
Chapter 3

Dirichlet Process

3.1. The Dirichlet Process Prior

3.1.1. Definition

The Dirichlet process (DP) is arguably the most popular BNP model for random
probability measures (RPM), and plays a central role in the literature on RPMs,
appearing as a special case of a number of other more general models (recall our dis-
cussion in Chapter 1). Hence, the DP can be characterized in a number of different
ways.

The original definition of the DP is due to Ferguson (1973), who considered a
probability space (Θ,A, G) and an arbitrary partition {A1, . . . , Ak} of Θ. A random
distribution G is said to follow a Dirichlet process prior with baseline probability
measure G0 and mass parameter M , denoted G ∼ DP(M,G0), if

(3.1) (G(A1), . . . , G(A1)) ∼ Dir(MG0(A1), . . . ,MG0(Ak)).

This collection of finite dimensional distributions implies a well defined infinite
dimensional model p(G) because they satisfy Kolmogorov’s consistency conditions;
proving this fact is one of the main focuses of Ferguson’s original paper.

An alternative definition of the DP, known as the “stick-breaking” construction,
is provided in Sethurman (1994). Let δθ(·) denote a point mass at θ. An RPM

G(·) =
∞∑
h=1

whδθ̃h(·)(3.2)

has a DP(M,G0) prior if (θ̃h) are i.i.d. samples from G0 and wh = vh
∏

k<h{1−vk}
with vh ∼ Beta(1,M), i.i.d. This constructive definition of the DP is extremely
useful for extending the model to more complex problems (see for example Chapter
5) and to highlight important properties of the model. Implicit in (3.2) is the fact
that G is discrete, even if G0 is a continuous distribution.

Recall that the DP also induces a species sampling model. In particular, let
θ1, θ2, . . . be an i.i.d. sequence such that θi | G ∼ G where G ∼ DP(M,G0). Since G
is almost surely discrete, there will be ties among the θis; let kn be the number of
unique values among {θ1, . . . , θn}, let {θ�1 , . . . , θ�kn

} be these unique values and let
nnj be the number of draws among {θ1, . . . , θn} that are equal to θ�j . Blackwell and
MacQueen (1973) showed that the joint distribution of the θis can be characterized
in terms of the predictive probability function

p(θn+1 | θn, . . . , θ1) ∝
kn∑
j=1

nnjδθ�
j
+MG0,(3.3)
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that is, a new θi is identical to a previously observed θ�j with probability propor-
tional to nnj (i.e., how many times that value has been observed) or a new value
sampled from the baseline measure with probability proportional to the total mass
parameter M . The predictive distribution (3.3) is exactly in the format of (1.1).
After integrating G, the observations are exchangeable and have identical marginal
distribution G0, but are not independent.

The allocation process associated with the predictive distribution in (3.3) is also
known as the Pólya urn. Consider an urn that initially has M black balls and one
colored ball (whose “color” is randomly selected according to G0). We sequentially
draw balls from the urn; if a colored ball is drawn then we returned it to the urn
along with another ball of the same color, if a black ball is drawn, we returned it to
the urn along with a ball of a new color randomly selected according to G0. Another
metaphor, the Chinese restaurant process (CRP), is popular in the machine learning
community and essentially describes the same model.

For another characterizing property, recall that the DP can be characterized as
an NRMI. In particular, let μ be a standard Gamma process on Θ with intensity
function λ(·) = MG0(·), i.e., μ(A) ∼ Gamma(MG0(A), 1) for any A ⊂ Θ. Then
G(·) ≡ μ(·)/μ(Θ) ∼ DP(M,G0). This follows from (3.1) and the construction of
Dirichlet random variables as normalized Gamma random variates (see, for example
Robert and Casella, 2005).

Finally, recall that the DP can be characterized as a PPM with cohesion function
c(Sj) = M(nj − 1), as a special case of the PT with αε = αε0 +αε1, and as a NTR
process.

3.1.2. Properties

Since the Dirichlet process places a distribution on the random measure G, the
quantity G(A) for any A ⊂ Θ is a random variable. From Ferguson’s definition we
have G(A) ∼ Beta{MG0(A),M(1−G0(A))}. Hence

E{G(A)} = G0(A), Var{G(A)} = G0(A){1−G0(A)}
M + 1

.

This means that we can interpret G0 as the expected shape of the random distri-
bution G, while M controls the variability of the realizations around G0.

To further clarify this interpretation of the parameters of the DP, we plot in
Figure 3.1 realizations from DPs with standard normal baseline measure and dif-
ferent values of M . The random distributions G are discrete with probability one.
We therefore use the c.d.f. to display the random distributions. Larger values of
M reduce the variability of the realizations of the process, and for small values
of M a small number of weights concentrate most of the probability mass, i.e., a
few large steps dominate the cdf. Indeed, a priori, the size of the weights decreases
geometrically,

E(wh) =
1

M + 1

(
M

M + 1

)h−1

.

A particularly appealing property of the Dirichlet process is its conjugacy under
i.i.d. sampling. If θ1, . . . , θn is an i.i.d. sample with θi | G ∼ G and G ∼ DP(M,G0)
then

G | θ1, . . . , θn ∼ DP

(
M + n,

MG0 +
∑n

i=1 δθi
M + n

)
.(3.4)
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Fig 3.1. Random distributions generated from a Dirichlet process prior with varying precision
parameters M . In all cases, the baseline measure corresponds to a standard normal distribution
(thick black curve). Each box contains 8 independent realizations (grey curves) with a common
value for M . Note how M controls not only the variability of the realizations around G0, but also
the relative size of the jumps.

The posterior mean,

E(G | θ1, . . . , θn) = MG0 +
∑n

i=1 δθi
M + n

,

can be interpreted a weighted average between the baseline measure G0 and the
empirical distribution 1

n

∑n
i=1 δθi . In addition, since the empirical cdf is a consistent

estimator if the θis are indeed i.i.d. from some true distribution GT , it is easy to

show from (3.4) that, as n → ∞, we have G(A) | θ1, . . . , θn P→ GT (A) for any
measurable set A.

Example 9 (DP Nonparametric density estimation) We carry out a simu-
lation study with θi ∼ G, i = 1, . . . , n, independently. We generate two datasets,
with n = 8 and n = 50 observations, respectively, from the true model G = N(2, 4).
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In both cases, we pretend that G is unknown and carry out density estimation under
a BNP prior, G ∼ DP(M,G0) with G0 = N(0, 1) and total mass parameter M = 5.

Figure (3.2) shows the simulation truth, the empirical distribution, and the pos-
terior mean E(G | θ) under the Dirichlet process prior. We see how the posterior
mean is a weighted average of the prior mean and the empirical distribution of the
observed data. Note that the posterior distribution converges relatively quickly to
the empirical cdf as the sample size grows.
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Fig 3.2. An example of nonparametric density estimation using Dirichlet process priors. Two
independent samples with sizes n = 8 and n = 50 where generated from a normal N(2, 4) distri-
bution (whose c.d.f. is shown as the dashed black line “truth”). In both cases, the prior precision
parameter is M = 5, while the baseline measure is a standard normal distribution (dashed dotted,
“baseline”). The empirical CDF (dotted step function) and posterior mean (thick black line) are
also shown.

Finally, we discuss some properties of a random sample from the DP that follow
from the Pólya urn representation of the process. As mentioned in Chapter 1, the
predictive probability function in (3.3) implies a probability model for any partition
of the experimental units into clusters Sj = {i : θi = θ�j }, i.e., into clusters defined
by the ties among the draws θi. Recall that we used n = (n1, . . . , nk) for the
cluster sizes for a partition of n experimental units into clusters Sj , j = 1, . . . , k.
The probability model for (k,n) implied by (3.3) can easily be determined as

p(k, n1, . . . , nk) =
Γ(M)

Γ(M + n)
Mk

k∏
j=1

Γ(nj).(3.5)

The model p(k,n) for a random partition is known as the exchangeable product
partition function (EPPF). From this EPPF we can obtain the probability mass
function for the number of unique values kn (Antoniak, 1974),

p(kn) = Sn,kn!M
kn

Γ(M)

Γ(M + n)
,(3.6)

where Sn,k is the unsigned Stirling number of the first kind. Using a conditional
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expectation argument we find

E(k) =
n∑

i=1

M

M + i− 1
≈M log

(
M + n

M

)
for large n. Another consequence of (3.6) is that the partitions favored by the DP
are very uneven, i.e., the DP favors partitions with a small number of large clusters
and a large number of smallish ones. This feature of the model is often inappropriate
in applications, which has motivated many of the generalizations that we discuss
in later chapters.

3.2. DP Mixtures

The discrete nature of the DP random measures is awkward when the unknown
distribution is known to be continuous. Even worse, for some hierarchical models
the Dirichlet process prior can lead to inconsistent estimators if the true distribu-
tion is continuous (for examples, see Diaconis and Freedman, 1986a,b). One way to
mitigate this limitation of the DP is to add to the discrete distribution G a convo-
lution with a continous kernel. This is similar in spirit to kernel density estimators,
where the empirical distribution is smoothed by convoluting it with an appropriate
kernel.

Let y1, y2, . . . be an i.i.d. sample with unknown distribution F . A Dirichlet pro-
cess mixture prior (DPM) on F posits that

yi ∼ F (yi) =

∫
p(yi | θ)G(dθ), G ∼ DP(M,G0),(3.7)

where p(yi | θ) is a parametric distribution (often referred to as the kernel of the
mixture), which is indexed by a finite dimensional parameter θ. For example, in a
DP location mixture of normals we have

yi | G ∼
∫

N(yi | μ, σ2)G(dμ), G ∼ DP(M,G0).

Figure 2.1 illustrates a DP mixture of normal model.
The model in (3.9) can be represented in a number of alternative ways. Exploiting

the stick-breaking construction of the Dirichlet process we can write

(3.8) yi | (wh), (θ̃h) ∼
∞∑
h=1

whp(yi | θ̃h)︸ ︷︷ ︸
F (yi)

,

where

θ̃h ∼ G0, wh = vh
∏
k<h

{1− vk}, vh ∼ Beta(1,M).

This representation highlights the nature of the DP mixture model as a discrete
mixture. DP mixtures are countable mixtures with an infinite number of compo-
nents and a specific prior on the weights and the component-specific parameters.
Working with an infinite number of components is particularly appealing because
it ensures that, for appropriate choices of the kernel p(yi | θ), the DPM model has
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support on a large classes of distributions. For example, Lo (1984) showed that a
DP location-scale mixture of normals,

yi | G ∼
∫

N(yi | μ, σ2)G(dμ, dσ2), G ∼ DP(M,G0),

has full support on the space of absolutely continuous distributions. Similarly, a
mixture of uniform distributions

yi ∼
∫

Uni(yi | −θ, θ)G(dθ), G ∼ DP(M,G0),

where Uni(x | a, b) indicates a random variable x with a uniform distribution on
[a, b], has full support on the space of all unimodal symmetric distributions.

Another consequence of (3.8) is that the DPM induces clustering among the ob-
servations, with M controlling the a priori expected number clusters in the sample.
In particular, note that if M → 0, the model reduces to a single component mixture
where all observations are i.i.d. from p(y | θ) and θ ∼ G0, i.e., a fully parametric
model. On the other hand for M →∞ each observation is assigned its own single-
ton cluster and we have yi ∼

∫
p(yi | θ)G0(dθ), i.i.d. Nothing is unknown about the

sampling model for yi.
An alternative representation for (3.9) introduces latent random effects (θi) to

replace the mixture by a hierarchical model

yi | θi ∼ p(yi | θi), θi | G ∼ G, G ∼ DP(M,G0).(3.9)

The hierarchical model (3.9) also highlights the nature of clusters generated by ties
among the θi that arise under sampling from the discrete probability measure G.

Or, integrating out the random measure G,

yi | θi ∼ p(yi | θi), (θ1, . . . , θn) ∼ p(θ1, . . . , θn),

where the joint distribution p(θ1, . . . , θn) is implicitly defined by the sequence of
predictive distributions in (3.3). As before, denote by (θ�j ) the unique values among
θ1, . . . , θn and introduce indicator variables (si) such that θi = θ�si . Then we can
further rewrite the model as

yi | si, (θ�j ) ∼ p(yi | θ�si), θ�j ∼ G0, p(s1, . . . , sn) =
Γ(M)

Γ(M + n)
Mk

k∏
j=1

Γ(nj),

where k is the number of distinct values among s1, . . . , sn and nj =
∑

i I(si = j)
is the number of sis that are equal to j. By creating the implied clusters the DPM
places a prior distribution on all possible partitions of the data into at most n
groups. This is precisely the probability model stated in (3.5).

The last two representations marginalize with respect to the infinite dimensional
G. Hence, they are particularly useful for the development of computational tools
for the DP (see §3.3.1). Finally, we note that although the mixture in (3.8) has

infinitely many terms, for any finite sample size n, at most n distinct θ̃ are sampled
as θ�j .

3.3. Posterior Simulation for DP Mixture Models

One of the attractive features of the Dirichlet process mixture model is that a
number of simulation-based algorithms are available for posterior inference. In this
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section we review some of the most commonly used algorithms. Many can be ex-
tended to other nonparametric models with just minor modifications. Throughout
this section we assume the model

yi | θi ∼ p(yi | θi), θi | G ∼ G(θi), G ∼ DP(M,G0).(3.10)

That is, a DP mixture model with kernel p(yi | θi) and unknown mixing measure
G which follows a Dirichlet process prior.

3.3.1. Collapsed Gibbs Samplers

Conjugate models

Collapsed Gibbs samplers exploit the representation of the DP as a SSM that
was discussed in §1.2.1 and §3.1. The first version of this algorithm was developed
in Escobar (1988), well before Gibbs samplers were widely used in the statistics
literature. Recall the notation from §3.1.1 with θ�j , j = 1, . . . , kn−1 denoting the
unique values among {θ1, . . . , θn−1}, nn−1,j denoting the number of θi equal to θ�j ,
and (si) denoting the cluster membership indicators with si = j if θi = θ�j . Then

θn | θn−1, . . . , θ1 ∼
kn−1∑
j=1

nn−1,j

M + n− 1
δθ�

j
+

M

M + n− 1
G0.

Since sequences generated by a species sampling model are exchangeable, this
expression gives us the form of the full conditional prior distribution for any θi
given θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). To see this, just permute the order of the
observations so that θi becomes the last observation in the sequence. Multiplying
by the likelihood p(yi | θi) we find the full conditional posterior distribution for θi

(3.11) θi | θ−i,y ∝
k−∑
j=1

n−
j p(yi | θ�−j )δθ�−

j
+M p(yi | θi)G0(θi)

=
k−∑
j=1

{
n−
j p(yi | θ�−j )

}
δθ�−

j
+

{
M

∫
p(yi | θi)dG0(θi)

}
p(θi | yi, G0),

where the superscript − represents the appropriate quantity with θi excluded from
the sample. In the last term, p(θi | yi, G0) = p(yi | θi)dG0(θi)/

∫
p(yi | θi)dG0(θi)

is the posterior on θi in a singleton cluster, and
∫
p(yi | θi)dG0(θi) is the (prior)

marginal distribution for yi under G0.
The previous results lead to a Gibbs sampler for (θi) that proceeds by iteratively

sampling each θi, which is either equal to one of the unique θ�j s with probability

proportional to n−
j p(yi | θ�j ), or sampled from the posterior distribution based solely

on yi with probability M
∫
p(yi | θi)dG0(θi).

The described algorithm tends to mix very slowly when the mixture components
are well separated. A faster mixing Markov chain is achieved by including an ad-
ditional transition probability. Noting that sampling θi implies a new value for si
too, the complete conditional posterior probability (3.11) can be characterized as
p(θi, si | s−,θ�−,y). A more efficient sampler proceeds by first sampling the indi-
cators from p(si | s−,y) sequentially, and then sampling each θ�j from p(θ�j | y, s).



30 Dirichlet Process

To find p(si | s−,y) note first that (3.11) can be written as a hierarchical model
with

p(si = j | s−,θ�−,y) ∝
{
n−
j p(yi | θ�−j ) j = 1, . . . , k−

M
∫
p(yi | θi)dG0(θi) j = k− + 1

and

(3.12) p(θi | si = j, s−,θ�−,y) =

{
δθ�−

j
j = 1, . . . , k−

p(θi | yi, G0) j = k− + 1.

Marginalizing w.r.t. θi, but still conditioning on θ�−, we simply drop the last line.
Let y�−

j = (y�; s� = j and � 	= i) denote the observations in the j-th cluster without

yi. Finally, we remove θ�−j from the conditioning set by integrating with respect to

p(θ�−j | s−,y) = p(θ�−j | y�−
j ) and get:

(3.13) p(si = j | s−,y) ∝
{
n−
j

∫
p(yi | θ�−j )dp(θ�−j | y�−

j ) j ≤ k−

M
∫
p(yi | θi)dG(θi) j = k− + 1.

The full conditional posterior for θ�j is proportional to

p(θ�j | s,y) ∝ G0(θ
�
j )

∏
{i:si=j}

p(yi | θ�j ).(3.14)

When G0(θ) is conjugate to p(yi | θ), all of
∫
p(yi | θ�−j )dp(θ�−j | y�−

j ),
∫
p(yi |

θi)dG0, and p(θ�j | s,y) are usually available in closed form and implementation of
the algorithm is straightforward.

Example 10 (DPM with Gaussian kernels) Consider a location mixture of
Gaussian kernels, with p(yi | θi) = N(θi, σ

2), and a conjugate baseline measure
G0 = N(m,B). In that case,∫

p(yi | θi)dG0(θi) = N(yi | m,B + σ2),

while ∫
p(yi | θ�−j )dp(θ�−j | y�−

j ) = N(yi | m−
j , V

−
j + σ2),

with 1/V −
j = 1/B + n−

j /σ
2 and m−

j = V −
j (m/B + 1/σ2

∑
h∈S−j

yh). Here S−
j =

{h 	= i : sh = j}. Also, p(θ�j | y) = N(mj , V
2
j ) with the expressions for mj

and Vj being the formulas for m−
j and V −

j , but now without excluding the i-th
observation.

Non-conjugate models

When p(y | θ) and G0(θ) are not conjugate, the integral
∫
p(yi | θi)dG0(θi) is of-

ten analytically intractable. In that case the collapsed Gibbs samplers require that
the integral be approximated numerically, making the implementation inefficient,
particularly in high dimensional problems. To overcome this issue, a number of
alternative collapsed samplers have been devised to accommodate non-conjugate
models; a common feature of most of these methods is that they replace the predic-
tive

∫
p(yi | θi)dG0(θi) by p(yi | θ�k−+1), where θ�k−+1 is a random draw from G0.
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This can be justified on the basis of on an auxiliary probability model that includes
the values of the parameters θ�k−+1, . . . , θ

�
n for hypothetical empty clusters.

We start by describing the “no-gaps” algorithm introduced by MacEachern and
Müller (1998). The name derives from the fact that the description of the algorithm
relies on the no gaps convention, i.e., occupied clusters are consecutively labeled
from 1 to k. As before, the algorithm proceeds by first sampling the indicators (si)
conditional on (θ�j ), and then sampling the component-specific (θ�j ) conditional on
(si).

To sample si we consider two cases. If in the currently imputed state nsi > 1
then we sample si from

p(si = j | θ�1 , . . . , θ�n,y) ∝
{
n−
j p(yi | θ�j ) j = 1, . . . , k−
M

k−+1p(yi | θ�j ) j = k− + 1.
(3.15)

On the other hand, if nsi = 1, i.e., yi is currently forming a singleton cluster on its
own, then with probability (k−−1)/k− we leave si unchanged, and with probability
1/k− we resample si according to (3.15). See MacEachern and Müller (1998) for a
justification.

Given the indicators (si), the component specific parameters θ�1 , . . . θ
�
n are condi-

tionally independent and can be sampled from the full conditional in (3.14). Since
the model is not conjugate, this might require Metropolis-Hastings steps to sample
p(θ�j | s,y). Cluster-specific θ�k+1, . . . , for hypothetical future clusters are sampled
from G0. However in actual implementation, when G0 is a distribution for which a
direct sampler is available, then we do not need to store the values θ�k+1, . . . , θ

�
n, as

they can be generated when and as needed to evaluate (3.15). However, one detail
in the described MCMC is the following implication. Updating si in (3.15) might
create new empty clusters when si is moved from a current singleton cluster, say
si = j0, to another existing cluster, si = j 	= j0. The currently imputed θ�j0 for the
now empty cluster j0 remains unchanged. In particular, it is not replaced by a draw
from G0.

The “no gaps” algorithm is easy to implement, but mixes slowly due to the
reduced probability of opening new clusters. More general algorithms were proposed
by Neal (2000), who noted that the joint posterior of the any set of parameters (si)
and (θ�j ) can be evaluated as

p((si), (θ
�
j ) | y) ∝ p(s1, . . . , sn)

k∏
j=1

G0(θ
�
j )

n∏
i=1

p(yi | θ�si),(3.16)

where p(s1, . . . , sn) ∝ Mk−1
∏k

j=1(nj − 1)! (recall equation (3.5)). In principle,
this joint distribution can be combined with any reversible proposal to develop
Metropolis-Hastings transition probabilities for DP mixture models. As one exam-
ple, consider making proposals θ̃i for θi (and thus implicitely for si) by a draw from
the prior conditional:

p(θ̃i) ∝
∑
j

n−
j δθ�−

j
(θi) +M G0(θi).

The acceptance probability is

π = min

{
1,

p(yi | θs̃i)
p(yi | θsi)

}
.
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Then, as in the “no gaps” algorithm, all the of the component parameters θ�j s can
be resampled according to (3.14). Other variations of this approach are described
in Neal (2000).

Random baseline measures

The DP mixture in (3.10) is often extended by assigning prior distributions for M
or for hyperparameters φ that index G0. Since M implicitly controls the number of
clusters, a prior onM allows us to introduce prior uncertainty about the distribution
of the number of clusters k. Similarly, a prior on G0 allows us to reflect uncertainty
on aspects of the distribution such as the “closeness” or the “size” of the clusters.

Consider a baseline measure that is indexed with hyperparameters φ, G0(θ | φ),
and augment the model with a hyperprior p(φ) on φ. Note that, from the definition
of the Dirichlet process, the values of θ�1 , . . . , θ

�
k are independent draws rom G0.

Hence, the full conditional posterior for φ is simply

p(φ | . . .) ∝ p(φ)

k∏
j=1

G0(θ
�
j | φ).

When G0(θ | φ) and p(φ) are chosen as a conjugate pair, this posterior reduces to
a well known distributions.

Example 11 (DPM with Gaussian kernels, continued) Consider again the
location mixture of Gaussian kernels from Example 10. The base measure G0 is
indexed by φ = (m,B). It is natural to extend the model with conditionally conjugate
priors p(m) = N(m0, D) and p(B) = IGamma(a, b), where IGamma(a, b) denotes the
inverse Gamma distribution with shape parameter a and mean b/(a− 1) for a > 1.
We can interpret m as representing the center of mass for the cluster locations,
while B represents the average distance between cluster centers. The full conditional
distributions associated with m reduce to

m | . . . ∼ N(m1, D1),

with D−1
1 = 1/D + k/B and m1 = D1(m0/D + 1/B

∑k
j=1 θ

�
j ). On the other hand,

the full conditional posterior distribution for B is simply

B | . . . ∼ IGamma(a1, b1),

with a1 = a+ k/2 and b1 = b+
∑k

j=1(θ
�
j −m)2/2.

On the other hand, to estimate the precision parameter M we can use (3.6),

p(k |M) ∝Mk Γ(M)

Γ(M + n)
= Mk (M + n)

MΓ(n)

∫ 1

0

ηM (1− η)n−1dη.

The last equality exploits the normalizing constant of a Be(M +1, n) beta distribu-
tion. Therefore, we can devise a sampler for M by first introducing a latent variable
η such that

η |M,k, . . . ∼ Beta(M + 1, n).
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If, a priori, M ∼ Gamma(c, d), then also

M | η, k, . . . ∼ c+ k − 1

c+ k − 1 + n(d− log{η})Gamma(c+ k, d− log{η})

+
n(d− log{η})

c+ k − 1 + n(d− log{η})Gamma(c+ k − 1, d− log(η)).

This clever auxiliary variable sampler was first introduced in Escobar and West
(1995).

3.3.2. Slice Samplers

Slice samplers for DP mixture models were introduced in Walker (2007). Unlike
collapsed samplers, slice samplers do not marginalize over G, but use the stick-
breaking representation of the process. The discrete nature of G ∼ DP(M,G0)
allows us to write the DPM model as

p(yi | (wh), (θ̃h)) =

∫
p(yi | θi)dG(θi) =

∞∑
h=1

whp(yi | θ̃h).(3.17)

This expression is computationally intractable because of the infinite sum. However,
a clever model augmentation with latent variables u1, . . . , un, 0 ≤ ui ≤ 1, reduces
(3.17) to a finite sum. Consider the augmented model

(3.18) p(yi, ui | (wh), (θ̃h)) =

∞∑
h=1

I(ui < wh)p(yi | θ̃h),

where I(A) denotes the indicator function on the set A. Integating w.r.t. ui reduces
the model again to (3.17), as desired. The important trick is that we have wh > ui

only for a finite number of weights. Hence, conditioning on the latent variables (ui)
has the effect of transforming the infinite mixture into a finite mixture with a fixed
number Nu =

∑
h I(ui < wh) of components. We agument the model a second time

with latent indicators ri ∈ {1, 2, . . .} to

p(yi, ui, ri | (wh), (θ̃h)) = I(ui < wri)p(yi | θ̃ri).(3.19)

Marginalizing w.r.t. ri we immediately get the sum in (3.18), while integrating over
ri and ui yields (3.17), as desired. The joint distribution of the data, the latent
indicators r and u in the extended model is

p(y,u, r | (wh), (θ̃h)) =

n∏
i=1

I(ui < wri)p(yi | θ̃ri).(3.20)

Note that the indicators ri in (3.20) are different from the indicators si in (3.2).
The latter are cluster membership indicators that match θi with the unique values
θ�j . The earlier are indicators that match θi with the point masses θ̃h in (3.2).

However, the two are related because the θ�j are a sample of θ̃h. With another set

of indicators, tj = h when θ�j = θ̃h we would have ri = tsi .
Working with (3.20) allows for simple updates for all model parameters. In par-

ticular, the weights can be updated through the stick-breaking ratios by sampling

vh | . . . ,��(ui) ∼ Beta

(
1 + nh,M +

∑
k>h

nk

)
,
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where nh =
∑n

i=1 I(ri = h) is the number of observations such that ri = h.

Similarly, the atoms θ̃h for the occupied components are sampled from

p(θ̃h | . . .) ∝ G0(θ̃h)
∏

{i:ri=h}
p(yi | θ̃h),

while the atoms associated with empty components, i.e., nh = 0, can be sampled,
on demand, directly from G0.

Finally, the latent variables ui are, a posteriori, uniformly distributed

ui | . . . ∼ Uni[0, wri ],

and the indicators are updated from the full conditional

Pr(ri = h | . . .) ∝ I(wh > ui)p(yi | θ̃h).
Only a finite number of components satisfy the constrain wh > ui. Therefore, the
normalizing constant for this last full conditional distribution can be computed in
closed form. Let Hi(ui) = {h : wh > ui}. Then

p(ri = h | . . .) =
⎧⎨⎩

p(yi|θ̃h)∑
{k≥1:wk>ui} p(yi|θ̃k) h ∈ Hi(ui)

0 otherwise.

3.3.3. Retrospective Samplers

Retrospective samplers for Dirichlet process mixtures were developed by Roberts
and Papaspiliopoulos (2008). Like the slice sampler, the retrospective sampler is
based on an explicit representation of the mixing distribution G; to avoid the prob-
lem of storing an infinite number of weights and atoms, a Metropolis Hastings step
is used to allocate observations to components, while the parameters associated
with empty components are sampled retrospectively as they become necessary. The
same algorithm is developed in Nieto-Barajas et al. (2012).

To formalize the idea of the retrospective sampler, consider simulating obser-
vation from the prior model, i.e., simulating an i.i.d. sequence θ1, . . . , θn where
θi | G ∼ G where G ∼ DP(M,G0). This can be done directly by exploiting the
species sampling representation of the process in (3.3). Alternatively, we can first
simulate the distribution G using the stick-breaking construction in (3.2), and then
sample θi conditional on G. Under the second approach we can avoid the difficulties
associated with having a countably infinite number of components by utilizing the
following scheme.

1. Simulate w1 = v1 ∼ Beta(1,M) and θ̃1 ∼ G0, and set H = 1, i = 1 and
w0 = 0.

2. For i = 1, . . . , n

(a) Simulate Ui ∼ Uni[0, 1].

(b) If for some k ≤ H we have
∑k−1

h=0 wh < Ui ≤
∑k−1

h=0 wh + wk, then set

θi = θ̃k.

(c) If Ui >
∑H

h=0 wh, then simulate vH+1 ∼ Beta(1,M) and θ̃H+1 ∼ G0,
and set wH+1 = vH+1

∏
k<H+1{1 − vH} and H = H + 1. Go back to

step (b).
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In words, we generate the weights wh and point masses only as and when needed.
That is all!

We proceed now to describe the posterior sampler for the DPM. As in §3.3.2, we
introduce indicator variables (ri) such that θi = θ̃ri and define nh =

∑n
i=1 I(ri = h)

as the number of observations assigned to component h.
As with the slice sampler, the full conditionals for the vhs and the θ̃h are inde-

pendent and given by

vh | . . . ∼ Beta

(
1 + nh,M +

∑
k>h

nk

)
(3.21)

and

p(θ̃h | . . .) ∝ G0(θ̃h)
∏

{i:ri=h}
p(yi | θ̃h).(3.22)

On the other hand, the full conditional distribution for the indicator variables is
given by

Pr(ri = h | . . .) ∝ whp(yi | θ̃h), h = 1, 2, . . .

Since computation of the normalizing constant involves a sum over an uncount-
able number of terms, directly sampling from this distribution is not feasible. To
avoid this issue, Roberts and Papaspiliopoulos (2008) describe a Metropolis Hast-
ings algorithm for s = (s1, . . . , sn). More specifically, for every i = 1, . . . , n a pro-
posal s̃ = (s̃1, . . . , s̃n) is created by setting s̃j = sj for j 	= i and generating s̃i
according to the proposal distribution

p(s̃i = h) ∝
{
whp(yi | θ̃h) h ≤ maxi{ri}
Mi(s)wh h > maxi{ri},

where Mi(s) is a user-selected parameter. The corresponding normalizing constant
is given in this case by

ci(s) =

max{ri}∑
h=1

whp(yi | θ̃h) +Mi(s)

⎛⎝1−
max{ri}∑

h=1

wh

⎞⎠ .

The proposed value is accepted with probability

αi(s, s̃) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 s̃i ≤ max{ri} and maxi{s̃i} = maxi{ri}
min

{
1, ci(s)Mi (̃s)

ci (̃s)p(yi|θ̃ri )

}
s̃i ≤ maxi{ri} and maxi{s̃i} < maxi{ri}

min

{
1,

ci(s)p(yi|θ̃s̃i )
ci (̃s)Mi(s)

}
s̃i > maxi{ri}.

If an observation is allocated to a new component (i.e., a proposal s̃i > max{ri}
is accepted), then the necessary values for the vhs and θ̃hs are sample retrospectively
from (3.21) and (3.22). The constant Mi(s) is selected so that

Mi(s) = max
h≤maxi{ri}

{
p(yi | θ̃h)

}
in order to generate a sampler that is geometrically ergodic.
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3.3.4. Other Computational Approaches

We have but scratched the surface of possible Markov chain Monte Carlo methods
for inference under the Dirichlet process mixture model. For example, Dahl (2003),
Jain and Neal (2004) and Jain and Neal (2007) propose split-merge collapsed sam-
plers that provide mechanisms to make global moves in the space of partitions that
are induced by the DP prior. Alternatively, MacEachern et al. (1999) and Carvalho
et al. (2010) consider sequential Monte Carlo approaches that are particularly use-
ful for problems where observations are collected sequentially and it is necessary to
update the model after each observation is received. Finally, Blei and Jordan (2006)
propose a variational algorithm that is computationally efficient for large sample
sizes.

3.4. The Finite DP

The Dirichlet process mixture model potentially allows for an infinite number of
clusters as n→∞. However, for any finite sample size n the number k of occupied
components cannot be greater than n, and is typically much smaller than that. This
suggests that instead of dealing with a countably infinite number of components,
we could work with mixtures with a large but finite number of components. This
should simplify computation while retaining most of the theoretical advantages of
the Dirichlet process.

The first approach we discuss to construct truncated versions of the Dirichlet
process is the ε−DP of Muliere and Tardella (1998). For any ε ∈ (0, 1), a random
distribution Gε is said to follow an ε-Dirichlet process if it admits a representation
of the form

Gε(·) =
Hε∑
h=1

whδθ̃h(·) +
{
1−

Hε∑
h=1

wh

}
δθ̃Hε+1

(·),

where (θ̃h) is a collection of i.i.d. draws from the baseline measure G0, wh =
vh
∏

k<h(1 − vk), where (vh) is another i.i.d. sequence such that vh ∼ Beta(1,M),
and Hε = inf{m ∈ N :

∑m
h=1 wh ≥ 1− ε}.

The definition of the ε-Dirichlet process is analogous to that of the (regular)
Dirichlet process, but the sum stops after a random number of draws, Hε ∼
Poi(−M log ε), and the remaining mass (which, by construction, must be no larger
than ε) is assigned to the last atom. By bounding the probability associated with
this last atom, the definition ensures that the total variation distance between the
finite and the infinite versions of the process is no larger than ε. Indeed, let (θ̃h)

and (vh) be two i.i.d. sequences such that θ̃h ∼ G0 and vh ∼ Beta(1,M), and define

G(·) =
∞∑
h=1

whδθ̃h , Gε(·) =
Hε∑
h=1

whδθ̃h(·) +
{
1−

Hε∑
h=1

wh

}
δθ̃Hε+1

(·),

where Hε = inf{m ∈ N :
∑m

h=1 wh ≥ 1− ε}. Then
sup
B
{|G(B)−Gε(B)|} ≤ ε.

Naturally, as ε→ 0, draws from the ε-DP converge (in total variation norm) to the
draws from a regular DP. Hence, the class of ε-DPs is dense, in the sense that it
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is rich enough to approximate arbitrarily well any distribution on the underlying
probability space.

An alternative definition of a truncated Dirichlet process was introduced in Ish-
waran and James (2001, 2002). Rather than using a random stopping rule for the
number of point masses that ensures a bound on the total variation norm, they
argue instead for using a fixed number of atoms H and study the behavior of the
random distribution as the number of atoms grows. In particular, Ishwaran and
James (2001) show that the marginal distributions for a sample (x1, . . . , xn) under

G =
∑∞

h=1 whδθ̃h and GH =
∑H

h=1 whδθ̃h are almost indistinguishable and the L1

distance between these marginal distribution is bounded by 4ne−(H−1)/M . This re-
sults suggest that, as long as M is not very large, small H already obtain a good
approximation, even if n is large.

Hierarchical models based on finite DPs have some important computational
advantages over models based on infinite DPs. For example, since the number of
atoms is finite, techniques for posterior inference on finite mixture models can be
employed to perform estimation on finite DP mixtures. Indeed, the main motivation
of Ishwaran and James (2001) and Ishwaran and James (2002) is to develop alter-
native computational algorithms for stick-breaking priors, which they call blocked
Gibbs samplers.

We introduce latent indicators r1, . . . , rn such that θi = θ̃ri . The joint distribu-
tion is then given by

p{(ri), (θ̃h), (vh) | y} ∝
n∏

i=1

p(yi | θ̃ri)
n∏

i=1

p{ri | (vh)}
H∏

h=1

dG0(θ̃h)

H−1∏
h=1

p(vh |M).

From this we find

(3.23) p(θ̃h | . . .) ∝ G0(θ̃h)
∏

{i:ri=h}
p(yi | θ̃h).

Similarly, the stick-breaking weights (vh) are conditionally independent with

(3.24) vh | . . . ∼ Beta

(
1 + nh,M +

∑
k>h

nk

)
,

where nh =
∑n

i=1 I(ri = h) is the number of observations such that ri = h. Finally,
the posterior full conditional distribution for ri is

(3.25) Pr(ri = h | . . .) ∝ whp(yi | θ̃h),

where wh = vh
∏

k<h(1− vh) for h < H and wH =
∏

k≤H(1− vh).

Notice the similarities between this algorithm and the slice sampler we described
in §3.3.2. The structure of both algorithms is almost identical, with the main dis-
tinction being that in the blocked Gibbs sampler the number of components H is
predetermined before running the algorithm, while in the slice sampler the number
of components being used for computation (which is typically larger than the num-
ber of occupied components) is determined dynamically as part of the algorithm.

Another advantage of working with a truncated version of the Dirichlet process is
that computation for functionals of the random distribution G is greatly simplified
because G can be explicitly evaluated. For example, the predictive distribution for
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a new observation yn+1 can be easily evaluated by noting that, under the truncated
model,

p(yn+1 | y1, . . . , yn) = E

{
H∑

h=1

whp(yn+1 | θ̃h) | y1, . . . , yn
}
.

Other functionals of GH can be easily computed in the same way (see also §3.6).

3.5. Mixtures of DP

In §3.3.1 we discussed the possibility of making the baseline measure random. In
this section we formalize this construction through the introduction of mixtures of
DPs (MDP). MDP’s where first introduced by Antoniak (1974) as a generalization
of the Dirichlet process. In contrast to the DPM, where the DP is the prior model for
the mixing measure in a mixture of parametric distributions, the MDP arises when
the baseline measure G0 and/or the concentration parameter M are random. I.e.,
G0 = G0,η and/or M = Mη are indexed by η and we define a random probability
measure by

G | η ∼ DP(Mη, G0,η), η ∼ H(η).

Then, G is said to follow a mixture of Dirichlet processes with precisionMη, baseline
measure G0,η and mixing distribution H, or simply G ∼ ∫ DP(Mη, G0,η)dH(η).

Note that the MDP and the DPM are entirely different models. The earlier mixes
some kernel with respect to a DP random measure. The latter mixes DP random
measure with respect to a prior on hyperparameters. Nevertheless, there is a natural
connection between both models (see Antoniak, 1974). The posterior law for the
mixing distribution G in a DPM model follows a MDP distribution. Consider

yi | θi ∼ p(yi | θi), θi | G ∼ G, G ∼ DP(M,G0),

then, the law of G | y1, . . . , yn can be written as

(3.26) G | y1, . . . , yn ∼
∫

DP

(
M + n,

MG0 +
∑n

i=1 δθ�
ri

M + n

)
dP (s1, . . . , sn, θ

�
1 , . . . , θ

�
k | y1, . . . , yn).

The posterior distribution over G induced by a DPM is simply a MDP!

3.6. Functionals of DPs

3.6.1. Inference for Non-linear Functionals of DP

We return to inference for the DPM model (3.9) again,

yi | G ∼ F =

∫
p(yi | θ)G(dθ), G ∼ DP(M,G0).

Sometimes investigators are interested in posterior inference for functionals of the
unknown distribution F . For example, in density estimation with an unknown dis-
tribution F one might be interested in computing E{f | y1, . . . , yn} as a point
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estimate of the density f associated with the unknown distribution F . Alterna-
tively, we might be interested in providing posterior distributions for quantiles of
F , i.e., p(F−1(γ) | y1, . . . , yn) for some γ ∈ (0, 1) where F−1 is the inverse c.d.f. of
F and γ ∈ (0, 1) is a prespecified percentile.

First, we consider inference for functionals of F under the collapsed sampler
discussed in §3.3.1. For linear functionals of F , we can explicitly marginalize with
respect to G and compute point estimators directly from the sampler output. For
example, we can compute E{f(y�) | y1, . . . , yn} by changing the order of integration
in

E{f(y�) | y1, . . . , yn} = E

{∫ ∫
p(y� | θ)G(dθ)

}
=

∫
p(y� | θ)G�(dθ),

where G� = E{G | y1, . . . , yn}. Since G | y1, . . . , yn is a MDP, as we discussed at
the end of §3.5 we have

(3.27) E{f(y�) | y1, . . . , yn}

=

∫ ⎧⎨⎩ M

M + n

∫
p(y� | θ)G0(dθ) +

k(b)∑
j=1

nj

n+M
p(y� | θ�j )

⎫⎬⎭
dp(s1, . . . , sn, θ

�
1 , . . . , θ

�
k | y1, . . . , yn).

Given a Monte Carlo posterior sample (s
(b)
1 , . . . , s

(b)
n , θ

�(b)
1 , . . . , θ

�(b)

k(b) )
B
b=1 from

p(s1, . . . , sn, θ
�
1 , . . . , θ

�
k | y1, . . . , yn),

(3.27) can be approximated by the Monte Carlo estimator

(3.28) E{f(y�) | y1, . . . , yn}

=
1

B

B∑
i=1

⎧⎨⎩ M

M + n

∫
p(y� | θ)G0(dθ) +

k(b)∑
j=1

n
(b)
j

n+M
p(y� | θ�(b)j )

⎫⎬⎭ .

Alternatively one could evaluate E[f(y�) | y] as the posterior predictive p(yn+1 |
y) in a random sample yi ∼ F ,

p(yn+1 | y) = E[p(yn+1 | F,y) | y] = E[f(yn+1) | y],

which leads to the same MCMC estimate (3.28).
For non-linear functionals, and more generally, if we want to obtain the full

posterior distribution of a given functional, we need to deal with the infinite di-
mensional mixing distribution G. Gelfand and Kottas (2002) exploit the fact that
p(G, s1, . . . , sn, θ

�
1 , . . . , θ

�
k | y1, . . . , yn) can be factorized as

p(G, s1, . . . , sn, θ
�
1 , . . . , θ

�
k | y1, . . . , yn)

= p(G | s1, . . . , sn, θ�1 , . . . , θ�k)p(s1, . . . , sn, θ�1 , . . . , θ�k | y1, . . . , yn),

where p(G | s1, . . . , sn, θ�1 , . . . , θ�k) is simply a Dirichlet process with base measure

G1 ∝ MG0 +
∑k

j=1 njδθ�
j
. Hence, given a realization (s

(b)
1 , . . . , s

(b)
n , θ

�(b)
1 , . . . , θ

�(b)

k(b) )
from the posterior distribution, a realization from the posterior for G can be con-
structed as
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G(b)(·) =
∞∑
h=1

hδθ̃h(·)

where h = zh
∏

k<h(1− zh), zh ∼ Beta(1,M + n) and θ̃h ∼ G1.
In practice, an ε truncation of the DP (recall our discussion from §3.4) is used, so

that we generate only a random (but finite!) number of atoms Hε such that Hε =
inf{m ∈ N :

∑m
h=1 h > 1 − ε}. Given G(b), we can evaluate any functional of F .

For example, a sample from p(F−1(γ) | y1, . . . , yn), can be obtained by computing

(for each iteration of the MCMC) the value q
(b)
γ such that

γ =

Hε∑
h=1


(b)
h P (q(b)γ | θ�(b)h ).

Here P (y) =
∫
−∞ p(y | θ) is the c.d.f. of the kernel in (3.9). The values q

(1)
γ , . . . , q

(B)
γ

can then be used to perform posterior inference on F−1(γ).
Finally, we consider inference for functionals of F under the slice and retrospec-

tive samplers that are discussed in §3.3.2 and §3.3.3. Both of these samplers rely on
an explicit representation of the mixing distribution G. Therefore inference for func-
tionals is, in principle, straightforward. However, a word of caution is in order. Even
though both the slice and the retrospective samplers perform dynamically adaptive
truncations of G, the accuracy of these truncations (in terms of how well they ap-
proximate the infinite dimensional G) is not predetermined. Hence, in practice we
might need to explicitly represent (and simulate) additional mixture components
in order to ensure that the posterior inference for the functionals of G is sensible.
Note that this is not the case if an almost sure truncation is used because the value
of H is predetermined beforehand to ensure a good approximation.

3.6.2. Centering the DP

A particular example of inference for functionals of a DP random probability mea-
sure arises in applications to mixed effects models. Recall the discussion of mixed
effects models in §2.3. To be specific, assume a linear model

(3.29) yij = β0 + β1tij + b0i + b1itij + εij ,

with εij ∼ N(0, σ2), i.i.d. For example, yij might be logarithm of the prostate-
specific antigen (log PSA) measurements for the i-th patient at time tij . Here
(β0, β1) are fixed effects including intercept and overall growth rate of PSA, and
bi = (b0i, b1i) are patient-specific random effects. The random effects are assumed
to arise from a random effects distribution bi ∼ G. When the investigator is not
willing or able to assume a parametric model for G then we might complete the
model with a BNP prior, for example,

bi ∼ G, G ∼ DP(M,G0),

with G0(b) = N(b | 0, D) and a (conditionally) conjugate hyperprior on D. Let
μG =

∫
xdG(x) and ΣG =

∫
(x−μG)(x−μG)

′ dG(x) denote the first and (centered)
second moment of G. For a random probability measure G the moments μG and
ΣG become random variables. Even when G0 is chosen to have a zero mean μG0

=
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0, the random moments μG are almost surely not zero. This greatly complicates
interpretation of the fixed effects (β0, β1). Similarly, the elements of ΣG are the
variance components; reporting D, as is often done, only approximates ΣG.

Inference on fixed effects in (3.29) is best formalized as inference on (β + μG),
and inference on variance components requires the posterior distribution of ΣG.
Fortunately both are easily available from standard Monte Carlo output for MCMC
posterior simulation under model (3.29). Li et al. (2010) give explicit formulas for
the first two posterior moments of (β + μG) and ΣG. All can be evaluated by
postprocessing with an available Monte Carlo sample.
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