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The unbearable transparency of Stein

estimation

Rudolf Beran

University of California, Davis

Abstract: Charles Stein [10] discovered that, under quadratic loss, the usual
unbiased estimator for the mean vector of a multivariate normal distribution
is inadmissible if the dimension n of the mean vector exceeds two. On the
way, he constructed shrinkage estimators that dominate the usual estimator
asymptotically in n. It has since been claimed that Stein’s results and the sub-
sequent James–Stein estimator are counter-intuitive, even paradoxical, and not
very useful. In response to such doubts, various authors have presented alter-
native derivations of Stein shrinkage estimators. Surely Stein himself did not
find his results paradoxical. This paper argues that assertions of “paradoxical”
or “counter-intuitive” or “not practical” have overlooked essential arguments
and remarks in Stein’s beautifully written paper [10]. Among these overlooked
aspects are the asymptotic geometry of quadratic loss in high dimensions that
makes Stein estimation transparent; the asymptotic optimality results that can
be associate with Stein estimation; the explicit mention of practical multiple
shrinkage estimators; and the foreshadowing of Stein confidence balls. These
ideas are fundamental for studies of modern regularization estimators that rely
on multiple shrinkage, whether implicitly or overtly.

1. Introduction

In a profoundly prophetic paper that opened a new statistical world to exploration,
Charles Stein [10] discovered, among other things, that the usual unbiased estimator
for the mean of an n-dimensional multivariate normal distribution is inadmissible
under quadratic loss if n ≥ 3. It has since been claimed that Stein’s results are
counter-intuitive, even paradoxical. In response, Efron and Morris [6] presented an
alternative empirical Bayes approach to Stein estimation. Stigler [13] gave another
derivation based on a “Galtonian perspective”. Fundamental results such as Stein’s
clearly merit rederivations that increase our understanding. But surely Stein himself
did not find his results paradoxical. Is it not more likely that such claims merely
overlook arguments and remarks in his pioneering paper [10]? This article briefly
examines some of those arguments in the context of the paper’s era and of later
developments.

Sections 1 and 3 in Stein [10] presented the first of the paper’s brilliant insights.
Observed is the random n-vector X, whose distribution about the unknown mean
vector ξ is n-dimensional normal with identity covariance matrix. A fuller notation
would write Xn and ξn to express the dependence on n. We follow Stein [10] in

not so doing. The quality of an estimator ξ̂ = ξ̂(X) of ξ is measured through its
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normalized quadratic loss n−1|ξ̂−ξ|2 and through the corresponding risk Rn(ξ̂, ξ) =

n−1E|ξ̂ − ξ|2, where | · | is Euclidean norm and E is expectation under the model.
The risk of the usual unbiased estimator X is thus 1.

Suppose that limn→∞ |ξ|2/n = a < ∞. By the weak law of large numbers, the
following relations are very nearly true with high probability when the dimension
n is large:

(1.1) |n−1/2ξ|2 ≈ a, |n−1/2X − n−1/2ξ|2 ≈ 1, |n−1/2X|2 ≈ 1 + a.

Asymptotically in n, we have a right-angled triangle in which, approximately,
n−1/2X is the hypotenuse, n−1/2ξ is the base, and n−1/2X − n−1/2ξ is the vector
that joins base to hypotenuse. The angle θ between n−1/2ξ and n−1/2X is thus
determined approximately by cos(θ) ≈ a1/2/(1 + a)1/2.

In seeking estimators of ξ that are admissible or minimax, it suffices to consider
estimators equivariant under the orthogonal group on Rn.

This follows from the Hunt–Stein theorem and compactness of the orthogonal
group. By Section 3 of Stein [10], every orthogonally equivariant estimator ξ̂(X)
has the form

(1.2) ξ̂(X) = h(|X|)X
for some real-valued function h; it therefore lies along the vector X.

Under the asymptotic geometry of the previous paragraph, the orthogonal pro-
jection of n−1/2ξ onto n−1/2X defines an orthogonally equivariant oracle estimator
n−1/2ξ̂O whose loss |n−1/2ξ̂O −n−1/2ξ|2 is asymptotically minimal. For large n, ξ̂O
satisfies

(1.3) n−1/2ξ̂O = |n−1/2ξ| cos(θ)X/|X| ≈ [a/(1 + a)]n−1/2X.

Consider the asymptotic Stein estimator

(1.4) ξ̂AS = [(|n−1/2X|2 − 1)/|n−1/2X|2]X = [1− n/|X|2]X.

By (1.1) and (1.3), ξ̂AS asymptotically approximates ξ̂O for every positive finite
a. Consequently, under the asymptotics of the preceding two paragraphs and for
every positive finite a, the estimator ξ̂AS minimizes limiting loss, and hence risk,
among all orthogonally equivariant estimators. By the geometry of the situation
the minimized loss or risk is, with probability tending to one,

(1.5) n−1|ξ̂AS − ξ|2 ≈ n−1|ξ̂O − ξ|2 = |n−1/2ξ|2 sin2(θ) ≈ a/(1 + a).

This agrees with the evaluation that follows equation (8) of Stein [10].

In the Introduction to Stein [10], on p. 198, a geometrical rationale for ξ̂AS was
stated succinctly (notation adjusted): “It certainly seems more reasonable [in es-
timating ξ] to cut X down at least by a factor of [(|X |2 − n)/|X|2]−1/2 to bring
the estimate within the sphere. Actually, because of the curvature of the sphere
combined with the uncertainty of our knowledge of ξ, the best factor, to within
the approximation considered here, turns out to be (|X|2−n)/|X|2.” The phrasing
indicates full awareness of the intuitive asymptotic geometry described above. It
seems likely that few contemporaries shared this awareness.

Stein’s penetrating asymptotic insights led to extensive later investigations for
finite n. For instance, the James–Stein [8] estimator

(1.6) ξ̂S = [1− (n− 2)/|X|2]X

is a refinement of ξ̂AS that is orthogonally equivariant, improves on the risk for
n ≥ 2, and also minimizes limiting loss as n → ∞.
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2. Optimality in the fixed length submodel

The preceding section showed heuristically that the James–Stein and asymptotic
Stein estimators possess asymptotic optimality properties. These can be refined
and proved by studying orthogonally equivariant estimators of ξ in detail, a project
begun fruitfully in Section 3 of Stein [10] and continued here.

The orthogonal group is not transitive over the the full parameter space of the
N(ξ, I) model but is transitive in the fixed length submodel where |ξ| = ρ0, a fixed
known value, and only the direction vector μ = ξ/|ξ| is unknown. In this submodel,
the conditional risk, given |X|, of any orthogonally equivariant estimator (1.2) is

(2.1) n−1[h2(|X|)|X|2 − 2h(|X|)E(ξ′X||X|) + ρ20].

Let μ̂ = X/|X| denote the direction vector of X. The conditional distribution of
μ̂ given |X| is Langevin on the unit sphere in Rn, with mean direction μ = ξ/|ξ|
and dispersion parameter κ = ρ0|X| (cf. Watson [14] for n ≥ 2). Let An(z) =
In/2(z)/In/2−1(z) for z ≥ 0, where Iν(·) is the modified Bessel function of the first
kind and order ν. The choice of h that minimizes (2.1) is

(2.2) h0(|X|) = |X|−2E(ξ′X||X|) = ρ0|X|−1E(μ′μ̂||X|) = ρ0|X|−1An(ρ0|X|).

The minimum risk orthogonally equivariant estimator of ξ is therefore

(2.3) ξ̂E(ρ0) = ρ0An(ρ0|X|)μ̂, n ≥ 1.

See Beran [2] for further details and references.
The foregoing considerations, compactness of the orthogonal group, and the

Hunt–Stein theorem prove the following result:

• In the fixed length submodel where |ξ| = ρ0, the minimum risk orthogonally

equivariant estimator of ξ is ξ̂E(ρ0), defined in (2.3). This estimator is mini-
max and admissible among all estimators of ξ.

Another orthogonally equivariant estimator of ξ is

(2.4) ξ̂AE(ρ0) = (ρ20/|X|)μ̂.

This estimator will be seen to approximate ξ̂E(ρ0) for large n and to have asymp-
totically the same risk. Exact calculations using (2.1) ultimately yield the following
result:

• In the fixed length submodel where |ξ| = ρ0,

(2.5) Rn(ξ̂E(ρ0), ξ) = n−1E[ρ20 − ρ20A
2
n(ρ0|X|)]

(2.6) Rn(ξ̂AE(ρ0), ξ) = n−1E[ρ20 − 2ρ30|X|−1An(ρ0|X|) + ρ4|X|−2].

These exact risk expressions in the fixed length submodel have simple approx-
imations as n → ∞. This is to be expected from the informal asymptotics in the
Introduction. For t ≥ 0, define the function

(2.7) r(t) = t/(1 + t).

Note that limn→∞ zn = z ≥ 0 implies limn→∞ znAn(nzn) = (z2 +1/4)1/2 − 1/2.
This limit together with (2.5) and (2.6) yield:
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• In the fixed length submodel where |ξ| = ρ0 and for every finite c > 0,

(2.8) lim
n→∞ sup

ρ2
0≤nc

|Rn(ξ̂E(ρ0), ξ)− r(ρ20/n)| = 0

(2.9) lim
n→∞ sup

ρ2
0≤nc

|Rn(ξ̂AE(ρ0), ξ)− r(ρ20/n)| = 0.

The estimators ξ̂E(ρ0) and ξ̂AE(ρ0) are asymptotically equivalent in the sense
that

(2.10) lim
n→∞ sup

ρ2
0≤nc

E|ξ̂E(ρ0)− ξ̂AE(ρ0)|2 = 0.

Beran [2] gave the proof details.

3. Asymptotic minimaxity: From Stein to Pinsker

The foregoing results for the fixed length submodel have powerful implications for
estimation of ξ in the full N(ξ, I) model. The first of these is an asymptotic lower
bound on maximum risk over balls in the parameter space:

• In the full N(ξ, I) model, for every finite c > 0,

(3.1) lim inf
n→∞ inf

ξ̂
sup

|ξ|2≤nc

Rn(ξ̂, ξ) ≥ r(c),

the infimum being taken over all estimators ξ̂.

This result follows easily from preceding considerations. Indeed, as Stein [10]
pointed out, the estimation problem is invariant under the orthogonal group, which
is compact. By the Hunt–Stein theorem,

(3.2) inf
ξ̂

sup
|ξ|2≤nc

Rn(ξ̂, ξ) = inf
ξ̂I

sup
|ξ|2≤nc

Rn(ξ̂, ξ),

the infimum on the right side being taken only over orthogonally equivariant es-
timators ξ̂I . Using the first bulleted result in the previous subsection on the fixed
length model, with ρ0 = n1/2c1/2,

(3.3) inf
ξ̂I

sup
|ξ|2≤nc

Rn(ξ̂, ξ) ≥ inf
ξ̂I

sup
|ξ|2=nc

Rn(ξ̂, ξ) = sup
|ξ|2=nc

Rn[ξ̂E(n
1/2c1/2), ξ].

Because of (2.8), the right side of (3.3) converges to r(c), thereby establishing
(3.1).

This result is actually an instance of Pinkser’s [9] theorem on estimation of ξ. See
Beran and Dümbgen [5] for a relevant statement of the latter. The argument above
pursues ideas broached in Section 3 of Stein [10] rather than ideas in Pinsker’s later,
more general study of the problem through Bayes estimators.

To construct estimators that achieve the lower bound (3.1) for every c > 0, it
suffices to construct a good estimator ρ̂ of |ξ| from X and then form the adaptive
estimators

(3.4) ξ̂E(ρ̂) = ρ̂An(ρ̂|X|)μ̂, ξ̂AE(ρ̂) = (ρ̂2/|X|)μ̂.

The following local asymptotic minimax result governs estimation of |ξ|2:
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• In the full N(ξ, I) model, for every finite b > 0,

(3.5) lim
c→∞ lim inf

n→∞ inf
ρ̂

sup
||ξ|2/n−b|≤n−1/2c

n−1E(ρ̂2 − |ξ|2)2 ≥ 2 + 4b,

the infimum being taken over all estimators ρ̂. If ρ̂2 = |X|2 −n+ d or [|X|2 −
n+ d]+, where d is a constant, then

(3.6) lim
n→∞ sup

||ξ|2/n−b|≤n−1/2c

n−1E(ρ̂2 − |ξ|2)2 = 2 + 4b

for every finite c > 0.

For a proof, see Beran [2]. A related treatment for estimators of |ξ| was given by
Hasminski and Nussbaum [7].

If ρ̂2 is [|X|2 − n + 2]+, then ξ̂AE(ρ̂) coincides with the positive-part James–

Stein estimator and ξ̂E(ρ̂) is defined. The James–Stein estimator ξ̂S is ξ̂AE(ρ̂) when
ρ̂2 = |X|2−n+2. This definition works formally even when |X|2−n+2 is negative.
For such ρ̂, the asymptotic risks of the adaptive estimators in (3.4) are readily found:

• In the full N(ξ, I) model with ρ̂2 = |X|2 − n + d or [|X|2 − n + d]+, the
following holds for every finite c > 0:

(3.7) lim
n→∞ sup

|ξ|2≤nc

|Rn(ξ̂AE(ρ̂), ξ)− r(|ξ|2/n)| = 0.

Consequently,

(3.8) lim
n→∞ sup

|ξ|2≤nc

Rn(ξ̂AE(ρ̂), ξ) = r(c),

for every finite c > 0. Hence, ξ̂AE(ρ̂) achieves the asymptotic minimax bound

(3.1). The same conclusions hold for ξ̂E(ρ̂) when ρ̂2 = [|X|2 − n+ d]+.

This result entails, in particular, that the James–Stein estimator ξ̂S and the
positive-part James–Stein estimator are both asymptotically minimax for ξ on balls
about the origin. Such is not the case for the classical estimator X because

(3.9) lim
n→∞ sup

|ξ|2≤nc

Rn(X, ξ) = 1 > r(c)

for every c > 0.

4. Stein confidence sets

Remark (viii) on p. 205 of Stein [10] briefly stated:“Nevertheless it seems clear that
we shall obtain confidence sets which are appreciably smaller geometrically than
the usual disks centered at the sample mean vector.” A method for constructing
such confidence balls was described in the penultimate paragraph of Stein [12], in
connection with a general conjecture. We describe how, asymptotically in n, Stein’s
method yields geometrically smaller confidence sets for ξ that are centered at the
James–Stein estimator ξ̂S .

Consider confidence balls for ξ centered at estimators ξ̂ = ξ̂(X),

(4.1) C(ξ̂, d̂) = {x : |ξ̂ − x| ≤ d̂}.
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The radius d̂ = d̂(X) is such that the coverage probability P(C(ξ̂, d̂) � ξ) under

the model is exactly or asymptotically α. The geometrical size of C(ξ̂, d̂), viewed
as a set-valued estimator of ξ, is measured by the geometrical risk

(4.2) Gn(C(ξ̂, d̂), ξ) = n−1/2E sup
x∈C(ξ̂,d̂)

|x− ξ| = n−1/2E|ξ̂ − ξ|+ n−1/2E(d̂).

This geometrical risk extends to confidence sets the quadratic risk criterion that
supports Stein point estimation.

The classical confidence ball for ξ is

(4.3) CC = C(X,χ−1
n (α)),

where the square of χ−1
n (α) is the α-th quantile of the chi-squared distribution with

n degrees of freedom. CC is a ball centered at X whose squared radius for large n
is approximately n+(2n)1/2Φ−1(α). Here Φ−1 denotes the quantile function of the
standard normal distribution. From this and (4.2):

• For every α ∈ (0, 1) and every c > 0,

(4.4) P(CC � ξ) = α for every ξ.

(4.5) lim
n→∞ sup

|ξ|2≤nc

|Gn(CC , ξ)− 2| = 0.

Stein confidence balls for ξ have the form (4.1), with the James–Stein estimator

ξ̂S as center. To construct suitable critical values d̂ in this case, consider the root

(4.6) Dn(X, ξ) = n−1/2{|ξ̂S − ξ|2 − [n− (n− 2)2/|X|2]},

which compares the loss of the James–Stein estimator with an unbiased estimator
of its risk. By orthogonal invariance, the distribution of Dn(X, ξ) depends on ξ only
through |ξ|2 and can thus be written asHn(|ξ|2). Let⇒ designate weak convergence
of distributions. The triangular array central limit theorem implies:

• Suppose that limn→∞ |ξ|2/n = a < ∞. Then

(4.7) Hn(|ξ|2) ⇒ N(0, σ2(a)),

where

(4.8) σ2(t) = 2− 4t/(1 + t)2 ≥ 1.

It follows from (3.6) that ρ̂2 = [|X|2−n+2]+ is a good estimator of |ξ|2 such that
limn→∞ sup|ξ|2≤nc P[|ρ̂2/n − |ξ|2/n| > ε] = 0 for every c > 0 and ε > 0. This and

(4.7) motivate approximatingHn(|ξ|2) byN(0, σ2(ρ̂2/n)). The latter approximation
and the definition (4.6) of Dn(X, ξ) suggest the asymptotic Stein confidence ball

(4.9) CSA = C(ξ̂S , d̂A(α)),

where

(4.10) d̂A(α) = [n− (n− 2)2/|X|2 + n1/2σ2(ρ̂2/n)Φ−1(α)]
1/2
+ .

Asymptotic analysis establishes
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• For every α ∈ (0, 1) and every c > 0,

(4.11) lim
n→∞ sup

|ξ|2≤nc

|P(CSA � ξ)− α| = 0

and

(4.12) lim
n→∞ sup

|ξ|2≤nc

|Gn(CSA, ξ)− rS(|ξ|2/n)| = 0,

where

(4.13) rSA(t) = 2[t/(1 + t)]1/2 < 2.

Like the classical confidence ball centered at X, the Stein confidence ball CSA

entered at ξ̂S has correct asymptotic coverage probability α, uniformly over large
compact balls about the shrinkage point ξ = 0. Comparing (4.12) with (4.5), the
geometrical risk of CSA is asymptotically smaller than that of CC , particularly
when ξ is near 0.

To obtain valid bootstrap critical values for Stein confidence sets requires care
because the naive bootstrap fails. Define the constrained length estimator of ξ by

(4.14) ξ̂CL = [1− (n− 2)/|X|2]1/2+ X.

The triangular array central limit theorem implies:

• Suppose that limn→∞ |ξ|2/n = a < ∞. Then, for σ2 defined in (4.8)

(4.15) Hn(|ξ̂CL|2) ⇒ N(0, σ2(a)),

while

(4.16) Hn(|X|2) ⇒ N(0, σ2(1 + a)), Hn(|ξ̂S |2) ⇒ N(0, σ2(a2/(1 + a))),

the weak convergences all being in probability.

See Beran [1] for proof details.

In view of (4.7), the bootstrap distribution estimator ĤB = Hn(|ξ̂CL|2) converges
weakly in probability to Hn(|ξ|2), as desired, while the naive bootstrap distribution

estimators Hn(|X|2) and Hn(|ξ̂S |)2 do not. Let d̂B(α) be the α-th quantile of ĤB .
Conclusions (4.11) and (4.12) continue to hold for the bootstrap Stein confidence

ball CSB = C(ξ̂S , d̂B(α)). Further analysis reveals that both the asymptotic and
bootstrap forms of the Stein confidence ball have coverage errors of order O(n−1/2)
and that coverage accuracy of order O(n−1 is achieved by a prepivoted bootstrap
construction of the confidence ball radius. See Beran [1] for details.

5. Multiple Stein shrinkage

The James–Stein estimator is often viewed as a curiosity of little practical use. The
semifinal paragraph on p. 198 of Stein [10] addressed this point and showed how to
resolve it: “A simple way to obtain an estimator which is better for most practical
purposes is to represent the parameter space . . . as an orthogonal direct sum of
two or more subspaces, also of large dimension and apply spherically symmetric
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estimators separately in each.” The geometric asymptotic reasoning in Stein’s paper
extends readily to multiple shrinkage.

Let O = [O1|O2| . . . |Os] be a specified n×n orthogonal matrix partitioned into s
submatrices {Ok : 1 ≤ k ≤ s} such that Ok is n×nk, each nk ≥ 1, and

∑s
k=1 nk = n.

Define Pk = OkO
′
k. The {Pk : 1 ≤ k ≤ s} are orthogonal projections into Rn, are

mutually orthogonal, and sum to In. The mean vector ξ and the data vector X can
then be expressed as sums, ξ =

∑s
k=1 Pkξ and X =

∑s
k=1 PkX, the summands in

each case being mutually orthogonal.
Consider the candidate multiple shrinkage estimators

(5.1) ξ̂(a) =

s∑

k=1

akPkX, a ∈ [0, 1]s,

where a = (a1, a2, . . . , as). These form the closure of the class of candidate penalized
least squares estimators

(5.2) argmin
ξ∈Rn

[|X − ξ|2 +
s∑

k=1

λk|Pkξ|2], λk ≥ 0, 1 ≤ k ≤ s.

Let τk = n−1 tr(Pk) = nk/n and let wk = n−1|Pkξ|2. Then, the normalized

quadratic risk n−1E|ξ̂(a)− ξ|2 is

(5.3) R(ξ̂(a), ξ) =

s∑

k=1

r(ak, τk, wk),

where r(ak, τk, wk) = (ak − ãk)
2(τk + wk) + τkãk, with ãk = wk(τk + wk)

−1. Let
ã = (ã1, ã2, . . . , ãs). The oracle multiple shrinkage estimator that minimizes risk is

clearly ξ̃MS = ξ̂(ã) and the oracle risk is

(5.4) R(ξ̃MS) =
s∑

k=1

τkwk(τk + wk)
−1.

Unfortunately, ξ̃MS depends on the unknown {wk}.
Let ŵk = w̆+, where w̆k = p−1|PkX|2−τk , and w̆+ is the positive part of w̆. Note

that ŵk is non-negative like wk and satisfies the inequality |ŵk − wk| ≤ |w̆k − wk|.
Replacing wk with ŵk in the oracle estimator just described yields the multiple

shrinkage estimator

(5.5) ξ̂MS =

s∑

k=1

ŵk(τk + ŵk)
−1PkX.

Plugging {ŵk} into (5.4) also yields an estimator for the risk of ξ̂MS ,

(5.6) R̂(ξ̂MS) =
s∑

k=1

τkŵk(τk + ŵk)
−1.

Asymptotically in n, the following holds:

• For every finite c > 0 and fixed integer s,

(5.7) lim
n→∞ sup

n−1|ξ|2≤c

|R(ξ̂MS , ξ)−R(ξ̃MS , ξ)| = 0.
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Moreover, for V equal to either the loss n−1|ξ̂MS − ξ|2 or the risk R(ξ̂MS , ξ),

(5.8) lim
n→∞ sup

n−1|ξ|2≤c

E|R̂(ξ̂MS)− V | = 0.

Thus, the risk of the multiple shrinkage estimator ξ̂MS converges to the best risk
achievable over the candidate class; and its plug-in risk estimator converges to its
actual risk or loss. Stein [11] improved on ξ̂MS through an exact risk analysis for
finite n and described an application to estimation of means in ANOVA models.
The foregoing development is extended in Beran [4] to multiple affine shrinkage of
a data matrix X, with first application to MANOVA models.

A much larger class of candidate estimators is generated by including, for each
value of n, every possible selection of the column dimensions n1, n2, . . . , ns. Rede-
fine ξ̂MS and ξ̃MS to minimize, respectively, estimated risk and risk over this larger
class of candidate estimators. Convergences (5.7) and (5.8) continue to hold, by ap-
plying the analysis in Beran and Dümbgen ([5], p. 1832) of bounded total variation
shrinkage.

6. Adaptive symmetric linear estimators

Larger than the class of candidate multiple shrinkage estimators is the class of
candidate symmetric linear estimators

(6.1) ξ̂(A(t)) = A(t)X, t ∈ T ,

where {A(t) : t ∈ T } is a family of n× n positive semidefinite matrices indexed by
t. This class of estimators includes penalized least squares estimators with multiple
quadratic penalties, running weighted means, nested submodel fits in regression,
and more.

Let {λk(t) : 1 ≤ k ≤ s} denote the distinct eigenvalues of A(t) and let {Pk(t) : 1 ≤
k ≤ s} denote the associated eigenprojections. Here s ≤ n may depend on n. Then

(6.2) ξ̂(A(t)) =

s∑

k=1

λk(t)Pk(t)X, t ∈ T

represents ξ̂(A(t)) as a candidate multiple shrinkage estimator.
If the index set T is not too large, in the covering number sense of modern

empirical process theory, it may be possible to find t̂ = t̂(X) ∈ T such that the

risk of the adaptive estimator ξ̂(A(t̂)) converges to the smallest risk achievable
over the candidate class (6.2) as n tends to infinity. See Beran and Dümbgen [5]
and Beran [3] for instances of such asymptotics. Such results link the profound
insights and results in Stein [10] with modern theory for regularized estimators of
high-dimensional parameters—estimators that have proved their value in practice.

7. Envoi

Gauss offered two brief justifications for the method of least squares. The first was
what we now call the maximum likelihood argument. The second, mentioned years
later in a letter to Bessel, was the concept of risk and the start of what we now call
the Gauss–Markov theorem.
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Stein’s prophetic work [10] revealed that neither maximum likelihood estima-
tors nor unbiased estimators necessarily have low risk when the dimension of the
parameter space is not small. Despite the wonderfully transparent asymptotic ge-
ometry in his paper—geometry that extends readily to useful multiple shrinkage
estimators and to the construction of confidence balls around these—many found
his insights unbearable and labelled his findings paradoxical. Few contemporaries
appear to have read his paper [10] carefully. Modern regularization estimators that
reduce risk through beneficial multiple shrinkage have made manifest the funda-
mental nature of Stein’s achievement.
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and M. Hušková, eds.) 275–283. Elsevier, New York.

[8] James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proceed-
ings of the Fourth Berkeley Symposium on Mathematical Statistics and Proba-
bility (J. Neyman, ed.) 1 361–380. University of California Press.

[9] Pinsker, M. S. (1980). Optimal filtration of square-integrable signals in Gaus-
sian white noise. Problems of Information Transmission 16 120–133.

[10] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution. In Proceedings of the Third Berkeley Sympo-
sium on Mathematical Statistics and Probability (J. Neyman, ed.) 1 197–206.
University of California Press.

[11] Stein, C. (1966). An approach to the recovery of inter-block information
in balanced incomplete block designs. In Festschrift for Jerzy Neyman (F. N.
David, ed.) 351–364. Wiley, New York.

[12] Stein, C. (1981) Estimation of the mean of a multivariate normal distribution.
Annals of Statistics. 9 1135–1151.

[13] Stigler, S. M. (1990). A Galtonian perspective on shrinkage estimators.
Statistical Science 5 147–155.

[14] Watson, G. S. (1983). Statistics on Spheres. Wiley-Interscience, New York.


	Introduction
	Optimality in the fixed length submodel
	Asymptotic minimaxity: From Stein to Pinsker
	Stein confidence sets
	Multiple Stein shrinkage
	Adaptive symmetric linear estimators
	Envoi
	References

