
Chapter 6 

Early research 

6.1 Introduction 

Early approaches to the accommodation of correlation in non-normal data tended 
to focus on techniques that were easier to compute, which is not surprising given the 
computational hurdles identified in previous chapters. Their main drawback was 
that they tended to be ad hoc and could not easily accommodate more complicated 
situations. 

6.2 Beta-binomial model 

One of the earliest models for binary data was the beta-binomial model, which 
hypothesizes a mixture distribution directly on the probability scale. Since the 
random "factor" does not enter through a linear predictor, strictly speaking it is not 
a generalized linear mixed model. As motivation, consider a hypothetical teratology 
experiment in which lead is administered in the drinking water of pregnant rats, 
perhaps at different doses and including a control group with no lead. The response 
we record on all members of a litter is the absence of a birth defect in animal k from 
mom (and litter) j in treatment group i. Since the response is binary, the outcome 
must have a marginal Bernoulli distribution. We might hypothesize the following 
model: 

(6.1) 

Yijk = 1 if animal k from mom j in treatment i 

has a birth defect and 0 otherwise, 

YijkiPij "'indep. Bernoulli(Pij), 

Pij "'indep. Beta(ai,;Ji)· 

Under this model, Yijk has a marginal Bernoulli distribution with mean f.-li = 
aif(a, + ;Ji)· Data that share a value of Pij are modeled as correlated, but observa­
tions from different litters are regarded as independent. Temporarily dropping the 
subscripts i and j, and using B(·, ·) to represent the beta function andY = l::k Yk, 
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consider the joint distribution of the n observations within a litter: 

Jy = {1 IJpyk(1- p)(1-Yk)pa-l(1- p)/3-1 / B(a, ,B)dp 
lo k 

(6.2) = 1lpa+Y.-1(1-p)i3+n-Y.-1/B(a,,B)dp 

B(a+Y,,B+n-Y) 
B(a, ,8) 
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Going back to the i, j, k notation and the full sample, the likelihood is the product 
across the independent litters: 

L = IJ B ( ai + Y;_j. , ,Bi + nij - "Y;_j.) . 
. . B(ai, ,Bi) 
2,J 

(6.3) 

This model is adequate for the simple situation of nested litters within treatment 
groups but is much less amenable to extensions than, say, a logit model. First, 
we run into the difficulties identified in Section 5.7: how would we model the ai 
and ,Bi as a function of more complicated predictors? Second, what about more 
complicated correlation structures? 

One suggestion has been to build in the correlation structure using the beta­
binomial mixing distribution on the p scale, but to hypothesize a logistic regression 
function for the fixed factors (Lee and Neider, 1996). While this is certainly feasible, 
it starts losing the computational simplicity of the original beta-binomial model and 
seems less natural than mixed models on the linear predictor scale. 

6.3 A Poisson-Gamma model 

A similar model has been hypothesized for count data. As a motivating example, 
consider comparing a treatment program for alcoholics with regard to the number of 
hospitalizations in the year following enrollment in a treatment program. Hospitals 
in a large HMO are randomized to use either the new program or stay with the one 
currently in use. We record Y;_jk, the number of hospitalizations for patient k of 
hospital j in treatment group i. Hospitalization rates within a hospital will almost 
certainly be correlated due to the implementation of the program at that hospital, 
the staff at the hospital, and or the intangible factors associated with the hospital's 
patient population. We might hypothesize the following model: 

(6.4) 
Y;_jk l/lij "' indep. Poisson(/lij ), 

/lij "'indep. Gamma(ri, >.i)· 

"Y;_jk follows a count distribution model with mean equal to E[/lij] = ri/ Ai· How­
ever, it does not have a marginal Poisson distribution since it is "over-dispersed" 
compared to a Poisson distribution. That is, its variance is greater than its mean. 
By an argument similar to the beta-binomial model, the likelihood is given by 

(6.5) L =II (~) r, f(Yij- + ri) 
A·+ r· f(r·) TI Y: ·k!" . . ' ' ' k 2J ,,J 
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This model, like the beta-binomial model of the previous section is adequate for 
simple situations, but does not extend easily, for example, to crossed random effects. 

6.4 Marginal models 

Another early approach was to directly specify the joint marginal distribution of the 
variables. Since this is often a difficult undertaking for non-normally distributed 
variates, it is sometimes the case that only certain aspects of the joint distribution 
are specified. This direct specification bypasses the supposition of random effects 
or a mixed model and so does not really involve generalized linear mixed models. 
In some cases, correspondence between such models and random effects models can 
be drawn. For example, the marginal distribution resulting from the supposition of 
a random effects model. 

a. A model for binary data 

In constructing a marginal model we will often be interested in explicitly modeling 
the marginal means and accommodating associations among the observations. As 
an illustration, consider modeling a multivariate binary vector Y = (Y1, Y2, ... , Ym)· 
If joint density will be proportional to a function of the Yi, crossproducts of Yilj, 
etc., 

( 6.6) fy <X exp { ~ u;y; + 'f1 U;;Y;Y; + ... + u, .. ·mY'Y2 ... Ym} ' 

where, for example, 

(6.7) 

and OR represents the odds ratio. 
This is not, however, a convenient parameterization for describing the marginal 

means of the Yi and transformation back and forth from the above parameters and 
the marginal means and odds ratios (e.g.) can lead to difficulties in restrictions 
on the parameters. See Liang et al. (1992), Zhao and Prentice (1990) and Ekholm 
et al. (1995) for more details. 

6.5 Conditional inference 

An approach to modeling a factor that is very different from treating it as a random 
effect is to treat the effects as nuisance parameters and use a conditioning argument 
to remove them from the likelihood. The classic example is that of a matched pairs 
binary logistic regression. 

As motivation consider a study in which we are interested in whether clopidagrel 
(an anti-platelet drug) in addition to aspirin will reduce the incidence of stroke 
following a transient ischemic attack (a disorder caused by temporary disruption of 
the blood supply to the brain) as compared to aspirin alone. Patients are matched 
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in pairs according to the age, sex, the severity of the attack (how long it lasts and 
how severe the symptoms were) and are randomized within a pair to either aspirin 
alone or aspirin plus colpidagrel. The outcome of interest is whether they have a 
stroke within 90 days following the transient ischemic attack. It is expected that 
observations within a matched pair will be similar to one another, that is, correlated. 
Let Yij be 1 if person j = 1, 2 within pair i has a stroke within 90 days and be 0 
otherwise. We will assume that j = 1 identifies the aspirin alone patient. A model 
for this situation would be 

(6.8) 
Yij lai "'indep. Bernoulli(Pij ), 

logit(Pij) = Cl!i + /3Xij, 

where Xij is 0 for j = 1 and 1 for j = 2 (the treatment indicator), and the ai are the 
pair effects, incorporated in order to accommodate the correlation within a pair. 

In a generalized linear mixed model we would go on to assume that the pair 
effects followed a distribution. In the conditional approach we instead treat them 
as fixed, unknown parameters. We begin by exploring the possibility of estimating 
the ai as well as (3 by maximum likelihood. 

a. Matched pairs: maximum likelihood 

If there are N pairs, the likelihood for (6.8) is 

(6.9) 

L = IT exp{ Cl!iYij + /3XijYi.i} 

.. 1 + exp{ai + /3Xij} 
2,J 

N IT exp{aiYi· + f3Yi2} 
- i=1 (1 + exp{ ai}) (1 + exp{ ai + /3}) 

= exp ( ~ O:iYi- + fJY-2) / d, 

where d = Tii (1 + exp{ ai}) (1 + exp{ ai + /3}), and again I use the dot notation to 
signify a sum over the missing subscript. 

Consider the derivative of the log of (6.9) with respect to ai when Yi1 = Yi2 = 0: 

(6.10) 

8logL 8 l (1 "')-1 (1 a-+!3)-1 --- = - og + e ' + e ' 
8ai 8ai 

= 1 + ea, 

< 0. 

eai+!3 

1 + ea,+{3 

Since the derivative is everywhere decreasing as a function of ai, the maximum 
likelihood estimate is &i = -oo. Similarly, when Yil = Yi2 = 1, the maximum 
likelihood estimate is given by &i = +oo. Inserting these values into the likelihood 
gives 

(6.11) 
1N' ea;y;.+f3Yi2 

L=IT !3' i=l (1 + ea, )(1 + eai+ ) 
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where N' is the number of "discordant" pairs (i.e., Yil =f. Yi2) and the prime denotes 
a product only over the discordant pairs. This gives a log likelihood of 

(6.12) log L = L 1 ai + f3Yi2 -log (1 + eai) -log (1 + ea,+,B) , 

where again the prime denotes a summation only over discordant pairs. Differenti­
ating this with respect to ai gives a solution (for ai) of /3/2. Finally, plugging those 
values of ai in and maximizing with respect to (3 gives an estimate of 

A No1 
(6.13) (3 = 2log N , 

10 

where Nw is the number of pairs with Yil = 0 and Yi2 = 1 and No1 is the number 
of pairs with Yil = 1 and Yi2 = 0. This is exactly twice what we might guess would 
be a sensible answer, since log(Nol/Nw) converges in probability to (3. 

There are thus two unattractive features of maximum likelihood for this problem. 
First, it fails to give a reasonable estimator of (3. This situation, in which the number 
of parameters grows proportionally with the sample size, is a well-known situation 
in which maximum likelihood fails (Neyman and Scott, 1948). Second, it estimates 
extreme values for the ai. 

There are two approaches to resolving these difficulties. The first has already 
been considered, which is to declare the ai to be random effects. Reasonable dis­
tributional assumptions on the ai prevent them from being ±oo and replaces the 
growing (with sample size) number of ai with a fixed number of parameters de­
scribing the parameters of the random effects distribution. The second approach is 
through conditional maximum likelihood, which I now explore. 

b. Matched pairs: conditional likelihood 

The basic idea behind conditional likelihood is to identify the sufficient statistics 
associated with the nuisance parameters (in this case the ai) and work with the con­
ditional distribution given those sufficient statistics. By definition, this conditional 
likelihood will not involve the nuisance parameters. 

From the form of the likelihood in (6.9) it is clear that the sufficient statistic 
is (81, 82, ... , 8m, T) = (Y1., Y2., ... , Ym., Y2). Since the distribution is discrete, to 
find the distribution of S we merely have to sum over the appropriate values of Y: 

!s,r(s, t) = Jy(y) 
(6.14) 

e2;,a,s, +,Bt 
= C(s, t) d , 

where C(s, t) represents the number of combinations ofy that satisfy the constraints 
and d was defined below (6.9). 

From this it is straightforward to get the marginal distribution of S: 

fs(s) = L fs,r(s, z) 

(6.15) 
z 

e2;iai Si +,Bz 

= LC(s,z) d , 
z 
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Hence the conditional distribution ofT given S is also straightforward: 

(6.16) 
hls(tis) = fs,T(s, t)j fs(s) 

C(s, t)ef3t 

:Lz C(s, z)e.6z · 
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As required by theory, none of the ai remain in this conditional distribution and 
hence the conditional likelihood can be used to estimate /3 or form tests or confidence 
intervals. 

For the matched pairs situation, the coefficient C(s, t) is straightforward to eval­
uate. Conditional on Si = 0 we know that }i1 = }i2 = 0 and conditional on Si = 2 
we know that Yi1 = Yi2 = 1. It is only the case in which Si = 1 that any randomness 
remains. The result is a bit easier to state if we define r as the number of successes 
in the discordant pairs. Of course, basing a conditional test on r is equivalent to 
basing a test on t. With this it is not hard to show that 

C(s, t) = number of ways the successes in the N 10 and No1 

(6.17) 
pairs can be distributed 

This can be used, for example, to test H 0 : /3 = 0. Under the null hypothesis, the 
conditional distribution of r given S is 

(6.18) 

use of which leads to McNemar's test. 
This is a very effective use of conditional likelihood: it reduces a difficult-to-deal 

with likelihood with m + 1 parameters to a simple combinatorial problem. 

c. Between pairs: conditional likelihood 

Conditional likelihood is not always so effective. Suppose we change the situation 
slightly so that m/2 subjects are allocated to the aspirin group and m/2 to the 
clopidagrel plus aspirin group. Number the subjects so that those with i :::; m/2 
represent the aspirin group and those with i > m/2 are in the combination group. 
For each subject, we record, over two time periods, whether or not there is a stroke. 
We could build a model as follows: 

(6.19) 

}ij = 1 if person i has a stroke in time period j 

and is 0 otherwise, 

}ij lai "' indep. Bernoulli(Pij), 

logit (Pij) = ai + f3xij, 

where Xij is the treatment indicator function (i.e., it is equal to 0 if i :::; m/2 and 
is 1 otherwise). This model looks remarkably similar to (6.8). Let us consider the 
conditional likelihood approach. 
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The density of Y is given by 

(6.20) jy (y) = exp { L G.iYi· + (3 2:.: XijYij} / d, 
• •J 

where d = TI· .(1 + exp{ai + (3Xij} ). Now note that 
2,J 

i,j 

(6.21) 

i,j 

= L Yi·· 
i>m/2 

Putting this back into the density gives 

(6.22) jy(y) = exp {2..: G.iYi· + (3 L Yi·} /d. 
i i>m/2 

Now the sufficient statistic is (S1, S2, ... , Sm) = (Y1., Y2., ... , Ym.) with density 

fs(s) = L fy(y) 

(6.23) 
y:si=Yi· 

which gives a conditional distribution of Y given S of 

(6.24) 

In words, the conditional distribution of the entire sample given S contains no 
information about the parameter of interest, (3, and hence is useless for making 
inferences. In this situation (where the desired inferences are between pairs) the 
conditioning argument removes all the information of interest. 

6.6 Summary 

In summary, the conditional approach is one that works very well for a restricted set 
of situations, namely those in which the data are balanced and (at least the majority 
of) the information for the parameter(s) of interest comes from comparisons within 
levels of the nuisance parameters. As such they are very useful practical tools. 

However, compared to random effects models and other approaches, they can be 
arbitrarily inefficient, in the extreme case (as exhibited in the previous section) con­
taining no information about the parameters of interest. Neuhaus and Lesperance 
(1996) compare the efficiency trade-offs in a binary data setting. 
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6. 7 Further notes 

The models of Sections 6.2 and 6.3 take advantage of the conjugacy of the distribu­
tions involved, namely the binomial with the beta and the Poisson with the gamma. 
This could be extended to other distributions in a obvious way and is one of the 
avenues explored in Lee and Neider (1996). Another variation on this theme can 
be found in Conaway (1990). As demonstrated in this chapter, the use of the con­
ditional distribution in the matched pairs case leads to inferences which essentially 
discard all the concordant pairs. This raises the issue as to whether information 
can be recovered from the concordant pairs and whether a random effects analysis 
might be more efficient. There is a nice discussion in Cox and Snell (1989); see 
also Liang and Zeger (1988). Verbeke et al. (2001) investigate situations in which it 
may be advantageous to assume that one factor is random while a different factor is 
treated as a nuisance parameter and a conditional likelihood derived to eliminate it 
from consideration. In some cases, the conditional and random effects approaches 
generate the same estimators (Lindsay et al., 1991; Neuhaus et al., 1994). Fay et al. 
(1998) explore a compromise between a conditional and GEE approach. 
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