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Abstract: We introduce a conceptual framework within which the problem
of setting reference intervals is one of estimating population parameters. The
framework enables us to broaden the possibilities for inference by showing how
to create confidence intervals for population intervals. We propose a new kind
of interval (the y-mode interval) as the population parameter of interest and
show how to estimate and make optimal inference about this interval. Finally,
we clarify the relationship between our reference intervals and other types of
intervals.

1. Introduction

Reference limits are fundamentally important in clinical chemistry, toxicology, envi-
ronmental health, metrology (the study of measurement), quality control, engineer-
ing and industry (Holst & Christensen citer8) and there are published standards for
their statistical methodology; see for example the International Standards Organ-
isation (ISO 3534-1, 1993; 3534-2, 1993), the International Federation of Clinical
Chemists (IFCC) (Solberg, [19], [20], Peticlerc & Solberg [16], Dybkeer & Solberg
[4], National Committee for Clinical Laboratory Standards (NCCLS C28-A2 [12])
and the International Union of Pure and Applied Chemistry (IUPAC) (Poulsen,
Holst & Christensen [17]). The purpose of this paper is to discuss reference limits
from a more statistical perspective.

Suppose that we have a sample X1,...,X,, of size n > 1 of independent ob-
servations from the distribution F(-;6) with unknown parameter 6. The reference
limit problem is to use the sample to construct an interval for an unobserved sta-
tistic w = w(Z1,...,Zm), m > 1, which has distribution function F,(-;0) when
Zi,...,Zm have the same distribution F'(+;0) as X1, ..., X,. The statistic w is of-
ten the sample mean Z = m~'Y"""  Z; or, when m = 1, a single observation, but
the general formulation is useful.

The IFCC standard (y-content) reference interval for w is an estimate of the
inter-fractile interval C&/_ (6) = [F; '{(1 — v)/2:0}, Fy H{(1 +7)/2; 6}, often with
v = 0.95. This target interval ensures the intuitive requirement that a reference
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interval represent a specified proportion of the central values obtained in the refer-
ence population is satisfied. The standard requires either applying a known (possi-
bly identity) transformation to the data, estimating the normal version of Cfuf 4(0)
and then retransforming to obtain the interval, or a nonparametric approach which
estimates Cfvf ,(0) directly. The IFCC recommends that the reference interval be
reported with 1 — « (usually 1 —a = 0.95) confidence intervals for the endpoints of
C}Uf 4(0).

It is useful to see how the IFCC standard works in a simple example. Suppose
that w is a single observation from an exponential distribution with mean 6 and
the estimation sample is from the same distribution. For the parametric approach,
there is no transformation (not depending on ) that produces exact normality but
we can apply transformations which stabilise the variance (g(z) = log(z)) or sym-
metrise the distribution (g(z) = 1/3). In either case, let A, =n~"1 3" | g(X;) and
Sg=(n—1)"t3" {g(X;) — Ag}? be the sample mean and variance of the trans-
formed data. Then the IFCC 95% reference interval is [g7 (A4, — 1.965,), g1 (4, +
1.965,)]. Since E{g(X)} =~ g(#) and var{g(X)} =~ 6%¢'(0)?, the reference inter-
val is estimating [0.14086, 7.0996] when we use the logarithmic transformation and
[0.04160, 4.51946] when we use the cube root transformation. The actual coverage
of these intervals is 0.868 (length = 6.95826) and 0.948 (length 4.4786) respectively.
The nonparametric approach produces an estimate of the 95% inter-fractile inter-
val [0.02536, 3.68890] (length = 3.66460). None of these intervals includes the region
around zero, the region of highest probability for the exponential distribution.

The exponential example shows that we need a conceptual framework to evaluate
reference intervals and unambiguous, interpretable methods for constructing refer-
ence intervals with desirable properties. Our approach developed in Section 2 is to
treat underlying population intervals (such as C/ (0) or [py — kow, pw + koy)) as
parameters and then consider estimating and making inference about them. In this
framework, reference intervals are ‘point estimates’ of underlying intervals so we
can use well-established ideas to evaluate and interpret them. The only new issue is
that the unknown parameter is an interval rather than a familiar vector. The treat-
ment of an interval as an unknown parameter is arguably implicit in the statistical
literature (for example in Carroll & Ruppert [1]) but it is useful to make it explicit
in the present context because it enables us to separate discussion of the choice of
parameter from discussion of alternative estimators and methods of inference. As
we discuss in Section 3, it also allows us to relate reference intervals to well-known
intervals for future observations such as prediction and tolerance intervals.

In this paper, we also propose that reference intervals be based on a new ~y-
content interval C,, ,(6) defined in Section 2 which we call the y-mode interval,
rather than the inter-fractile interval C’fuf (). The y-mode interval is the same as
the inter-fractile interval when w has a unimodal, symmetric distribution; it is a
more appropriate and useful interval when w has an asymmetric distribution which
cannot be transformed directly to normality. For a single observation from an expo-
nential distribution, the 95%-mode interval is [0, \=12.9957] which is shorter than
the other intervals we examined and includes the mode of the distribution. The
v-mode interval contains the highest density points in the sample space so has the
highest-density property used as a starting point by Eaton et al.[5] for their dis-
cussion of multivariate reference intervals for the multivariate normal distribution.
Even for the multivariate normal distribution, multivariate reference intervals are
difficult to obtain; for recent results, see for example Trost [21] and Eaton et al. [5].

We define the intervals and present some results on optimal confidence intervals
in Section 2. We discuss in detail the relationship between reference and confidence
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intervals for y-mode intervals and prediction and tolerance intervals in Section 3.
We illustrate the methodology and explore the relationships between the different
kinds of intervals further in the Gaussian and Gamma cases in Sections 4 and 5 re-
spectively. We restrict ourselves to these simple cases so that we can obtain explicit
results and make comparisons with other methods in the literature: the results can
be extended to other statistics w and other models such as regression and general-
ized linear models in which one or more model parameters are functions of known
covariates.

Although our present focus is on parametric methods, we have developed a non-
parametric approach (using order statistics) when w is a single observation (so
F, = F). However, the approach is difficult to apply with complex, structured
data, when w is a more general statistic, is less efficient than the parametric meth-
ods, and the confidence intervals perform poorly in small samples (because tail
quantiles are difficult to estimate). Parametric methods overcome these difficulties
at the cost of requiring more careful model examination (including diagnostics)
and consideration of robustness. At least when the model holds, parametric and
nonparametric methods should estimate the same interval. This is the case with
our methodology but not with the IFCC method where parametric estimation can
lead to estimating a different interval from the one we have specified (which we can
interpret as bias) and does not necessarily yield efficient estimators (in the sense
that their variance is larger than necessary).

2. Definitions and results

A random interval C' = [&JA)] is an unbiased estimator of a nonrandom interval
C(0) = [a(0),b()] if Eg[Length{(C' N C(0)¢) U (Cc N C(H))] = 0 and a consistent
estimator of C(0) if Prg[Length{(C' N C(0)¢) U (C¢ N C(0))} > €] — 0 for all
e > 0. That is, the length of the region in which the intervals do not overlap has
expectation zero or tends to zero in probability. We can show that an interval is
unbiased or consistent if £a+ (1—¢)b is unbiased or consistent for fa(6)+ (1 —£)b(8),
0 < ¢ < 1. Thus the discussion of separate maximum likelihood and uniformly
minimum variance unbiased estimation of the endpoints of the normal inter-fractile
interval in Trost [21] immediately applies to estimation of that interval as a single
parameter.

A 100(1 — )% confidence interval for C(0) is a realisation of a random interval

Co = [Ga, ba] Which satisfies
Py(ae < a(f) < b(0) < by) = Pi{Ca 2 C(H)} =1—a for all 0.

To develop an optimality theory based on the concept of uniformly most accurate
(UMA) confidence intervals, we define a 100(1 — )% confidence interval C, for
C(6) to be type I UMA if

Py{Co 2 C(0N} < P{C D C(0)}, foralld <0,
type I UMA if
Py{Co D C(0")} < P{C: D C(0)}, forall @ >0,

for any other 100(1—a)% confidence interval C* for C(6). A 100(1—a)% confidence
interval Cy, for C(0) is unbiased if

P{C,2CW0)}<1—a, foralf#0,
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and UMA unbiased if it is unbiased and
Py{C, D C(0)} < P{C:DC(0)}, forall@+#¢,

for any other 100(1 — )% unbiased confidence interval C* for C(6).
The following theorem shows how to construct optimal confidence intervals for
a wide class of fixed intervals, including many of the intervals of interest to us.

Theorem 2.1. Consider the interval C'(6) = [a(8), b(6)], where 0 is a scalar un-
known parameter and a and b are increasing functions of . Let T’ = [01, 62] be an
interval with 6, < 6y and define Cp = [a(6,), b(62)].

i) If T is a 100(1 — )% confidence interval for 6, then Cp is a 100(1 — a)%
confidence interval for C(6).
ii) If 7" is a 100(1 — )% unbiased confidence interval for 6, then Cr is a 100(1 —
«)% unbiased confidence interval for C(9).
iii) If 7 is a 100(1 — @)% UMA unbiased confidence interval for 6, then Cy is a
100(1 — @)% UMA unbiased confidence interval for C(6).

Proof. As a and b are monotone increasing, we have that for any ¢’

{Cr2C(0)} = {a(6)) < a(8) <b(8') < b(B2)} & {61 <0 < br)
i Py{Cr D CO)) = Py(B; < 0 < ).
The results i) and ii) follow from the definitions of confidence intervals and unbiased

confidence intervals. For iii), suppose that Cr is a 100(1 — @)% confidence interval
for C'(0) and consider the set T* = {0 : C(0) C C*}. Then, for any ¢,

Py(0' € T*) = P{C(0) c C*}

so setting 8’ = 6, we see that 7* is a 100(1 — a)% confidence set for § and setting
0’ # 0, we see that T is an unbiased 100(1 — @)% confidence set for § whenever C*
is a unbiased 100(1 — )% confidence interval for C(6). Since T is a 100(1 — )%
UMA unbiased confidence set for 6

Po{Cr D C0)} = Py(6, <0 < 0y) < Py(0 € T*) = P{C* D C(#)}
and the result obtains. O

The theorem can be applied with a and b decreasing if we reparametrize the model
and write a and b as increasing functions of the transformed parameter.

A slightly different approach is required for the case that one endpoint of the
interval C'(6) is known.

Theorem 2.2. Consider the interval C(0) = [a, b(f)], where a is known and b is a
monotone increasing function of a scalar unknown parameter 6, or C'(6) = [a(6), b],
where a is a monotone increasing function of a scalar unknown parameter ¢ and b
is known. Let 7' = (—00, 5] be an upper interval or 7' = [f;, c0) be a lower interval
according to whether @ is known or b is known, and define Cr = [a, b(6,)], if a is
known, or Cp = [a(6,), b], if b is known.

i) If T is a 100(1 — )% upper/lower confidence interval for 6, then Cr is a
100(1 — )% confidence interval for C(#) with a/b known.

ii) If T is a 100(1 — )% UMA upper/lower confidence interval for 6, then Cr
is a 100(1 — @)% type I/type II UMA confidence interval for C(¢) with a/b
known.
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Proof. The proof is similar to that of Theorem 1 using the relations {a < b(#) <
b(02)} < {0 < 63} when a is known and {a(61) < a(f) < b} < {0; < 0} when b is
known. O

A much simpler but more restricted theory for optimal confidence intervals based
directly on the length or the length on the log scale can be constructed in particular
cases.

Theorem 2.3. Suppose that the interval C(0) = [a(6), b(6)] is a location interval
so that a(f) = 6 + k1 and b(f) = 6 + ko or a scale interval so that a() = k160 and
b(0) = ko6 with ky, ky # 0. Then in the location/scale case, if T is the shortest/log-
shortest 100(1—a)% confidence interval for 6, it follows that C is the shortest /log-
shortest 100(1 — )% confidence interval for C(6).

Proof. For the location family, the length of Cis
length(C'T) = b(ég) — a(él) = length(T) 4+ ko — Kk
and for the scale family
lengthlog(C'T) = logb(fy) —loga(f) = lengthlog(T) + log ko — log ky

and the result follows from the fact that k2 — k1 and log ks — log k; are fixed. [O

The intuitive meaning of the above results is that good confidence intervals for
C(0) are obtained from good confidence intervals for 6. Not surprisingly, the case
in which 6 is a vector parameter is much more difficult to handle; exact intervals
can only be constructed in particular cases (for an example, see Section 4) but we
can construct asymptotic intervals.

The above results apply to any kind of interval; we now turn our attention to
a particular type of interval. A ~y-content interval for w is a nonrandom interval
Cw~(0) = [Gw(0), bw,(0)] which satisfies Pro{w € Cy ,(0)} = Fu{bw~(0);0} —
Fy{aw~(0);0} = ~. Note that C,, () is non-random so tolerance intervals are not
~y-content intervals in this sense; see Section 3 for further discussion.

A reference interval for w is an estimate of a y-content interval for w. A con-
fidence interval for an interval captures the uncertainty in estimating the interval
and provides an estimate with the same content as the interval with confidence
1—a.i.e. al—a confidence interval for a ~y-content interval is a y-content interval
with confidence 1 — a.

Consider the class of y-content intervals C, - 5(0) = [F;1(8;0), Fy ' (v + 9;0)],
0 < 0 < 1—+, where § is a location constant to be chosen by the user. These
intervals include the inter-fractile intervals when § = (1—+)/2 but are more flexible.
A ~-mode interval is the shortest interval in the class Cy 4,5(0), namely C,, ,(0) =
Cu,~,5+(0), where 6* = 6*(v,0) = argsmingcs<1—~F, (v + 8;0) — F;1(6,6). A ~-
mode interval always contains the highest density points in the sample space and,
if it is unique, the mode of F,, (c.f. Eaton et al.[5] . We propose that reference
intervals be based on «v-mode intervals instead of inter-fractile intervals.

3. Relationships with other intervals

Reference intervals and confidence intervals for population intervals are related to
prediction, expectation tolerance and tolerance intervals. These are realisations of
random intervals (L, U) which satisfy
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P(L<w<U)= 7 (prediction interval),

EPy (F,(U;0) — F,(L; 0)) = v (expectation tolerance interval) or

Py (F,(U;0) — Fy(L;0) > v) = 1 — a (y-level tolerance interval)
respectively. Prediction intervals are expectation tolerance intervals because

Ey (Fy(U30) — Fy(L;0)) = Eg (Po(L <w < U|L,U)) = Py(L<w < U) =~

although the converse is not true. Prediction intervals are interpreted in this way in
the TUPAC recommendations where they are called coverage intervals (Poulsen et
al. 1997). Tolerance intervals (see for example Wilks [25], Wald [23], Paulson [15],
Guttman [8], Patel [14] and Krishnamoorthy and Mathew [11]) are conceptually
more complicated. These definitions do not involve a non-stochastic population
interval so they are not vy-content intervals in the sense used in this paper. We have
the following result.

Theorem 3.1. Suppose that [a, ~(6),bw ~(8)] is a y-content interval for w. If F,
is continuous at a. ,(#) and b, (), then a reference interval which is consistent
for [ay,~(0), by (0)] is an asymptotic vy-level prediction and expectation tolerance
interval for w. A 100(1 — «)% confidence interval for [a., (6), bw,~(0)] is a 100(1 —
a)% ~y-level tolerance interval for w.

Proof. Suppose that [a,b] is a consistent estimator of [@w~(0), by~ (0)]. Then
Py (a <w< 13) = Bo{Py (a <w< 13|a,13)} - ( (b 0) — (@ 9)) o,

as n — oo and the first part obtains. Next, suppose that [da, ba] is a 100(1 — )%
confidence interval for [a. (), bw,~(0)]. Then

Py (Fw(Ba; 0) — Fy(in; 0) > ’y)

= B (Fw(i)a? 9) - Fw(da§ 9) > Fw(bw,w(9)§ 9) - Fw(awﬁ(9>§ 9))

> Py (Puliai0) < Fultus(0);0) < Fulbuny (0);0) < Fu(bai0))
> 11—«
SO [da, bal is a 100(1 — @)% ~-level tolerance interval for w. O

Reference intervals are good prediction intervals (appropriate for making one or
a few predictions) because, as pointed out by Carroll & Ruppert [1], adjustments
for estimation uncertainty in prediction intervals are typically of order 1/n. The
confidence intervals adjust for estimation uncertainty at order 1/ n'/2 so it is inter-
esting that these relate to tolerance intervals. Tolerance intervals cannot generally
be interpreted as confidence intervals for a population vy-content interval C' (Willink
[24], Chen and Hung [2]) because there are shorter tolerance intervals which do not
have the coverage property of the confidence intervals.

Poulsen et al. [17] recommended that their coverage (prediction or expectation
tolerance) intervals be reported with the coverage uncertainty, the value of 5 making

Py(y =B < Fu(U;0) = Fu(L;6) < v+ 0) =1 —a.

The coverage uncertainty is the adjustment required to make the coverage interval
a (y — f)-level 100(1 — a)% tolerance interval. It seems more useful to construct
directly intervals which achieve a chosen level. For coverage intervals, this leads
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to reporting tolerance intervals analogously to the way we recommend reporting
confidence intervals; for reference levels, it leads to reporting confidence intervals
for population intervals.

More insight can be achieved by comparing reference intervals and 100(1 — a)%
confidence intervals for y-mode intervals to prediction and tolerance intervals in
some simple cases. These calculations are presented in the following Sections. Some
other examples of reference intervals but without confidence intervals are given by
Chen et al. [3].

4. The Gaussian distribution

In this section, we derive the y-mode, reference and confidence intervals for the
Gaussian model.

4.1. The v-mode interval

The mean Z of m independent N(u,0?) random variables has a N(u, m~10?) dis-
tribution so the quantile function is F, ' (u) = p +m~/20®~! (u), where ® is the
standard Gaussian cumulative distribution function. The location constant §* in the
y-mode interval satisfies the estimating equation ¢ (®~!(y +6*)) = ¢ (®7(5%)),
where ¢ is the standard Gaussian density function. Since ¢ is symmetric, 6* satis-
fies @ L(y+ %) = —®~1(6*) = d71(1 — §%), s0 6* = (1 — ~)/2. It follows that the
~v-mode interval for the mean of m > 1 observations is

(1) Czylm0) = [ = @7 {(149)/2bo/m" /2, it @71 {(1+7)/2}o/m' |

which is centered at the mode pu.

4.2. The reference interval

We construct the reference interval by estimating (1). Suppose that Xi,..., X,
are independent N(u,0?) random variables. Then in (1) we can replace i by the
sample mean X and o by the scaled sample standard deviation ¢, S, where ¢, is
a non-stochastic function of n. The maximum likelihood estimator of Cyz (1, 0)

has ¢, = {(n — 1)/n}'/2; the uniformly minimum variance unbiased estimator has

en={(n— 1)/2}1/2F{(n —1)/2}/T(n/2) etc.

4.3. The confidence interval with known variance

When the underlying variance o2 known, it follows from Theorems 2.1 and 2.3 that
a 100(1 — @)% UMA unbiased and shortest confidence interval for (1) with m =1
is

(2) [X - k;(’% 1- Oz)()’, X + k:;,(’% 1- O‘)JL

where k% (v,1 —a) =& {(1 +7)/2} + n~/2071(1 — a/2).

The interval (2) is also the mean-based ~v-level 100(1 — «)% two-sided tolerance
interval constructed by Owen [13] to control both tails. On the other hand, a widely
used mean-based y-level 100(1 — )% two-sided tolerance interval (see for example
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Proschan, 1953 p. 560) is of the same form as (2) but with £} = kX(v,1 — «)
satisfying

N=® (n—1/2<1>—1 (1—a/2)+ k;) —® (n_1/2<1)_1 (1—a/2)— k;;) .

Comparison of the values of k(7,1 — «) in this interval and (2) shows that the
confidence interval is wider than this tolerance interval (so the tolerance interval
undercovers the y-mode interval). When v = 1 — «, we can write k(7,1 —«) in (2)
as k¥ = ®1 (1 — a/2) (1 + n~/?). This interval resembles but is wider than the
100(1—a)% prediction interval in which 1+n71/2 is replaced by (1+n!)*/2. These
intervals are both wider than the naive prediction interval (o = 1) which effectively
replaces 14+n~1/2 by 1. These calculations confirm the general relationships between
the different intervals.

4.4. The confidence interval with unknown variance

Suppose now that the underlying distribution has both parameters unknown. Let
T,(-;n) be the distribution function of the noncentral ¢-distribution with v degrees
of freedom and noncentrality parameter 5. Then we can show that a 100(1 — a)%
confidence interval for (1) with m =1 is

(3) [X - k’n(’Y’ 1- O[)S,X + kn(r%l - OZ)S] s

where k,(y,1 —a) =n"2T 1, [1—a/2; n 2o {(1 + 7)/2}].

The confidence interval (3) is the mean and variance based y-level 100(1 — )%
two-sided tolerance interval controlling both tails. Alternative mean and variance
based v-level 100(1 — )% tolerance intervals have been given by Wald & Wolfowitz
[23] and Howe [10]. The 1007% prediction interval is of the same form as (3) with
En(v) = T4 ((1+7)/2)(1 +n~1)"/? and the relationships between these intervals
are the same as when o is known.

5. The Gamma distribution

In this section, we derive the y-mode, reference and confidence intervals for the
Gamma model.

5.1. The ~v-mode interval

The Gamma distribution (k, #) with density f(z,0,x) = 2"~ exp(—z/0) /05T (k),
x>0, 0, k>0 is also the §x3, /2 distribution. The mean Z of m > 1 independent
observations from this distribution has a 0x3,,./2m distribution so the y-mode
interval for the mean of m > 1/k observations is

() Cy(0) = [0G3L, 15°(R)} /2m. 0G5, {y + 5°(k)} /2m]

where 0*(k) = argginfocs<1-~Gom,. (v + 0) — G ,.(0) and G, is the cumulative
distribution function of the chi-squared distribution with v degrees of freedom. The
mode is f(mk — 1)/m when m > 1/k and zero when m < 1/k. Provided x > 1,
when m = 1, (4) is also the y-mode interval for a single observation. However, when
k =1 (i.e. the exponential distribution), (4) with x = 1 gives the y-mode interval
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for the sample mean of m > 2 observations but the y-mode interval for a single
observation is

(5) CzA(0) = [0, —0log(1 —7)].

The mode 0 is always in this interval.

5.2. The reference interval

Suppose that X, ..., X,, are independent y(k, #) random variables. The maximum
likelihood estimator # of k satisfies ¢(r)—log(rk) = n=1 3" log(X;/X) with ¢(-) the
digamma function and, the method of moments estimator, & = nX?2/ Y7 (X; — X)2.
In either case, we estimate 6 by X /&. If s is known, both estimators are obtained
by replacing & by  in (4). The maximum likelihood estimator of (5) is Cz - (#) =
[0, —Xlog(1 —7)].

5.3. Confidence intervals

Suppose initially that the shape parameter x > 1 is known so the y-mode interval
is (4). Choose g and h to satisfy 1 — a = Pr(g < x3,,. < h). Then, from Theorem
2.1, a 100(1 — «)% confidence interval for (4) with m =1 is

(6) [nXGo, (6%)/h, nX Gy, (v +06%)/g] -

From Theorem 2.1, for the UMA unbiased confidence interval, g and h also satisfy
Goni(g) = Go,.(h); from Theorem 2.3, for the log-shortest confidence interval
based on the pivot 2n.X /6, g and h also satisfy ¢Gs,,,.(9) = hGs,,,.(h).

A two-sided 7-level 100(1 — )% tolerance interval for the gamma distribution
with known shape parameter was given by Guenther [7]. The interval is (Xc1, Xcz),
where, for large 2nk, ¢; and co satisfy the two equations

Gax(hca/n) — Gag(her/n) = Gag(gea/n) — Gag(ger/n) =7,

where g and h satisfy 1 —a = Pr(g < x2,,. < h). The tolerance interval is close to
but not the same as the confidence interval for the y-mode interval.

If k = 1, the y-mode interval for a single observation is (5) and from Theorem
2.2, 2 100(1 — a)% type II UMA confidence interval for (5) is

(7) [0, —2nX log(1 — 7)/ Gy, ()].

The confidence interval (7) is constructed as a two-sided interval but is numerically
the same as the one-sided ~v-level 100(1 — o)% tolerance interval. The two-sided
~-level 100(1 — )% tolerance interval obtained by Goodman & Madansky [6] by
controlling both tails like Owen [13], is the same as the 100(1 — a)% confidence
interval for the inter-fractile interval, namely

(8) [-2nXlog{(1+7)/2} /G5, (1~ a/2), —2nXlog{(1 —)/2} /Gy, (a/2)].

We argue that the confidence interval for the mode interval is the more meaningful
interval and question the value of the standard two-sided tolerance interval (8)
which omits the highest density region. Prediction intervals can be constructed
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from the normalized spacings between order statistics but these do not relate in a
simple way to the estimated v mode interval.

When the shape parameter x is also unknown, exact intervals are not available.
However, it is straightforward to use large sample approximations based on Taylor
series expansions of the endpoints of the reference interval to construct approximate
confidence intervals for (4).
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