Chapter 5

Special Topics in Point Pattern Analysis

Here we consider two useful modeling problems for spatial point patterns. The first
is concerned with species distributions in ecology and occupies Sections 5.1 and
5.2. In Section 5.1 we consider the role of spatial point patterns in the analysis
of presence-only species data. In Section 5.2 we consider preferential sampling, a
concept that is attracting attention these days. The idea of preferential sampling
is to assess whether there is stochastic dependence between the set of locations
where observations are observed and the observations at those locations. First, we
use preferential sampling in order to extend customary presence/absence modeling.
Then, we use it to address fusion of presence-only data with presence/absence data.
In Section 5.3 we consider multivariate spatial point pattern modeling. With M
point patterns to model, we work in a marked point process setting. Customarily,
as we developed in Section 2.6, we consider locations assigned, perhaps dependently,
within a mark but independently across marks. Here, we consider the case where
there is dependence between the locations for one mark and those for another. We
focus on two flexible classes of models for multivariate point processes - multivariate
Gibbs processes and multivariate log Gaussian Cox processes.

We need to add some more words with regard to Sections 5.1 and 5.2. Learning
about species distributions is, arguably, a preoccupation in the ecology commu-
nity. The literature separates two types of data collection to learn about species
distributions: presence/absence and presence-only. The former imagines some sort
of designed sampling where plots (grid cells, transects, etc.) are sampled and pres-
ence/absence or abundance of a species is observed for the sampled plots. Presence-
only data is imagined in terms of randomly encountering a species within a region
and is typically collected in the form of museum or citizen science data, In fact,
the distinction between the two types of data collection can be murky since, if data
collection is viewed through gridding of cells, then, conceptually, the observations
associated with the cells can be imagined as capturing presence/absence as well
as presence-only, as we elaborate below. In any event, the literature on modeling
presence/absence data is enormous by now and, more recently, there has been a
consequential growth in the literature addressing modeling for the presence-only
setting.

The contribution here is to address some fundamental and occasionally con-
tentious threads in the literature with regard to the foregoing data collection. It
is asserted that a common modeling framework can be used for both data types,
that presence/absence data modeling can be induced under a presence-only frame-
work, and, moreover, that presence-only data can be used to infer about pres-
ence/absence [57, 96, 175]. A further implication is that fusion of general pres-
ence/absence and presence-only data sources can be implemented within what is
essentially the presence-only framework [155].

We step into the fray first with discussion to define what “presence at a location”
means, and argue that modeling for the two data types is distinct and incompatible.
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Next, we introduce preferential sampling to clarify how potential bias in sampling
locations can affect inference with regard to presence/absence, the so-called pref-
erential sampling problem and the associated “shared process” perspective. Then,
we turn to the fusion problem, again arguing that current versions of such fusion
in the literature have fundamental flaws. We propose to employ the shared pro-
cess perspective for implementing the fusion, extending preferential sampling ideas.
This enables the two data sources to be probabilistically independent or dependent.
Altogether, this perspective enables us to consider a collection of models and allow
us to take the presence/absence modeling to a much richer explanatory level.

In order to examine these issues, we need to spend some time with the presence-
only literature, describing suitable modeling. This is the contribution of Section
5.1. We also need to offer the same with regard to the presence/absence literature.
This is addressed in Section 5.2. Evidently, we need to elaborate what preferential
sampling is in order to reveal its utility for these issues. In the interest of keeping the
explication at a concise and comfortable level, we only consider individual species
models. However, extension to joint species distribution modeling can be developed.

5.1. Spatial modeling of presence-only data
5.1.1. A few initial words on presence/absence data

Again, learning about species distributions is a long-standing issue in ecology with
an enormous literature. Useful review papers that organize and compare model
approaches include [60, 216] and references therein. Following the overarching ob-
jective of this monograph, our focus here is on model-based approaches to study
this problem. A substantial proportion of the model-based work focuses on model-
ing presence/absence where the data are available as a presence (1) or absence (0)
at a collection of sampling locations. The goal is to explain the probability of pres-
ence at a location given the environmental conditions that are present. The natural
approach is to build a binary regression model, with, say, logistic link, where the
covariates can be introduced linearly (see below) or as smoothly varying functions.

The latter choice results in generalized additive models (GAMs) which tend
to fit data well since they employ additional parameters that enable nonlinear and
multimodal relationships with the data [60, 93]. They can also provide a qualitative
picture of how species respond to environmental variables. The price we pay for
using GAMs is a loss of simplicity in interpretation and the risk of overfitting with
poor out-of-sample prediction. We don’t consider GAMs further here, preferring
the use of random effects specified through Gaussian processes. Random effects
models are extremely flexible, offer direct interpretation, and good spatial prediction
(kriging).

Much of this presence/absence work is non-spatial in the sense that, though it
includes spatial covariate information, it does not model anticipated spatial depen-
dence in presence/absence probabilities. Accounting for the latter seems critical
since causal ecological explanations such as localized dispersal as well as omitted
(unobserved) explanatory variables with spatial pattern such as local smoothness of
soil or topographic features suggest that, at sufficiently high resolution, occurrence
of a species at one location will be associated with its occurrence at neighboring lo-
cations [205]. In particular, such dependence structure, introduced through spatial
random effects, facilitates learning about presence/absence for portions of a study
region that have not been sampled, accommodating gaps in sampling and irregular
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sampling effort. For point level categorical response, [98] use a Gaussian process
(GP) prior for these spatial effects. For areal level count data, Markov random field
(MRF) priors [16, 27] have been used in [7] and later incorporated into a hierar-
chical Bayesian model setting by [75, 76] and [39]. See also [118] in this regard. We
return to presence/absence data, elaborating the foregoing modeling approaches in
Section 5.2.

5.1.2. Review of presence-only data approaches

The focus of the work in this section is on the so-called presence-only setting. Analy-
sis of presence-only data has seen growing popularity in recent years due to increased
availability of such records from museum databases and other non-systematic sur-
veys [see 90]. We note that presence-only data is not inferior to presence/absence
data. In fact, it can be viewed as the converse; in principle, presence-only data offer
a complete census while presence/absence data, since confined to a specified set of
sampling sites, contains less information. However, in practice, a complete census of
individuals is rarely achieved. The sampling effort required to achieve such censuses
usually exceeds the available time and money resources.

One model-based strategy for presence-only data has attempted to implement a
presence/absence approach. All of this work depends upon drawing so-called back-
ground samples, a random sample of locations in the region with known environ-
mental features. Early work here characterized these samples as pseudo-absences
[62, 67] and fitted a logistic regression to the observed presences and these pseudo-
absences. Since presence/absence is unknown for these samples, work of [157, 211]
shows how to adjust the resulting logistic regression to account for this. Addition-
ally, all of this work is non-spatial in the above sense. More importantly, as we
argue below, this approach attempts to condition in the wrong direction. The ob-
served presences can be viewed as a point pattern, revealing its relevance for this
monograph. See [38, 212] in this regard. With a point pattern of absences we could
imagine a marked point pattern with a mark for presence and a mark for absence.
However, pseudo-absences create an unobserved and artificial pattern of absences.
In fact, even with a complete census of individuals, we will have a finite point
pattern of presences with an uncountable set of absence locations.

Alternative algorithmic approaches include the genetic algorithm for rule-set
prediction (GARP) approach [158] and the maximum entropy (Maxent) approach,
[see, e.g., 159, 160]. GARP is based upon an artificial intelligence framework to
produce a set of positive and negative rules that, together, give a binary prediction.
Rules are favored according to their effectiveness (compared with random predic-
tion) based upon a sample of background data and presence data. Maxent is a
constrained optimization method which finds the optimal species density (closest
to a uniform) subject to moment constraints. Maxent predictions have usually been
found to have higher predictive accuracy on average than GARP [60]. Moreover,
with the availability of an attractive software package!, Maxent is now becoming
the standard approach for presence-only data analysis. The point pattern analy-
sis approach we present here provides an appealing alternative in that it is fully
model-based, allowing full inference with associated uncertainty everywhere in the
region.

Briefly, the Maxent approach produces a probability density surface which max-
imizes entropy given constraints imposed by the collection of vectors of environ-

Thttp:/ /www.cs.princeton.edu/~schapire/maxent
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mental variable values at the sites at which the species has been observed. These
constraints require that the average of each of the environmental covariates un-
der this distribution essentially agrees with the empirical average for this covariate
based upon samples over the region. The constrained optimization introduces regu-
larization weights, one for each moment constraint. The optimization is solved only
approximately, i.e., each constraint is satisfied within a specified precision to avoid
overfitting. As an optimization strategy rather than a stochastic modeling approach,
Maxent is unable to attach any uncertainty to resulting optimized estimates. The
resultant surface is interpreted as providing the relative probability of observing
a species at a given location compared to other locations in the region. However,
Maxent is unable to provide an intensity, meaning we are unable to determine, for
example, the expected number of individuals in a specified region.

Again, our approach is to model presence-only data as a point pattern with an as-
sociated intensity specified in terms of the available environments across the region.
We do this through typical regression modeling, enabling natural interpretation for
the coefficients. We employ a hierarchical model to introduce spatial structure for
the intensity surface through spatial random effects, resulting in a log Gaussian
Cox process following Section 2.3. We do not assume any background or pseudo-
absence samples; rather, we assume that the covariates we employ are available as
surfaces over the region in order to interpolate an intensity over the entire region.
We acknowledge that the observed point pattern is biased through anthropogenic
processes, e.g., human intervention to transform the landscape and non-uniform
(in fact, often very irregular) sampling effort. Such bias in sampling is a common
problem, see for example [128] and references therein. This requires adjusting the
potential species intensity to a realized intensity which we treat as a degradation of
the former.

Variation in site access is one of the factors that influences the likelihood of the
site to be visited/sampled. For example, sites adjacent to roads or along paths,
near urban areas, with public ownership, e.g., state or national parks, or with flat
topography are likely to be over-sampled relative to more inaccessible sites. When
bias implies that only a portion of the region is sampled, it is likely that only a
portion of the overall point pattern is observed. In addition, there may be temporal
bias in sampling. For example, as one learns more about the ecology of the species
of interest, the nature of sampling effort may change [127]. One might build a
regression model to attempt to explain sampling bias but no successful versions
have appeared in the literature to date.

Land use, as a result of human intervention, affects awvailability of locations,
hence, inference about the intensity. As a result of human intervention, some areas
within a study region are not available for a species. Also, agricultural transforma-
tion and dense stands of alien invasive species preclude availability. Transformed
areas are not sampled, and this information must be included in the modeling.
Altogether, sampling tends to be sparse and irregular; we rarely collect a random
sample of available environments.

Detection can affect inference regarding the intensity. That is, we may incorrectly
identify a species as present which is actually absent (false presence) or fail to detect
a species that is actually present (false absence) [166]. Evidently, the prevalence of
these false records will affect the attempt of an explanatory model on response to en-
vironmental features [201]. Modeling for these errors can be attempted but requires
information beyond the observed presence-only data and is not considered below.

Lastly, an attractive by-product of our proposed modeling is the opportunity to
study species richness, that is, the expected number of distinct species in a specified
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region. We can do this by thinking of the species as a mark/label associated with
a point and that the entire point pattern arises as a superposition (Section 4.1). In
particular, this enables us to obtain potential and observed richness surfaces.

5.1.3. Modeling details

We assume a log Gaussian Cox process (LGCP) model for the set of presence
locations. We have to introduce degradation caused by sampling bias as well as by
land transformation. As a result, we conceptualize a potential intensity, i.e., the
intensity in the absence of degradation, as well as a realized (or effective) intensity
that operates in the presence of degradation. Further, we imagine that the intensity
is tiled to grid cells at the resolution of the available environmental covariate surface.

We imagine three surfaces over a region of interest, D. First, A(s) is the intensity
in the absence of degradation. With [, A(s)ds = A(D), f(s) = A(s)/A(D) gives the
potential density over D. Modeling for )\( ) under a LGCP expects the environ-
mental covariates, say x(s) to influence the intensity as a linear form in parameters.
So, for any location s € D, we have

(5.1) log\(s) = xT(s)y + z(s)

with z(s), a zero-mean stationary, isotropic GP over D, to capture residual spatial
association in the A(s) surface across grid cells. The Matérn family of covariance
functions (Section 1.4) would provide a flexible class for isotropic dependence; a
simple exponential covariance function, o e—9lls=s'll may be adequate. In the sequel,
with regard to preferential sampling, we employ (5.1) as the model for an available
presence-only dataset.

Next, we envision an availability surface, U(s), a binary surface over D such that
U(s) =1 or 0 according to whether location s is untransformed (hence, available)
by land use or not. That is, assuming no sampling bias, A(s)U(s) can only be
A(s) or 0 according whether s is available or not. Thirdly, we envision a sampling
effort surface over D which we denote as T'(s). T(s) is also a binary surface and
T(s)U(s) = 1 indicates that location s is both available and sampled. Altogether,
A(s)U(s)T(s) becomes the degradation at location s. This implies that in regions
where no locations were sampled, the operating intensity for the species is 0.

Suppose we partition D into grid cells with A;,7 = 1,2,...I denoting the geo-
graphical region corresponding to grid cell i. Typically the grid is at the resolution
of the predictors used in explaining A(s). Then, if we average U(s) over A;, we
obtain u; = fAi U(s)ds/|A;| where |4;]| is the area of cell i. Evidently, u; is the
proportion of cell ¢ that is transformed. u; can often be obtained through remote
sensing for all grid cells Now, bringing in the sampling effort surface, T'(s), we can
set ¢ = [, T A (s)ds/|A;| and interpret ¢; as the probability that a randomly
selected locatlon in A was available and sampled. Thus, we can capture availability
and sampling effort at areal unit scale.

Altogether, A\(s)U(s)T'(s) becomes the degradation at location s. This implies
that in regions where no locations were sampled, the operating intensity for the
species is 0. Additionally, [, T A (s)ds/|A;| can be viewed as the sampling probabil-
ity associated with cell 1. Then if T'(s) is viewed as random, the expectation of
the integral would yield fA (s)ds/|A;| where, now, p(s) = P(T(s) = 1) € [0,1].
Clearly, p(s) gives the local probabilities of sampling, not a probability density
over D.
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To go forward, we assume that A(s) is independent of T'(s)U(s). That is, the po-
tential intensity for a species is independent of the degradation process. Then omit-
ting the details, we can write [, A(s)T'(s)U(s)ds = \;¢; where \; = fA s)ds is the

cumulative intensity associated with cell A; and, again, ¢; = [, T A, (s)ds/|Ail.
However, it is not sensible to imagine that sampling effort is 1ndependent of land
transformation. In fact, we might expect less sampling attention to be paid to more
transformed areas [166, 204]. More directly, if U(s) = 0 then T'(s) = 0. Hence, if we
fAi T(s)U(s)ds
fAi U(s)ds
a randomly selected location in cell i is sampled given it is available. As an illustra-
tion, we might set p; equal to 1 or 0 which we interpret as T'(s) = U(s) Vs € A; or
T(s) = 0Vs € A;, respectively. That is, either all available sites in A; were visited
or no available sites in A; were visited.

Again, to model the potential intensity surface A(s), we employ a log Gaussian
Cox process model (LGCP). We expect the environmental covariates, say x(s) to
influence the intensity and model the mean as a linear combination of them. Then
for any location s € D, we have the model given in (5.1) with z(s) capturing residual
spatial association in the A(s) surface across grid cells.

Recalling the grid above, suppose we have n; presence locations (s; 1,Si.2, - -, Si.n;
within grid cell 4 for ¢ = 1,2,...,I. Following the discussion above, U(s; ;)T(s; ;) =
1,0<j <n;,1 <¢< 1. Then the likelihood function becomes

I Uz

(5.2) LApi{si;}) o e JoAOUETE ETTTT (s, ;)

i=1j=1

define ¢; = u;p;, then p; = , 1.e., p; is the conditional probability that

Although we have only finitely many presence locations, the integral term in L
involves the uncountable random field Ap = {A(s) : s € D}. Fortunately, we have
a natural approximation to the stochastic integral at the scale of grid cells. That
is, though we have geo-coded locations for the observed sites, with covariate infor-
mation at grid cell level, we only attempt to explain the point pattern at grid cell
level. In particular, for each cell i = 1,2,...,1I, say we are given information on [
covariates as x; = (21, Ti2, ..., ;). We will also have cell level information about
land availability, u;, across D. With many unsampled cells, many n; = 0.

A computational advantage accrues to working at grid cell level; we can em-
ploy a product Poisson likelihood approximation rather than the point pattern
likelihood in (5.2). That is, for cell ¢ with geographic region A;, suppose c; is the
centroid. Then, given the set {\(¢;),7 = 1,2,...,I}, the n; are independent and
n; ~ Po(]4;|A(c;)gq;). Approximation of the point pattern likelihood using such a
tiled surface over a lattice embedding the region was discussed in [20]. There it
is shown that the approximation can be justified in the sense that the resulting
approximate posterior converges to the true posterior as the partition gets finer.

Notice that, for any cell with ¢; = 0 (which can happen if either p; = 0 or
u; = 0) there is no contribution from A; in the product Poisson likelihood. Since,
from (5.1), log\(s) follows a GP, the posterior distribution takes the form

(A(Sl m) ’770|n x,u q X exp ( Z)\ Sz z%) H)\HZ(SJ

i=1
X ¢1(logA(Slzz)\%X,0)7T(’Y)7T(9)
where ¢; denotes an I dimensional Gaussian density and @ denotes the parameters

in the covariance function of z(s) in (5.1). Model fitting for (5.2), simplified to (5.3)
has been discussed in Section 4.2
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We define species richness for a specified region as follows. Relative to a given
set of species, the observed richness is the number of distinct species found in that
region. Here, we show how our modeling above provides a parametric function for
expected richness. By comparison, an often-used approach with Maxent is to merely
sum over the individual species densities [149]. The interpretation of such a sum
as a richness when integrated over a subregion is possibly unsatisfying and, in any
case, no uncertainty can be attached to estimates made using this sum.

Under the presence-only setting, we imagine data arrives in the form, (s;, L(s;)),
j = 1,2,...n, i.e., a random location and a species label associated with that
location, a marked point pattern. Suppose we use the foregoing modeling to create
a species intensity, \;(s), for species | = 1,2,..., L. For a set A within the study
region, we define the richness for A to be the expected number of distinct species in
A. Under this definition, we expect more species as A grows larger and no species
as the area of A goes to 0.

Let N(A) be the total number of observations in A, i.e., the total number of lo-
cations in A where a “presence-only” observation of any species was recorded. Let
N;(A) be the number of locations in A where species [ was observed. Finally, let
r(A) = >, 1(N;(A) > 0), where 1(-) is the indicator function. Then, r(A) is the “re-
alized” richness in A. Thus, the quantity we seek to infer about is E(r(A)). Note that
E(1(N;(A) > 0)) = 1—e M since Nj(A) ~ Po(\(A)). Hence, E(r(A)) = >,(1—
e~M(A4)), Evidently, richness is not additive, i.e., E(r(A;)Jr(A4s)) # E(r(Ay)) +
E(r(As).

With model fitting for each X\;(s), we can obtain posterior samples of E(r(A))
for any A by obtaining posterior samples for each A;(A). Such samples are obtained
through appropriate integration (summation for the Poisson approximation version)
of \(s) over A. If we work with the collection of grid cells A;, we can supply a
richness surface for D. Adjustment for transformation and sampling intensity can
be introduced, as above, to distinguish a potential and a degraded surface.

In the context of MCMC , employing a GP on a large collection of locations
is computationally demanding because of the necessary repeated inversion of the
covariance matrix arising from the process. There are a number of approximation
techniques in literature, such as process convolution [97], approximate likelihood
[190], fixed rank kriging [44], etc. The predictive process method [17] uses dimension
reduction to accommodate a high dimensional GP as follows. If z(s) is the zero
mean GP under consideration, and our data consist of locations & = (s1,S2,...,S7)
where I is large, then the method proceeds by first choosing r locations S° =
(s9,89,...,8Y) from the region, called knots. Then, we replace z(s1.r) in the model
equation by Z(s1.7) = E(2(s1.1)|2(sY.,)) = Cz(s}.,.) where the matrix C is calculated
from the dependence structure of z(s). C depends on correlation parameters but
not on the process variance. In our setting, we apply this approximation to the
{A(sj)} in (5.3) through the {w(s;)}. Bias correction, as discussed in [68], can be
introduced.

An alternative strategy to fit such models uses the nearest neighbor Gaussian
process (NNGP) [48]. This is a sparse Gaussian process modeling approach rather
than a dimension reduction approach. The process is defined through a reference
set of locations, along with the remaining locations of interest. A low dimensional
neighbor set is attached to each location. The process is specified through univariate
conditional normal distributions using the neighbor sets. This enables direct cal-
culation of the inverse of the covariance matrix. Formal inversion of a high dimen-
sional covariance matrix, the usual stumbling block for MCMC implementations
with spatial random effects, is by-passed. See [48] for full details.
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With regard to inference, posterior samples of ~ help us to infer whether a
particular factor has a significant impact (positive or negative) on species intensity.
The ¢ parameter indicates the strength of spatial association for the realization of
the intensity surface over D. This association may arise because some potentially
important covariates are not available or because the covariate impact is not well
captured using a linear form. That is, since Gaussian processes can capture a wide
range of dependencies, using them in a hierarchical setting enhances predictive
performance for the model.

In terms of informative displays of intensity surfaces, the \;p; surface will capture
the (lack of) sampling effort. The \;u; surface reveals the effect of transformation.
Of course, the A(s) surface is most interesting since it offers insight into the expected
pattern of presences over all of D. Posterior draws of A1.; can be used to infer about
the potential intensity, displaying, say, the posterior mean surface. We can also learn
about the potential density g(s) in this discretized setting as g; = \;/ Zé:l Ak, and
the corresponding density under transformation as g,; = Aju;/ Zi:l Apug. [38]
present an example using data for plant species from the Cape Floristic Region in
South Africa.

5.2. Spatial modeling for presence/absence data using preferential
sampling

5.2.1. Some presence/absence modeling details

Presence/absence data views the observations as binary responses, presence (1) or
absence (0) at a collection of sampling locations See, e.g., [60] and references therein
for a review. The goal is to explain the probability of presence at a location given
the environmental conditions that are present there. The natural approach is to
build a binary regression model with say logit or probit link.

Specification of basic individual presence/absence models can consider pres-
ence/absence at an areal scale. That is, for a given species, they score a 1 or 0
according to whether or not an individual of the species was present within a spec-
ified areal unit. The unit might be say, a grid cell or a quadrat. These models can
also be specified at point level, i.e., presence or not at a specified geo-coded loca-
tion. As noted in Section 1.1, model specification depends upon the choice of scale
in terms of defining what probability of presence means. We consider this issue in
greater detail below. However, the important point here is that we consider the
sampling locations as fized and the associated binary observation at the location
to be random.

Suppose Y (s) denotes the presence/absence (1/0) of the species at sample loca-
tion s. If the study region D is partitioned into grid cells with geographic area A;,
say at the level of resolution of the environmental covariates, then, summing up
Y (s) over the number of sample sites, n; in region A;, yields grid cell level counts:
Yit = gea, Y(s). This is an elementary illustration of scaling up from points to
areal units. If the sampling site is viewed as the grid cell then n; = 1, a single
Bernoulli trial for the cell.

If we assume independence for the trials, a binomial distribution results for Y;,,
ie.,

(5.3) Y+ ~ Binomial(n;,p;).



Spatial modeling for presence/absence data using preferential sampling 91

Explicitly, the probability that the species occurs in cell ¢, p;, is related functionally
to the environmental variables with a logit link function and a linear (in coefficients)
predictor w’ 3:

P T

5.4 lo =w; 3.
(5-4) g (1 - pi) i B
Here w; is a vector of explanatory environmental variables associated with cell i
and B is a vector of the associated coefficients. Here, and in the sequel, we could
equally well use a probit link function.

If we model probability of presence at the sample site level, Y (s) would be taken
as

(5.5) Y (s) ~ Bernoulli(p(s)),

analogously relating the probability that the species occurs in site s, p(s), to the

S
st
that we have covariate levels w(s) for each site. This model is referred to as a
spatial regression in the sense that the regressors are spatially referenced. If we set
w(s) = w; when s is within grid ¢, we return to the same model as in (5.3). Ex-
tension of this binary regression model would allow the covariates to be introduced
as smoothly varying functions leading to generalized additive models (GAMs), as
discussed above.

Next, we extend (5.4) to a simple spatially explicit model, accepting that spa-
tial structure or autocorrelation in ecological pattern and process is pervasive. In
the context of species distribution patterns, we would anticipate that the pres-
ence/absence of a species at one location may be associated with presence/absence
at neighboring locations. This can be achieved by adding spatial random effects to
the model. At the grid cell level a spatial term p; associated with grid 7 is added to
(5.4):

set of environmental variables as log( ) = w’(s)B. Such modeling requires

(5.6) log 2 = wTB 1 p,.
1—p

In (5.6), grid cell ¢ has an associated random effect p; which adjusts the prob-
ability of presence of the modeled species up or down, depending on the values in
a spatial neighborhood of cell i. To capture this behavior, we customarily employ a
Gaussian intrinsic or conditional auto-regressive (CAR) model [27]. Such a model
proposes that the effect for a particular grid cell should be roughly the average of
the effects of its neighboring cells and results in a multivariate normal as the joint
distribution over all the cells. There are many ways to specify neighbor structure;
see [16] for full discussion.

Most relevant for us for the remainder of this section, we consider a point level
spatial model, extending (5.5). For point-referenced data, spatial dependence can
be modeled directly between the points based on their relative locations, using
Gaussian processes, creating geostatistical models [16]. Recalling the point level
model above, we would augment the explanation of p(s) through the form

p(s)
1 —p(s)

Here, w(s) is the spatial random effect associated with point s, arising as a realiza-
tion of a Gaussian process. A suitable covariance function would be selected. With a

(5.7) log =wl(s)B +w(s).
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binary response, this model is referred to a spatial generalized linear model (GLM);
see [56]. The first stage sampling mechanism is a Bernoulli trial with the surface of
probability of presence as a second stage specification. Inference from (5.7) would
be about this surface at any location in the study region, where these probabili-
ties are explained through the spatially referenced predictors. Another surface of
interest is the realized presence/absence surface, i.e. {Y(s) : s € D}.

We note (and discuss in Section 5.2.2, that presence/absence is not observable at
point level. A point is unitless while we observe a location up to the scale of accuracy
of the associated geo-coding for the location. However, this does not preclude useful
point level modeling. Indeed, this is the case with all geostatistical modeling [16],
e.g., temperature is never observed at a unitless location but we routinely model
temperature surfaces. Taking (5.7), with say a probit link, it specifies P(Y (s) =
1) = p(s) = ®(w(s)B + w(s)). That is, P(Y(s) = 1) = P(z(s) > 0) where z(s)
is a Gaussian process with mean w’ (s)3, variance 1 (needed to identify the Ss),
and a suitable correlation function, typically an exponential or Matérn. Under this
model, the Y(s) are drawn as conditionally independent Bernoulli trials given p(s).
As a result, even if p(s) is smooth, realizations of the presence/absence surface are
everywhere discontinuous. Of course, the Y'(s)’s will be marginally dependent and
smoothness of p(s) will encourage a gridded image of a realization to offer a locally
constant (0 or 1) appearance?.

An alternative presence/absence specification is a first stage or direct model
which introduces a latent Gaussian process at the first modeling stage, setting
Y (s) = 1(2(s) > 0). Now, if z(s) is, again, a realization of a Gaussian process which
is smooth, then the realized Y (s) surface will be locally constant. For instance, if
2(s) = wl'(s)B + w(s), as above, with an almost everywhere smooth mean surface,
we have this behavior. The first stage modeling approach can be attractive for joint
species distribution modeling [43] since it allows direct modeling of dependence
between species rather than deferring it to the second stage [153, 154].

Unfortunately, we encounter a technical problem arising in the model fitting.
This concerns the difference between the probability of presence surface, p(s), that
is, ®(w’ (s)B3+w(s)) under the second stage model and the realized presence surface
under the direct model, 1(w? (s)3+w(s) > 0). The realized presence surface has to
“agree” with the observed presences and absences while the probability of presence
surface does not. We can observe a presence that has small probability of occurring
or an absence that has a small probability of occurring. As a result, the probability
of presence surface does not have to work as hard to fit the data. With w(s) in
the modeling, under the direct model, the GP has to react strongly to observed
presences and absences. Under second stage modeling, it can react less so. Therefore,
when fitting the direct model, the w(s) surface becomes spiky in the neighborhood
of a presence in order to explain well the observed presence. The flexibility of the
GP is attractive but, here, its flexibility produces a posterior which is too sensitive
to the data. In fact, under the direct model, the probability of presence surface
becomes ®(w’'(s)3), the GP doesn’t appear. As a result, for a region over which
the covariates are essentially constant, this surface is essentially constant, regardless
of the data, making it not very useful.

Can we achieve a locally constant realized presence/absence surface and a
smoothed probability of presence surface? A proposal is the following. Still, we
let Y(s) = 1,0 according to z(s) > 0,< 0. However, we introduce two GP’s in
specifying z(s), i.e., z(s) = w7l (s)B + w(s) + 7(s). Here, w(s) has a larger range,

2See Section 5.2 in this regard.
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a smaller decay parameter while v(s) has a smaller range with a larger decay pa-
rameter. (Here, we are capturing the frequently used interpretation of the “nugget”
as microscale dependence [16]). Then, we define the probability of presence surface
as p(s) = P(z(s) > 0|8, w(s),w(s)) = ®(wl(s)B + w(s)) while we define the real-
ized presence/absence surface again as 1(z(s) > 0). Since ~(s) is smooth, we will
have locally constant behavior in this surface. The +’s will be spiky but the w’s
will be smoother. Evidently, strong prior information will be needed to control the
decay parameters in the GP’s. In fact, we would impose an order restriction on the
ranges or decays, demanding more rapid decay for the ~(s) process. Additionally,
we can impose ranges for both the w’s and ~’s which are appropriate for the spatial
scale of D along with the smallest inter-point distance among the presence/absence
locations.

Lastly, if we let v(s) be a pure error process, then we would again obtain the
problem of z(s) being everywhere discontinuous so that the realized Y (s) surface
would be everywhere discontinuous. However, a pure error process with very small
variance will provide results similar to that for a GP with very short range, very
rapid decay. The pure error process model will also be easier to fit.

5.2.2. What does “probability of presence” mean?

The models in Sections 5.1.3 and 5.2.1 above emanate from very different probability
specifications. In order to integrate them, we need to take a more careful look
at what “probability of presence” means. Loose thinking in this regard leads to
irreconcilable modeling.

The issue is whether presence/absence is viewed at point level or at areal level.
Is it a Bernoulli trial at a location or is it the probability that the number of
individuals of a species in set A is > 17 If we model presence/absence at point
level, we know what Y(s) = 1 means, but what does Y (A) mean? A coherent
probabilistic definition arises as a block average, i.e., a realization of Y (A) is
J41(Y(s) = 1)ds/|A|, the proportion of the Y(s) that equal 1 in A; it is not a
Bernoulli trial and P(Y'(A) = 1) = 0! We can calculate E(Y (A4)) = [, p(s)ds/|A]
with p(s) as in (5.7). That is, E(Y(A)) becomes the average probability of pres-
ence over A. It is the probability that the species is present at a randomly selected
location in A.

If p(s) is constant over A then E(Y(A)) is this constant probability. This takes
us back to the case of gridded regions where we defined p;, the constant probability
over A; using logistic (or probit) regressions, as in (5.4) and (5.6). Importantly, that
areal definition of p; is interpreted at point level; it is the probability of presence
at any site in A;.

Now, suppose we consider the locations of all individuals in a study region as a
random point pattern. Then, if N(A) is the number of individuals in set A, then
P(N(A) > 1) is probability of presence in A. Here, assuming a nonhomogeneous
Poisson process or, more generally a log Gaussian Cox process, N(A) ~ Po(A(4))
where M(A) = [, A(s)ds for an intensity surface A(s). Then P(Y(A) = 1) =
P(N(A) > 1) = 1—e~ ) Since presence-only data alleges to sample the point pat-
tern (although likely not fully, rather up to sampling effort over the region [38, 69]),
it is compatible with this definition of presence/absence. However, the occurrence
probability is only defined with regard to the size of A, a concern raised in [70].
Evidently, occurrence probability will vary with the size of A. As a result, it is un-
clear how to specify a meaningful probability of presence surface. Furthermore, the
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definition of probability of presence as “one or more” observations of the species in
A yields local distortion to any such surface; N(A) = 1 and N(B) = 11 are treated
the same with regard to presence if |A| = |B|, [1]. Moreover, even if we ignore the
size of A and return to a grid of cells over D, then it is clear that p; = P(Y(4;) = 1)
has nothing to do with the p; defined in the previous subsection.

The two foregoing definitions associated with the probability of presence in A,
P(N(A) > 1) and P(Y(4;) = 1), are incompatible and the fundamental difference
between them has been ignored in the literature. The conceptualization for the first
choice is that we go to fixed “point” locations and see what is there; we are not
sampling a point pattern. There is a surface over a domain D which captures the
probability of presence at every location in D. The conceptualization for the second
is that we identify an area of interest D and we census it completely for all of the
occurrences of the point pattern in it. It provides an intensity surface which can
be scaled to a density surface. However, as with any probability density function,
the density surface at a point is not the probability of presence at that point. The
second version can not scale down to point level since then A(A) — 0.

Furthermore, if presented with a collection of plots and observed presence/absence
for those plots, would one ever model the data as a point pattern? The answer seems
clear; no point pattern was observed and there is no way to model an intensity. We
would use one of the foregoing presence/absence models. Moreover, if we briefly con-
sider a data fusion problem, suppose one obtains an additional set of presence-only
data for the region. Why is it now appropriate to model the same presence/absence
data using a point pattern model associated with the presence-only data?

We have articulated the issue with being too informal with regard to the notion
of presence as well as the data fusion challenge. Of course, one can disregard the
scaling issue, create an arbitrary discretization of the space, and calculate proba-
bilities over the discretization, as in recent work of [155]. In summary, modeling
presence/absence at the point level seems the preferable specification. However, in
the literature to date, ignoring the incompatibility is the way that presence-only
data has been used to provide presence/absence probabilities and the way presence-
only data has been fused with presence/absence data.

We briefly digress to a related contentious issue in the recent literature. Can
one use presence-only data to infer about presence/absence? [175], imagining an
areal unit definition of presence, argue that “occurrence probability can be esti-
mated from presence-only data.” In particular, they assume that an environmental
covariate, X, is a priori, uniformly distributed over the study region. Then, with
P(Y(A) = 11X (A)) = ¢¥(Bo + S1X(A)) for link function ¢ and a discrete uniform
density for X (A), using Bayes’ Theorem,

v (B + Bi1X(Ay))

(5.8) f(z(A)|Y (A) = 1;8) Zz '(/J(BO T BiX(A;))

Equation (5.8) suggests that, by modeling environment/habitat given presence, we
can learn about P(Y(4;) = 1|X(A4;). [96] point out that this model is flawed in
the sense that the unconditional probabilities, P(Y(A;) = 1) are not identified;
only relative probabilities are identifiable. We would add two further comments
here. First, the likelihood in (5.8), in fact is II;40(8y + B1X(4;))/c(Bo, B1). This
is a different function of the ’s than the likelihood for a binary regression with
P(Y(A;) = 110, B1, X (4;)). The parameters do not mean the same thing in the
two models and would not provide the same estimates if we could fit the latter.
Second, from above, it is unclear what the event Y (4;) = 1 means and, regardless,
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the occurrence probabilities being considered here suffer the same issues as above
with regard to the size of the A;.

5.2.3. Preferential sampling

We propose preferential sampling as a tool for both improving presence/absence
prediction as well as for fusing presence-only data with presence/absence data. To
begin we need to formally develop the concept of preferential sampling.

What is preferential sampling all about?

The notion of preferential sampling was introduced into the literature in the sem-
inal paper of [52]. Subsequently, there has been considerable follow up research.
Two useful papers in this regard are [156] and [37]. A standard illustration arises
in geostatistical modeling [see e.g. 16, 46]. Consider the objective of inferring about
environmental exposures. If environmental monitors are only placed in locations
where environmental levels tend to be high, then interpolation based upon ob-
servations from these stations will necessarily produce only high predictions. The
obvious remedy lies in spatial design of the locations, e.g., a random or space-filling
design [151] for locations over the region of interest is expected to preclude such
bias. However, sampling for presence/absence may not be designed in this fashion;
ecologists may tend to sample where they expect to find individuals, introducing
bias into the collection of sampling locations. Recognizing the possibility of such
bias, can we revise presence/absence prediction to adjust for it? This is the inten-
tion of preferential sampling modeling. (The intention is not to attempt to remove
preferential sampling.)

We proceed as follows. While the set of sampling locations may not have been
developed randomly, we study it as if it were a realization of a spatial point process.
That is, it may be designed in some fashion and be deterministic but not with the in-
tention of being roughly uniformly distributed over D. Then, the question becomes
a stochastic one: is the realization of the locations independent of the realization
of the responses? If no, then we have what is called preferential sampling. Impor-
tantly, the dependence here is stochastic dependence. Notationally /functionally, the
responses are associated with the locations. We will make this more clear below.

In our context, the presence/absence data has an associated probability of pres-
ence surface, as we develop below. This surface plays the role of the “exposure”
surface, with the finite set of binary responses, ), informing about it. Suppose we
view the set of sampling locations as a realization of a random point pattern, S.
The question we ask is whether ) is independent of S, again in a stochastic sense?
Below, we develop several models, using the idea of a shared process, that enable
us to address this question and, furthermore, whether S enables us to improve our
inference regarding the presence/absence surface, our prediction of presence.

Preferential sampling models for presence/absence data

To develop the stochastic specifications that formalize preferential sampling for a
region D, we imagine two cases for the intensity associated with the point pattern
of sampling locations, S:



96 Special Topics in Point Pattern Analysis
(i) log\(s) = xT'(s)~, i.e., a nonhomogeneous Poisson process (NHPP) and
(ii) logA(s) = xT(s)y + n(s), a log Gaussian Cox process (LGCP).

Here, x(s) is a vector of predictors with associated regression coefficients v and 7(s)
is a mean 0 GP with a suitable covariance function. Here, we consider only model
(ii) to explain the set of sampling locations for the presence/absence data.

Consider modeling for ). Since we model Y (s) directly through a latent Gaus-
sian process, z(s), i.e., Y(s) = 1(z(s) > 0), as at the end of Section 5.2.1, we only
need to propose models for z(s).? We start with a simple spatial regression,

(a) 2(s) = w'(s)B + €(s),

where the predictors in w(s) and those in x(s) need not be identical. Extension to
a customary geostatistical model for z(s) becomes

(b) z(s) = w'(s)B + w(s) + €(s),

adding w(s) as a mean 0 GP, independent of 7(s) above.

To illuminate the model structure, denote the point pattern over D by S, the
realization of w over D as wp, and the realization of n over D as np. Suppose
we consider the joint distribution [S,Y,wp]. We have the natural factorization as
[wp][S|lwp][Y|S,wp] (suppressing np, if case (ii)). Then, we say that there is no
preferential sampling if [S|wp] = [S]. This is clearly the case with model (a) or (b)
inducing Y and (i) or (ii) for S. Only wy = {w(s;) : s; € S} is needed to fit (b).

Now, we can extend model (i) to

(iii) logA(s) = xT(s)~y + vw(s).

In this notation, with model (b) for ), w(s) is a shared process for both } and S so
Y and S are not independent. Working with (b) and (iii), if v = 0, then, following
[52], we have non-preferential sampling while if ¢ # 0, we have strong preferential
sampling.

[156] extended this idea so that ) follows the geostatistical model (b) while S
follows model (ii). Then, they attempt to interpret 7(s) as a regressor to add to the
geostatistical model for ). That is, now we have model

(c) 2(s) = w'(s)B + dn(s) + w(s) + €(s).

Here, the coefficient ¢ plays a preferential sampling role. For example, if the design
S over-samples locations in D where we have presences, where Y (s) tends to be 1,
i.e., z(s) tends to be high, then 7(s) will tend to be high around those locations.
Therefore, 7(s) can be a significant predictor for z(s) (hence for Y'(s)) with § > 0.
With (ii) and (c), n(s) is the shared process. Only ny, = {7(s;) : s; € S} is needed
to fit (c).

A further shared process model for ) that can be explored in this regard extends
(a) to

3With a second stage model we would still introduce a latent Gaussian process, z(s).
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(d) z(s) = w'(s)B + dn(s) + e(s).

Here, interest is in comparing (d) and (ii) with (a) and (ii); is § # 07
[52] focus on comparing (b) and (i) with (b) and (iii). [156] focus on comparing
(ii) and (b) with (ii) and (c). [37] add another GP to the intensity for S, i.e.,

(iv) logA(s) = x"(s)y +1(s) + &(s)-

That is, using model (iv) with model (c), there is a shared GP for Y and S as
well as individual GP’s for each, a total of three independent GP’s altogether. [37]
acknowledge identifiability problems with the three latent Gaussian fields. We offer
Table 5.1 which provides a summary of the modeling choices for § and Y.

TABLE 5.1
Summary of four modeling choices for S and ).
S models Y models
(i) logA(s) = xT (s)v (a) z(s) = wT (s)B + €(s)
(ii) logA(s) = x"'(s)y + n(s) )

(b) 2(s) = T(SﬂJrW(S)JrG()
(iif) logA(s) = x" (s)y + 9huw(s) (c) 2(s) = W' (s)B + dn(s) + w(s) + e(s)
(iv) logA(s) = x" (s)y + n(s) +£(s) (d) 2(s) = T(S)ﬂ+5n(5) +e(s)

As a last comment here, we return to the question of independence of the var-
ious GPs. For example, is it appropriate to assume that n(s and w(s) are inde-
pendent? In fact, if we look say, at model (¢) with model (ii), the mean surface
E(Y(s)) = wl'(s)B+dn(s) +w(s) and A(s) = xT'(s)vy +n(s) are dependent through

2
coregionalization [16, chapter 8]. The coregionalization matrix is A = ( 502’7 (70“ )

In application, we might focus on a subset of model comparison. Fornlnstance,
we might compare (a) and (ii) with (d) and (ii). That is, [V|S,B][S|v,np] vs.
VIS, B,my,d][S|v,np]. We might compare (b) and (ii) with (c) and (ii). That is,
[y‘Sv B wy] [S|77 nD] V8.

D)‘Sv B, wy; Ny, 5] [8‘77 nD]
Since the intent is to improve the predictive performance of the model for ), model
comparison criteria should focus on out-of-sample prediction for Y'(s).

5.2.4. Fusing presence/absence and presence-only data

We complete this section by turning to the data fusion question. Data fusion (also
assimilation) is a widely employed objective when multiple data sources are avail-
able to inform about the same response of interest [150, 214]. A canonical example
is the goal of modeling exposure to an environmental contaminant when we might
have station data available, computer model output available, and perhaps satellite
data. The conceptual modeling strategy is to imagine a latent true exposure surface
and then build a model for each data source conditioned upon the true model. The
joint modeling enables each of the sources to inform about the true exposure surface
(ref), to enable improved prediction of the exposure surface. Other examples in the
literature include application to weather data, sea surface temperature, and animal
behavior patterns [177, 178, 215].

Our data fusion setting is different from customary settings. The usual data fu-
sion setting envisions multiple data sources informing about a common response,
e.g., ozone level. We have two different types of data. While both inform about
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species distribution, we have argued above that presence/absence data is, stochas-
tically, not the same as presence-only data. The fusion approaches in the literature
[e.g., 57, 69, 83, 155] ignore this and assume a latent point pattern model for the
presence-only data and that the presence/absence data is induced under this model
as we described above. Since we argue that a point pattern specification is inappro-
priate for presence/absence data, we claim that a different type of fusion is required.
We have a point pattern model for the presence-only data and a binary map model
for the presence/absence data. So, we again turn to preferential sampling ideas [52]
in order to explore fusion.

The extra information available to make a data fusion story is Spo, the set
of observed presence-only locations. Formally, what information does Spo bring
with regard to learning about the probability of presence surface? Suppose we as-
sume that Spo is a complete census in D. Associated with Spo = {s},s3,...,s5},
we can imagine a Apo(s) with a similar set of models to (i)-(iv). We expect
Apo(s) to be elevated near these observations. For example, analogous to (ii),
let Apo(s) = xT(s)ypo + npo(s), using the same predictors as with the pres-
ence/absence modeling. Because the mechanisms that created Spo and Spy are
different, it doesn’t make sense that Spo ~ Spa. So, in order to capture the in-
fluence of Spo on the p(s) surface associated with Yp4, it seems we should add
dponpo(s) to the mean for z(s) in (¢), i.e. a panpa(s) term and a dponpo(s)
term.

So, we have two sources for possible preferential sampling, one for each dataset.
However, we might insist that dpo > 0. Then, from the presence-only data, the
probability of presence will be increased around the s}’s and decreased away from
them. Indeed, the locations in Spp are severely biased; they are locations where
we see only 1’s. We are severely over-sampling presences with Spo and we should
increase probability of presence where we do.

In summary, we now have four potential models for Apo(s), parallel to those for
Apa(s) to combine with the model for Y'(s). Many of these models will be difficult
to identify. We might focus our effort on a model for Spp analogous to model (ii)
for Spa. Then, we can add a dponpo(s) term to the mean of z(s) under (b), (c),
or (d). In other words, the full model takes the form

(5.9) D)‘SPAaﬁvnPA,YvaPAanPO,Y75PO][SPA|7PAanPA,D][SPO|’7POv77PO,D]'

As a last remark, in practice, with a partial realization of the presence-only
point pattern, we need to degrade App(s) in the model fitting. Section 5.1 shows
how to adjust and fit (5.9) in the presence of a partially observed presence-only
point pattern.

5.3. Multivariate point patterns
5.3.1. Introduction

Multivariate spatial point processes are stochastic processes generated in two di-
mensional space. Each generated point arises from one of two or more qualitatively
distinguishable types [53]. So, multivariate point patterns in this context are often
referred to as multitype point patterns. The spatial point pattern associated with
each type corresponds to an associated sub-point pattern in the multivariate point
pattern; the aggregation of say, M spatial point patterns is the multivariate point
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pattern. For example, the common bivariate spatial point process consists of the
collection of spatial points where each point is of one of two types.

Multivariate point process models are particularly important models in ecology
for describing spatial patterns of a set of species and can be used to identify phy-
logenetic and functional diversity. For example, there is often interest in analyzing
a multivariate point pattern consisting of competing species to assess interaction
within and between between species. [203] offer a comprehensive review of spa-
tial point pattern analyses in ecology, from data types and summary statistics, to
methods of inference, model fit, and statistical tests.

Multivariate spatial point processes can arise as a marked point pattern where
the marks identify “type.” However, models for multivariate spatial point processes
can differ from marked point patterns in some important ways. Recall Section 2.6
on marked point patterns. There, we considered marked point patterns where the
spatial locations were assigned (possibly dependently) within a mark but the spatial
locations were independent across marks. In addition, marked point processes can
also be modeled with one process and a distribution for marks given locations
[m(S)|S] where S is the entire point pattern.

For a dependent process, e.g., Gibbs process, these models assume the interac-
tions between all spatial points, both points of the same type and points of different
type, is the same. That is, the second order structure capturing the dependence or
inhibition between points is associated with the realization & and is not mark-
specific.

In the multivariate spatial point process models considered here, we are extending
the model space to include the possibility of dependence between spatial locations
of varying strength both within and between types. That is, we offer models to
capture complex interactions between the spatial locations for two or more marks.
In what follows, “mark” and “type” are used interchangeably.

We begin with summary statistics for multivariate spatial point patterns to de-
tect spatial clustering and inhibition, as well as spatial segregation between types.
We discuss the use of Monte Carlo randomization tests to assess significant pair-
wise interactions within multivariate spatial point patterns. Then, we introduce
multivariate point process models that are commonly used to capture dependencies
within and between two or mores spatial point patterns. We focus on two flexible
classes of models for multivariate point process — Gibbs processes and log Gaus-
sian Cox processes - and highlight important differences between them. In addition,
we showcase recent and interesting applications of each type of model. For multi-
variate log Gaussian Cox processes, we give a detailed discussion regarding the rich
model inference available. We also provide a detailed investigation of such modeling
through an application to multiple tree species in Duke Forest, North Carolina.

5.3.2. Summary statistics and statistical tests for multivariate point
patterns

Multivariate spatial point patterns can be assessed using extensions of the uni-
variate summary measures introduced in Section 2.2. The second-order structure
of a multivariate point pattern can be estimated through the K function (Ripley
1981, Lotwick 1982) and provides useful measures of multivariate point patterns
to test hypotheses of spatial interaction. The bivariate K function K, ,(d) for
type m, m" € M is Ky (d) = (M) "' E(#number of points of type m within
distance d of an arbitrary point of type m’). Analogous to the univariate statis-
tic, under the null hypothesis of independent point processes of types m and m/,
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Kyn,m(d) = wd? for all distance d. For spatial point patterns S,, and S,,/, which
denote the collection of points with marks m and m/, estimates of K, ;/(d) > md>
identify positive dependence or clustering between the two types at distance d,
whereas values K, ,,,(d) < md? indicate negative dependence or repulsion.

Nearest neighbor methods using G functions can also be used to assess inter-
actions between multivariate processes. Recall the univariate nearest neighbor dis-
tribution G,,(d) = P(nearest point is distance < d) for spatial point process S,,.
For a bivariate point process with types m and m/, Gp, m/(d) = P(nearest point
< d) for all points in S,,, U S,/ For spatial point patterns S, and S, that are
independent, G, m (d) = G ()G (d). The statistic Thy, s (d) = l0g(Gnme (d)) —
10g(G i (d)) —log(Gpy(d)) can be used to assess interactions between the point pat-
terns [129]. Large values of T}, ,,,»(d) denote attraction between the points of each
type whereas negative values indicate repulsion or inhibition. Multivariate spatial
point processes can be assessed analogously by computing the nearest neighbor
distribution using the superposition of point patterns, U;,e amSm -

Hypotheses about multivariate spatial point processes can be assessed based on
these statistics using Monte Carlo randomization tests [29, 168, 169]. Within an
ecological framework, [5] discusses a series of Monte Carlo randomization tests for
bivariate point patterns. The tests can assess independence between species, where
alternative hypotheses could suggest clustering or inhibition at various distances.

A Monte Carlo test of spatial variation was developed by [108] and generalized
to multivariate point patterns by [53]. In their approach, a multivariate inhomo-
geneous Poisson point process is assumed and nonparametric estimation of ratios
of component-wise intensities is used to detect spatial segregation. Kernel regres-
sion estimators are defined for the conditional probability surface, pg(s), which is
the conditional probability that an event at location s is of type k. Under the null
model, the relative risk ratios of the component-wise intensities, which can be writ-
ten as the ratio of conditional probabilities px(s)/p;(s), would be constant across
the domain. Regions of increased or decreased relative risk estimates would indi-
cate spatial segregation of one more type. Monte Carlo sampling is used to test the
null hypothesis of no spatial variation in relative risk surfaces. Randomizations for
the test are obtained by keeping the spatial locations fixed and randomly assigning
marks, thus preserving the number of each type. Diggle et al (2005) apply this
method to types of bovine tuberculosis in cattle herds in Michigan and find strong
spatial segregation among types.

In an ecological context, measures of multivariate point patterns can also be
used to assess species diversity. Using the formulation of K (d) and G(d) functions,
[183] introduced functions a(d) and 5(d) to test for spatial variation of species
diversity. The ((d) function captures the conditional probability that two points
belong to different types given that they are distance d apart. a(d) on the other
hand, defines the probability that two points at distance less than or equal to d
are of different types. These functions, which are aptly named to quantify a- and
B-diversity in plant species, are extensions of the Simpson index, and are referred
to as distance-dependent Simpson indices.

5.3.3. Multivariate Gibbs processes

Multivariate Gibbs processes, like their univariate counterparts, can be used to
capture interactions, such as clustering or inhibition, within spatial point patterns.
Multivariate Gibbs processes directly model the interaction between the points
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such that, for an inhibition process, the observed location of an event decreases
the likelihood of another event from occurring nearby. Importantly, the strength of
these interactions can be specified within the multivariate Gibbs processes to vary
within or between type (e.g., within species or between species).

Gibbs models assume symmetric interactions such that the effect of point s on the
location of point s’ is equal to the effect of point s’ on the location of point s. Gibbs
processes with pairwise interactions are a common model choice for interacting
point patterns. Let (s, m) denote an observed spatial location with mark m, where
s € D and m € M. Further, let S,,, denote the spatial point pattern with mark m.

The density of a Gibbs process with pairwise interactions can be written as

N
f(S, m) =« H 9m; (sl) H hm,;,mj (Sia Sj)

i=1 i<j
where g, (s) for m € M are functions capturing the first order trend of spatial
points for mark m, and Ay, n(s,s") for m,m’ € M are the functions capturing the
interactions between the pair of points for marks m and m'. Additionally, « is a
scaling such that f(s,m) is a density. The interaction functions, hy, . (s, s’) must
be symmetric such that Ay, m(S,8") = Ay m(s',8). Various forms for Ay, n/(s,s’)
have been proposed in the literature to capture the interaction between pairs of
points. For example, multivariate hard-core processes might assume

1 ||S _S/H > dm,m/
0 ||SfS/H Sdm,m/

B (8,8") = {

where d,, », is the minimum allowable distance between points with mark m and
m/. A more relaxed inhibition process between points with mark m and m’ follows
the multivariate Strauss process where

R P T
ﬁm,m’ HS_S/HSdm,m“

Here, d,, ' are interaction radii and B, .+ > 0 are interaction parameters such
that smaller values of 3, v exhibit stronger inhibition between components m and
m’. Note that a bivariate Strauss process with 81 2 = 1 results in two independent
Strauss processes. [55] show that even when all 8, ,,» < 1, the marginal behavior
of each component process could still exhibit spatial aggregation.

[99] propose a modification of the multivariate Gibbs process by, instead, ap-
plying univariate Gibbs models to build the multivariate process hierarchically.
The benefit of the hierarchical approach is that it enables the assessment of the
asymmetric strength and range of interaction within and between each type (e.g.,
species). Here, the hierarchical model is built based on scientific reasoning. For ex-
ample, each type would be modeled univariately with a nonstationary process and
adding a hierarchical structure to these processes would induce asymmetric depen-
dence. That is, higher levels are driving heterogeneity in the lower levels but the
lower levels do not affect the higher levels.

The hierarchical approach for building a multivariate Gibbs process begins by
defining the density of the highest level Gibbs process. Let m; denote the mark for
the highest level process. Then,

f(s,ml) = Qm, H 9m, (Si) H h’m1 (Si’sj)

Si€S s;,8; €81
i<j

hm,m/ (Sv SI) = {
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where gy, (s;) and Ay, (s;,s;) are analogous to above and a,,, is the scaling factor
for the univariate Gibbs process. Now, given the point pattern, Sp, at the top of
the hierarchy, the density for the second level point pattern can be written

f((s,m2)|[(S1,m1)) = iy, H Gma (Si) H han, (8i;8;) H Pps e (S5 85)-
SiESs s;,5; €Sy s; €Sy
i<j s; €81
Now, hp,(s,s’) controls the interaction between points of with mark ms and
Rinaim, (8,8") captures the directed interaction of point at location s’ with mark
my on a point at location s with mark my. Conditional intensities can continually
be added in this fashion for general M marks. By computing the joint distribution,
F((S1,m1), (S2,m2)) = f(S1,m1) f((s,m2)|(S1,m1)), we can easily see the differ-
ence between the hierarchical approach at the multivariate approach above. The
densities are equivalent up to the scaling factor, which is now ay,, ap,m, where
Qimy|m, depends on the observed locations, S;. It is important to note that the hi-
erarchical model specification will vary with the ordering of the marks and should
therefore be scientifically founded.

Estimation of both forms of multivariate Gibbs process models can be done
using maximum likelihood methods. Traditional maximum likelihood requires com-
putationally challenging approximations of the scaling factors. Maximum pseudo-
likelihood methods for Gibbs processes [88, 105] avoid the difficult approximation
since the scaling factors cancel out of the ratio of density functions. The maximum
pseudolikelihood method has been found to overestimate the interaction process,
however, giving preference to the more cumbersome maximum likelihood approach
[99].

[89] consider the asymmetric relationship for different tree species where the
size of the tree determines the hierarchical level; largest trees are not influenced
by smaller trees but small trees are influence by larger trees. Using multivariate
Gibbs point processes with hierarchical interactions, [89] quantify the strength of
competition between trees of different size classes. They find that the influence of
large trees on small neighboring trees is stronger than large trees on other large
trees at the same distance.

[103] employ a hierarchical multivariate spatial point process model to capture
varying spatial inhomogeneity, clustering, and inhibition patterns of plant species.
In particular, they specify the multivariate point pattern of “seeder” plant species
conditionally given the observed point pattern of a collection of “resprouter” plant
species. This is a simplification of the hierarchical interaction model defined by [99]
where here, the resprouter plant species point patterns are treated as fixed and
known and only the seeder plant species point patterns are modeled stochastically.
The log-intensity function \;(s) for each seeder species j is specified using a linear
combination of K smooth interaction functions, each based on the distance between
s and the observed spatial point pattern of resprouter plant species k, denoted
Si. Each spatial point pattern of seeder plant species is assumed conditionally
independent given the observed point patterns of the K resprouter plant species.

The hierarchical Bayesian framework allows for ecological information regarding
species interaction radii distance to be included in the model through the interac-
tion functions in order to assess the interaction strengths between each seeder and
resprouter plant pair. The model is assessed using residual plots based on quadrat
counts as well as estimated L functions. Their results indicate varying dependence
structures between the seeder and resprouter plant species along with possible clus-
tering within and between seeder species.
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5.3.4. Multivariate Log Gaussian Cox Process

The multivariate log Gaussian Cox process [101, 142] provides an alternative ap-
proach for modeling multivariate spatial point patterns. Under the multivariate
Gibbs process, the interactions between points are captured by the functions
hm,m(s,8"). Under the multivariate LGCP, dependence is built between the in-
tensity functions Ay, (s) and A, (s). Like the univariate LGCP, realizations of the
multivariate LGCP are conditionally independent given the multivariate intensity
A(s) = (A1(s), ..., A (s)T.

The multivariate LGCP was first introduced by [141] where processes S1,2, .. .,
Swr, are modeled with intensity A, (s) = exp(zm(s)) for m = 1,2,..., M where
z(s) = (21(s), ..., 2m(s))T for s € D is a multivariate Gaussian process with mean
p = (11,2,...,p0)" and covariance functions cu, m/(s,s") = cov(zm(s), zm/ (s')).
The covariance functions ¢y, (s, s’) of the multivariate Gaussian process must
specify a valid cross-covariance matrix. Conditional on z, the processes, S,,,m =
1,2, ..., M are independent Poisson processes with intensities A, (s),m = 1,2, ..., M.

[141] suggest affine transformations as an easy alternative way to build depen-
dence between z,,(s) and z,(s). Here, letting Vi (s) for k = 1,2,..., K, denote
K independent univariate Gaussian processes with mean 0, variance 1, and valid
correlation function r,,(s,s’), z,(s) is then defined as a linear combination of the
Vi(s). That is, zp,(s) = Zle AmiVi(s) + m where p,,, is a type-specific adjust-
ment, which could vary spatially using local regressors. Dependence between z,, (s)
and zp, (s), which implies dependence between A, (s) and A,/ (s), is captured by the
shared Gaussian processes, the V(s)’s. The covariance between z,,(s) and z,, (s")
is

K
cov(2m(8), 2m (8) = Y Ami Aprri(s, s')
k=1

for m,m’ € M and s,s’ € D. This offers a very flexible class of models for capturing
dependence between intensity functions of multivariate spatial point processes. [141]
show simulation results under different dependence structures for bivariate spatio-
temporal processes with K = 1.

Coregionalization provides a convenient modification of this approach for build-
ing dependence through linear combinations of independent Gaussian processes
[74]. Most applications of coregionalization are geostatistical, as the approach was
intended to model measurements that co-vary jointly over a region. For multi-
variate spatial point patterns, we can use coregionalization at the process level in
building the multivariate intensity surface. Letting Vi (s) for k = 1,2,..., M again
denote independent Gaussian processes, we define the full rank M x M matrix A,
which we can assume to be lower triangular. Then, z(s) = p + AV (s). Here, u =
(1,2, ..., par) is the vector of type-specific means, and V(s) = (V4 (s), ..., Var(s))?
is the vector of independent GPs at location s. The local covariance matrix for the
multivariate process is ¥ = AAT. The diagonal elements Ay, > 0 whereas the
lower off diagonal elements Ay, € R! where k > k’. For a bivariate spatial point
process, A is a 2 x 2 dimensional matrix where A7 < 0 implies negative dependence
between the two processes and As; > 0 denotes positive dependence. In higher di-
mensions, similar positive and negative dependence can be deduced from either
linear combinations of elements of A or through isolating some pairwise relation-
ships by setting other lower off-diagonal elements of A to 0. For example, with a
3 x 3 dimensional coregionalization matrix, setting Ass = 0 means the sign of Ag;
indicates the direction of dependence between z1(s) and z5(s).
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[207] use multivariate log Gaussian Cox processes to model multispecies point
patterns of tree locations. They decompose the latent multivariate Gaussian pro-
cesses into shared components and species-specific components to identify groups
of species with similar patterns of dependence on the latent process. [32] extend
the multivariate LGCP models to space-time models to capture both spatial and
temporal heterogeneity in a time series of spatial point patterns of different weed
species. The temporal dependence is modeled using a spatial birth process indexed
in time and defined conditionally on a spatial multivariate Gaussian process. Depen-
dence between weed type and across space is captured by the multivariate Gaussian
processes defined using the affine transformations of [141]. The birth processes are
assumed conditionally independent given the Gaussian processes.

Multivariate log Gaussian Cox process models can be fitted in the Bayesian
framework analogously to the univariate LGCPs using the methods discussed in
Section 4.2. Let & = UM_,S,,, denote the collection of observed spatial locations
from all species in the domain, D. Given the multivariate intensity surface, A(s), the
likelihood function of the multivariate LGCP model is the product of K independent
nonhomogeneous Poisson process likelihoods. That is, the likelihood function with
instantaneous intensity A(s) and observations § is given by

M
H H Am (Sz) exp Jp Am(s)ds

m=1s;ES,

When fitting the model, the integrals are stochastic, requiring realizations of the
multivariate process at representative points and approximate numerical integration
to evaluate [, A, (s)ds.

Markov chain Monte Carlo can be used to obtain posterior samples of the model
parameters. Note that sampling from the multivariate Gaussian process at a col-
lection of representative points can be computationally cumbersome as both the
number of locations and number of processes increase. The elliptical slice sampler
provides one approach for increase computational efficiency. In fitting the model us-
ing coregionalization, we work in the parameter space of the independent Gaussian
processes, Vi(s), given g and A. Simulating multivariate point pattern realizations
to carry out full Bayesian inference is also conducted in this parameter space. Specif-
ically, to simulate a realization of the multivariate point pattern, a sample from the
posterior distribution of Vi(s), k =1,2,..., M, u and A yields a posterior sample
of A(s), s € D. Conditional on the multivariate intensity A(s), realizations of the
point patterns for each mark are independent. That is, for each m, we can obtain
a realization of the spatial point pattern with intensity A,,(s) using the univariate
simulation approach outlined in Section 4.1.3. The superposition of the M spatial
point patterns yields a realization of the multivariate spatial point pattern from
the multivariate LGCP model. A collection of realizations of the multivariate spa-
tial point patterns using samples from the posterior distribution of the parameters
enables full Bayesian inference.

The multivariate LGCP model provides rich posterior inference, which can be
both parametric and predictive. Parametric inference converts posterior samples of
the multivariate intensity, A, (s), to conditional probabilities. For example, for an
event occurring at location s, p(m|s) is the probability that it is of type m. This
conditional probability can be computed as

p(mis) = — (&)

Zm:l >\m (S)
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for type m at location s. Analogous conditioning can be done for two events. Given
that two events occurred, one at location s and another at s’, the probability
that the event at s was type m and the event at s’ was type m’ is denoted by
p(m,m/|s,s’). This conditional probability is computed as

/
p(m, m/\s, S/) S — /\m(s)/\m’l\fls ) .
D me1 Am(8) 2oy Am(s’)
With posterior samples of each A, (s), we can obtain full posterior distributions for
these conditional probabilities.

Posterior prediction of the number of events of each type in a particular set
B C D is also of interest. We can obtain the samples from the posterior predictive
distribution of the number of events of type m in B, denoted N,,(B), using com-
position sampling [16, 33]. The posterior distribution of N,,(B) given the data, S
can be written

(N, (B)[S] = /0 (N,.(B)[6][6]S]d0

where 0 represents all model parameters and latent process variables. The distribu-
tion [Ny, (B)|6] follows a Poisson distribution with mean A, (B) = [ Am(s)ds and
[0]S] denotes the posterior distribution of the model parameters and latent process
variables given the data. We can approximate the integral [ 5 Am(s)ds using nu-
merical integration. Samples from the posterior distribution of the total number of
events in B, written N(B) = 2%21 N, (B), can be obtained from each posterior
sample of N,,(B). In the multivariate setting, we can also look at the joint posterior
predictive distribution of [Ny, (B), Ny, (B’)]. We can obtain the joint posterior pre-
dictive distribution of the number of individuals of species m in the set B and the
number of individuals of species m’ in the set B’. Here, B and B’ can be any sets in
D, e.g., B= B’ or BN B’ = . Using the posterior distribution of the parameters
given the data, we obtain samples from

N (B), Ny (B)S] = /9 [N, (B). Ny (B)|6][6]5)d6

- /9 (N,0(B) B[N, (B')|6][6]5]d6

since N,,(B) and N, (B’) are conditionally independent Poisson random variables
given 6.

In practice, samples from the posterior distributions of N(B), N, (B), and
[Njo(B), Ny (B')] for arbitrary B, B’ € D and m,m’ € M can be obtained by
simulating posterior spatial point patterns for the multivariate point process under
the model. For each posterior spatial point pattern realization, the posterior sample
of N,,,(B) is the number of events type m in B, and the sample of N(B) the sum
of Np,(B) over all m. Samples from the joint posterior predictive distribution of
[N (B), Ny (B')] are obtained from each realization as the number of type m in B
and number of type m’ in B’. Posterior simulated realizations of the multivariate
spatial point pattern can also be used to learn about conditional probabilities as-
sociated with particular events, e.g., P(Np,(B) = 0[N, (B’) > 0). The conditional
probabilities can be calculated from the joint distribution over the marginal distri-
bution based on the posterior samples of the entire point pattern. Such conditional
probabilities inform about the probability of absence of one type of event in a par-
ticular set given presence of another type of event in the same or perhaps, adjacent
set. In certain applications these posterior distributions can be useful with regard
to co-occurrence of events of different types.
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F1a 5.1. Spatial locations of tree species Acer rubrum (red maple, o), Fraxinus americana (white
ash, /\), and Liquidambar styraciflua (American sweetgum x)

5.3.5. Application: Multivariate spatial point pattern of tree species in
Duke Forest

We apply the multivariate LGCP model to tree data collected at Duke Forest
in Durham, North Carolina. The Duke hardwood plot occupies mixed hardwood
and pine stands [41]. Specifically, the data analyzed here include tree locations
for three tree species, Acer rubrum (red maple), Fraxzinus americana (white ash),
and Liquidambar styraciflua (American sweetgum) in a 150m x 150m forest stand.
The spatial locations of these trees are shown in Figure 5.1. In this region, there
are 481 red maples, 717 ash, and 766 sweetgum trees. The elevation gradient for
this forest plot is shown in Figure 5.2 highlighting generally lower elevation in the
west and higher elevation in the east. Red maples tend to be spread out across
the plot, whereas ash and sweetgum appear more clustered. Ash trees appear to
be more prevalent in the west at lower elevations whereas sweetgum trees are more
prevalent in the east at higher elevation.

We model the locations of the three species, red maple, ash, and sweetgum, us-
ing a multivariate log-Gaussian Cox process. The joint intensity is written A(s) =
(A1(s), A2(s), A3(s))T where subscripts 1, 2, and 3 denote red maple, ash, and sweet-
gum, respectively. The joint intensity function is written

(5.10) logA(s) = vx(s) + z(s)
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Fi1G 5.2. (left) The elevation gradient for the Duke Forest plot, where the west is at lower elevation
and east s at higher elevation. Elevation is reported in meters (m). (right) Three locations, s1,
s2, and s3, as well as two subregions, B1, and Bz, used for illustrative model inference.

where ~ is a matrix of coefficients, x(s) is a vector of location-specific covariates,
and z(s) is a multivariate Gaussian process.

In fitting the model to the locations in the Duke Forest plot, x(s) includes ele-
vation for location s as well as a intercept term. The coefficient v contains species-
specific intercept and slope coefficients to capture the varying effect of elevation
across species. As a result « is 3 X 2. The multivariate Gaussian process, z(s),
models cross-species dependence as well as enabling local adjustment for remaining
heterogeneity in the log intensity beyond what is explained by elevation.

We employ the linear model of coregionalization [74] to capture cross-species
dependence. That is, z(s) = AV(s), where A is a lower triangular 3 x 3 matrix
and each Vj(s), for k = 1,2,3, is a realization from an independent Gaussian
process at a set of representative points. For the 150m x 150m plot, we employ 225
representative points on a grid of 10km resolution. The spatial covariance for Vi (s) is
defined by an exponential correlation function, cov(Vi(s), Vi(s')) = exp~!ls=s'll/¢x
with range parameter ¢y.

Noninformative independent mean zero normal prior distributions were assigned
to each of the coefficients in 7. The diagonal elements of A were assigned diffuse,
independent inverse-Gamma distributions with shape and scale equal 2. The lower
off-diagonal elements of A were assigned mean zero normal distributions with vari-
ance 100. Lastly, the decay parameters, ¢, were assigned Uniform distributions
with lower and upper endpoints of 5 and 40. For the independent Gaussian pro-
cesses, Vi (s), this assumed an effective range, 3¢y, to be greater than the resolution
of the representative points and less than half the max distance of the domain.

Model inference was obtained in a Bayesian framework using MCMC and
Metropolis-Hastings algorithms. Draws from the posterior distribution of the in-
dependent Gaussian processes at the representative points were obtained using
elliptical slice sampling [144]. The model was fitted for 500,000 iterations, with the
first 20% were disregarded as burn in. The chains were thinned to every 50th it-
eration to reduce dependence, and the remaining samples were used for posterior
inference.
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TABLE 5.2
Posterior mean and 90% CI for the multivariate LGCP model fitted to three tree species in Duke
Forest. Here, ymo and ym1 denote the intercept and elevation coefficient for species m and 3
denotes the local covariance matriz where X;; is the (i, j)th element of the matriz ¥ = AAT,

mean (90% CI)
S0 0.506 (0.091, 0.861)
1 -0.254 (-0.639, 0.090)
v0  0.558 (-0.134, 1.092)
Y21 -0.645 (-1.173 -0.146)
ys0  0.929 (0.466, 1.398)
ys1 0.333 (-0.107, 0.791)
Y11 0.468 (0.260, 0.748)
Sao  1.287 (0.798, 1.927)
Y33 0.886 (0.580, 1.302)
o1 0.138 (-0.056, 0.355)
S31 -0.047, (-0.232, 0.131)
T3 0.006 (-0.204, 0.230)

b1 26.14 (13.26, 38.41)
b2 21.83 (11.74, 35.03)
b3 23.97 (14.03, 36.57)

Posterior means and 90% credible intervals are given for the model parameters
in Table 5.2. The species specific-coefficients indicate that, in general, the inten-
sity of red maple and ash decreases with elevation while it increases with elevation
for sweetgum. The elements of the 3 x 3 matrix, AAT capture the local variance-
covariance of the multivariate Gaussian processes. Specifically, the off-diagonal ele-
ments highlight dependence between the species. Red maple and ash have moderate
positive dependence whereas sweetgum appear not correlated with either red maple
or ash. The decay parameters are similar for each of the Gaussian processes. Under
coregionalization, the posterior distribution of the effective range for each species
can be computed from the posterior distributions of ¢1, ¢2, ¢3, and A. See [16] for
the functional forms for this computation.

The multivariate posterior mean intensity surface A(s) is shown univariately in
Figure 5.3 for each species, red maple, ash, and sweetgum. Red maples appear to
have higher intensity in the central part of the region, whereas the intensity for ash
and sweetgum favor the west and east part of the plot, respectively. Some similarity
in patterns exists between red maple and ash in the central and western part of the
plot. Ash and sweetgum both have high mean intensity in the north central region
of the plot.

We also investigate the joint posterior probabilities of p(m(s), m’(s")|S) for pairs
of locations s and s’ where m and m’ take the values 1, 2, or 3. Three locations,
S1, S92, and s3 shown in Figure 5.2 were randomly chosen such that s; and sg
were far apart and so and sz were close. The posterior mean probabilities for all
pairs of species and pairs of locations (s1,s3), and (s3,s3) are given in Tables 5.3
and 5.4, respectively. For locations (s1,s2), the highest probability is for a red
maple at s; and ash at sy. Marginally, red maple and sweetgum have very similarly
large marginal probabilities at s; while ash has the highest marginal probability
at s3. When comparing nearby locations se and ss, the highest joint posterior
mean probability is again ash and red maple, with ash at s, and red maple at s3.
Marginally, red maple has the highest probability at ss.

Additional model inference includes obtaining posterior distributions of N,,(B),
the number of species m in a subregion B. For the two regions, By, and By shown
in Figure 5.2, we compute the posterior predictive distributions for each species.
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Posterior mean probabilities of the joint distribution p(m(s1), m’(s2)|S) for the three species,
red maple, ash, and sweetgum. The locations s1 and sz are shown in Figure 5.2.

s2

red maple ash  sweetgum

red maple 0.10 0.24 0.05

s1  ash 0.07 0.16 0.03

sweetgum 0.09 0.22 0.04
TABLE 5.4

Posterior mean probabilities of the joint distribution p(m(s2), m/(s3)|S) for the three species,
red maple, ash, and sweetgum.

s3
red maple ash  sweetgum
red maple 0.12 0.08 0.06
sg ash 0.27 0.20 0.14
sweetgum 0.05 0.04 0.03
TABLE 5.5
Posterior distributions of the number of each species in subregions B1 and Ba.
red maple ash sweetgum
B:1 7.3 (3.0,12.0) 5.8 (2.0, 11.0) 8.0 (3.0, 14.0)
By 7.6 (3.0,13.0) 37.8 (26.0, 49.0) 5.8 (2.0,11.0)




110 Special Topics in Point Pattern Analysis

Each of the two regions are 20m x 20m, where B; is centered at approximately 2m
higher in elevation than By. The posterior distribution of the number of red maples
in each region are very similar, while the number of sweetgum is slightly higher
in B; than By. The most notable difference between these two subregions is for
ash trees. The expected number of ash trees is vastly greater in By than B;. This
agrees with the posterior distribution of 721, which indicated a significant negative
relationship with elevation for ash.
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