
IMS Collections
Contemporary Developments in Bayesian Analysis and Statistical Decision Theory:
A Festschrift for William E. Strawderman
Vol. 8 (2012) 200–214
c© Institute of Mathematical Statistics, 2012
DOI: 10.1214/11-IMSCOLL814

CD posterior – combining prior and data

through confidence distributions

Kesar Singh and Minge Xie∗

Rutgers, the State University of New Jersey

Abstract: This article proposes an alternative approach to incorporate infor-
mation from observed data with its corresponding prior information using a
recipe developed for combining confidence distributions. The outcome function
is called a CD posterior, an alternative to Bayes posterior, which is shown here
to have the same coverage property as the Bayes posterior. This approach to
incorporating a prior distribution has a great advantage that it does not require
any prior on nuisance parameters. It also can ease the computational burden
which a typical Bayesian analysis endures. An error bound is established on
the CD-posterior when there is an error in prior specification.
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1. Introduction

The basic logic of objective Bayesian analysis is to bring together prior knowledge
on a population parameter and the knowledge acquired on it out of a quantitative
study. The prior knowledge, represented in the form of a probability distribution,
which the parameter is assumed to follow, is supposedly an aggregate of past expe-
riences, experts’ training, expertise and even subjective opinions. After sample data
are observed, a model is built which specifies the likelihood function of data given
the values of the parameters. The prior and likelihood functions are incorporated
together using the Bayes formula, and the resulting conditional distribution of the
parameter given the data is a Bayes posterior. This article proposes an alternative
way to bring together prior distribution and the data, introducing the concept of
CD-posterior, where CD refers to the concept of confidence distribution.
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Suppose we are interested in making an inference on a given real valued pa-
rameter θ, which is allowed to be just a functional of the underlying population.
Denote the sample data by X and the nuisance parameters by φ. Let Pos(θ) be the
marginal posterior cumulative distribution function of θ, given observed data X.
Let Pos−1(t) be its tth quantile that solves the equation Pos(θ) = t. The credible
intervals [Pos−1(t1), Pos−1(t2)] has the following coverage probability,

Pθ|X{Pos−1(t1) ≤ θ ≤ Pos−1(t2)} = t2 − t1(1.1)

for some 0 < t1 < t2 < 1. Here, Pθ|X refers to the conditional probability measure
of θ given X. Consequently, by averaging,

P(θ,X){Pos−1(t1) ≤ θ ≤ Pos−1(t2)}(1.2)

= EX[Pθ|X{Pos−1(t1) ≤ θ ≤ Pos−1(t2)}]
= t2 − t1.

Here, P(θ,X) refers to the joint probability measure of (θ,X) and EX refers to taking
an average over X. We can rewrite the statement in the Eq. (1.2) from a frequentist
angle, noting that

P(θ,X){Pos−1(t1) ≤ θ ≤ Pos−1(t2)}(1.3)

= Eθ[PX|θ {Pos−1{t1) ≤ θ ≤ Pos−1(t2)}]
= t2 − t1.

Here the probability PX|θ {Pos−1(t1) ≤ θ ≤ Pos−1(t2)} in the second line of (1.3)
is the usual frequentist statement about coverage probability when θ is given. As
the parameter θ is random, the Eθ in front is just taking an average over θ. Thus,
the coverage statement,

P(θ,X){Pos−1(t1) ≤ θ ≤ Pos−1(t2)} = t2 − t1,(1.4)

is related to both the coverage statement for a credible interval in the Bayes setting
and the coverage statement for a confidence interval in the frequentist setting. We
refer the coverage statement in (1.2) and (1.3) as a Bayes Frequentist coverage
probability statement in this paper.

The same Bayes Frequentist coverage probability statement also holds when the
nuisance parameter φ is included. In particular, as in (1.2), we can show that

P(θ,φ,X){Pos−1(t1) ≤ θ ≤ Pos−1(t2)} = t2 − t1,(1.5)

from the coverage statement (1.1) of a credible interval in the Bayesian setting. We
also can rewrite (1.5) as

P(θ,φ,X){Pos−1(t1) ≤ θ ≤ Pos−1(t2)}(1.6)

= Eθ,φ[PX|θ,φ{Pos−1{t1) ≤ θ ≤ Pos−1(t2)}]
= t2 − t1,

which has the same interpretation as Eq. (1.3).
Instead of the Bayes formula, this paper proposes an alternative approach to

incorporate prior information with the information from observed data using a
recipe developed for combining confidence distributions (CD). In particular, we
combine a marginal prior cumulative distribution function on the parameter θ with
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a confidence distribution on the same parameter derived from the data analysis;
for more details, see Section 2. The outcome function from the combination, say
Hc(θ), is a data dependent cumulative distribution function on the θ parameter
space. We call such a function a CD-posterior function for the parameter θ. We
prove in Section 3 that the interval [H−1

c (t1), H−1
c (t2)] for θ satisfies the same

coverage property as (1.4) and (1.5). Thus, it can substitute the Bayes posterior
in forming credible intervals (regions) which are essentially prediction intervals for
the parameter θ.

This proposed approach inherits the so call “division of labor” property of fre-
quentist approaches (Efron 1986, Wasserman 2007). Wasserman (2007) states: “The
idea that statistical problems do not have to be solved as one coherent whole is
anathema to Bayesians but is librating for frequentists”. The example that they
used to describe the property is estimation of a population quantile θ. While a
frequentist approach directly uses the sample quantile to estimate the population
quantile, a Bayesian approach requires to assign a prior on the space of all parame-
ters, including both θ and the nuisance parameters φ. An estimate of the population
quantile θ can then be obtained from the marginal posterior of θ. The inherited
property of “division of labor” can help simplify statistical method, especially in
situations when it is hard to keep track of nuisance parameters.

The property of “division of labor” can also help ease the computational burden,
since the approach only focuses on the marginal prior distribution of the param-
eter of interest θ and the nuisance parameter part is not involved. Furthermore,
the whole development of CD combining involves fairly elementary computations,
unless one chooses some tedious method, like a double bootstrap, to form a CD.
Compared to full Bayesian analysis with a sampling algorithm involved in it, the
computational task involved here is insignificant.

There is an abundant scope for robustness in the construction of a CD-posterior,
with respect to prior as well as data. In Section 4, it is established that with a cer-
tain choice of combining function the error bound on the CD-posterior cumulative
distribution function is wε/(1 − ε) when ε is the error bound on the cumulative
distribution function of the prior and w is the relative weight chosen for the prior,
0 < w < 1, in the combining function.

The rest of paper is arranged as follows. Section 2 reviews some recent develop-
ments on combining confidence distributions and provides a framework for combin-
ing prior information with evidence from observed data. Section 3 provides several
examples to demonstrate the proposed approach. Section 4 contains a theoreti-
cal development on coverage probabilities. Section 5 establishes an error bound
on CD-posterior when there is an error in prior specification. Section 6 contains a
simple extension of multiparameter cases. Section 7 contains some further discus-
sions, including a comment on an interesting “amphibious” nature of the proposed
methodology — the CD-posterior approach, which is developed under the Bayesian
setting assuming parameters are random, also works under the frequentist setting
assuming parameters are fixed and nonrandom.

2. The framework

For a given real valued parameter θ, we have a notion of confidence distribution
(CD) Hn(·), whose t-th quantile is the 100t% upper confidence limit of θ, for all
t in (0,1); see, e.g., Efron (1998). This can be restated as follows: Hn(·) is a data-
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dependent cumulative distribution function such that

P (H−1
n (t1) ≤ θ ≤ H−1

n (t2)) = t2 − t1

for all 0 < t1 < t2 < 1. This requirement is equivalent to Hn(θ) ∼ U [0, 1], uniform
distribution on [0, 1] when θ is the true parameter value. This is seen by noting that

P (θ ≤ H−1
n (t)) = P (Hn(θ) ≤ t).

Recently, under the frequentist setting assuming that θ is fixed and non random
parameter, Schweder and Hjort (2002), Singh, Xie and Strawderman (2005, 2007)
provided a modern version of formal CD definition. Their definition broadens the
classical CD notion. In particular, they treat a CD function as a “distribution
estimator” of the parameter, in the same sense as one uses a single point (point
estimator) or an interval (confidence interval or “interval estimator”) to estimate a
parameter of interest. Along a similar line, we provide in this article a CD definition
for a random parameter θ. Here X is the sample space for X, Θ is the parameter
space for θ and the nuisance parameter is suppressed.

Definition 2.1. A function H(θ) = H(X, θ) on X ×Θ → [0, 1] is called a confidence
distribution (CD) for a parameter θ, if H(·) is a continuous cumulative distribution
function on Θ for each given sample X ∈ X and H(θ) has the uniform distribution
U [0, 1] under the joint distribution of (θ,X).

This definition encompasses the case when H(X, θ) involves only θ which is the
case with the prior distribution function.

A simple example of CD is from the normal mean inference problem with sample
X = {x1, x2, ..., xn} from N(μ, σ2): The basic CD’s for μ are Φ(

√
n(μ − x̄)/σ) when

σ is known and Tn−1(
√

n(μ − x̄)/s) when σ is not known, regardless of whether or
not (μ, σ2) has a prior or what the prior is. Here, x̄ = n−1

∑n
i=1 xi and s2 = (n −

1)−1
∑n

i=1(xi −x̄)2 are the sample mean and variance, respectively, and Tn−1 stands
for the cumulative distribution function of student’s t-distribution with n−1 degrees
of freedom. It is clear that a CD defined above satisfies the coverage probability
statements (1.2) and (1.4), replacing Pos−1(·) with H−1

n (·).
To define an asymptotic CD, one would simply require Hn(θ) L−→ U [0, 1]. Typi-

cally, the bootstrap distribution of a statistics is asymptotic CD. Bootstrapping a
studentized statistics yields a second order correct CD. Many non-trivial examples
of exact CD can be obtained from regression and ANOVA settings with normal er-
rors. When it exists, we call h(θ) = d

dθ H(θ) a CD density, also known as a confidence
density in the literature; see, e.g., Efron (1993).

Assume a marginal prior is available on θ and H1(·) is the continuous marginal
prior cumulative distribution function. Clearly, H1(θ) has the uniform distribution
U [0, 1]. According to Definition 2.1, H1(·) is a CD function for θ. On the other hand,
given sample data, assume we can also obtain a CD function, say H2(·), for the same
parameter of interest θ. Now, we have two distribution estimators of θ, one from
the prior and one from the sample data. The task is to incorporate the information
in these two estimators and construct a combined distribution estimator.

Singh, Xie and Strawderman (2005) proposed a general CD combination recipe
using a monotonic mapping function. Xie, Singh and Strawderman (2009) explored
weighted combining and developed a general framework for meta-analysis, which
encompasses most commonly used meta-analysis approaches. In this this article, we
propose to use the same recipe to incorporate H1(·) the CD function from the prior
with H2(·) the CD function from the sample data. Note that, unless in some special
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cases, Bayes formula can not always be used with just a marginal prior in presence
of other parameters which is the setting of our present discussion; see Section 3 for
examples.

Treat H1(·) and H2(·) as CD functions derived from two independent sources for
a common parameter θ. Let gc(u1, u2) be a function from [0, 1]2 to R, which is non-
decreasing in each coordinate. Let Gc(·) be the continuous cumulative distribution
function of gc(U1, U2); where U1 and U2 are independent draws from U [0, 1]. Then,

Hc(x) = Gc(gc(H1(x), H2(x)))

is a combined CD for θ, as Hc(θ) ∼ U [0, 1]. A class of functions worth paying special
attention to, is the following:

gc(x1, x2) = w1F
−1
0 (x1) + w2F

−1
0 (x2)(2.1)

where F0 is a fixed external cumulative distribution function and wi’s are positive
fixed constant chosen suitably. Of course, in this case Gc(·) = F0(·/w1) ∗ F0(·/w2)
where ∗ denotes convolution.

There are many choices for the combining function as well as the weights if
one chooses to use weights. This can be viewed as an advantage as there is a
flexible class of combination methods that are at the disposal of researchers. This
can also be a disadvantage as it adds a burden of choice in the procedure and
a poor choice of the combination methods can result in loss of efficiency in the
combined CD function. The definition of efficiency for a CD function can be found in
Schweder and Hjort (2002) and Singh, Xie, Strawderman (2007). Loosely speaking,
a CD function that leads to a more precise inference (e.g., narrower confidence
interval, etc) is considered as a more efficient CD. Some guidelines are offered in
making the choices for combination in Singh, Xie and Stawderman (2005) and
Xie, Singh and Strawderman (2009), although further research on this issue is still
called for. An encouraging aspect is that the theoretical results developed under
the general framework work for all choices, and efficiency loss is not a major issue
for many conventional choices of the gc functions, for instance, the gc functions
corresponding to the commonly used meta-analysis approaches as listed in Xie,
Singh and Strawderman (2009).

In our discussion, we can include a nuisance parameter φ, which is allowed to be
infinite dimensional. Note that, H1(·) is a marginal prior on θ; whose source may be
available expertise, experience and/or past formal/informal trial(s). There may be
a joint prior on {θ, φ}, but here we do not require or deal with this unknown joint
prior. The most basic example being that of N(μ, σ2) where θ ≡ μ and φ ≡ σ2.
In a bivariate normal setting θ could be the coefficient of correlation, while the
remaining parameters are φ. In a multivariate normal setting θ could be highest of
the population means or highest of the populations eigenvalues. For an example of
infinite dimensional φ, consider the classic case of nonparametric inference problem
on θ = the center of symmetry of an unknown symmetric distribution F; thus φ is
a symmetric cumulative distribution.

The posterior cumulative distribution of θ Pos(·) is often a CD function. Note
that, we typically have

Pθ|X(Pos(θ) ≤ t) = t,

assuming that Pos(·) is continuous. Hence, unconditionally, we have

P(θ,X)(Pos(θ) ≤ t) = t;
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Thus, the unconditional distribution of Pos(θ) is U [0, 1]. By Definition 2.1, Pos(·)
is a CD function. Of course, derivation of Pos(·) involves joint prior of {θ, φ}, but
φ is integrated out from the posterior.

3. Examples

In the most basic case of normal mean problem, the Bayes posterior, when a normal
prior is used, coincides with the combined CD Hc, provided a specific combining
function gc is used. This example is described below in detail.

Example 1 (Normal mean problem). Let Y ∼ N(μ, s2) represent the data. In
inferential context Y is a statistic and typically s2 = O(1/n) with n as the sample
size. Let N(υ, τ2) be a prior on μ i.e. we assume μ ∼ N(υ, τ2). As is well known,
the Bayesian posterior distribution of μ is

μ|Y ∼ N(aY + (1 − a)υ, (s−2 + τ −2)−1),(3.1)

where a = s−2/(s−2 + τ −2).
Turning to the CD-posterior, H1(μ) = Φ((μ − υ)/τ), H2(μ) = Φ((μ − Y )/s). Let

the gc in (2.1) be

gc(x1, x2) =
1
τ

Φ−1(x1) +
1
s
Φ−1(x2).(3.2)

It leads to Gc(x) = Φ(x/(1/τ2 + 1/s2)1/2). Therefore,

Hc(μ) = Φ
(

(μ − υ)/τ2 + (μ − Y )/s2

(1/τ2 + 1/s2)1/2

)
.

This Hc(μ) coincides with the cumulative distribution function of the posterior
distribution μ|Y in (3.1).

Let us note the difference between the weights used in the gc function and the
weights in optimal combining of point estimators: the weights used in the optimal
combining of point estimators are inversely proportional to variances; here, the
weights are inversely proportional to standard deviations. Even if one takes weights
= 1 in the gc function, the combined CD will automatically put more weight on
the CD with less spread.

The second example relates to a nonparametric location problem. It shows that
a CD-posterior can be obtained using just the prior on underlying real valued loca-
tion parameter, without assuming a parametric density function on the underlying
distribution. This is in contrast with a traditional Bayesian approach, which would
require the knowledge of the underlying distribution and a prior on the space of
the underlying distribution.

Example 2 (Nonparametric location problem). Let μ be the center of sym-
metry of an unknown symmetric continuous distribution. Suppose there is an in-
dependently identically distributed sample available from this population, and also
assume that a prior H1(μ) is available on μ, but no prior is known on the space of
continuous symmetric distributions. A convenient CD in the context would be the
following significance function of the class of tests for one-sided hypotheses (see,
Fraser, 1991)

H2(x) = p-value of a specified nonparametric test for H0 : μ ≤ x vs. H1 : μ > x.
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Fig 1. Illustration of the CD combination approach for incorporating a N(0.5, 0.52) prior with a
sample from a double exponential distribution in Example 2: (a) qq-plot of the double exponen-
tial sample; (b) combination approach illustrated using the densities; (c) combination approach
illustrated using the cumulative distributions.

Suppose, we settle on Sign-Rank Test which has high efficiency for the normal
population. It is not a hard exercise to show that such a function H2(x) is non-
decreasing, ranging from 0 to 1. To claim that this H2(·) is an exact CD, the only
obstacle is the fact that the H2(μ) is somewhat discrete; the discreteness vanishing
as n −→ ∞. Based on this CD function H2(·) and the prior CD function H1(μ), a
CD-posterior can be obtained using a recipe described in the previous Section.

A numerical illustration of this example is provided below in Figure 1, where the
unknown symmetric distribution is the standard Laplace distribution and the prior
for the location parameter is assumed to be N(0.5, 0.52). Figure 1 (a) contains a
normal quantile plot, clearly indicating this set of n = 18 sample values are not from
a normal distributed population. The three curves in Figure 1 (b) are, respectively,
the prior density curve (the dashed line), the CD density function obtained by
taking a numerical derivation of H2(μ) (the dotted line) and the density function of
the CD-posterior (the solid line). Figure 1 (c) illustrates the same CD combination
result as in Figure 1 (b), but presented in the format of cumulative distribution
functions. In this numerical example, F0 used in the combination receipt (2.1) is
the cumulative distribution function of the double exponential distribution (the
same as the standard Laplace distribution), with no weight w1 = w2 ≡ 1. Singh et
al. (2005) showed that the choice of F0 offers Bahadur-optimality. Note that, in the
example in Figure 1, the the knowledge of the true underlying population (i.e., the
standard Laplace distribution) is not used in any way, except that the 18 sample
points are generated from that distribution.

The third example is from Xie, Liu, Damaraju and Olson (2009), which is moti-
vated by a consulting project with Johnson and Johnson pharmaceutical company.
It is demonstrated that the combining CD method can provide a simple approach
to incorporate expert opinions with binomial clinical trial. This example also brings
in focus the issue that Bayes formula can not be used with just a marginal prior.
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Fig 2. Illustration of the CD combination approach for Example 3: (a) Histogram obtained from
a survey of 11 clinical experts on a new drug treatment (prior information); (b) the asymptotic
CD density function of the improvement δ = p1 − p0 from the binomial clinical trial; (c) The
CD-posterior of the improvement δ = p1 − p0 in the density format.

Example 3 (Binomial clinical trial). Consider a clinical trial that involves two
groups: Treatment A and Treatment B, where group B is the control group. As-
sume that there are n1 subjects in Treatment A and n0 in Treatment B. The treat-
ment responses for the two groups are {x1i, i = 1, . . . , n1} and {x0i, i = 1, . . . , n0},
respectively. Each individual response is a binary outcome and assumed to fol-
low a Bernoulli distribution, i.e., X1i ∼ Bernoulli (p1), for i = 1, . . . , n1, and
X0i ∼ Bernoulli (p0), for i = 1, . . . , n0. Assume that before the clinical trail a prior
of expert opinions on δ = p2 − p1 is obtained, which is shown by the histogram
in Figure 2 (a); see Xie et al. (2009) for more details. The parameter of interest is
δ = p2 − p1 and our task is to make inferences onδ = p1 − p0, incorporating both
the expert opinions and the clinical trial results.

Figure 2 (b) is the density function an asymptotic CD function, H2(δ) = Φ({δ −
δ̂}/Cd). Here, δ̂ = x̄2 − x̄1 = .1034 with x̄k = n−1

k

∑nk

i=1 xki, for k = 0, 1, and

C2
d = ̂var(δ̂) = .08852; these numerical values are computed from the clinical trial

reported in Xie et al. (2009). Let H1(δ) be the empirical cumulative distribution
function of the histogram of Figure 2(a). Using the gc in (3.2) with τ2 being the
empirical variance calculated from the histogram and s = Cd, we have

Hc(δ) = Φ

(
Φ−1(H1(δ))/τ + Φ−1(H2(δ))/Cd

(1/τ2 + 1/C2
d)

1
2

)
.

The density function of the CD-posterior function is plotted in a solid curve in
Figure 2(c), together with the dashed curves of d

dδ H1(δ) and d
dδ H2(δ).

In this example, it is not possible to find a “marginal” likelihood of δ, i.e., a con-
ditional density function f(data|δ). Thus, it is not possible to use Bayes formula
to incorporate the marginal expert opinions on δ, without involving an additional
parameter. Although one may find an empirical Bayes type solution to such a prob-
lem using the concept of estimated likelihood by Boos and Monahan (1986), a full
Bayesian solution needs to jointly model δ and an additional parameter or, equiva-
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lently, parameters (p0, p1); see, e.g., Joseph, du Berger and Belisle (1997) and Xie,
et al. (2009). The full Bayesian solution is theoretically sound but computationally
demanding. More importantly, Xie et al. (2009) found that, in the case of skewed
joint prior distributions, the full Bayesian solution may sometimes generate a coun-
terintuitive “outlying posterior phenomenon” in which the marginal posterior of δ
is more extreme than both its prior and the likelihood evidence. Further details and
discussions on this paradoxical phenomenon can be found in Xie et al. (2009).

4. The coverage theorem

Suppose that our sample data are obtained by the following hierarchical process
underlying the Bayesian philosophy,

• First, parameters (θ, φ) are drawn from a prior distribution π(θ, φ)
• Then, conditional on the realization of the parameter set (θ, φ), sample data

X are drawn from a conditional distribution F (X|θ, φ).

We assume that marginal prior cumulative distribution function H1(t) =
∫ t

− ∞
∫

π(θ,
φ)dφdθ of θ is continuous. The CD function constructed from the sample H2(θ) =
H2(X, θ) satisfies

H2(θ)|θ ∼ U(0, 1)(4.1)

as a function of random sample X, which is the requirement for a CD in a Frequen-
tist setting; See, e.g., Singh, Xie and Strawderman (2007) for further details. From
(4.1), H2(θ) is also U [0, 1] under the joint distribution of (θ,X) or (θ, φ,X). Thus,
H2(θ) is also a CD under the Definition 2.1 for a random θ. We combine H1(·) from
the prior and H2(·) from the sample data using the recipe of combining confidence
distributions described in the previous section. The following theorem asserts that
the CD-posterior function Hc(·) offers the coverage probability stated in (1.4) and
(1.5). It entails that the interval [H−1

c (.025), H−1
c (.975)] has 95% of probability to

cover θ, a statement which takes into account the randomness of the vector {θ, φ}.

Theorem 4.1. Assume that H2(θ) obtained from the sample satisfies (4.1). Under
the joint distribution of either {θ,X} or {θ, φ,X}, Hc(θ) ∼ U [0, 1]. Hence, Hc(θ)
is a CD function and we have the following statement on coverage:

P(θ,X){H−1
c (t1) ≤ θ ≤ H−1

c (t2)} = P(θ,φ,X){H−1
c (t1) ≤ θ ≤ H−1

c (t2)} = t2 − t1

for all 0 < t1 < t2 < 1.

Proof of Theorem. Let us start out by noting that H1(θ) and H2(θ) both have
U [0, 1] distribution. If we show that H1(θ) and H2(θ) are independent, the claim
will follow, noting the fact that

Hc(θ) = Gc(gc(H1(θ), H2(θ)))

where Gc is the continuous cumulative distribution function of gc(U1, U2) with
U1, U2 as two independent draws from U [0, 1].

The key task is to show that H1(θ) and H2(θ) are independent, even though they
both share a common random variable θ. Towards this end, we argue as follows:
Fixing H1(θ) ⇔ fixing θ (with probability 1 if H1 is not strictly increasing). Let



CD posterior 209

H−1
1 (·) denote the left continuous inverse. Now, for any fixed t and s, 0 < t < 1,

0 < s < 1, and θs = H−1
1 (s), we have

P(θ,X)|H1(θ)=s{H2(θ) ≤ t} = PX|θ=θs
{H2(θs) ≤ t} = t,

in absence of a nuisance parameter. Similarly, in presence of a nuisance parameter
φ, we have

P(θ,φ,X)|H1(θ)=s{H2(θ) ≤ t} = P(φ,X)|θ=θs
{H2(θs) ≤ t}

= Eφ|θ=θs
PX|θ=θs,φ{H2(θs) ≤ t}

= Eφ|θ=θs
(t)

= t.

Thus, the proof is complete.

5. On prior robustness

A prior distribution by its very nature is subject to some misspecification. It is
desirable to have a robust procedure that is insensitive to error in a prior up to a
certain degree. Let us suppose, there is an ε error in prior cumulative distribution
function H1, i.e.

sup |H1(x) − H∗
1 (x)| = ε

where H∗
1 is the true prior. It is well known that the standard Bayesian posterior

can be perturbed to an arbitrary amount under such an ε error. For reader’s con-
venience, we include an example here. In Example 1 of Section 3, suppose that H∗

1

is simply N(υ, τ2), truncated at τzt in the upper side, where zt is the (1 − t)th
quantile of the standard normal distribution. Thus,

H∗
1 (x) = (1 − t)−1H1(x) for x ≤ τzt

= 1, otherwise.

Under this setting with a truncated normal prior H∗
1 , the Bayes posterior, say

Pos∗(x), will place no mass above τzt. On the other hand, with respect to a non-
truncated normal prior H1, the posterior, say Pos(x), is normal with mean aY +
(1 − a)υ which can take any value on the real line. One may adjust t to make the
sup difference of the priors H1 and H∗

1 arbitrarily small; however, the sup difference
between corresponding posteriors Pos(x) and Pos∗(x) can be arbitrarily close to 1.

Let us turn our attention to the CD-posterior. We offer here a specific combining
function gc which yields a very promising bound on the output CD function Hc.
Consider the combining function

gc(x1, x2) = wx1 + (1 − w)x2, 0 < w < 1.(5.1)

We have the following theorem.

Theorem 5.1. Suppose there is an error bounded by ε in the prior H1 and an error
bounded by δ in the data-based CD, H2. If we use the gc function in (5.1) in our
combination, the resulting error in Hc is bounded by

w

1 − w
ε + δ if 0 < w ≤ 1/2

ε +
1 − w

w
δ if

1
2

≤ w < 1
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Clearly, w < 1/2 is more realistic, since the prior H1 would typically be a lot
more spread out than the CD H2. We are unable to provide any concrete choice of
w, but a reasonable approach would be to choose w by minimizing the spread of
Hc(·) (by some measure of scale). For small w, the bound is just a fraction of ε. For
a starter, the choice of weights inversely proportional to corresponding standard
deviations, seems sensible as well. See, also, Xie, Singh and Strawderman (2009),
in which a gc function similar to (5.1) is used to develop a robust meta-analysis
procedure under the frequentist setting.

Proof of the Theorem. The proof requires the density function, say h(x), of wU1 +
(1 − w)U2, where U1 and U2 are independent U [0, 1] random variables. This density
h(x) can be yielded by a standard derivation. First, consider the case when 0 <
w ≤ 1

2 . In this case, for 0 ≤ x ≤ 1 − w, we have

h(x) =
x

w(1 − w)
, for 0 ≤ x ≤ w

=
1

1 − w
, for w ≤ x ≤ 1 − w.

For 1 ≥ x ≥ 1 − w, we have

h(x) = h(1 − x) ,

In the case when w > 1
2 , the density h(x) can be obtained by simply replacing w

with 1 − w throughout the expression of the above h(x).
In the case when w ≤ 1

2 the density is bounded by (1 − w)−1. The ε and δ
perturbations in H1 and H2 respectively will perturb gc(H1(x), H2(x)) by wε+(1 −
w)δ; which will perturb the function Hc(x) = Gc(gc(H1, (x), H2(x))) by w

1−w ε+δ, at
most. In the case when w > 1

2 , the argument is similar. This proves the theorem.

We conclude the section with the remark that if the above gc is replaced by
normal-based combining function i.e.

wΦ−1(x1) + (1 − w)Φ−1(x2)

the resulting CD-posterior Hc will exhibit behavior just like the Bayes Posterior,
at least for normal samples.

6. Multiparameter extension

The foregoing technique of combining does not seem to have any natural exten-
sion to Rk i.e. to the case when one is attempting to combine joint prior on k
parameters with an inference function like a CD. However, there is a substitute
available which can serve the same purpose. The substitute to CD is a p-function
of point-hypotheses, which is combined with a suitable function derived from a prior
cumulative distribution function, using the same combining recipe. The details are
as follows.

For a parameter θ ∈ Rk, define

p(x) = p-value of some specified test for testing H0 : θ = x vs H1 : θ �= x.

Note the difference between this H0 and the H0 used in the nonparametric example
(Example 2) given earlier. This significance function (p-value function) can be used
to define a confidence region at 100t% level as

Ct = {x εRk s.t. p(x) ≥ 1 − t}.
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Since p(θ) ∼ U [0, 1],

PX(θ ∈ Ct) = P (p(θ) ≥ 1 − t) = t.

Clearly, the same statement holds with respect to PX,θ or PX,θ,φ.
A point estimator for θ, using the p-value function could be defined as

θ̂ = arg max p(x),

A test for H0 : θ ∈ S vs H1 : θ �∈ S, when S is a region, could be reasonably carried
out at a level α by rejecting H0 when

C1−α ∩ S = ∅

Note that, such a test has type one error ≤ α because, under H0, θ ∈ S, the test
rejects H0 ⇒ p(θ) < α which has probability α. Thus, all three types of frequentist
inference can be carried out with the p-value function of point hypotheses.

Consider now a prior distribution for θ, which is a cumulative distribution func-
tion G on Rk. One needs to define a function c(·) based on G which is compatible
with p(·). Such a function should take values in [0,1] and have the following addi-
tional properties:

1. c(x) should measure centrality of x with respect to the distribution G.
2. c(θ) ∼ U [0, 1] when θ ∼ G.

The concept of data-depth comes to the rescue! Define

c(x) = PG{y ∈ Rk such that DG(x) ≥ DG(y)}

Thus c(x) = 1 when x maximizes DG(x) over Rk; also c(x) approaches towards 0,
as DG(x) moves towards its minimum values (i.e. x towards the outskirts of G).
The function c(x) simply measures the centrality of x by evaluating the probability
content of the portion less deep than x itself. Some of the most popular notions
of data-depth being Tukey’s depth, Mahalanobis depth (reciprocal of {1 + Maha-
lanobis distance} from the center), Liu’s simplicial depth; see, e.g., Liu, Parelius
and Singh (1999). It is well documented in the literature on data-depth that the
centrality random variable c(θ) ∼ U [0, 1] when θ ∼ G, provided the distribution of
DG(θ) is continuous, (see Liu and Singh, 1993). The function c(x) derived from the
prior distribution possesses the characteristics of a significance function (p-value
function).

The combining recipe remains unaltered:

pc(x) = Gc(gc(c(x), p(x)))

where gc(·) is the combining function, Gc is the cumulative distribution function of
gc(U1, U2) as in Section 2. Evidently, pc(θ) ∼ U [0, 1] and

Cc(α) = {x : pc(x) ≥ 1 − α}

can serve as combined confidence region at 100t% level. Combined point estimator
would be defined a

θ̂c = arg max pc(x)

The issue of choosing the combining function gc(·) remains unexplored.
We close this section by providing an example of the centrality function c(·) in

the most basic case when G is multivariate normal.
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Example 4. Suppose μ ∼ N(υ, Σ), where μ is a vector valued (k × 1) parameter.
The N(·, ·) notation has its standard meaning: υ is the mean vector and Σ is the
dispersion matrix. Mahalanobis distance of a point x from υ is

(x − υ)1Σ−1(x − υ)

Let c(·) be the probability content of all points x which are at a higher Mahalanobis
distance than x (i.e. have lower data-depth). Then it follows that

c(x) = P (χ2
k ≥ (x − υ)1Σ−1(x − υ))

where χ2
k is a random variable having the standard chi-squire distribution with k

d.f. The claim is based on the fact that (μ − υ)1Σ−1(μ − υ) has chi-squire (k)
distribution. As a matter of fact the formula for the centrality function c(·) remains
the same, as long as one is using an affine invariant depth (including Tukey’s depth,
simplicial depth).

7. Discussions and conclusions

The article attempts to provide an alternative procedure to synthesize prior infor-
mation on a parameter with the inference emerging from data under a Bayesian
paradigm. By simply combining prior distribution with data based CD, this proce-
dure produces a function, called a CD-posterior, which is typically the same as the
usual Bayesian posterior in the basic normal case but different, otherwise. Inter-
estingly, a confidence/credible interval derived from a CD-posterior offers the same
statement of coverage probability of the credible interval as a Bayesian approach. A
key advantage that this methodology has is that the prior distribution is required
only on the parameter of interest, not on the whole parameter-vector appearing
in the likelihood function. Also, the proposed approach is computationally simple
and the saving in computational effort could just be phenomenal, especially com-
pared to some full blown Bayesian analysis which needs to use MCMC algorithms.
The proposed methodology also includes a class of robust combining procedures in
which an error bound is established on the CD-posterior when there is an error in
prior specification.

The key advantage that this methodology can directly zoom in and focus on the
parameter of interest can have further implications. In order to carry out Bayesian
analysis, a statistician is ideally required to come up with a joint prior distribu-
tion of the parameter being studied and the nuisance parameters involved in the
likelihood function. Often times such “full priors” are simply choice of statistician’s
convenience which makes the analysis possible. In the proposed approach, one would
simply take the (marginal) prior on the parameter being studied and combine it
with a CD derived using one of many tools available in a frequentist’s tool box such
as asympotics, bootstrap, parametric, nonparametric, semi-parametric methods.
The burden of joint prior is taken out, though one may end up using an asymptotic
CD, in many cases. Among the asymptotic CD’s one often has a choice of having
it correct up to a desired asymptotic order. Since the prior is needed only on the
parameter being studied, a greater degree of truthfulness and hence accuracy is
expected in the construction of the prior.

A specific point which should be brought to light here is the fact that this
methodology is flexible in terms of treating the parameter θ as “fixed” as in the fre-
quentist domain or “random” as in the Bayesian domain. A frequentist who refuses
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to accept the randomness of the parameter, may accept the knowledge based prior
as a rough and dirty CD on the parameter by vaguely defining a sample space of
“past experiments or experiences”. With such an understanding, this CD-posterior
is simply a combined CD and it offers exact frequentists’ inference which incorpo-
rates past knowledge with the data; see, Xie et al. (2009). Thus, combining prior
with data based CD has got an amphibious character. Another related article is
Bickel (2006), which used a CD combination approach to incorporate expert opin-
ions to a normal clinical trial. Bickel (2006) used an objective Bayesian argument
to justify his treatment of the prior information from expert opinions as a CD func-
tion. His numerical results also illustrate the tremendous saving in computational
effort and it clearly demonstrates the potential of a CD combination approach in
Pharmaceutical practice.

It would be only fair to include some comparative advantages of the Bayesian
analysis as well. Once a statistician settles on a prior and a likelihood using what-
ever principle or mechanism, the Bayesian analysis is unique. However, that is not
the case in CD based analysis. There is huge amount of choices for the combining
function as well as the weights if one chooses to use weights. In the text, some guide-
lines are offered in making these choices but further research on this issue is called
for. Also, once a Bayes posterior is derived, there is a Bayesian inference available
in principle on any quantity of interest attached to the model, but the proposed
CD-posterior targets only a chosen parameter. Besides regular full blown Bayesian
analysis, there are clever short-cuts that have been proposed in the literature; see
Boos and Monahan (1986), among others. These approximate Bayes methods do
offer an appreciable degree of simplification in many cases, though typically such
methods make simplifying assumptions and are valid only asymptotically; unlike
the CD posterior which offers an exact coverage theory.
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