = pr(r)]

)1 ® pa(m)
+9<(p1,771) +5€(p2,7r2) — log(e).

2|>/ —

This is where the entropy bound of the previous section enters into the game,
providing a localized version of Theorem 2.2.1 (page 68). We will use the notation

(2.11) Ea(q) = tanh(a) "' [1 — exp(—aq)] < tani(a)

¢, aqeR
THEOREM 2.2.2.  For any € €)0,1(, any sequence of prior distributions (7%);en €
Mﬁr (©)N, any probability distribution u on N, any atomic probability distribution v
on Ry, with P probability at least 1 — €, for any posterior distributions p1, pa : 2 —
Mi(0)

+ ’

p2(R) — p1(R) < B(p1, p2), where
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B(p1,p2) = inf
’ A B1<v1,B82<72€R ,1,jEN

Ea { [p2(r) = pa(r)]

+ X log[cosh(2)] o1 @ pa(m)

+ ﬁ {K [pl’ WiXp(*ﬁlr)]

Y1

+108{ 751y [xp{ 51 2L log cosh(3)] o1 (m)} ]}

D iog [V(w)]}

st
Kl )
A(1-2) P
Y2

+ log{ngp(7ﬁ2r) [exp{ﬁg ,% log[cosh(%2)] p2 (m')}] }

- P rog (o)

Y2
_1 -1 log [3= 1w (81)v(B2) v (M) (i) w(j)e
I R R g[3”'v(6) (ﬁA) (M )um}.

The sequence of prior distributions (7);cn should be understood to be typically
supported by subsets of © corresponding to parametric sub-models, that is sub-
models for which it is reasonable to expect that

BETOO I} [Wéxp(iﬁR) (R) — ess i})f R}
exists and is positive and finite. As there is no reason why the bound B(p1, p2) pro-
vided by the previous theorem should be sub-additive (in the sense that B(p1, p3) <
B(p1, p2)+B(p2, p3)), it is adequate to consider some workable subset P of posterior

distributions (for instance the distributions of the form Wéxp(_ gry 1€ N, 8 € Ry),
and to define the sub-additive chained bound

n—1

(2.12) B(p,p') = inf{z B(pk, prr1); n € N¥, (pr)ji— € P4,
k=0

Po =p,pn=p’}, p,p €2

PROPOSITION 2.2.3.  With P probability at least 1 — €, for any posterior distribu-
tions p1, p2 € P, p2(R)—p1(R) < B(p1, p2). Moreover for any posterior distribution
p1 € P, any posterior distribution ps € P such that E(pl,pg) =inf, cp E(pl,pg) 18
unimprovable with the help ofg in P in the sense that inf, cp E(pg,pg) > 0.

PROOF. The first assertion is a direct consequence of the previous theorem, so only
the second assertion requires a proof: for any p3 € P, we deduce from the optimality
of po and the sub-additivity of B that

B(p1,p2) < B(p1,p3) < Blpr, p2) + B(pa, p3)-
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This proposition provides a way to improve a posterior distribution p; € P by
choosing pp € argmin,cp B(p1,p) whenever B(pi,p2) < 0. This improvement is
proved by Proposition 2.2.3 to be one-step: the obtained improved posterior ps
cannot be improved again using the same technique.

Let us give some examples of possible starting distributions p; for this improve-
ment scheme: p; may be chosen as the best posterior Gibbs distribution according
to Proposition 2.1.5 (page 56). More precisely, we may build from the prior distrib-
utions 7, i € N, a global prior 7 = YieN p(i)mt. We can then define the estimator
of the inverse effective temperature as in Proposition 2.1.5 (page 56) and choose
p1 € argmin,cp B(p), where P is as suggested above the set of posterior distribu-
tions

P= {ﬂ'éxp(iﬁr); ieN,Be R+}.

This starting point p; should already be pretty good, at least in an asymptotic
perspective, the only gain in the rate of convergence to be expected bearing on
spurious log(NV) factors.

2.2.2. ELABORATE USES OF RELATIVE BOUNDS BETWEEN POSTERIORS. More
elaborate uses of relative bounds are described in the third section of the second
chapter of Audibert (2004b), where an algorithm is proposed and analysed, which
allows one to use relative bounds between two posterior distributions as a stand-
alone estimation tool.

Let us give here some alternative way to address this issue. We will assume for
simplicity and without great loss of generality that the working set of posterior
distributions P is finite (so that among other things any ordering of it has a first
element).

It is natural to define the estimated complexity of any given posterior distribution
p € P in our working set as the bound for inf;ey K(p, 7¢) used in Theorem 2.2.1
(page 68). This leads to set (given some confidence level 1 — €)

-1
Cp) = inf <1 - 5) {X[Pv Tréxp(—ﬂ?")]

B<yER, ,iEN
+ log{wéxp(_m) [exp{ﬁ% log[cosh()] p(m”) }} }

_ g log [3™ v (y)v(B)u(i)e] }

Let us moreover call v(p), B(p) and i(p) the values achieving this infimum, or
nearly achieving it, which requires a slight change of the definition of C(p) to take
this modification into account. For the sake of simplicity, we can assume without
substantial loss of generality that the supports of v and u are large but finite, and
thus that the minimum is reached.

To understand how this notion of complexity comes into play, it may be inter-
esting to keep in mind that for any posterior distributions p and p’ we can write
the bound in Theorem 2.2.2 (page 68) as

(2.13) Blp,p) = imf 23 [p'(r) = p(r) + Salp. )],

where

/ o —1¢
Sx(psp!) = Sa(0f,p) < 5 Tog[eosh(3)]p @ /(') + S EL) L0830
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(Let us recall that the function Z is defined by equation (2.11, page 68).) Thus for
any p, p’ such that B(p’, p) > 0, we can deduce from the monotonicity of = 2 that

/ _ < i /
p'(r) P(T)—;gﬁé Sx(p,p'),

proving that the left-hand side is small, and consequently that B(p,p’) and its
chained counterpart defined by equation (2.12, page 69) are small:

B(p,p') < Blp.p') < nf 2, [29(p, 0)].
€R+

x
It is also worth noticing that B(p, p’) and E(p, p') are upper bounded in terms of
variance and complexity only.

The presence of the ratios Z}EZ 3 should not be obnoxious, since their values should
be automatically tamed by the fact that 5(p) and v(p) should make the estimate
of the complexity of p optimal.

As an alternative, it is possible to restrict to set of parameter values 8 and -~y
such that, for some fixed constant ¢ > 1, the ratio 2 3 is bounded away from 1 by

the 1nequahty > (. This leads to an alternative definition of C(p):

. A
€)= w><ﬁleIﬁ%f+’ieN(l Ty Ko Tosp(-m)]

+ 1Og{ exp( Br) [exp{ﬁ log [COSh % }:| }
B, 4 ) log[v(B8)u(i)]  log(3~'e)
— ; log[?: V(’Y)V(ﬁ)ﬂ(l)e} } (1-¢1 - 9 ’

We can even push simplification a step further, postponing the optimization of the
ratlo , and setting it to the fixed value (. This leads us to adopt the definition

o . =1 -1 i
(2.14) G(p)—ﬁeﬂgfieN(l ¢ {K[Pvﬂcxm—m]

+ log{ﬂéxp(_m) [exp{ % log [cosh(%)] p(m’)}} }}

g - 1 {log[ (B)u(i)] +271 log(3_1e)}.

With either of these modified definitions of the complexity C(p), we get the upper
bound

N
il log [cosh(

(2.15) Sx(p.p) < Sx(pp) = 5
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With these definitions, we have for any posterior distributions p and p’

B < inf =
(p:p") R

{p’(r) = p(r) + Sx(p, p’)}-
Consequently in the case when B(p’, p) > 0, we get

Blp.p') < B(p,p) < mf 2. [25x(p, )]

2
A€ER N

To select some nearly optimal posterior distribution in P, it is appropriate to or-
der the posterior distributions of P according to increasing values of their complex-
ity €(p) and consider some indexation P = {p1,..., pa}, where C(pr) < C(pr+t1),
1<k< M.

Let us now consider for each py € P the first posterior distribution in P which
cannot be proved to be worse than p; according to the bound B:

(2.16) t(k) = mm{j e {1,...M} : Blpj,pi) > o}.

In this definition, which uses the chained bound defined by equation (2.12, page

69), it is appropriate to assume by convention that B (p,p) = 0, for any posterior
distribution p. Let us now define our estimated best p € P as P7s where

(2.17) k= min(arg maxt).

Thus we take the posterior with smallest complexity which can be proved to be bet-
ter than the largest starting interval of P in terms of estimated relative classification
error.

The following theorem is a simple consequence of the chosen optimisation scheme.
It is valid for any arbitrary choice of the complexity function p — C(p).

THEOREM 2.2.4. Let us put t = t(%), where t is defined by equation (2.16) and k
is defined by equation (2.17). With P probability at least 1 — e,

1<5< tA
B(pg,pt ), t<i<k,

B(p;, p7) +B(/%t,g;), j € (arg maxt),
(pjrpp), J€ {k+1,...,M} \ (argmaxt),

&2

pr(R) < pi(R) +

T3

where the chained bound B is defined from the bound of Theorem 2.2.2 (page 68)

by equation (2.12, page 69). In the mean time, for any j such that t < j < k
t(j) <t = maxt, because j € (argmaxt). Thus

Pr(R) < pi() (R) < pj(R) + Aigﬁé 2 25305, p19)]
while py(;)(r) < p;(r) + /\inf Sx(pj, Pe5))s

where the function Z is defined by equation (2.11, page 68) and Sy is defined by
equation (2.13, page 70). For any j € (argmaxt), (including notably k),

B(pp pj) = Blpg pj) > 0,
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B(pj, pp) = Blpj. py) > 0,

s0 in this case

N

pp(R) < p;i(R) + Aiéﬁéi Ea [Sx(pjy p7) + Sx(pp p7) + Salps, %)}»
(

[2S>\ (pj7 p?)] .

Finally in the case when j € {% +1,...,M} \ (argmaxt), due to the fact that in
particular j ¢ (arg maxt),

Thus in this last case

I:QSA(pJ’ p;;):l i

Thus for any j =1,..., M, pr(R) —p;(R) is bounded from above by an empirical
quantity involving only variance and entropy terms of posterior distributions py such
that £ < j, and therefore such that C(pe) < C(p;). Moreover, these distributions py
are such that pe(r) — p;(r) and pe(R) — p;(R) have an empirical upper bound of
the same order as the bound stated for pp(R) — pj(R) — namely the bound for

pe(r) — pj(r) is in all circumstances not greater than =3 applied to the bound

N
stated for pp(R) — p;j(R), whereas the bound for pi(R) — p;(R) is always smaller
than two times the bound stated for pr(R) — pj(R). This shows that variance terms
are between posterior distributions whose empirical as well as expected error rates
cannot be much larger than those of p;.

Let us remark that the estimation scheme described in this theorem is very
general, the same method can be used as soon as some confidence interval for the
relative expected risks

—B(p2, p1) < p2(R) — p1(R) < B(p1, p2) with P probability at least 1 — e,

is available. The definition of the complexity is arbitrary, and could in an abstract
context be chosen as

C(p1) = pig{)l B(p1,p2) + B(p2, p1)-

PROOF. The case when 1 < j <t is straightforward from the definitions: when
J <t, B(pj, py) < 0 and therefore po(R) < p;(R).

In the second case, that is when t< 1< %, j cannot be in arg maxt, because of
the special choice of k in arg max¢. Thus ¢(j) < t and we deduce from the first case
that

Pr(R) < pi(s)(R) < pj(R) + Blpj, puis))-
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Moreover, we see from the defintion of ¢ that E(pt(j), p;) > 0, implying
pe(y) (1) < pj(r) + Jnf Sx(pjs pr(z));
and therefore that

Pr(R) < pj(R) +inf 21 [28x(pj. pu(s)].

2
N

_In the third case j belongs to argmaxt. In this case, we are not sure that
B(pg, p;) > 0, and it is appropriate to involve ¢, which is the index of the first
posterior distribution which cannot be improved by o3 implying notably that

B (m pr) > 0 for any k € argmaxt. On the other hand, p; cannot either improve
any posterlor distribution py, with k € (argmaxt), because this would imply for any

¢ < that B(py, pp) < B(pg7pk) + B(p, p7) <0, and therefore that ¢(¢ t)>t+1,in

contradiction of the fact that £ = maxt. Thus B (P, p7) > 0, and these two remarks
imply that

pp(r) < pj(r) + inf S\(pj, pp),
€R,
) < )+ int 3 (o7

< pi(r) + Jnf Sx(pj> p7) + Jnf Sx(ep p7)s
and consequently also that

pr(R) < pj(R) + B(p;, p7)

< pi(R)+ kieﬂﬂé E [SA(PJ', py) + Sx(pp p7) + Sx(pj, pg)]

by
N
and that

pi(R) < pj(R) + inf 22 [28\(ps, )] < pj(R) +2 inf 22 [Sx(pj: pp)]
ErRy N AER

the last inequality being due to the fact that = 2 is a concave function. Let us

notice that it may be the case that k< ;f\, but that only the case when j > t is to
be considered, since otherwise we already know that pE(R) < pj(R).

In the fourth case, j is greater than %, and the complexity of p; is larger than the
complexity of pr. Moreover, j is not in argmaxt, and thus B(pz, p;) > 0, because

otherwise, the sub-additivity of B would imply that B (pe, pj) < 0 for any £ < t and
therefore that #(j) >t = max t. Therefore

pp(r) < pji(r) + Aienﬂé Sx(pj> p3);

and

pr(R) < pj(R) + Blpj. p7) < pj(R) + Jnf = [25x(pj: £7)] -

2
N
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2.2.3. ANALYSIS OF RELATIVE BOUNDS. Let us start our investigation of the the-
oretical properties of the algorithm described in Theorem 2.2.4 (page 72) by com-
puting some non-random upper bounds for B(p, p'), the bound of Theorem 2.2.2
(page 68), and C(p), the complexity factor defined by equation (2.14, page 71), for
any p,p’ € P.

This analysis will be done in the case when

P — {ngp(,m) : v(B) > 0, (i) > 0},

in which it will be possible to get some control on the randomness of any p € P,
in addition to controlling the other random expressions appearing in the definition
of B(p,p'), p,p € P. We will also use a simpler choice of complexity function,
removing from equation (2.14 page 71) the optimization in ¢ and § and using
instead the definition

i def — -1 7
(218)  C(Teep(—pn) = (1=¢7) log{ﬁexmm)[

exp{ X tosleosh (50 )|
C+1

+<_1

log [(8)u(4)]

With this definition,

(¢C+1) _
+ mlog[i’) 11/()\)6]7

where Sy is defined by equation (2.13, page 70), so that

B |:7Téxp(—ﬁ7“)7 ﬂ-éxp(—ﬂ/r)] = )\iéan+ E’% {ﬂ-(jaxp(—ﬁ/r) (T) - Tréxp(—ﬁ?“) (T’)

+ Sx [Wixm—ﬁr)’ Wixp(—ﬁw] }

Let us successively bound the various random factors entering into the defini-

tion of Bl:ﬂ—éxp(—ﬁr)’ﬂ-éxp(fﬁ/r)]' The quantity ngp(iﬁ,r)(r) — wéxp(_m) (r) can be
bounded using a slight adaptation of Proposition 2.1.11 (page 58).

PROPOSITION 2.2.5. For any positive real constants X\, X and vy, with P probability
at least 1 — 1, for any positive real constants B3, 3" such that f < A7 sinh(3)™*
and 3’ > X' 3 sinh(F) 71,

ﬂ-ixp(—ﬁ/r) (T) - 7Tixp(—ﬁr) (T)
< ﬂ-ixp(—)\’R) ® 7Tixp(f)\R) [\Ilf% (R/a Ml):l
+log(%) CI(N,7) +log(2)  C' (A7) +log(2)

¥ N sinh(%) —v v — Ysinh(3)

b
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where

ci(x,wd:eflog{ / exp[—v [ {5 (R 60.006:.00)]
= SR (61,00 b (082) | e (@91

< log{wéxp(AR) {exp{2N sinh(%)QwiXP(fAR) (M) }] }

As for Wexp( o) ® ﬂ'exp( B/T‘)( m'), we can write with P probability at least 1 —n,

for any posterior distributions p and p’ : Q@ — M1 (0),
1P ® p'(m') < log| Ty xp) @ ngp(—xR){eXP [y@_ 2 (M)] }}
+X [p, ,/Téxp(f)\R)] + :K[p/, //T(Jaxp(f)\’R)] o 10g(77)

We can then replace A with 34 sinh($) and use Theorem 2.1.12 (page 60) to get

PROPOSITION 2.2.6. For any positive real constants v, X\, X, B and (', with P
probability 1 —n,
Yp®p'(m)
J ’
< 10g|: exp[ X Smh(N) R] ® 7Texp[ /3’ 7 sinh( )‘/)R]{ Xp[ o %(M )] }]
K[p’ﬂ-exp(—ﬁr)] + C [ By Slnh(ﬁ)v)‘] - IOg(%)

= -1
pr’,ng . CI[B' N sinh(2), N — log(2
4 [ P(/ B )] + [ﬁA /EN) ] g(S) _1og(g).
1-% 71

The last random factor in B(p, p’) that we need to upper bound is

tog{ mip—an [ex0 {5 1og [cosh(3)] oy ()} }

A slight adaptation of Proposition 2.1.13 (page 60) shows that with P probability
at least 1 —n,

1Og{ﬂ-2xp(fﬁ7‘) [exp{ﬂ% lOg [COSh(%)} ﬂ-éxp(fﬁ'r) (m/) }i| }
. ®2
501[ sinh(3),~] + (1 - g) 1og{ (ﬂéxp[i%ﬂ Sinh(%)RD [

~
N log |cosh(+)
(V)

Gl
3_1 -1

+ (1+ %) log(%),

where as usual ® is the function defined by equation (1.1, page 2). This leads us to
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define for any i,5 € N, any 3,3 € Ry,

(2.19) €(,p) ¥ Cja[ sinh($), €3]

®2
+ log{ ( exp[—— sinh( w)R]) [

N log [cosh(Q)]
exp(cflf\’@_log[mm%a)] o M’)} }

c—1

- S g uo)] +1os(t)

Recall that the definition of C*(\,7) is to be found in Proposition 2.2.5, page 75.
Let us remark that, since

exp[Na®_,(p)] = exp{Nlog[l + [exp(a) — 1]p} }
< exp{N[exp(a) — 1]p}, pe(0,1),a € R,

we have

_ 2
G(Z,,@) < - IOg{ exp[ N smh(w)R]|:

exp{QNsmh(C—N) Trexp[——sulh( )R] (M')} }

+ 1og{ ( Texp[— & sinh(¢ >Rl) : {

exp{ [exp{ “Llog [cosh(%)]} - 1} M'} }

gfl{zl el (0] + 10 (3) |

Let us put

of N
def < log [cosh(%)] Wg%{rw 1{

J ’
log {( exp[——smh( 7R © 7Texp[—% sinh(%)m> {eXp [W(I)‘%(M )} }]

, Ol sinh(59), ¢6] — log(3)

§A [(Za ﬁ)? (]a ﬁl)]

(-1
/[Y sinh($2 - 7 7
(—1
+ 5[0 + 86 - S tonla v,

where

Let us remark that
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- J
2N’y . 08 |:( CXP[__ smh(%)R] ® 7Texp[—— smh(c‘@ ]){

exp [N [exp(%) — 1] M’} }]

A 2 )
’ <2N7(C —1) - 1>> Og{ expl sini( 57 >R][

exp{ZNsmh(—ﬁ) wexp[7_81nh(w)R] (M’)} }

ex p{ [exp{ -1t log[cosh(%)]} - 1} M'}- }

(s 3 el [
T aNAc =) T a1y ) 08 Mol & sinn(<) Ay

exp{QNsmh(w) ﬂ'exp[f—smh(Cﬁ - (M')} }

®2
1
o log{< exp[f—smhw*’)m) [

eXp{ [exp{ -1 log[cosh( )]} - 1} M'}- }

€A | L
TAN@C 1)y 8 3 (v (B () (i) u(j)n]

_ K+
(C—=1A

Let us define accordingly

(21082 w8 ] + oe[3 v ).

mi=s {a inf. f|:ﬂ-(]2xp(—o/R) @ Texp(—ar) (V-3 (R, M')]

_ log(3) | O7(’.y) ~log(5)  C'(ann) —log(;’)}
A B sinh(%) -~ v — Blsinh(F)

where

1= v(Nv(@)v(y)v(B)v(e )v(y () @) ui)n.
PRroOPOSITION 2.2.7.

) With P probability at least 1 —n, for any § € Ry and i € N,
e(’n—éxp(—ﬁfr)) é 8(17/3)7

o With P probability at least 1 — 3n, for any \GB,8 € Ry, any 4,5 € N,
S)\ [(7’75)3 (]7 ﬁl)] S S)\ [(275)7 (]7 6l)] 5
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. With P probability at least 1 — 4n, for any i,j € N, any 8,8 € Ry,
B(Wéxp(*ﬁr)’ﬁéxp(*ﬁ/r)) < B[(Z’ﬂ)’ (J7 ﬂ/)} .

It is also interesting to find a non-random lower bound for G(wixp(f ﬁr))' Let us
start from the fact that with [P probability at least 1 — 7,
ﬂ-éxp(faR) ® 7Téxp(fozR) [q)’YW’ (M/)}
< 7-‘-«ixl;)(fod:ﬁ’,) ® ﬂ-éxp(faR) (ml> -

log(n)
v
On the other hand, we already proved that with PP probability at least 1 — n,

o i
.
a A

< m{ [p(r) - 7Téxp(ocR) (T)]

+ N log[cosh(3)]p ® Wéxp(_aR) (m') — 10%(77)}
+ :K:(p, 7TZ) — :K"(ﬂ-vixp(faR)’ 'RJ) .

Thus for any £ > 0, putting § = Ntaiﬁ(A)’ with P probability at least 1 — 7,
an N

gﬂ—éxp(faR) ® ﬂ—éxp(fozR) [(I) (M/)]

,YW/
< Mexp(—aR) {log [Wéxpwr){

exp [ﬂ¥ log[cosh(3y)] Tesp(—pr) (M) + 5m/} }} }
8
A
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Taking £ = %, we get with P probability at least 1 —n
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% (”ixp[—6¥ tanh(%)R}) - {‘1’% (M ’)}
< 1Og{”éxp(,6r) [eXp{%Wéxp(ﬁr) (m/)}} }

2B BA Ui
B (7 * azw) 1°g(5>'

Putting

2
A= NT log [cosh ()]

and T() det vtanh{% log[cosh ()] } .t

N log[cosh(F)] =0

this can be rewritten as
BN 1- 02
o log[cosh ()] (wexp(fﬁT(v)R)) {(I)‘YW/ (M’)}

:
< 08 o [exp{ 52 g [eosh )] (1)}

- <N2 1og2[f<l,h(%)] * ﬁNlog2[;::?h(%)} ) log(g>'

It is now tempting to simplify the picture a little bit by setting 7' = ~, leading to

PrROPOSITION 2.2.8. With P probability at least 1 —n, for any i € N, any 0 € Ry,

of 1 N i ®2 .
= 71 71 loeleosh(59)] (”exp(—ﬂnw)R)) {‘I’%(M )}
2023 Nlog [cosh(%)] . .
* <N2 log[cosh(%)] - 208 log[27 w(8)u(i)n]

(G 1){log [v(B)u@)] +27 1og(316)}},

where G[ﬂéxp(_ﬂr)] is defined by equation (2.18, page 75).

We are now going to analyse Theorem 2.2.4 (page 72). For this, we will also need
an upper bound for Sy(p, '), defined by equation (2.13, page 70), using M’ and
empirical complexities, because of the special relations between empirical complex-
ities induced by the selection algorithm. To this purpose, a useful alternative to
Proposition 2.2.6 (page 76) is to write, with [P probability at least 1 — 7,

v ® p'(m) <vp @ p' [0 (M')]
+X [p, ,/Tj:xp(—AR)] + :K[p/’ //T(pr(f)\’R)] - 10g(77),

and thus at least with P probability 1 — 37,
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Y@ p(m') <yp@p/ [0z (M')]
+u—£51{xkﬂ&mwﬂ]
+ log{ﬂ-éxp(*ﬁr) exp{ ¢ log [COSh(%)]P(m')}” - log(n)}

+(1- C—l)—l{%[m ngp(,ﬁfr)]

+ log{ngp(fﬁ,r) exp{% log [cosh(cﬁ/ﬂp(m’)}} } —¢! log(n)}
— log(n).

When p = Wéxp(iﬁr) and p/ = ﬂ-ZXP(—ﬁlT)’ we get with P probability at least 1 — 7,
for any 67 6/7 v E R-i—a any 7;7 j € N7

Y@ (m') <yp@p [®_4 [(M)]
(1

+ (o) + () 5 flogl3~v] |

ProposiTION 2.2.9. With P probability at least 1 —n, for any p =7

_
P = Toxp(-pr) €T

exp(—pr)r Y

$5(p. ') < 2 log[cosh(3)]p @ o/ [#_3 (M)

In order to analyse Theorem 2.2.4 (page 72), we need to index P = {pl, . 7pM}
in order of increasing empirical complexity C(p). To deal in a convenient way with
this indexation, we will write €(i, 3) as G[ﬂéxp(_m)], €(i,0) as Q[ﬂ'éxp(_ﬂr)], and

?[(z,ﬁ),(g, ﬁ/)} as §[ﬂ-éxp(—ﬁr)’Tr(J:-xp(fﬁ’r)]'

With P probability at least 1 — €, when t< i< E, as we already saw,

Pi(R) < pi(R) < pj(R) + inf =y 25\ (pj» pi)],

where i = t(j) < t. Therefore, with P probability at least 1 — e — 1,

pi(R) < pj(R) + )\inf Ea {QE log[cosh ()] p; ® ps [@_% (M")]
ER4 N A
1+ Y log[cosh(2
41— £ ey,

ol + sl (el ot |
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We can now remark that
Za <E, = <EZE, ='(0)g = =, _
(p+q) < Ealp) +4Z4(p)q < Ealp) + E4(0)g (p) + tanh(a)

and that

B_o(p+q) < D_o(p) + P ,(0)g=D_u(p) + %q_

Moreover, assuming as usual without substantial loss of generality that there exists
6 € argming R, we can split M'(6,60") < M'(0,0) + M'(6,60). Let us then consider
the expected margin function defined by

©(y) =sup M'(0,0) —yR'(0,0), yeRy,
6cO

and let us write for any y € R,

pj @ pi[ @y (M')] < p; @ pi{®_ 5 [M'(.,0) +yR'(,0) +¢(y)]}

Nylexp(F) —1] [pi(R) — R(6)]

< pi{® 5 [M'(.0) + o(y)]} +
and

2N [exp(3) — 1] logfeosh (3] .
(1 - b (3) ) i) = O

< [pj(R) = R(B)] +E {% log[cosh(3)]p;{ @z [M'(..0) + o)}

41 + % log[cosh(%)]

2
N

C(p;)

- 2 g5 v+ 2 togleosn ()] g~ )1 }}

With P probability at least 1—e—n, forany A, v, z,y € Ry, any j € {f, .. ,E—l}7

pr(R) = R(0) < pi(R) — R(6)

(1 2o el

anh (3)

<1 | 2eN[exp(3) ~ 1] log kos}l(M) [03(R) - R@)

'ytanh(%)

_ (2C(C—+1)1; {10g[37 0(N)e] + ¥ 1og cosh ()] Tog[3™ v (7)n] | } }
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Now we have to get an upper bound for p;(R). We can write p; = Wﬁxp(_ﬁ/r), as we
assumed that all the posterior distributions in P are of this special form. Moreover,
we already know from Theorem 2.1.8 (page 58) that with P probability at least

[N sinh (%) = 8¢ [Mexp(— gy (R) = Texp(—prc—11y ()]
< CHB'¢T B) = log[w(B)u(e)n].

This proves that with P probability at least 1 — e — 27,

p~(R) < R(0)

2yN [exp(F) — 1] log[cosh(%)]\ ™
* <1 Y tanh () > {
2N [exp(3) — 1] log[cosh(3)]
(1+ : 'ytanh(%)g )

~ CH(TBLBY) = log[v(B)(l)
X (Fﬁxp(—me)(R)_R(eH Nsinh(%)ig[élﬂ’ﬂ 77])

+ E%{g log [cosh(%)]‘l’_% [@(x) + @(y)]

41 + % log [cosh(%)} e g

_ (24(4_41)1; {10g[37 0(A)e] + ¥ log[cosh ()] Tog[3™ (7)) }}}

The case when j € {E—i— L., M}\( arg max t) is dealt with exactly in the same
way, with ¢ = t(j) replaced d1rectly with % itself, leading to the same inequality.

The case when j € (argmaxt) is dealt with bounding first p(R) — R(f) in terms
of p(R) — R(0 §), and this latter in terms of p;i(R) — R(6). Let us put

A7) = (1 %N [eXP(%ia;;](g)g[cosh(%)] )
@) D) = S { K aleosn ()]0 [o(o) + o0
oty loeleosh(Blg

2(¢+1) -1
—m{log[i’) v(Nel

—|—% log [cosh(%)] log [3_1V(7)77] }}a

where C(p;) = C(¢,3') is defined, when p; = 7 )0 DY equation (2.19, page

L
exp(—
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77). We obtain, still with P probability 1 — e — 27,

B ~1  D(\7,p))
pr(R) = RO) < Z 53 e R) = RO + =505

B ~1 . DA\, p5)
pelR) = R(0) < 23 [ps(R) = RO)] + =575

The use of the factor D(A,7,p;) in the first of these two inequalities, instead of
D(A, 7, pp), is justified by the fact that C(p;) < €(p;). Combining the two we get

p=(R) < R(0) + m [pj(R) — R(0)] + {Jjéi’zg + 1] D,(4/\(’)\%yp)3).

Since it is the worst bound of all cases, it holds for any value of j, proving

THEOREM 2.2.10. With P probability at least 1 — e — 27,

< R(O inf
pr(R) < R(O) + i757;§7,$7y{

B(/\w;;[ ; ~] N {B(/\ﬁ)

Tréxp(—ﬁr) (R) - R(e) A()\,’Y) + 1:|

5,08,A,7,Z,Y

< R(0)+ inf {

BOW?( _Ci¢B, B) — log[v(B)u(i)
iy (””“*WR) -+ R, Tﬂ)
B()‘v 7) D()\’ L ,/Téxp(—ﬁr))
+{mxw ] A09) ’

where the notation A(X,7v), B(A,7) and D(A, 7, p) is defined by equation (2.20 page
83) and where the notation C*(3,) is defined in Proposition 2.2.5 (page 75).

The bound is a little involved, but as we will prove next, it gives the same rate
as Theorem 2.1.15 (page 65) and its corollaries, when we work with a single model
(meaning that the support of p is reduced to one point) and the goal is to choose
adaptively the temperature of the Gibbs posterior, except for the appearance of the
union bound factor — log[v(8)] which can be made of order log|[log(\N)] without
spoiling the order of magnitude of the bound.

We will encompass the case when one must choose between possibly several
parametric models. Let us assume that each 7’ is supported by some measurable
parameter subset ©; ( meaning that 7/(©;) = 1), let us also assume that the
behaviour of 7! is parametric in the sense that there exists a dimension d; € R
such that

. : —i < d;.
(2.21) ﬁseuﬂg ﬂ[ﬂ-exp(—ﬁR)(R) 1(51if R] <d;

Then

C'(A\9) < 10g{7féxp<—AR) {GXP{QNSinh(%)QM/(" 5)}} }
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+ 2N sinh (5%) 78 oy [M(,0)]

< log{ﬁéxp()\R) [exp 2eN sinh(%)2 R - R(g)] }] }

+2zN sinh(%)zﬂéxp(_)\m [R— R(g)]

+4N sinh(%)%p(m)

. 2 s
< 2aN Smh(%) ﬂ-éxp{f[Af%chinh(%)ﬂR} [R - R(G)]

+2zN sinh(%)QﬂéXP(_)\R) [R— R(g)]

+4N Sinh(%)%p(z).

Thus

C'(\,y) < 4N sinh(%f (w [iélifR — R(9)] + ¢(x)

xd; n xd;
2A 2A—4stinh(%)2 .
In the same way,

6.0 < S ()" gt 0] + o

N Cxd; <1 N 1 )
2Nsinh(%) 1 —x(tanh(%)

22 ~

+2N {exp(%) - 1} (gp(x) + x[lélfR — R(9)]

N xCd; )
Nsinh(%) — (N [GXP(QNC;(gQ_U) - 1]

(¢C+1) ) 7
1) [2 log[v(B)u(i)] + log(z)} )

In order to keep the right order of magnitude while simplifying the bound, let us
consider

2 2
2 0 =marfc 1. () s ()

2N2(¢—1) B
B2, [GXP<2N2(<—1> —1] ¢

Then, for any 8 € (0, Bmax),

— . .. 301¢%37 | L r ydi
€8 < inf SCP | hng R R .
GO < 5 C—-1N y[lgi O+ ol + B[ - 3]

(€+1)
€-1

{2 log [v(B)p(i)] + log(g)} :
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Thus

I YT pp— ){“expgw ) U o) + o]

= Ntanh(%
L+ % 3C1¢? 532 . > zd;
+4 3 C—DN (z[%lifRR(G)]+go(z)+ﬁ[1_2?glcl2)§v]>
(C+1) , "
~ D [QIOg[V(B)p(z)] —|—log(§)”
2(C+1) ?

-1 A -1
DA [log[?) v(Ne] + 5Ny log[3 V(v)n]] }

If we are not seeking tight constants, we can take for the sake of simplicity
A=~v=0,z=yand (=2
Let us put

Nfesp (%) ~ 1]

(223) CQ = maX{Cl,

ﬁmax ’
Y ileb(5)] e
ﬁmaxtanh(BR;X) ,Ntanh(ﬁmj\;’() ’
so that
-1 _ Coxf3 -1
AB.B) < <1 2 ) |
CQ.’L‘ﬁ
B(B,8) <14 =,

. 2
DB, 8, Tep(—pr)] < szﬁﬁ@(@

+(4+%)%

120, 32 ~ d;
;5(ng—Rwﬂ+ﬂa+——€zzq)

— 6log[v(B)u(i)] — 310g(%)]

- % {1 [37'w(B)e] + %log[?) 1%5)77]}
and o C, 32 2xd,;
C'(¢B,P) < N (x[lnfR— R(0)] + ¢(z) + Bl — ﬂ])
N
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—log [V(ﬂ)u(i)n]] }

T #{02 25 o)
e L

N

Cy 120182 [ .. 5 di
(e 8) 3 [ (a0 + 00+ )

g i) - 31os(3)|

B 6’% {log[S_l (B)e] + %log[?u 1V(ﬁ)77]] }

We see in this expression that, in order to balance the various factors depending
on z it is advisable to choose x such that

inf R — R(A) = @,
@i xr

as long as x < 10,5
Following Mammen and Tsybakov, let us assume that the usual margin assump-
tion holds: for some real constants ¢ > 0 and x > 1,

R(0) — R(8) > ¢[D(8,6)]".
As D(6,6) > M'(0,0), this also implies the weaker assumption
R(0) — R(0)>c[M'(0,0)]", 6¢c0,
which we will really need and use. Let us take G,.x = N and

1 [log, (N)]

v ﬂng Z o2t

1 .
Then, as we have already seen, p(z) < (1—x71)(kez) *'. Thus p(z)/z < ba™ 7T,

1
where b = (1 — k7!)(ke) *~T. Let us choose accordingly

i e (infe, R RO)\ T s N
= e 2= e

Using the fact that when r € (0, %), (if:)Q < 1416r <9, we get with P probability

at least 1 — ¢, for any (8 € supp v, in the case when z = 71 < z9,

. = PR
p(R) < lélif R+538C3 N [1&fR — R(9)]
+ % 138d; + 1661og[1 + logy(N)] — 1341log[u(i)] — 1021log(e) + 724,

and in the case when x = x5 < xq,
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. . ~ B
p(R) < mf R+ 68C [1({)1if R — R(0)] +269C3 N@( )

% [138d + 166log |1 + logy (N)] — 134log[u(i)] — 1021og(e) + 724]

)

< 1nfR+54102 B o(z)
+ % [138 d; + 166 log[l + logQ(N)] — 134 1log [u(z)] —1021og(e) + 724] .

Thus with P probability at least 1 — €,

408\ 7T
() )

— 1341log[pu(i)] — 1021log(e) + 724] :

. : g o1
pE(R)SlélifR—F inf 1082022N maxqb = [l(I)lfR R(G)]

BE(L,N)

C
+ ?2 [138 d; 4+ 1661log[1 + logy(N)]

THEOREM 2.2.11.  With probability at least 1 — €, for any i € N,

< inf
p;(R) < 1& R

b= [info, R — R(O)]™ {di +log (2] 4 5}

+max{ 847C3 N ,

166C, [d +log(1+log(2§N)> _'_5} ST

20, [10825] T 47T N ,

where Ca, given by equation (2.23 page 86), will in most cases be close to 1, and in
any case less than 3.2.

This result gives a bound of the same form as that given in Theorem 2.1.15 (page
65) in the special case when there is only one model — that is when p is a Dirac
mass, for instance (1) = 1, implying that R(#;)—R(#) = 0. Morover the parametric
complexity assumption we made for this theorem, given by equation (2.21 page 84),
is weaker than the one used in Theorem 2.1.15 and described by equation (2.8, page
62). When there is more than one model, the bound shows that the estimator makes
a trade-off between model accuracy, represented by infg, R — R(g), and dimension,
represented by d;, and that for optimal parametric sub-models, meaning those for
which infg, R = infg R, the estimator does at least as well as the minimax optimal
convergence speed in the best of these.

Another point is that we obtain more explicit constants than in Theorem 2.1.15.
It is also clear that a more careful choice of parameters could have brought some
improvement in the value of these constants.
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These results show that the selection scheme described in this section is a good
candidate to perform temperature selection of a Gibbs posterior distribution built
within a single parametric model in a rate optimal way, as well as a proposal with
proven performance bound for model selection.

2.3. TWO STEP LOCALIZATION

2.3.1. TWO STEP LOCALIZATION OF BOUNDS RELATIVE TO A GIBBS PRIOR. Let
us reconsider the case where we want to choose adaptively among a family of
parametric models. Let us thus assume that the parameter set is a disjoint union
of measurable sub-models, so that we can write © = U,,cr©.,, where M is some
measurable index set. Let us choose some prior probability distribution on the
index set pu € M}F(M ), and some regular conditional prior distribution 7 : M —
ML (O), such that m(i,0;) =1, i € M. Let us then study some arbitrary posterior
distributions v : @ — ML (M) and p: Q@ x M :— ML (©), such that p(w,i,0;) =1
w € Q, i€ M. We would like to compare vp(R) with some doubly localized prior

dlstrlbutlon Hrescpl— e ()] [wexp(_ﬁR)] (R) (where (5 is a positive parameter
T Texp

to be set as needed later on). To ease notation we will define two prior distributions
(one being more precisely a conditional distribution) depending on the positive real
parameters 8 and (o, putting

(2.24) T = Texp(—pR) and [ = Hexp(—-

Similarly to Theorem 1.4.3 on page 37 we can write for any positive real constants
G and y

P{(,mr) ® (A7) {exp [_Nlog[l — tanh(3)R']
— 41 — Nlog[cosh(%)]m H} <1,

and deduce, using Lemma 1.1.3 on page 4, that

(2.25) P{exp{ sup sup { Nlog[1 — tanh(%)(vp — i) (R)]
ueMﬁr(JVI) p:MﬂMi(@)

—A(vp - )(r) — Nlog[eosh(})] (vp) @ () (m')

— K (v, ) — v[K(p, 7)) }] } <1
This will be our starting point in comparing vp(R) with Z7(R). However, obtaining

an empirical bound will require some supplementary efforts. For each index of the
model index set M, we can write in the same way

P{W@ﬂ'[exp[—]\flog[l — tanh(2)R'] — v/ — Nlog[cosh(%)]m H} <1

Integrating this inequality with respect to & and using Fubini’s lemma for positive
functions, we get

P{ﬁ(f@%) {exp [~ Nlog[1 — tanh(3)R'] = 91’ — Nlog cosh(F)]m H} <1
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Note that (7 ® ) is a probability measure on M x O x O, whereas (&7) ® (a7)
considered previously is a probability measure on (M x ©) x (M x ©). We get as
previously

(2.26) P{exp[ sup sup {—Nlog[l — tanh(3)v(p — 7)(R)]
VEM}*_(M) p:M—»M}*_(G))

—ywp—7)(r) — Nlog[cosh(3)]v(p ® 7) (m')
— K(v,71) — v[X(p,7)] }} } <1
Let us finally recall that
(2.27) K(v, ) = 12 (v — R(R) + K(v, 1) — K(1, ),
(2.28) K(p,7) = Blp — ®)(R) + K(p, 1) — K(7,7).
From equations (2.25), (2.26) and (2.28) we deduce

PROPOSITION 2.3.1. For any positive real constants 3, v and (o, with P probability
at least 1 — €, for any posterior distribution v : Q0 — Mi(M) and any conditional
posterior distribution p : Q@ x M — M} (0),

~ Nlog[1 - tanh(3)(vp — FT)(R)] — Bv(p— )(R)
< A(vp— FF)r) + Nlog[eosh(2)] (vp) @ (E7) ()
+ K(v, 1) + v[K(p,7)] — v[K(F, 7)] +log(2).

and
— Nlog[1 — tanh(3)v(p — 7)(R)]
< yw(p —T)(r) + N log[cosh(2)]v(p ® 7) ()
+X(v, ) + V[K(p, 7)] + log(%),

where the prior distribution T is defined by equation (2.24) on page 89 and depends
on (B and (.

Let us put for short
T = tanh(%) and C = N log[cosh(%)].

We will use an entropy compensation strategy for which we need a couple of
entropy bounds. We have according to Proposition 2.3.1, with P probability at
least 1 — ¢,
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Similarly
K(v, ) = ( —)T(R) + K(v, p) — K(z, p)
g N NSV
m Y —m)7(r) + C(vr) @ (m)(m')

+ XK (v, 1) +log(2) | +K(v, ) — K(@, p)-

Thus, for any positive real constants 3, v and (;, ¢« = 1,...,5, with P probability
at least 1 — ¢, for any posterior distributions v,v3 : Q — Mi(@), any posterior
conditional distributions p, p1, p2, p4, p5 : 2 X M — M#(@),

T)(R)] — Br(p —7)(R)
V(wp —pm)(r) + Clvp) @ (__)( ')
+ K(v, 1) + v [K( K(w,m)] +log(2),

E[K(p1,7)] < Qyi(pr — ) (r) + GOR(pr @ T)(m)

— Nlog[l —Twp—T1
<

cl%
+ GE[K (o, ™)] + G log(2) + a%n[ (pr, ) — K(m, )],

620 [ X2 )] < Gavwlpe = W) + GCV(p2 @ 7) (1)

&)
+ LK (v, 1) + Gr[K(p2, T)] + (2 log(2)
[

+ &N K (o ) — K, m)],

3
G(1+ @)N?fws, 7) < Cay(vs — BY(r)
+ 3C[(v37) @ (v3p1) + (v3p1) @ (IT)] (M) + (K (vs, 1) + (3log(2)

Gt @)% [K(vs, 1) — KT 1)

G [Klpa, ] < Gralps = )0
+ GUCvs3(ps @T)(m') + (K (v, 1) + Cavs [K(pa, 7)] + Calog(2)

+ C4%V3 [K(pa, ) — K (7, )],

Gs %ﬁmpa%ﬂ < Csvalps —T)(r) + G Crilps © ) (m)

+ GR[K(ps, )] + G5 log(2) + G5 %H[K(P& ™) — K(@,7)].

Adding these six inequalities and assuming that

(2.29) G <G+ )5 -1],
we find

—Nlog[l—T(Vp—ﬁW)( )| —
< —Nlog[1 —T(vp—uT)(R)] — 5 — 7 (R)
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JrC1(M — )_[K(pl,_)} +<2(M - 1)v[K(p2, )]
+ [G(1+ Cz) — (3 — G K(vs, 1)
+G (5~ Ds[Kpa, ™)] + G (55 — 1)7[K(ps, 7)]
< y(wp —u7)(r) + Qyi(pr = 7)(r) 4+ Gyv(pz — T)(r)
+ Gy(vs —)7(r) + Cﬂ v3(pa — 7T)( ) + Gvh(ps —7)(r)
Clvp) © (BT) + QRlpr @T) + Gav(pe @ T)
+ (3(v37) @ (v3p1) + C3(V3p1) ® (ﬁ?)
+ Cav3(pa @ T) + CsTi(ps @ f)] (m')
+ (14 G) [K(v, 1) = K7, )] + v [K(p, 7) — K (7, 7)]
+ QAR (pr, ™) — K(7,m)] + G GEv [K(pa, m) — K(T, )]
+ G+ G) M [K (v, 1) — K (@, )] + Ca G s [K(pas m) — K (7, 7)]
+ C5%ﬁ[5<(p577f) — K@, )] + (14 + G+ {3+ G+ G) log(2),

where we have also used the fact (concerning the 11th line of the preceding inequal-
ities) that

— B(vp — IT)(R) + K(v, 1) + v [K(p,7)]
< —Bvp - am)(R) + (1 + ) K (v, i) + v [K(p,7)]
= (1 + CZ) [:K(Vv /~L) - :K(ﬁv /f')] + l/[fK(p, 7T) - K(ﬁ’ T‘—)]

Let us now apply to 7 (we shall later do the same with 7z) the following inequalities,
holding for any random functions of the sample and the parameters h: 2 x © — R
and g: 2 x © — R,

w(g—h) = X(7,7) < sup p(g —h) = K(p, )
p:Qx M—M (©)

= log{m[exp(g — h)] }
= log{m[exp(—h)]| } + log{mexp(—n) [exp(9)] }
- 77Texp(—h)(h) - ij(7re)cp(—h)7 ) + 1Og{’”exp(—h) [eXp(g)} }

When h and g are observable, and h is not too far from Gr ~ (R, this gives a
way to replace 7™ with a satisfactory empirical approximation. We will apply this
method, choosing p; and ps5 such that @7 is replaced either with zip;, when it comes
from the first two inequalities or with Zips otherwise, choosing ps such that v7 is
replaced with vpy and p4 such that v37 is replaced with v3p4. We will do so because
it leads to a lot of helpful cancellations. For those to happen, we need to choose
Pi = Texp(—Air), @ = 1,2,4, where A;, A2 and A4 are such that

(2.30) (14+C)y= Clﬂ/\la
(2.31) Gy = (1+G5) e,
(2.32) (G4 —G)y= 447)\4
(2.33) G3y = Cs%)\s

and to assume that

(2.34) Ga > G3.
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We obtain that with P probability at least 1 — e,

— Nlog[1—T(up — p7)(R)] — B(vp — i7)(R)
<A(wp—mp1)(r) + CGy(vsps — mps) (1)

+ Cl%ﬁ{log m{exp {C% e+ ] (m/)] }] }
1+C2 {10g{ P2 exp 1+< fEvoy iy Cap2(m /)] }]}

)V
+ C4%V3{log [P4{eXP %44 [Gavapr + Capa] (m/)} }] }

- Cs%”{log lp5{eXP NG (G + Cops|(m )} }] }
1
+

[c
[c
+ (14 @) [K(v, 1) = K (7, p)] + v [K(p, 7) — K(p2, )]
§2) NL [:K(V& /1’) - :K(ﬁa :u)]

4 (1 +§;g) log(2)

In order to obtain more cancellations while replacing @z by some posterior distri-
bution, we will choose the constants such that A5 = A4, which can be done by
choosing

<5 ¢

C3Ca
2.35 = .
(2.35) © Ca—Gs
We can now replace [i With fiexp —¢, p, (r)—£apa(r), Where
v
(2.36) &= ;
(1+&)(1+ %CB)
(2.37) 1= 16

1+ )1+ 5G)

Choosing moreover v3 = flexp —¢, p, (r)—£4pa(r)> 10 induce some more cancellations,
we get

THEOREM 2.3.2. Let us use the notation introduced above. For any positive real
constants satisfying equations (2.29, page 91), (2.50, page 92), (2.31, page 92),
(2.32, page 92), (2.33, page 92), (2.34, page 92), (2.35, page 93), (2.36, page 93),
(2.37, page 93), with P probability at least 1 — €, for any posterior distribution
v:Q— ML(M) and any conditional posterior distribution p: Q@ x M — ML (0),

— Nlog[1—T(vp—u7m)(R)] — Blvp — aT)(R) < B(v,p, B),

where B(v, p, 3) < 1(vp — vsp1)(r)

)
+ (14 G)(1+ 25G)

G NT

B(1+¢2) 1+ ¢g)
X log{ [ eXp NYB“Q [Vp + (1p1] (m')] } 2 B3
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(s NT
B(1+¢2) 1+ L ¢s)
X P4{eXP [C%@ [Csvspr + Csp4] (ml)} } e 1 }

+(1+ Cz%)y{log{”{exp[ﬁ@m(ml)} }] }

n C4N5TV3{1Og [M{exp {CN?@ [Csv3p1 + Capal (m/)} H }

+ (1 + ) [K (v, 1) — K(vs, )]

5
+ v[K(p, m) — K(p2, )] + <1 + ZQ) log(2).

This theorem can be used to find the largest value B(Vp) of 3 such that B(v, p,
B) <0, thus providing an estimator for 3(vp) defined as vp(R) = Tig(, ) Ta(wp) (1),
where we have mentioned explicitly the dependence of & and 7 in 3, the constant
2 staying fixed. The posterior distribution vp may then be chosen to maximize
B(vp) within some manageable subset of posterior distributions P, thus gaining

the assurance that vp(R) < Eﬁ(up)ﬁ,/e\(up)(R)’ with the largest parameter 3(vp)

that this approach can provide. Maximizing B(vp) is supported by the fact that
limg . 4o fig7s(R) = essinf,, R. Anyhow, there is no assurance (to our knowledge)
that 3+ Jig7s(R) will be a decreasing function of 3 all the way, although this may
be expected to be the case in many practical situations.

We can make the bound more explicit in several ways. One point of view is to
put forward the optimal values of p and v. We can thus remark that

v[vp(r) + K(p,m) = K(pz, )] + (1 + 2)K (v, 1)
=v |:j< [p7 ﬂ-exp(—'yr)} + /\2/02(T) + /}\2 Texp(—ar) (T)da:| + (1 + CQ):K(Vv /U‘)

= Z/{K [pa 7-‘-e)(I>(7’Y’f‘)j| } + (1 + <2)J<: [V7 /’('exp(_kf‘ii—gg(;)_ﬁ f;; Trexp(faT)('r‘)da)]

A 1 v
exp{—l +2<2 p2(r) — m /\2 Texp(—ar) (T)da}] }

B(v,p,8) = (1+(2) [511/3,01(7") + &4v3pa(T)

+ log{ pu[exp(—=&1p1(r) — E4pa(r))] }}

A 1 K
o{-grn g ), ”EXP“W”‘Z“H }

—yspr(r) + (1+G) (1 + %Q”)

X log{ug

-1 +Cz)10g{u

Thus

—(1+¢) log{u

GNT
B+¢2) 1+ 2850 ¢s)

o fesn O lon+ il )]}

(s NT
B(1+¢)(1+ 8L ¢q)
X P4{6XP [C%@,’ [C3V3P1 + C5,04] (m’)} } ’ o 1 }
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+(1+ CQNBT)V{log{”Q{exp{w(;%@pml)] }] }

+ C4%V3 {log l%{exp [C%Q [<3V3pl + C4p4] (m’)} }] }
+ V{K[,D, ﬂ—exp(—’W')]}

1 X -
+ ( + CQ) [V7 /‘l‘exp(ikii—zcg)i 1+1<2 f)\‘; Trexp(—(x’l‘)(r)da):l

+ (1 + XZ g) log(2).

This formula is better understood when thinking about the following upper bound
for the two first lines in the expression of B(v, p, 3):

(1+¢) [§1V3P1(T) + &avpa(r) +log{ plexp(—&ip1(r) — Eapa(r))] }]
-1+ Cz)log{u [eXp{ . f@pz(?“)

1 Y
- 1+ /)\ Texp(—ar) (T)da}] } - ’)/Vgpl(’l")

vy
<uvs |:)\2p2(7") + / 7Texp(—ar)(r)da - 791(7’):| .
A2

Another approach to understanding Theorem 2.3.2 is to put forward py =
Texp(—Aor)» LOT some positive real constant Ao <+, noticing that

v[K(po, ™) — K(p2,m)] = Aov(p2 — po)(r) — v[K(p2, po)]-

Thus

B(v, po, 3) < vs[(v = M) (po — p1)(r) + Ao(p2 — p1)(r)]
+(1+G)(1+ 550G)

X log{ug [pl{exp {C%ﬁ [Z/po + Clpl] (m')} }
% p4{exp [C%cs [<3V3p1 + C5p4] (m/)} }B(HQ)(H%CL@)] }
+(1+ Cz%)”{log{m{exp{ﬁ@m(m')] }] }

s @%yg{log lm{e){p [C%@ [Csvspr + Capa] (m’)} }] }

+(1+C2):K|:V7:u

GINT
B(1+¢2) 1+ ¢3)

_ (v=2g)po(m)+Agpa(r) ):|
1+¢o

5
— v[X(p2, po)] + (1 + Z Cz‘) log(2).

exp(
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In the case when we want to select a single model m(w), and therefore to set
v = d~, the previous inequality engages us to take
m € arg mei}\bﬁ — Xo)po(m, ) + Aopz(m, ).
m

In parametric situations where

de(m)
)\ b

Texp(—Ar) (T) ~r” (m) +
we get

(7 = Ao)po(m. ) = Aopa(m, r) = 7 [r* (m) + de(m) (35 + 22522 )],

resulting in a linear penalization of the empirical dimension of the models.

2.3.2. ANALYSIS OF TWO STEP BOUNDS RELATIVE TO A GIBBS PRIOR. We will
not state a formal result, but will nevertheless give some hints about how to establish
one. This is a rather technical section, which can be skipped at a first reading ,
since it will not be used below. We should start from Theorem 1.4.2 (page 35),
which gives a deterministic variance term. From Theorem 1.4.2, after a change
of prior distribution, we obtain for any positive constants «; and s, any prior
distributions fi; and f1o € MY (M), for any prior conditional distributions 7; and
Tt M — Mi(@), with P probability at least 1 — 7, for any posterior distributions
v1p1 and vopo,

a1 (v1p1 — v2p2)(R) < az(vipr — vap2)(r)
+ K[(11p1) © (v2p2), (n T1) © (fiz Ta)]

n log{(ﬁl #1) ® (fia 7o) {exp{—aglll%(R', M)+ alR'}] } ~log(7).

Applying this to a; = 0, we get that

(v = v2p)0) < - [K[09) & Gap0), (37) & ()]

+log{ (17) @ (is 71) [exp{a¥_sa (R, M)} |} 1og<n>] .

In the same way, to bound quantities of the form

1og{V3 [PI{QXP [Cl(Vp + Clm)(m’)] }pl

foltm i)

= SUP{pl SUP{CI [(vp) ® (v5p5) + Crvs(p1 ® ps)] (m) — IK(PE),pl)}

Vs Ps

+ p2sup{ Cs[G(v3p1) © (vsp0)
Pe

+ Gas(n @ pa) ) = K, )} = K(,03)
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where C1, C5, p; and ps are positive constants, and similar terms, we need to use
inequalities of the type: for any prior distributions pu; 7;, i = 1,2, with P probability
at least 1 — 7, for any posterior distributions v;p;, 1 = 1,2,
a3 (vip1) @ (vapa)(m') < log{ (in 71) & (o ) exp as® oy (M')] }
+ K[(v1p1) ® (v2p2), (i1 T1) @ (2 72)] — log(n).

We need also the variant: with PP probability at least 1 — n, for any posterior dis-
tribution vy : Q@ — MY (M) and any conditional posterior distributions py,p2 :
Qx M — ML(@),

asi(pr @ p2) (') < log{ir (1 © ) explasd_sy ()] }
+ K(v1, i) + 11 {K[p1 ® p2, 71 @ 72| } — log(n).
We deduce that

W
X p4{exp {02 [Govspr + Gopa] (m/)] }m] }

< Sip{pl S;]; lg—;{log{(ﬁ%) ® (5 75) €xp {a3<1>7%(M’)} }
+X[(vp) @ (vsps), (AT @ (fis 75)] + log(2)

+G [10g{ﬁ5 (71 ® 7s5) exp {asq)_a_NS (M/)} }
+ K(vs, i5) + vs{K[p1 ® p5, 11 @ 5] } + log(%)] } - K(P&Pl)}

+ p2 sup
Pe

+ K[(v3p1) @ (vspe), (fis T1 @ (fi5 T6) | + 105’;(%)

+ G [log{ﬁg, (T4 ® T6) exp {az’,‘l’f%@ (M/)} }

g_; {10g{ (13 1) @ (5 W) exp {ag@_%s (MI)} }

+ K(vs, fi5) + v5{K[ps ® pe, T4 © 76) } + 108(%)] }

— XK(ps, P4)] — XK(vs, V3)}-

We are then left with the need to bound entropy terms like K(v3p1, 1371 ), where
we have the choice of fi3 and 7y, to obtain a useful bound. As could be expected,
we decompose it into

K(vspr, fism) = K(vs, fis) + v3[K(p1, 71)]-

Let us look after the second term first, choosing 71 = Teyxp(—g, r):
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v3[K(p1,71)] = v3[Bi(p1r — T1)(R) + K(p1, m) — K(71,7)]

< f— [%ugm = F)(r) + K(vs, Fig) + v [K(pr, 1))

+ log{ﬁg (75%) {exp{—aglllawz(R’,M') + alR'}] } - log(n)}
+ v3[K(p1, m) — K(71, 7))

< % {K(Vs,ﬁs) + v3[K(p1,m1)]

log{a(757) [exp{ ~a20 3 (1,24 + au )]} ~ togto)

+ V3{j< [Ph ﬂ-exp(—%rﬂ }

Thus, when the constraint \; = 5;?2 is satisfied,
-1
v3[K(p1,m1)] < (1 - é) A {K(Vs,ﬁ?))
(65} (651

a2
N

+ log{ﬁg (75?) {exp{—ag\lla (R',M') + alR’}H — 10g(77)]-

We can further specialize the constants, choosing oy = N sinh(52), so that
oWy (R, M) + i R < 2Nsinh<%>2M’
2Weag (1, 1B < N .
We can for instance choose a; = 7, @y = N sinh(3) and 8; = )\1% sinh(4;), leading
to

PRrROPOSITION 2.3.3. With the notation of Theorem 2.3.2, the constants being set
as explained above, putting m = Texp(~A1 & sinn(2)R), With P probability at least
v

1_777

Ko )] < (1= 2) 72 s, )
+ 10g{ﬁ3 (%i@z) [exp{QN Sinh(%ﬁM/}} } - 1og(n)] .
More generally
s[5 7)) < (1= 2) 72 okt )

+ log{ﬂg (77'?2) [exp{QN sinh(%)zM’}} } — log(n)}
Aqy —1
+ (1 - —1) vs[K(p, p1)]-
~
In a similar way, let us now choose ji3 = flexp|—a,7(R)]- We can write

K (v, Tis) = o(v — fis)T(R) + K (v, 1) — K(fis, )
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<o [azw — Fis)(r) + K (v, ia)

+ log{(ﬁ;ﬁ) ® (us7) {exp{—ag\lla_j\? (R, M) + alR'}} } — log(n)}
X (v, 1) — K (fis, )

Let us choose ay = 7, @y = N sinh(3;), and let us add some other entropy inequal-
ities to get rid of 7 in a suitable way, the approach of entropy compensation being
the same as that used to obtain the empirical bound of Theorem 2.3.2 (page 93).
This results with P probability at least 1 — 7 in

(1 )i < 22 [w — i) (r)

+tog () () [exp {5 (R, 00) + )]} + T2
+ K(v, 1) — K(pis, p),

C6(1 - ﬁ)ﬁz& [K(ps, )] < Cﬁaﬁl [7%73(06 —7)(r)

+ 1og{ﬁ3 (ﬁ®2) [exp{—fyllf% (R, M) + 041R’}} } + log(%)]
+ Cofta [K(ps, m) — K(T, )],

(1= 2)iaftpr 7)) < G 2 szl - )0)

o {7 () [oxp {04 (.00 + o) ]+ o)
+ Criz [K(p7, m) — K(7, )],

(1= 2 Yo fonm] < 6 2 [0 =700+ 600 )

+ 1og{ﬁ3 (7®?) [exp{ffylll%(R', M) + alR’}} } + log(f])]
+ G [K(ps, ™) — K(T, m)],

(1= ) [xnm] < a2 [t = 7)00) + 500,

+ 1og{ﬁ3 (7?) [exp{—’ylll%(R/, M) + a1R’}} } + log(%)]
+ Cov[K(pg, m) — K(T, )],

where we have introduced a bunch of constants, assumed to be positive, that we
will more precisely set to

Tg+ 19 =1,
(C63 + 1'8043)1 = X,
aq
(¢rB+ 569043)1 = A7,
(€3]

(¢sB — ws%)g% = g,
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(Co3 — wgas)all = Ag.

We get with PP probability at least 1 — 7,
e -
(1 - == (G+ Cg)ﬂ)x(% h3) <
a1 (65}

o [v [v(wsps + apo) (1) — Fia(xsps + wop7) (r)]

+ 52 log{ () ® (o) [exp{ 703 (R M) + o R} ] |
+ (6 +Cr+ G+ C9)Olﬁ1 log{/j?» (%) {exp{_V\I}% (R, M) + alRl}} }
+ K (v, p) — K(fis, ) + (Z—j + (G +¢7 + (s + 49)0%) IOg(%)'

Let us choose the constants so that A\ = A7 = Ag, Ay = A\g = Ag, ozgxgall =¢1 and
asrs - = 4. This is done by setting

s = &4

&1+ &
g = &1

E1+&)
as = % sinh(37) (&1 + &4),
G = %sinh%)w,%&‘)»
¢r = gsmh%%,
CS = %Slnh(%)%7
Co = %sinh(%)(M‘%&)'

The inequality A1 > & is always satisfied. The inequality Ay > &4 is required for
the above choice of constants, and will be satisfied for a suitable choice of (3 and

G4

Under these assumptions, we obtain with P probability at least 1 —n

(1- Z*f (Gt o) D )X, fis) < (v = fis) (€101 + Eap1) (r)

ay
+ Z—j’ log{(ﬁgf) ® (fiaT) {exp{f’y\ll% (R, M) + alR’}] }

+ (C6 + ¢7 + Cs + Cg)aﬁ1 log{lj3 (7€?) {exp{—'ykll% (R, M) + OélR/}:| }

K00, ) = 9, 1) + (22 4 G G+ G+ Go) ) b (2)

aq
This proves

PROPOSITION 2.3.4. The constants being set as explained above, with P probability
at least 1 — n, for any posterior distribution v : Q) — M}r(M),
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i) < (1- 2 = Gt ) ) |xum)
+ Z—j log{(ﬁgﬁ) ® (JisT) [eXp{—’y\II% (R, M') + alR’}] }
+(Co+Cr+ G+ gg)aﬁl log{ﬁg (72) [exp{—'y\ll% (R, M) + alR'}} }
+ (Z—‘I} + (C6 +Cr+Cs + CQ)O%) log(%)} :
Thus

14+ (1- A7t
1= 32— (Cs+Co)a,

X {Z—j log{(ﬁgﬁ@) (1is7) {exp{—*y\ll%(R', M)+ alR'}} }

K(vsp1, iz m) <

+(C6 +Cr + G+ Cg)aﬁl log{ﬁg (ﬁ®2) [exp{—'y\Il% (R, M) + OélR/}:| }

+ (z—j + (G + 7 + g + (o) b ) log(%)]

+ (1 — %)_1% [log{ﬁg (%{@2) [exp{2Nsinh(%)2M'}} } — log(%)} .

We will not go further, lest it may become tedious, but we hope we have given
sufficient hints to state informally that the bound B(v, p, 8) of Theorem 2.3.2 (page
93) is upper bounded with P probability close to one by a bound of the same flavour
where the empirical quantities » and m’ have been replaced with their expectations
R and M'.

2.3.3. TWO STEP LOCALIZATION BETWEEN POSTERIOR DISTRIBUTIONS. Here we
work with a family of prior distributions described by a regular conditional prior
distribution 7 = M — ML (©), where M is some measurable index set. This family
may typically describe a countable family of parametric models. In this case M = N,
and each of the prior distributions 7 (i, .), ¢ € N satisfies some parametric complexity
assumption of the type

limsupﬂ[wcxp(,gpi) (i,.)(R) — ess inf R} =d; < 400, i€ M.

B—~400 (i)

Let us consider also a prior distribution 1 € ML (M) defined on the index set M.

Our aim here will be to compare the performance of two given posterior distri-
butions v1p; and vopo, where vy, @ Q — ML(M), and where p1,p2 : Q@ x M —
M (©). More precisely, we would like to establish a bound for (v1p1 — vap2)(R)
which could be a starting point to implement a selection method similar to the one
described in Theorem 2.2.4 (page 72). To this purpose, we can start with Theorem
2.2.1 (page 68), which says that with P probability at least 1 — e,

— Nlog{1 — tanh(3) (v1p1 — 1202) (R) } < Awip1 = v202)(r)
+ Nlog[cosh(3)] (v1p1) @ (v2p2)(m) + K(v1, 1) + K(v2, 1)
+ 11 [:K'(ph %):I + v [K(p27 %)] - 10g(€)7
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where i € ML (M) and 7 : M — M (©) are suitably localized prior distributions
to be chosen later on. To use these localized prior distributions, we need empirical
bounds for the entropy terms X (v;, 1) and v; [K(p;, 7)], i = 1,2.

Bounding v[X(p, 7)] can be done using the following generalization of Corollary
2.1.19 page 68:

COROLLARY 2.3.5. For any positive real constants v and X such that v < X, for
any prior distribution u € ML (M) and any conditional prior distribution w : M —
M}F(@), with P probability at least 1 — €, for any posterior distribution v : Q0 —
ML (M), and any conditional posterior distribution p : Q x M — ML (0),

1 _
V{K [p; 7Texp[—N% tanh(%)R]] } S K/(Va P57 >‘a 6) + ix(y, ,U),
ol
where
/ def ~ -1
K (Va P57 >‘a 6) = (1 - X) I/[j{(p7 Wexp(—vr)}

_ %bg(e) + V{log [Wexp(*’yr) (eXP{N% log [COSh(%)}p(m/)}ﬂ }}

To apply this corollary to our case, we have to set

T= //Tcxp[fN% tanh(% )R]

Let us also consider for some positive real constant 3 the conditional prior distrib-
ution

T = Mexp(—(R)
and the prior distribution
ﬁ = Mexp[—am(R)]*

Let us see how we can bound, given any posterior distribution v :  — Mi (M),
the divergence X(v, ). We can see that

K(v. 1) = alv — )F(R) + K(v, ) — K(7, ).
Now, let us introduce the conditional posterior distribution
T = Texp(—r)

and let us decompose
(v=m[F(R)] =v[F(R) - 7(R)] + (v — 1) [7(R)] + E[7(R) - 7(R)].
Starting from the exponential inequality
]P’[ﬁ[f ® 7] exp{leog [1— tanh(F)R'| — v’ — Nlog[cosh(%)]m/}} <1,
and reasoning in the same way that led to Theorem 2.1.1 (page 52) in the simple

case when we take in this theorem A = =, we get with P probability at least 1 — ¢,
that
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— Nlog{1 — tanh(%)v(T — 7)(R)} + Sv(7 — 7)(R)

<v log{?r{exp{Nlog [cosh(%)%(m’)}] }} + X (v, x) — log(e).

—

— Nlog{1 — tanh(%)a(7 — 7)(R)} — Bu(7 — 7)(R)
<n {log{ [exp{Nlog [cosh(%)?(m')}} }] — log(e).

In the meantime, using Theorem 2.2.1 (page 68) and Corollary 2.3.5 above, we
see that with P probability at least 1 — 2¢, for any conditional posterior distribution
p:Qx M — M (0),

— Nlog{1 — tanh(3)(v - *) (R)} <A = m)p(r)

+ Nlog[cosh()] (vp) @ (Fip)(m') + (v + B)K(p, T) + K(v, ) — log(e)
< My~ B)p(r) + mog [cosh&)]( p) ® (o) (m') + K (. 7) — los(c
-1 A 1
+ (1 - %) (v +u){ )+ log{ {exp{N7 log[cosh(%5)] p(m )}} }}

+(2- 1)71 [ (v, 1) - 21og(e)].

Putting all this together, we see that with P probability at least 1 — 3¢, for any
posterior distribution v € M} (M),

|:1 - Ntanh(%) + 03 o Ntanh(%)@ — %)]j{(l/,ﬂ) <

a{Ntanh(%)—Fﬂ}_l{u{log{ [exp{ N log[cosh(3)] 7 (m')}}}] —log(e)}
+a[Weann() ~ 5] | os {7 [exp( og eosh )] 7(m) ]} - 1ot

+ a[N tanh(%)] _1{
Ay — m)7(r) + Nlog[cosh(g)] (vT) ® () (m")
+ (1 — %)71( +0) [log{ {exp{N7 log[cosh(%)] (m’)}] }}

1+ %

— 7 10g(6)} + K(Va ,LL) - fK(ﬂa :U‘)
A

Replacing in the right-hand side of this inequality the unobserved prior distribution
o with the worst possible posterior distribution, we obtain

THEOREM 2.3.6. For any positive real constants a, 3, v and X\, using the notation,

= Texp(—BR)>
o= Hexp[—a7(R)]>

T = Mexp(—r)
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= ’uexp[—a% taunh(%)_l;r\(r)]7
with P probability at least 1 — €, for any posterior distribution v : ) — J\/[_lF (M),

[1_ Ntanh(%)qLﬂ a Ntanh(%)(l ):|9<(1/ ) < X(v, i)

b ey (o el Flew v osleom Glae) ]}
+ e (¢ feslFle v el 170

(o3
Ntanh(%)fﬁ

+lo{ [ {eXP Nlog[COSh(%ﬂ (m/)}}}

o

N tanh(R)(1—3)

X {exp[N”log[cosh(%)] (m’)}}]

1 1+’Y 3
+L\ftanh(%)Jrﬂ+Ntamh(”) 8" Ntanh(2 )(1;)]@(6)'

This result is satisfactory, but in the same time hints at some possible improve-
ment in the choice of the localized prior iz, which is here somewhat lacking a variance
term. We will consider in the remainder of this section the use of

(238) o= /’['exp[ am(R)— 57T®7T(M/)

where £ is some positive real constant and T = T eep(_BR) is some appropriate
conditional prior distribution with positive real parameter B . With this new choice

K(v, 1) = alv = I7(R) + &(v — 1) (T @ 7)(M') + K(v, ) — K(T, p)-

We already know how to deal with the first factor a(v — @)7(R), since the com-
putations we made to give it an empirical upper bound were valid for any choice
of the localized prior distribution 7. Let us now deal with (v — @) (7 ® 7)(M').
Since m/(6,6") is a sum of independent Bernoulli random variables, we can easily
generalize the result of Theorem 1.1.4 (page 4) to prove that with P probability at
least 1 — €

N[1- exp(—%)] v(Trem)(M')
< (@ ¢ [v(F @ M)(M)] < Cu(F @ F)(m') + K(, ) — log(c).
In the same way, with P probability at least 1 — ¢,
— Nlexp(%) — a7 @ 7)(M')
< —(@_¢ [A(F @ T)(M")] < —CA(T @ 7)(m') — log(e).

We would like now to replace (7 ® 7)(m’) with an empirical quantity. In order to do
this, we will use an entropy bound. Indeed for any conditional posterior distribution
p:Qx M — M (0),
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v[X(p.7)] = 51/( + v [K(p, ) — K(F, )]

- Ntanh % { ) + Nlog [COSh(%)]V(p @) (m')

+ K(v, ;1) + v [K(p, )] —log(e) ¢ +v[K(p,m) — K(7,)].

—

Thus choosing 3 = N tanh(3;),

Wi - p)(r) + v [K(F, ) — K ()]
< Nlog|cosh(3)]v(p ® 7)(m) + K(v, B) — log(e).
Choosing p = 7, we get
v[K(7,7)] < Nlog[cosh()|v(T @ 7)(m') + K(v,1z) — log(e).

This implies that
ev(7 @ 7)(m') = v{F[eR(m)] — K7 7) } +v[X(F 7))
< V{log [%{exp [&m(m/)] }} }
+ Nlog[cosh($)]v(7 @ ) (m') + K(v, z) — log(e).
Thus
{¢ — Nlog[cosh(F)] jv(7m
< V{log [ﬁ{exp (&7 (m)] }} } + K (v, ) — log(e)

and

. 3 - - -
VI::K:(’]T/]T):I < (Wsh(%)] — 1) [u{log[w{exp[&r(m )] }j|}
+X(v, ;) — log(e)} + X (v, ) — log(e).
Taking for simplicity £ = 2N log[cosh(7)] and noticing that

2N log[cosh(%)] = —Nlog(1 — %),

we get

THEOREM 2.3.7. Let us put 7 = Texp(—FR) and T = Texp(—~r), where v is some

arbitrary positive real constant and E = Ntanh(3), so that v = N log(H’;)

N

With P probability at least 1 — e,

v[K@ @) <v {log{ [exp{QNlog [cosh(F)]7 (m’)}} }} +2[K (v, ;r) — log(e)].
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As a consequence
wEeT)m)=wFEeT)(m) —v[KFEFeT,7TeT)| + 2v[K(7,7)]
< V{log [% ® %[exp(gm/)]} }
o [log{ [exp{2N log[cosh(3)] 7(m')}] }} +4[K (v, Ti) — log(e)).
Let us take for the sake of simplicity ( = 2N log[cosh(3)], to get

cviF e ) (m') < 3v{log|[F @ 7 lexp((m)]| b +4[X(n, ) — log(e)]
This proves

PROPOSITION 2.3.8. Let us consider some arbitrary prior distribution i € M},_(M)

and some arbitrary conditional prior distribution ™ : M — Mi(@) Let B < N be

some positive real constant. Let us put @ = 7 wo(—BR) and T = Texp(—yr), With

8= N tanh(Z). Moreover let us put ( = 2N log[cosh(Z)]. With P probability at
least 1 — 2, for any posterior distribution v € M (M),

3V{log [? ® %[exp((m’)]} } +5[K(v, 1) — log(e)]

v(FQF)(M) < N[1—exp(—%)]

- m {3y {log{ﬁ ®F {eXp{2N log [COSh(%)]m/}] }}

+5[K(v, 1) — log(e)] }
In the same way,
— (EFE @) (m') < ﬁ{log [ﬁ ® %[exp(_gm')]] }
+ 2t exp {20V log[eost () m')}] | - 1o(e)

and thus

m {ﬁ{log (7 @ #exp(~cm)) |}

+ 20 [log{ [exp{2N log[cosh(%)]7 (m')}} }} - 5log(e)}.

—a(FeT) (M) <

Here we have purposely kept ¢ as an arbitrary positive real constant, to be tuned
later (in order to be able to strengthen more or less the compensation of variance
terms).

We are now properly equipped to estimate the divergence with respect to 7z, the
choice of prior distribution made in equation (2.38, page 104). Indeed we can now
write

= o % |
N tanh(3) + 3 Ntanh(%)( -3) Ntanh(%)
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< WW{V{log{%[exp{Nlog[cosh(%)] (m/)}m - log(e)}

Ww{ﬁ {log{%[exp{]\flog[cosh(%)] (m’)}”] —log(e)}

* N tanh(%) {
Av — @)@ (r) + N log[cosh()](

vit) @ (am)(m’)
+ (1 — %) - (v+n) [log{% [exp{N} log [cosh(%)]%(m’)}] }}
3
+ m{w [log{% [exp{2N log [cosh(%)] }] }} — 5log(e)}

+ m {ﬁ{log [ﬁ T [GXP(*CW/)H }

+ 20 {log{ {exp{QN log[cosh ()] 7 (m')}} }] -5 log(e)}

It remains now only to replace in the right-hand side of this inequality @ with
the worst possible posterior distribution to obtain

THEOREM 2.3.9.

Let us use the notation T = Texp(—gR)s T = Texp( N tanh(2)R) T = Texp(
exp|— o (R)—£x@m(M')]
by

Let A > v > 8, (, a and & be arbitrary positive real constants

= —r)s =
and let us define the posterior distribution i : Q — ML (M)
di ex BN 7(r)
du P

. ¢

W log{?r @ 7 [exp(—Cm)] } }

Let us assume moreover that

(07

N tanh(3) + ﬂ N tanh(

« 5¢ 1
D3 " Neanh(Z)?

With P probability at least 1 — €, for any posterior distribution v :  — ML (

: L (M),
K0 < 1= o 75
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+ Ntanh(g)(l_%){u{log{ 7 |exp{ V3 log[cosh(3)]7(m")}] }”
+m{3 {10g{7r®ﬂ[exp{QNlog[cosh(%)] 1] }”
gl )

+ log ,u{{ [exp{Nlog[cosh(%)] (m’)}]}m

e

X {% {exp{NV log[cosh(%)|7 (m’)}} }N“‘""‘%)(l*%)

2¢

x { {exp{?N log[cosh(%)]7 (m’)}} } N o)1)
X exp{Nlog [cosh(%)] [(u%) ® ﬂ (m')}} }

[ a a 2a(1+ %)

N tanh(Z) + 3 + N tanh(3) — 3 + Ntanh(ﬁ)( -3)

5% 5¢ e
- N tanh(3)? - N[exp(ﬁ) — 1]] : g(E)}'

The interest of this theorem lies in the presence of a variance term in the localized
posterior distribution fi, which with a suitable choice of parameters seems to be an
interesting option in the case when there are nested models: in this situation there
may be a need to prevent integration with respect to i in the right-hand side to
put weight on wild oversized models with large variance terms. Moreover, the right-
hand side being empirical, parameters can be, as usual, optimized from data using
a union bound on a grid of candidate values.

If one is only interested in the general shape of the result, a simplified inequality
as the one below may suffice:

COROLLARY 2.3.10. For any positive real constants A > v > (3, ¢, a and &, let us
use the same notation as in Theorem 2.83.9 (page 107). Let us put moreover

A, = « « n 5¢
Ntanh(3) + 8 Ntanh(%)( —2)  Ntanh(F)?’

Ay = « « n 3¢
Ntanh(%) +8 Ntanh(%)( —2)  Ntanh(F)?

4 o) 1

A= « « n 2&
Ntanh(%) B Ntanh(%)( 1) Nlexp(%) — 1]

« 20(1+ %)
As = Ntanh(%) + 03 * N tanh(g) — 3 N Ntanh(3)(1—2)
5¢ n 5¢
N tanh(37)? N[exp(%) —1] 7

2
N
C1 = 2N log [cosh(%)]
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Cy = Nlog[cosh(%)].

Let us assume that A; < 1. With P probability at least 1 — ¢, for any posterior
distribution v : Q@ — M} (M),

K(v, ) < K(v,a, 8,7, 1, &,¢e) & (1 - Al)l{ﬂav, )

+ Asv [log (ﬁ ® 7 [exp(Cym’) | )} + Asv [log(?r @ 7 [exp(—¢m’)] )]
+ log{ i [ [% (eXp [Cﬁ(m')m . exp(c2 [(v7) @ 7] (m'))} }
+ As log(g) }

Putting this corollary together with Corollary 2.3.5 (page 102), we obtain

THEOREM 2.3.11. Let us consider the notation introduced in Corollary 2.3.5 (page
102) and in Theorem 2.3.9 (page 107) and its Corollary 2.3.10 (page 108). Let us
consider real positive parameters A, v; < Ay and vy < Ny. Let us consider also two
sets of parameters «;, B, Vi, Ni» &y G, where © = 1,2, both satisfying the conditions
stated in Corollary 2.8.10 (page 108). With P probability at least 1 — ¢, for any
posterior distributions vy, ve @ ) — Ml (M), any conditional posterior distributions

P1, P2 : QXM—>M1 (6)

- Nlog{l — tanh(%) (V1p1 - Z/sz)(R)} < )\(lel — I/ng)(’f‘)

+ Nlog[eosh ()] (v1p1) © (vap2) (')
+K (Vlapla’YlaAlvg) +K (V23p27727>‘/27§)

K(Vlaalaﬁ1771;A17£17<1a %)

+

7 K(VQ, 062,52,’72, )\2;527 CZ? g) - 1082(%)

This theorem provides, using a union bound argument to further optimize the
parameters, an empirical bound for v1p1(R) — vap2(R), which can serve to build
a selection algorithm exactly in the same way as what was done in Theorem 2.2.4
(page 72). This represents the highest degree of sophistication that we will achieve
in this monograph, as far as model selection is concerned: this theorem shows that
it is indeed possible to derive a selection scheme in which localization is performed
in two steps and in which the localization of the model selection itself, as opposed
to the localization of the estimation in each model, includes a variance term as well
as a bias term, so that it should be possible to localize the choice of nested mod-
els, something that would not have been feasible with the localization techniques
exposed in the previous sections of this study. We should point out however that
more sophisticated does not necessarily mean more efficient: as the reader may
have noticed, sophistication comes at a price, in terms of the complexity of the
estimation schemes, with some possible loss of accuracy in the constants that can
mar the benefits of using an asymptotically more efficient method for small sample
sizes.
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We will do the hurried reader a favour: we will not launch into a study of the
theoretical properties of this selection algorithm, although it is clear that all the
tools needed are at hand!

We would like as a conclusion to this chapter, to put forward a simple idea:
this approach of model selection revolves around entropy estimates concerned with
the divergence of posterior distributions with respect to localized prior distribu-
tions. Moreover, this localization of the prior distribution is more effectively done
in several steps in some situations, and it is worth mentioning that these situations
include the typical case of selection from a family of parametric models. Finally,
the whole story relies upon estimating the relative generalization error rate of one
posterior distribution with respect to some local prior distribution as well as with
respect to another posterior distribution, because these relative rates can be esti-
mated more accurately than absolute generalization error rates, at least as soon
as no classification model of reasonable size provides a good match to the training
sample, meaning that the classification problem is either difficult or noisy.



