
Chapter 7 

Maximum likelihood for 
GLMMs 

7.1 Introduction 

As noted in Chapter 1, creation of a GLMM by incorporating random factors in the 
linear predictor of a GLM leads to difficult-to-handle likelihoods. This is first laid 
out more carefully in a simple example and then general approaches to maximum 
likelihood are described. 

7.2 A simple example 

To fix ideas consider the following logit-normal example: 

Yij I u rv indep 0 Bernoulli (Pij), i = 1, 2, ... , q; j = 1, 2, ... , n, 

(7.1) logit(pij) = /3Xij + Ui, 

Ui rv indep. N(O, 0"2). 

In this scenario there are q clusters, each with n observations, a logit link and a 
single random and single fixed factor. The random effects, Uz, are assumed to be 
i.i.d. normally distributed. 

The example is so simplified it is a stretch to come up with a realistic situation 
it might reflect, but here is an attempt. Suppose we record Yij = 1 if a subject's 
blood pressure decreases on day j of treatment with a blood pressure drug at dose 
Xij, and is 0 otherwise. There are q individuals tested, each at n different doses. 
Since the intercept is zero, when the dose is 0 and for Ui equal to its mean of zero, 
the probability of a decrease is 0.5. The interpretation of Ui is the person-specific 
propensity to decrease or increase blood pressure in response to treatment (a type 
of individual-specific placebo effect). 

Since the model is specified conditionally, it is easiest to derive the likelihood 
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through a conditioning argument as follows: 

Likelihood= Pr{Y = yf,B, o-2 } 

=I Pr{Y=y[,B,o-2 ,u}f(u[o-2)du 

=I Pr{Y = y[,B, u} f(u[o-2)du 

(7.2) 
= jqPr{Yij =Yij[,B,u}f(ufo-2 )du 

Z,J 

= II/IIPr{Yij = Yij[,B,ui}f(ui[o-2 )dui 

' J 

= II I ef3 'E,i y,Jx,J+y;.u; II (1 + ef3xii+u;) -1 

' J 

There are several noteworthy features of the above calculations. First, the product 
appears in the fourth line because of the assumed conditional independence of the 
Yij given the random effects. Second, the product over the index i moves to the 
outside of the integration because the data form independent clusters (data within a 
cluster are dependent, but between clusters are independent). Finally, this integral 
cannot be evaluated in closed form, even though it about the simplest logit-normal 
model possible. On the other hand, it would not be too hard to evaluate this 
likelihood numerically since it is the product of single-dimensional integrals. 

When the model has a single random effect or two nested random effects, it is 
relatively easy to evaluate the integrals in the likelihood. One can then maximize 
the likelihood numerically to find ML estimates and to perform likelihood ratio 
tests. This is the approach adopted in software such as SAS Proc NLMIXED (SAS 
Institute, 2001). 

a. Numerical evaluation of the likelihood 

When there is a single, normally distributed random effect, the likelihood can be 
written as a product of integrals of the form 

(7.3) J+oo 
-oo g(x) exp{ -x2 }dx. 

These can often be accurately evaluated using Gauss-Hermite quadrature, which 
addresses the usually troublesome appearance of an infinite range of integration: 

(7.4) 

where the weights Wi and the evaluation points Xi can be found in books with 
details on numerical integration (e.g., Abramowitz and Stegun, 1964). This is a 
numerically simple approximation and is quite fast to compute, making numerical 
likelihood methods feasible. 
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As with any "automatic" numerical integration method, there are situations in 
which Gauss-Hermite quadrature for models like the logit-normal will give inaccu­
rate results, generally having to do with the placement of the evaluation points. 
An improvement on simple Gauss-Hermite quadrature is adaptive quadrature, as 
exemplified in SAS Proc NLMIXED (SAS Institute, 2001) and Rabe-Hesketh et al. 
(2002), in which the point of evaluation of the integral is "centered" in order to 
improve accuracy. 

While this approach works in simple problems it is not satisfactory in more 
difficult problems. The main complication is the design with regards to the random 
effects, since this affects which data are modeled as correlated. A particularly 
troublesome situation is when there are crossed random effects; in that case the 
data do not break into independent clusters, as opposed to the simple situation in 
(7.2). The leaf blight example has crossed random factors and evaluation of the 
likelihood would require the numerical evaluation of integrals of dimension greater 
than 200. Handling such situations is the topic of the remainder of the chapter. 

7.3 Simulation approaches to ML 

Since direct numerical evaluation of the likelihood is infeasible for many GLMMs, 
alternate approaches must be explored for approximating or calculating the likeli­
hood (and then maximizing it). Many of the techniques have a genesis in Bayesian 
computational methods. 

a. Model and notation 

First I recall the notation for our GLMM from Chapter 4. Let Y denote the observed 
data vector and we will hypothesize the existence of a vector of random effects u. 
We assume that the conditional distribution of Y given u follows a generalized 
linear model, with linear predictor, 'TJi, of the form 'T/i = x~.B+z~u, where x~ denotes 
the ith row of X, the model matrix for the fixed effects, and likewise with z~ being 
the ith row of the model matrix for the random effects: 

(7.5) 

Yilu"' indep. iY,Iu(Yilu, ,8, ¢ ), 
E[Yilu] = f.li, 

g(f.li) = 'T/i = x~,B + z~u, 
u"' fu(uiD). 

Note that we are assuming that the parameters of the conditional distribution of Y 
given u and those of u are distinct. 

The likelihood for (7.5) is given by 

(7.6) L(,B, ¢,D)= j IT fyilu(Yilu,,B, ¢)fu(uiD)du, 
i=l 

which cannot usually be evaluated in closed form. 
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b. Monte Carlo EM 

A possible approach to dealing with the high-dimensional integration is to set up 
an EM algorithm to compute the maximum likelihood estimates. To do so we need 
to define what will be the "missing data." A typical assumption in linear mixed 
models (see, e.g., Searle et al., 1992) is to consider the random effects, u, to be the 
missing data. The complete data, W, is then W=(Y,u) and the complete data 
loglikelihood is given by 

(7.7) 

This choice of missing data has two advantages. First, upon knowing u, the Yi are 
independent. Second, the M step of the EM algorithm maximizes with respect to 
(3, ¢ and D. Since (3 and ¢ only enter the first term, the M step with respect to 
(3 and ¢ uses only the generalized linear model portion of the likelihood and so it 
is similar to a standard generalized linear model computation with the values of u 
treated as known. Maximizing with respect to D is just ML using the distribution 
of u after replacing sufficient statistics (in the case where fu is in the exponential 
family) with their conditional expected values. The EM algorithm then takes the 
following form (where a superscript indicates the round of iteration): 

1. Choose starting values (3Co), ¢C0l, and nCo). Set m = 0. 

2. Calculate (with expectations evaluated under the current values). 

(a) (3Cm+l) and ¢Cm+l) to maximize E[ln fYiu (ylu, (3, ¢) ly]. 

(b) nCm+lJ to maximize E[lnfu(u!D)Iy]. 

3. If convergence is achieved, declare the current values to be the MLEs; other­
wise increment m = m + 1 and return to step 2. 

In general, neither the expectation in 2(a) nor that in 2(b) can be computed in 
closed form. This is because the conditional distribution of uly involves jy, that 
is, the likelihood, which is the quantity we are trying to avoid calculating directly. 

It is possible, however, to produce random draws from the conditional distribu­
tion of uly, without specifying or calculating jy. One can then form Monte Carlo 
approximations to the required expectations. 

There are a number of ways to produce the samples, including a Gibbs sam­
pler (McCulloch, 1994), the Metropolis-Hastings algorithm (McCulloch, 1997) or 
the independence sampler (Booth and Hobert, 1999). For example, to specify a 
Metropolis algorithm, we must specify a candidate distribution, hu(u), from which 
potential new values are drawn and also an acceptance function which gives the 
probability of accepting the new value (as opposed to keeping the previous value). 
This acceptance function is given by 

(7.8) ( *) . { fuiY(u*ly, (3, ¢)hu(u)} 
Ak u, u = mm 1, fuiY(uly, (3, ¢)hu(u*) ' 

where u* = (ul,u2, ... ,Uk-l,u~,uk+l,···,uq) 1 and Ak defines the probability of 
accepting the new coordinate u'k and replacing Uk with it. 
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What should be used for the candidate distibution, hu(u*)? One choice is to use 
hu = f u, in which case we get a simplification: 

(7.9) 

fuiY(u*Jy, /3, ¢)hu(u) 

fuiY(uJy, /3, q))hu(u*) 

11~1 fy;iu(Yilu, /3, ¢ )fu(u* JD)fu(uJD) 

= IJ7=1 fy;!u(Yilu*,/3, ¢)fu(uJD)fu(u*JD) 

117=1 fy;!u(YiJu, /3, ¢) 
= 117=1 fy;!u(Yilu*' /3, ¢)" 

This calculation only involves the specification of the generalized linear model por­
tion of the model, namely the conditional distribution of YJu. 

Incorporating the Metropolis step into the EM algorithm gives an algorithm as 
follows: 

1. Choose starting values f3(o), ¢C0), and D(o). Set m = 0. 

2. Generate N values, u(l), uC2), ... , uCN), from the conditional distribution of 
uJY using a Metropolis algorithm like the one described above and using the 
current parameter values. 

3. Choose 

(a) f3(m+l) and ¢Cm+ 1) to maximize a Monte Carlo estimate of 

E[ln fYiu (yJu, {3, q)) Jy], namely it I:~=1 ln fYiu (yJuCk), /3, q)). 

(b) nCm+1) to maximize it I:{:1 lnfu(uCk)JD). 

4. If convergence is achieved, declare the current values to be the MLEs; other­
wise increment m = m + 1 and return to step 2. 

While computationally intensive, this approach remains feasible for a variety of data 
configurations. 

c. Monte Carlo Newton-Raphson 

Although the EM algorithm is stable, in the sense that it is often able to converge 
from a wide variety of starting values, it is also well known to require many iterations 
to converge in a variety of problems. Algorithms that are quadratically convergent 
are often preferred. I next consider a version of Monte Carlo ML using a algorithm 
more akin to Newton-Raphson. 

Whenever the marginal density o~ Y is formed with distinct parameters for fYiu 
and fu then the ML equations for(}= (/3', ¢)' and D take the following form: 

(7.10) = 0, 

(7.11) = 0, 
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where I have momentarily used the standard notation of U to denote a random 
variable, to more clearly indicate that the expectation is with respect to the distri­
bution of the random effects, U, conditional on Y. Equality (7.11) only involves the 
distribution of U and is often fairly easy to solve, for example, when the distribution 
is normal. On the other hand, solving the first equality is similar to a standard gen­
eralized linear model and is amenable to a Newton-Raphson or scoring approach, 
which I now develop. 

Expanding Oln !Yju(YJU, 0)/8{3 as a function of {3 around the value Oo = ({3~, ¢o)' 
gives 

(7.12) 

Oln fYiu(yJU, 0) 
8{3 

= 8lnfYiu(YJU,O)I + 8 2 lnfYiu(Y,iU,6)1 (f3-f3o)· 
8{3 6=6o 8{3 8{3 6=6o 

Specializing this to our model, and after utilizing the fact that one term has a 
conditional expected value of 0, the approximation becomes 

OlnfYiu(yJU, 6) 
8{3 

(7.13) = X'W(00 , U)/a(¢o) ~TJ I [Y- J.t(Oo, U)] 
J.t tl=tlo 

- X'W(6o, V)ja(¢o)({3- f3o), 

where W( 6, U) = diag{ ( fJr]i/ 8tti)2var(Yi IJ.t )}, fti( 0, u) = E[Yi Ju], and fJry / fJJ.t = 
diag { fJry d fJ J.tJ. 

Using this approximation in (7.10) leads to an iteration equation of 

{3Cm+1) = {3Cm) + E [x'W ( oCm)' U) Xjy] -1 

(7.14) x E [x'w (6Cm), u) fJTJ I 
fJJ.t ti=O(m) 

X {y- J.t (!3(m), u) }I y]. 

This analog of scoring would proceed by iteratively solving (7.11), (7.14) and an 
equation for ¢. An advantage of the scoring approach over MCEM is that it makes 
automatic the maximization step in 2(a). 

Again, the expectations cannot typically be evaluated in closed form which leads 
to a Monte Carlo Newton-Raphson (MCNR) approach. The 3(b) step in MCEM 
would be replaced by 

{3(m+1) = {3(m) + E [ X'W ( o(m)' u) Xjy] - 1 

(7.15) x:E[x'w(6Cm),u) ~TJ~ 
OJ.£ tl=tJ(m) 

X {y - J.t({3(m)' U)} I Y]' 
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where E represents a Monte Carlo approximant to the expectation. 

d. Simulated maximum likelihood and moments 

While both MCEM and MCNR work on the log of the likelihood, Geyer and Thomp­
son (1992), Gelfand and Carlin (1993) and Durbin and Koopman (1997) have sug­
gested simulation to estimate the value of the likelihood directly. Starting from the 
likelihood we have 

L(f3,¢,Djy) = J fylu(Yiu,f3,¢)fu(ujD)du 

(7.16) = J fylu(Yiu, /3, ¢)fu(ujD) h ( )d 
hu(u) u u u 

= _!._ ~ fylu(Yiu(k),f3,¢)fu(u(k)ID) 
N ~ hu(u(k)) ' 

where the u's are selected from the importance sampling distribution hu(u) and 
N is the number of simulated values. This is an unbiased estimate no matter the 
choice of hu(u). The simulated likelihood is then numerically maximized, either 
after a single simulation, or using multiple simulations in an iterative process where 
the importance sampling distribution is allowed to depend on the current parameter 
values. A distinction to this approach is that the simulation and the maximization 
take place in two separate steps, while the MCEM and MCNR methods directly 
approximate the terms needed to perform the maximization. 

e. Stochastic approximation 

Stochastic approximation is a well-researched method (e.g., Lai and Robbins, 1979; 
Wei, 1987; Ruppert, 1991) originally proposed for finding the root of a regression 
equation in cases where it was desired to avoid strong assumptions about the form 
of the regression. Starting from an initial guess of x(0), and under the assumption 
that E[Yix] is increasing, new guesses are obtained via an equation of the form 

(7.17) 

where Ym is a value of Y sampled from the regression model with x = x(m), and 
with am decreasing slowly enough so that I: am = oo, but quickly enough so that 
I: a;, < oo. The intuition behind (7.17) is that if the current guess as to the root 
gives a value of Ym that is larger than zero, then the next value of x should be 
smaller than the current one. The values of am are chosen to be decreasing so that 
the sequence eventually converges to the root, without using step sizes so small that 
convergence takes too long. 

How can this idea be applied to solving for the MLEs in GLMMs? The basic 
idea is to apply the root-finding to the ML equation, appropriately defined. Since 

we have 

f _ JY,u 
uiY- -­jy 
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lnfY,u = lnfy +lnfuiY 

and 

(7.18) 
8lnfY,u _ 8lnfy 8lnfuiY 

89 - ---rii} + 89 

Noting that the expectation (with respect to the conditional distribution of u given 
Y) of the final term in (7.18) is zero (by the usual score identity) we can regard 
it as a regression equation with olnfY,ul89 playing the role of the "response," 
8ln fy I 89 playing the role of the regression equation (regarded as a function of 
the unknown parameter, 9), and 8lnfuiYI89 as a mean-zero "error" term. Now 
solving for the root of the "regression" equation is the same as solving for the value 
of 9 that makes 8ln fy I 89 equal to zero, that is, the ML estimate. See Delyon 
et al. (1999) for a recent example of such work. 

7.4 Nonparametric maximum likelihood 

Thus far, I have only considered parametric estimation of the random effects distri­
bution. This is partially a personal bias, partly due to the fact that nonparametric 
estimation of random effects distributions is limited in the scope of problems to 
which it is applicable (in complicated problems with multiple random factors and 
covariates it will often give degenerate answers), and partially due to the feeling, 
backed up by some research, that the exact form assumed for a latent, unobserved 
variate is not terribly important. This is supported by, for example, Neuhaus et al. 
(1992) and Tan et al. (1999) and it is important to discount the results of Heckman 
and Singer (1984), which suggest great sensitivity to the assumed distribution but 
apply to situations in which there is a mixture distribution but only one observation 
per level of the "random effect," a situation I consider unrealistic. 

That said, there is considerable literature on nonparametric estimation of the 
random effects distribution. The nonparametric MLE takes the form of a discrete 
distribution on a finite number of support points (Lindsey, 1983). See Aitken (1999) 
for a nice recent review article. Various forms of the EM algorithm have been 
suggested for fitting these models; see Pilla and Lindsay (2001) for a recent example. 
Variations on complete nonparametric MLE fitting are the smooth nonparametric 
approaches of Magder and Zeger (1996) and Verbeke and Lesaffre (1996) and the 
"semi-nonparametric" approach of Zhang and Davidian (2001). 

7.5 Bayesian methods 

My approach throughout this monograph is unabashedly frequentist. In a sense, 
a Bayesian would never be concerned with a mixed model: she would consider all 
factors to be random. Of course, this makes the computations nearly as difficult 
as maximum likelihood. Modern computational methods for Bayesian analysis of 
generalized linear models are an active research area I won't attempt to summarize 
here. The state of the practice is exemplified in software packages like BUGS 
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(Spiegelhalter et al., 1999), which is available for free! 
Conversely, many would not see much difference between a Bayesian approach 

and factors declared to be random. I would like to point out what I see as two 
major differences. First, I only incorporate random effects (and hence assign a 
distribution) for tangible entities, like subjects, sites and isolates. Conceptually, 
the effect for each of those exists (though we might not be able to gather sufficient 
data to know it very precisely) and the distribution across the various subjects or 
sites or isolates is also a tangible entity. This is in direct contrast to a Bayesian, 
who is required to specify a distribution for all parameters, for example, the overall 
intercept. Second, proper Bayesians assign distributions designed to capture belief. 
This is quite different than writing down a statistical model that describes the fact 
that, for exmaple, subjects have different baseline values in a model and the subjects 
in the study come from a larger collection of possible subjects. 

Finally, I would like to comment on the feeling that Bayesian procedures with 
flat or diffuse priors will always mimic a maximum likelihood approach. This is 
not always true, since ML is possible in cases where a flat prior gives rise to an 
improper posterior (Natarajan and McCulloch, 1995). Of course, a proper prior will 
always give rise to a proper posterior. So what about using a proper, but diffuse 
prior? Natarajan and McCulloch (1998) show that, in some situations, there may 
be no compromise. That is, before the priors get diffuse enough to be essentially 
non-informative (in the sense that they mimic ML) the Bayesian computational 
machinery may break down. 

7.6 Further notes 

Other techniques for maximizing a simulated likelihood are explored in Horsch­
Supan and Hajivassiliou (1993); Durbin and Koopman (1997) and Casella and 
Berger (1994); adaptive importance sampling is considered in Kong et al. (1994); 
Gelman and Meng (1998). Similar methods can be used to approximate either the 
likelihood ratio statistics directly or score tests (Kent, 1982; Boos, 1992; Geyer and 
Thompson, 1992; Geyer, 1994). Jank and Booth (to appear) investigate and com­
pare some of the methods described in this chapter. Chan and Ledolter (1995) use 
Monte Carlo EM for a time-series model for count data. 
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