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Robust error-term-scale estimate

Jan Ámos Vı́̌sek1,∗

Faculty of Social Sciences, Charles University and Institute of Information Theory and
Automation

Abstract: A scale-equivariant and regression-invariant estimator of the vari-
ance of error terms in the linear regression model is proposed and its consis-
tency proved. The estimator is based on (down)weighting the order statistics
of the squared residuals which corresponds to the consistent and scale- and
regression-equivariant estimator of the regression coefficients. A small numer-
ical study demonstrating the behaviour of the estimator under the various
types of contamination is included.

LetN denote the set of all positive integers, R the real line andRp the p-dimensional
Euclidean space. For a sequence of (p+1)-dimensional random vectors {(X ′

i , ei)
′}∞i=1,

for any n ∈ N and some fix β0 ∈ Rp the linear regression model will be considered
in the form

Yi = X
′
iβ

0 + ei =

p∑
j=1

Xijβ
0
j + ei, i = 1, 2, . . . , n or Y = Xβ0 + e.(1)

To put the introduction which follows in the proper context let us assume:

Conditions C1 The sequence
{
(X ′

i, ei)
′}∞

i=1
is sequence of independent and iden-

tically distributed (p + 1)-dimensional random variables, distributed according to
distribution functions (d.f.) FX,e(x, r) = FX(x) · Fe(r) where Fe(r) = F (rσ−1).
Moreover, F (r) is absolutely continuous with density f(r) bounded by U and

IEFe
e1 = 0, varFe

(e1) = σ2. Finally, IEFX
‖X1‖2 < ∞.

Remark 1 The assumption that the (parent) d.f. F (r) is continuous is not only
technical assumption. Possibility that the error terms in regression model are dis-
crete r.v.’s implies problems with treating response variable and it requires special
considerations, similar to those which we carry out when studying binary or limited
response variable, see e. g. in Judge et al. [16]. Absolute continuity is then a techni-
cal assumption. Without the density, even bounded density, we have to assume that
F (r) is Lipschitz and it would bring a more complicated form of all what follows.

A general goal of regression analysis is to fit a model (1) to the data. The analy-
sis usually starts with estimating the regression coefficients βj ’s, continues by the
estimation of the variance σ2 of the error terms ei’s (sometimes both steps run
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1Dept. Macroeconomics and Econometrics, Inst. of Economic Studies, Fac. of Social Sci-

ences, Charles University, Opletalova ulice 26, 110 01 Praha 1 and Dept. Econometrics, Insti-
tute of Information Theory and Automation, Academy of Sciences of the Czech Republic. e-mail:
visek@fsv.cuni.cz

AMS 2000 subject classifications: Primary 62J02; secondary 62F35
Keywords and phrases: robustness, weighting the order statistics of squared residuals, consis-

tency of the scale estimator.

254

http://www.imstat.org/publications/imscollections.htm
http://www.imstat.org
http://dx.doi.org/10.1214/10-IMSCOLL725


Robust error-term-scale estimate 255

simultaneously, Marazzi [22]), then it includes a validation of the assumptions, etc.
The present paper is devoted to the (robust) estimation of σ2. In the classical LS-

analysis we need the estimate of σ (usually assumed as
√
σ̂2 ) for studentization of

the estimates of regression coefficients in order to establish the significance of the
explanatory variables. In the robust analysis we employ it at first for studentizing
the residuals, in the case when the properties of our estimate depends on the abso-
lute magnitude of residuals, e. g. as in the case of M -estimators. So the estimation
of the variance of error terms (in the case of the homoscedasticity of error terms)
is one of standard (and important) steps of regression analysis. But it need not be
a very simple task.

As early as in 1975 Peter Bickel [3] showed that to achieve the scale- and regression-
equivariance of theM -estimates of regression coefficients the studentization of resid-
uals has to be performed by a scale-equivariant and regression-invariant estimate
of the scale of error terms. A proposal of such an estimator by Jana Jurečková
and Pranab Kumar Sen [19] is based on regression scores. The idea is derived from
the regression quantiles of Roger Koenker and Gilbert Bassett [21] and the evalua-
tion utilizes standard methods of the stochastic linear programming, see Jurečková,
Picek [17]. As the regression quantiles are based on L1 metric (they are in fact M -
estimators of the quantiles of d. f. of error terms, provided we know β0), they can
cope with outliers but can be significantly influenced by the presence of leverage
points in the data, see Maronna, Yohai [23].

We propose an alternative estimator of σ2 based on L2-metric. In fact, our proposal
generalizes an LTS-based scale estimator studied by Croux and Rousseeuw [8]. Of
course, by a decision how many order statistics of the squared residuals will be
taken into account one can adapt the estimator to the contamination level. We
shall return to this problem at the end of paper in Conclusions. Croux–Rousseeuw
estimator was also tested on the economic data by Bramanti and Croux [6]. Later,
there appeared the paper by Pison et al. [24] proposing a correction of the estimator
for small samples.

Our estimator can be also accommodated to the level and to the character of con-
tamination by selecting an appropriate estimator of regression coefficients (we shall
discuss the topic at the end of this section). Similarly as in the classical regression
analysis, the evaluation of the estimator proposed here represents the step which
follows the estimation of regression coefficients. We assume that the respective es-
timator of regression coefficients is scale- and regression-equivariant and consistent.
Nowadays the robust statistics offer a whole range of such estimators. Let us re-
call e. g. the least median of squares (LMS) (Rousseeuw [26]), the least trimmed
squares (LTS) (Hampel et al. [11]), the least weighted squares (LWS) (Vı́̌sek [40])
or the instrumental weighted variables (IWV ) (Vı́̌sek [41]), to give some among
many others (instrumental weighted variables is the robustified version of classical
instrumental variables which became in the past (say) three decades the main esti-
mating method in econometrics, being able to cope with the broken orthogonality
condition, see Judge et al. [16], Stock, Trebbi [30] or Wooldridge [44]).

There are nowadays also quick and reliable algorithms for evaluation of the es-
timates. The research for such algorithms started at very early days of robust
statistics (Rousseeuw, Leroy [29]) and it brought a lot of results, see e. g. Marazzi
[22]). The research significantly intensified when Thomas Hettmansperger and Si-
mon Sheather [14] discovered a high sensitivity of LMS with respect to a small
shift of data (one datum among 80 was changed less than 10% but the estimates
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changed surprisingly about hundreds – or for some coefficients, even thousands
– percents). Fortunately, there appeared a new algorithm by Boček, Lachout [5],
based on a modification of the simplex method, which showed that the results by
Hettmansperger and Sheather were achieved due to a wrong algorithm they used,
see Vı́̌sek [35]. The algorithm by Boček and Lachout is (to the knowledge of present
author) still superior in the sense of the minimization of corresponding order statis-
tic. Later also an algorithm returning a tight approximation to LTS was proposed
(Vı́̌sek [34], [35]) and included into XPLORE, see Ha̋rdle et al. [12] or Č́ıžek, Vı́̌sek
[9]). Several variants of this algorithm was studied for various situations and im-
proved especially for utilization for very large data sets, e. g. Agulló [1], Hawkins
[13], Rousseeuw, Driessen [27], [28] and also by Hofmann et al. [16] – for deep
theoretical study of the algorithms see Klouda [20]. Recently, the algorithm was
generalized for evaluating LWS as well as for IWV , see Vı́̌sek [39].

Although Hettmansperger’s and Sheather’s results appeared misleading, an eval-
uation of LTS by an exact algorithm (searching through all corresponding sub-
samples) for their correct and damaged data (the data are nowadays referred to
as Engine Knock Data, Hettmansperger, Sheather [14]) showed that the two re-
spective estimates of regression coefficients are about hundreds percents different.
It “has broken down” a statistical folklore that the robust methods with the high
breakdown point – although losing (a lot of) efficiency – can reliably indicate (at
least rough) idea about the underlying model. An explanation (by academic data)
is given by the next three figures. First two of them indicate that a small change
of observation given by the tiny circle (the change may be even arbitrary small –
if closer to the intersection of the two lines) can cause a large change of the fitted
model, if we use unconsciously an estimator with high breakdown point. The last
figure demonstrates that LTS and LMS can give mutually orthogonal models. The
observations drawn by circles are taken into account by both estimators while the
observations given by ‘+’ and ‘x’ are considered only by LTS and LMS, respec-
tively. In both cases the curiosities appeared due to the zero-one object function,
or in other words, due to the fact that the estimators too much rely on some points
and completely reject some others. Hence, some other pairs of estimators with high
breakdown point can presumably exhibit a similar behaviour.
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A shock caused at the first moment by Hettmansperger’s and Sheather’s results has
also began studies of the sensitivity of robust procedures with respect to (small)
changes in the data, which in fact continued the studies by Chatterjee and Hadi
[7] or Zvára [45]. It appeared that the estimator with discontinuous object function
suffer by large sensitivity with respect of deleting even one point, see Vı́̌sek [33],
[36], [37]. That is why we offer in the numerical study in the last section as the
robust estimator of regression coefficient the least weighted squares (LWS) with
continuous object function.
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Weighting the order statistics of squared residuals

Let us start with recalling definitions of notions we shall need later.

Definition 1 The estimator of regression coefficients, is said to be scale-equivariant
(regression-equivariant) if for any c ∈ R+, b ∈ Rp, Y ∈ Rn and X – matrix of type
n× p – we have

β̂(cY,X) = cβ̂(Y,X)
(
β̂(Y +Xb,X) = β̂(Y,X) + b

)
.(2)

Definition 2 The estimator σ̂2 of the variance σ2 of error terms is said to be
scale-equivariant (regression-invariant) if for any c ∈ R+, b ∈ Rp, Y ∈ Rn and X –
matrix of type n× p

σ̂2(cY,X) = c2σ̂2(Y,X)
(
σ̂2(Y +Xb,X) = σ̂2(Y,X)

)
.

Now we are going to give a proposal of estimator of variance σ2 of error terms ei’s
(see (1)). Let for any β ∈ Rp ri(β) = Yi−X

′
iβ denote the i-th residual and r2(h)(β)

the h-th order statistic among the squared residuals, i. e. we have

r2(1)(β) ≤ r2(2)(β) ≤ · · · ≤ r2(n)(β).

Finally, let w(u) be a weight function w : [0, 1] → [0, 1] and put γ =
∫
w (F (|r|)) ·

r2f(r)dr.

Remark 2 Under Conditions C1 the d. f. Fe(r) has the density fe(r) = σ−1f(r ·
σ−1) and hence

sup
r∈R

fe(r) ≤ σ−1 · U.(3)

Denote Ue = σ−1 · U . Further,
∫
w (Fe(|r|)) · r2 · fe(r)dr = σ2 · ∫ w

(
F (|v| · σ−1)

) ·
v2f(v)dv = γ · σ2, i. e.

γ−1 ·
∫

w (Fe(|r|)) · r2 · fe(r)dr = σ2.(4)

Definition 3 Let β̂(n) be an estimator of regression coefficients. Then put

σ̂2
(n) = γ−1 · 1

n

n∑
i=1

w

(
i− 1

n

)
r2(i)(β̂

(n)).(5)

Remark 3 The estimator σ̂2
(n) needs to be adjusted to the parent d. f. F (r) by γ.

It is similar as e. g. mean absolute deviation, see Hampel et al. [11] and Rousseeuw,
Leroy [29].

We will need some conditions on the weight function.

Conditions C2 The weight function w(u) is continuous nonincreasing, w : [0, 1] →
[0, 1] with w(0) = 1. Moreover, w(u) is Lipschitz in absolute value, i. e. there is L
such that for any pair u1, u2 ∈ [0, 1] we have |w(u1)− w(u2)| ≤ L · |u1 − u2|.
Following Hájek and Šidák [10] for any i ∈ {1, 2, . . . , n} and any β ∈ Rp let us
define regression ranks as

π(β, i) = j ∈ {1, 2, . . . , n} ⇔ r2i (β) = r2(j)(β).(6)
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Let us denote the empirical distribution function (e.d.f.) of the absolute value of
residual as

F
(n)
β (r) =

1

n

n∑
j=1

I {|rj(β)| < r} =
1

n

n∑
j=1

I
{
|Yj −X

′
jβ| < r

}
.(7)

Due to (6), r2i (β) is the π(β, i)-th smallest value among the squared residuals, i. e.
|ri(β)| is the π(β, i)-th smallest value among the absolute values of the residuals.
Hence e. d. f. has at |ri(β)| its π(β, i)-th jump (of magnitude 1

n ), nevertheless due
to the sharp inequality in the definition of e. d. f. (see (7)) we have

F
(n)
β (|ri(β)|) = π(β, i)− 1

n
.(8)

Then we have from (5)

σ̂2
(n) = γ−1 · 1

n

n∑
i=1

w

(
π(β, i)− 1

n

)
r2i (β)(9)

= γ−1 · 1
n

n∑
i=1

w
(
F

(n)

β̂
(|ri(β̂)|)

)
r2i (β̂).

Putting moreover

Fβ(r) = P
(
|Y1 −X

′
1β| < r

)
= P

(
|e1 −X

′
1

(
β − β0

) | < r
)
,(10)

we can give key lemmas for reaching the consistency of σ̂2
(n).

Lemma 1 Let Conditions C1 hold. Then for any ε > 0 there is Kε and nε ∈ N so
that for all n > nε

P

({
ω ∈ Ω : sup

r∈R+, β∈Rp

√
n
∣∣∣F (n)

β (r)− Fβ(r)
∣∣∣ < Kε

})
> 1− ε.(11)

For the proof see Vı́̌sek [38] (the proof is based on generalization of result by Kol-
mogorov and Smirnov). An alternative way how to prove (11) is to employ Skorohod
embedding (see Breiman [4] or Štěpán [31] for the method and e. g. Portnoy [25],
Jurečková, Sen [19] or Vı́̌sek [42] for examples of employing this technique).

Lemma 2 Under Conditions C1 there isK < ∞ so that for any pair β(1), β(2) ∈ Rp

we have
sup
r∈R

∣∣Fβ(1)(r)− Fβ(2)(r)
∣∣ ≤ K ·

∥∥∥β(1) − β(2)
∥∥∥ .

Proof: We have

Fβ(r) = P
(∣∣∣e1 −X

′
1

(
β − β0

)∣∣∣ < r
)
=

∫
I{
∣∣∣s− x

′ (
β − β0

)∣∣∣ < r}dFX,e(x, s)

(see (10)). Then
sup
r∈R

∣∣Fβ(1)(r)− F(β(2))(r)
∣∣

≤ sup
r∈R

∫ ∣∣∣I{|s−x
′ (

β(1)−β0
)
| < r}−I{|s−x

′ (
β(2)−β0

)
|<r}

∣∣∣ fe(s)ds dFX(x).

Further, recalling that supr∈R fe(r) ≤ Ue (see Remark 2), we have

∫ ∣∣∣∣I {|s− x
′ (

β(1) − β0
)
| < r

}
− I

{
|s− x

′ (
β(2) − β0

)
| < r

}∣∣∣∣ fe(s)ds
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≤
∫ max{−r+x

′
(β(1)−β0),−r+x

′
(β(2)−β0)}

min{−r+x′(β(1)−β0),−r+x′(β(2)−β0)}
fe(s)ds

+

∫ max{r+x
′
(β(1)−β0),r+x

′
(β(2)−β0)}

min{r+x′(β(1)−β0),r+x′(β(2)−β0)}
fe(s)ds

≤ 2 · Ue ·
∣∣∣x′ (

β(1) − β(2)
)∣∣∣ .

Hence putting K = 2 · Ue · IE ‖X1‖, for any β(1), β(2) ∈ Rp we have

sup
r∈R

∣∣Fβ(1)(r)− Fβ(2)(r)
∣∣ ≤ 2 · Ue

∫ ∣∣∣∣x′ (
β(1) − β(2)

)∣∣∣∣ fX(x)dx

≤ 2 · Ue · IE ‖X1‖ ·
∥∥∥β(1) − β(2)

∥∥∥ ≤ K ·
∥∥∥β(1) − β(2)

∥∥∥ .
Lemma 3 Let Conditions C1 and C2 hold. Then there is K < ∞ so that for any
pair β(1), β(2) ∈ Rp and any i = 1, 2, . . . , n we have∣∣∣w (Fβ0

(∣∣∣ri(β(1))
∣∣∣))− w

(
Fβ0

(∣∣∣ri(β(2))
∣∣∣))∣∣∣ ≤ K ·

∥∥∥β(1) − β(2)
∥∥∥ · ‖Xi‖ .

Proof: Let us recall once again that

Fβ(r) = P
(∣∣∣e1 −X

′
1β
∣∣∣ < r

)
=

∫
I{
∣∣∣s− x

′
β
∣∣∣ < r}fe(s)ds dFX(x)

and that supr∈R fe(r) ≤ Ue (see Remark 2). Then∣∣∣Fβ0

(∣∣∣ri(β(1))
∣∣∣)− Fβ0

(∣∣∣ri(β(2))
∣∣∣)∣∣∣

≤
∫ ∣∣∣I {|s− x

′
β0| <

∣∣∣ri(β(1))
∣∣∣}− I

{
|s− x

′
β0| <

∣∣∣ri(β(2))
∣∣∣}∣∣∣ fe(s)ds dFX(x).

Further∫ ∣∣∣∣I {|s− x
′
β0| <

∣∣∣ri(β(1))
∣∣∣}− I

{
|s− x

′
β0| <

∣∣∣ri(β(2))
∣∣∣}
∣∣∣∣ fe(s)ds

≤
∫ max{−|ri(β(1))|+x

′
β0,−|ri(β(2))|+x

′
β0}

min{−|ri(β(1))|+x′β0,−|ri(β(2))|+x′β0}
fe(s)ds

+

∫ max{|ri(β(1))|+x
′
β0,|ri(β(2))|+x

′
β0}

min{|ri(β(1))|+x′β0,|ri(β(2))|+x′β0}
fe(s)ds

≤ 2 · Ue ·
∣∣∣ri(β(1))− ri(β

(2))
∣∣∣ ≤ 2 · Ue · ‖Xi‖ ·

∥∥∥β(1) − β(2)
∥∥∥

where we have used
∣∣∣|a| − |b|

∣∣∣ ≤ |a− b|. Hence putting K = 2 · L · Ue, we have

∣∣∣w (Fβ0

(∣∣∣ri(β(1))
∣∣∣))− w

(
Fβ0

(∣∣∣ri(β(2))
∣∣∣))∣∣∣ ≤ K ·

∥∥∥β(1) − β(2)
∥∥∥ ‖Xi‖ .

Assertion 1 We have

n∑
i=1

∣∣∣r2i (β̂)− e2i

∣∣∣ ≤ 2 ·
∥∥∥β0 − β̂

∥∥∥ · n∑
i=1

|ei| · ‖Xi‖+
∥∥∥β0 − β̂

∥∥∥2 · n∑
i=1

‖Xi‖2 .(12)



260 J. Á. Vı́̌sek

Proof: Straightforward steps gives∣∣∣r2i (β̂)−e2i

∣∣∣=
∣∣∣∣[ei−X ′

i

(
β̂−β0

)]2
−e2i

∣∣∣∣≤2·|ei|·‖Xi‖·
∥∥∥β̂−β0

∥∥∥+‖Xi‖2 ·
∥∥∥β̂−β0

∥∥∥2 .
Conditions C3 The estimator of regression coefficients β̂(n) is scale- and regression-
equivariant and consistent.

Corollary 1 Under Conditions C1 and C3 we have

1

n

n∑
i=1

∣∣∣r2i (β̂)− e2i

∣∣∣ = op(1) and hence also
1

n

n∑
i=1

r2i (β̂) = Op(1).(13)

Proof:Under Conditions C1 we have IE {|e1| · ‖X1‖} < ∞ as well as IE
{‖X1‖2

}
< ∞.

Hence 1
n

∑n
i=1 |ei| · ‖Xi‖ = Op(1) and also 1

n

∑n
i=1 ‖Xi‖2 = Op(1). As

∥∥∥β̂ − β0
∥∥∥ =

op(1), applying Assertion 1, we prove the left hand side of (13). Then

1

n

n∑
i=1

r2i (β̂) ≤
1

n

n∑
i=1

∣∣∣r2i (β̂)− e2i

∣∣∣+ 1

n

n∑
i=1

e2i = Op(1).

Theorem 1 Let Conditions C1, C2 and C3 hold. Then the estimator σ̂2
(n) is weakly

consistent, scale-equivariant and regression-invariant.

Proof: Fix ε > 0 and according to Lemma 1 find Kε > 0 and nε ∈ N so that for
any n > nε we have

P

({
ω ∈ Ω : sup

r∈R+, β∈Rp

√
n
∣∣∣F (n)

β (r)− Fβ(r)
∣∣∣ < Kε

})
> 1− ε.(14)

Denote the set

Bn =

{
ω ∈ Ω : sup

r∈R+, β∈Rp

√
n
∣∣∣F (n)

β (r)− Fβ(r)
∣∣∣ < Kε

}
.(15)

Then for any ω ∈ Bn we have∣∣∣∣∣γ · σ̂2
(n) −

1

n

n∑
i=1

w
(
Fβ̂(|ri(β̂)|)

)
r2i (β̂)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

[
w
(
F

(n)

β̂
(|ri(β̂)|)

)
− w

(
Fβ̂(|ri(β̂)|)

)]
r2i (β̂)

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣w (F (n)

β̂
(|ri(β̂)|)

)
−w

(
Fβ̂(|ri(β̂)|)

)∣∣∣ r2i (β̂)
≤ L · sup

r∈R+, β∈Rp

√
n
∣∣∣F (n)

β (r)−Fβ(r)
∣∣∣n− 3

2

n∑
i=1

∣∣∣r2i (β̂)∣∣∣ .
Due to (13) we have n− 3

2

∑n
i=1

∣∣∣r2i (β̂)∣∣∣ = op(1) and hence, due to (14),



Robust error-term-scale estimate 261

γ · σ̂2
(n) −

1

n

n∑
i=1

w
(
Fβ̂(|ri(β̂)|)

)
· r2i (β̂) = op(1).(16)

Now, taking into account Condition C2, we have∣∣∣∣∣ 1n
n∑

i=1

[
w
(
Fβ̂(|ri(β̂)|)

)
− w

(
Fβ0(|ri(β̂)|)

)]
· r2i (β̂)

∣∣∣∣∣(17)

≤ L · 1
n

n∑
i=1

∣∣∣Fβ̂(|ri(β̂)|)− Fβ0(|ri(β̂)|)
∣∣∣ · r2i (β̂).

Now, employing Lemma 2, we have (write for a while ri instead of ri(β̂))

1

n

n∑
i=1

∣∣∣Fβ̂(|ri|)− Fβ0(|ri|)
∣∣∣ · r2i ≤ sup

r∈R

∣∣∣Fβ̂(r)− Fβ0(r)
∣∣∣ 1
n

n∑
i=1

∣∣r2i ∣∣(18)

≤ K ·
∥∥∥β̂ − β0

∥∥∥ · 1
n

n∑
i=1

∣∣r2i ∣∣ .
Under Condition C1, due to the consistency of β̂, (18) is op(1). Similarly, employing
Lemma 3 and once again Condition C1 and C2, we have (remember that ri(β

0) = ei)

1

n

n∑
i=1

w
(
Fβ0(|ri(β̂)|)

)
· r2i (β̂)−

1

n

n∑
i=1

w
(
Fβ0(|ei|)

) · r2i (β̂) = op(1).(19)

Employing Corollary 1, due to Conditions C1, C2 and C3 we have (for ‖β̂−β0‖ ≤ 1)∣∣∣∣∣ 1n
n∑

i=1

w
(
Fβ0(|ei|)

) · (r2i (β̂)− e2i

)∣∣∣∣∣(20)

≤ 2 ·
∥∥∥β̂ − β0

∥∥∥ 1

n

n∑
i=1

[
|ei| · ‖Xi‖+ ‖Xi‖2

]
= op(1).

Finally, (16), (17), (19) and (20) implies that

γ · σ̂2
(n) =

1

n

n∑
i=1

w
(
Fβ0(|ei|)

) · e2i + op(1).(21)

Taking into account (4), the weak consistency of σ̂2
(n) follows from (21).

The scale-equivariance and the regression-invariance of σ̂2
(n) follows directly from

two facts. Firstly, estimator σ̂2
(n) is based on the squared residuals of the estimator β̂

of regression coefficients. As the estimator β̂ is scale- and regression-equivariant, the
residuals are scale-equivariant and regression-invariant, see (2). Since the weights
depend on the empirical d. f., they are scale- and regression-invariant.

Conditions C4 The estimator of regression coefficients β̂(n) is scale- and regression-
equivariant and

√
n-consistent.

Corollary 2 Under Conditions C1 and C4
n− 1

2

n∑
i=1

∣∣∣r2i (β̂)− e2i

∣∣∣ = Op(1).(22)
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Proof: Similarly as in (12) we have

n− 1
2

n∑
i=1

∣∣∣r2i (β̂)− e2i

∣∣∣ ≤ 2·√n
∥∥∥β0 − β̂

∥∥∥· 1
n

n∑
i=1

|ei|·‖Xi‖+
√
n
∥∥∥β0 − β̂

∥∥∥2· 1
n

n∑
i=1

‖Xi‖2 .
(23)
Using similar arguments as in the proof of Corollary 1, we conclude the proof.

Theorem 2 Let the Conditions C1, C2 and C4 hold. Then the estimator σ̂2
(n) is√

n-consistent.

Proof: Similarly as above, (13) and (14) yields

√
n · γ ·σ̂2

(n)−
1√
n

n∑
i=1

w
(
Fβ̂(|ri(β̂)|)

)
·r2i (β̂)=Op(1).(24)

Employing again Lemma 1 and Condition C1 and C2, we have∣∣∣∣∣ 1√
n

n∑
i=1

[
w
(
Fβ̂(|ri(β̂)|)

)
−w

(
Fβ0(|ri(β̂)|)

)]
r2i (β̂)

∣∣∣∣∣
≤ L· sup

r∈R+, β∈Rp

√
n
∣∣∣F (n)

β (r)− Fβ(r)
∣∣∣ 1
n

n∑
i=1

r2i (β̂) = Op(1).(25)

Similarly, utilizing Lemma 3 and once again Condition C1 and C2, we have

1√
n

n∑
i=1

w
(
Fβ0(|ri(β̂)|)

)
·r2i (β̂)−

1√
n

n∑
i=1

w
(
Fβ0(|ri(β0)|))·r2i (β̂) = Op(1).(26)

Using Corollary 2, due to Conditions C1, C2 and C4 we have (for
∥∥∥β0 − β̂

∥∥∥ ≤ 1)∣∣∣∣∣ 1√
n

n∑
i=1

w
(
Fβ0(|ei|)

) · (r2i (β̂)− e2i

)∣∣∣∣∣(27)

≤ 2
√
n
∥∥∥β0 − β̂

∥∥∥ 1

n

n∑
i=1

[
|ei| · ‖Xi‖+ ‖Xi‖2

]
= Op(1).

Finally, (25), (26) and (27) implies that

√
n · γ ·

(
σ̂2
(n) − σ2

)
=

1√
n

n∑
i=1

(
w
(
Fβ0(|ei|)

) · e2i − γ · σ2
)
+Op(1)

and the
√
n-consistency of σ̂2

(n) follows from the Central Limit Theorem and Re-
mark 2.

In the next chapter we offer a numerical study of the proposed scale estimator
σ̂2. We shall use β̂(LWS,n,w), given as solution of extremal problem

β̂(LWS,n,w) = argmin
β∈Rp

n∑
i=1

w

(
i− 1

n

)
r2(i)(β),

see Vı́̌sek [35], in the role of the robust, scale- and regression-equivariant estimator
of regression coefficient. We shall need following conditions:
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Conditions C5 There is the only solution of

β′IE
[
w (Fβ(|r(β)|))X1

(
e−X

′
1

(
β − β0

))]
= 0(28)

namely β0 (the equation (28) is assumed as a vector equation in β ∈ Rp).

Conditions NC 1 The derivative f ′(r) exists and is bounded in absolute value
by Be < ∞. The derivative w′(α) exists and is Lipschitz of the first order (with the
corresponding constant Jw < ∞).

Theorem 3 Under Conditions C1, C2 and C5 β̂(LWS,n,w) is consistent, scale- and
regression-equivariant. Similarly, under Conditions C1, C2, C5 andNC 1 β̂(LWS,n,w)

is
√
n-consistent.

Proof can be found in Vı́̌sek [40], [43].

Hence β̂(LWS,n,w) can be used as the estimator we have considered in the construc-
tion of σ̂2.

Numerical study

The model (1) was employed with coefficients given in the first row of tables pre-
sented below. The explanatory variables were generated as sample from 3-dimensional
normal population with zero means and diagonal covariance matrix (diagonal ele-
ments equal to 9).

The error terms were generated as normal with zero mean and variance equal to 2.

We have generated 100 datasets, each of them containing 100 observations. As the
robust, scale- and regression-equivariant estimator we have used β̂(LWS,n,w), see
the end of the previous chapter. The weight function was given for processing a
mild contamination (see below) as

w(u) = 1 for u ∈ [0, 0.8], w(u) = 20 · (0.8− u) + 1 u ∈ [0.8, 0.85],(29)

w(u) = 0 otherwise.

For processing a heavy contamination (see again below) we have began with a weight
function of type (29) but with the upper bound of the first interval equal to 0.4
(instead of 0.8) and with much slower slope. Then we increased (step by step equal
to 0.01) the upper bound of interval [0, 0.4]. The estimate of the scale of error term

β̂(LWS,n,w) as well as of regression coefficients were stable and they lost a stability
when we overcame the value of the upper bound) 0.45. Hence we used

w(u) = 1 for u ∈ [0, 0.45], w(u) = 2.5 · (0.45− u) + 1 u ∈ [0.45, 0.85],

w(u) = 0 otherwise.

As a benchmark we offer results of the ordinary least squares β̂(OLS,n) and of the
least weighted squares β̂(LWS,n,w) for data without any contamination (the first

table). The following tables collect results of the estimation of model by β̂(OLS,n)

and β̂(LWS,n,w) under various types of contamination specified in the captions of
tables (inside the frames).

The estimates were evaluated by algorithm discussed in Vı́̌sek [39] and implemented
in MATLAB (the implementation is available on request). Every table contains in
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its first row the true values of regression model. The second and the third row
of tables contain the empirical means from hundred β̂(OLS,n)’s and β̂(LWS,n,w)’s,
respectively, evaluated for the (above mentioned) 100 datasets. The type and level
of contamination is given in the first line of respective frame.

The adjusting constant γ was evaluated by numerical integration. Finally,

σ̂2
OLS =

1

n− p

n∑
i=1

r2i (β̂
(OLS,n))

and
σ̂2
LWS = γ−1 · 1

n

n∑
i=1

w

(
i− 1

n

)
r2(i)(β̂

(LWS,n,w)).

The results of estimating the variance of the error terms by these estimators are
given on the second and on the third line of the frames, respectively.

Regression without contamination

For this case we have started with the weight function given in (29) and we have
shifted the interval [0.8,0.85] to the right – step by step (equal 0.01) – so long

while the results were stable, so that we have used finally

w(u) = 1 for u ∈ [0, 0.95] and w(u) = 20 · (0.95− u) + 1 for u ∈ [0.95, 1].

σ̂2
OLS = 1.99(.0641) σ̂2

LWS = 1.99(.0647)

β0 1.5 4.3 −3.2

β̂(OLS,n) 1.49(.0040) 4.28.0039) −3.20(.0060)

β̂(LWS,n,w) 1.49(.0042) 4.28.0044) −3.20(.0063)

Regression with mild contamination

Contamination: For the first 5 observations we changed:
(let us recall that the true values of coefficients are in the first row of tables, while

the second and the third ones contain β̂(OLS,n) and β̂(LWS,n,w), respectively;
variances of estimates are in parenthesis)

Yi to 2 ∗ Yi

σ̂2
OLS = 7.17(9.91)

σ̂2
LWS = 2.30(.059)

1.5 4.3 −3.2

1.55(.016) 4.43(.017) −3.33(.022)

1.49(.007) 4.30(.006) −3.20(.007)

Yi to 2 ∗ Yi

and Xi to 2 ∗Xi

σ̂2
OLS = 72.52(1775.0)
σ̂2
LWS = 2.29(0.082)

1.5 4.3 −3.2

1.04(.490) 3.17(.646) −2.29(.644)

1.49(.007) 4.30(.006) −3.21(.007)
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Regression with heavy contamination but with inappropriate weight
function

Contamination: For the first 45 observations we changed:

Yi to 2 ∗ Yi

σ̂2
OLS = 34.90(26.26)

σ̂2
LWS = 31.23(20.76)

1.5 4.3 -3.2

2.16(.072) 6.18(.091) −4.61(.010)

1.89(.125) 5.41(.283) −4.06(.181)

Yi to 2 ∗ Yi

and Xi to 2 ∗Xi

σ̂2
OLS = 237.52(1144.6)
σ̂2
LWS = 214.1(1097.1)

1.5 4.3 -3.2

−.77(.206) −2.14(.248) 1.67(.211)

−1.1(.176) −3.03(.579) 2.26(.432)

Regression with heavy contamination and accommodated weight
function

Contamination: For the first 45 observations we changed:

Yi to 2 ∗ Yi

σ̂2
OLS = 333.99(24.66)
σ̂2
LWS = 1.89(0.057)

1.5 4.3 -3.2

2.16(.087) 6.18(.101) −4.60(.104)

1.54(.112) 4.52(.682) −3.34(.394)

Yi to 2 ∗ Yi

and Xi to 2 ∗Xi

σ̂2
OLS = 232.4(899.9)
σ̂2
LWS = 2.62(0.104)

1.5 4.3 -3.2

−.71(.188) −2.1(.244) 1.54(.242)

1.5(.109) 4.20(.736) −3.14(.41)

Conclusions of numerical study. It is clear that the outliers have a small
influence on the estimates while the “combined” contamination (simultaneously by

outliers and leverage points) much larger. Nevertheless, both β̂(LWS,n,w) as well
as σ̂2

LWS have copped with contamination quite well - if the weight function was
properly accommodated to the level of contamination. In practice we do not know
the level of contamination. Then we may keep a (rather general) rule saying that

starting with the “highest possible” robustness of σ̂2
(n) and of β̂(LWS,n,w), we can

decrease their robustness so long when the estimates lose their stability, see e. g.
Benáček, Vı́̌sek [2].
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