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Kendall’s tau in high-dimensional

genomic parsimony
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Abstract: High-dimensional data models, often with low sample size, abound
in many interdisciplinary studies, genomics and large biological systems being
most noteworthy. The conventional assumption of multinormality or linear-
ity of regression may not be plausible for such models which are likely to be
statistically complex due to a large number of parameters as well as various un-
derlying restraints. As such, parametric approaches may not be very effective.
Anything beyond parametrics, albeit, having increased scope and robustness
perspectives, may generally be baffled by the low sample size and hence un-
able to give reasonable margins of errors. Kendall’s tau statistic is exploited
in this context with emphasis on dimensional rather than sample size asymp-
totics. The Chen–Stein theorem has been thoroughly appraised in this study.
Applications of these findings in some microarray data models are illustrated.
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1. Introduction

The past three decades have witnessed a phenomenal growth of research litera-
ture on statistical methods for large dimensional data models. Such models abound
in various interdisciplinary fields, especially in the evolving field of genomics and
bioinformatics. Knowledge discovery and data mining (KDDM) or statistical learn-
ing tools are usually advocated for such high dimensional data models, often on
primarily computational or heuristic justifications. The curse of dimensionality is
so overwhelming that classical likelihood (principle) based statistical inference tools,
baffled with an excessive number of parameters, may not be robust or efficient. Con-
ventional assumptions of multinormality of errors and linearity of regression models
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may not be generally tenable in such contexts. Moreover, having a large number
of coordinate variables, the assumption of their stochastic independence may not
be realistic in a majority of cases. On top of that, at least a part of the response
variables may be discrete or even purely qualitative in nature; often, the categorical
responses may not reveal any (partial) ordering. In that sense, discrete multivariate
analysis may appear to be more appropriate than conventional multinormal model
based analysis. Even for multinormal models, the high-dimensionality may demand
a far larger sample size in order to implement a full likelihood based asymptotic
analysis. That is, we need the conventional n � K environment for drawing appro-
priate statistical conclusions with reasonable precision.

Typically, in such high-dimensional models, one encounters a K � n environ-
ment, where K is the dimension of the data and n is the sample size. In such high-
diensional low sample size, HDLSS, models, effective dimension reduction may be
a challenging statistical task, usually beyond the scope of KDDM. For example, in
neuronal spike train models, there are literally tens of thousands of neurons (nerve
cells), and in the presence of external stimuli, the spike trains for any observable
subset of neurons exhibit a high-degree of nonstationarity. Further, recording of
such spike trains in a large number of nerve cells may be invasive to the brain
functioning due to the destructive nature of recording ([16], Ch. 3). Essentially, we
have a very high dimensional counting process. Doubly stochastic Poisson processes
have been considered in the literature, albeit without much claim of optimal reso-
lutions. In magnetic resonance imaging, MRI, there could be tens of thousands of
microscopic units producing an enormously high dimensional spatial data model.
More complexities may arise in case of (functional) fMRI models. For such HDLSS
models, parametric asymptotics may not have adequate scope or good statistical
interpretation.

The transition from conventional normal theory to nonparametric linear models
has been well fortified along with the development of nonparametric or robust
statistical methods based on R- statistics (ranks), M -statistics (maximization) and
linear combinations of order statistics or L-statistics; see, for example, [8] where
other pertinent references have been extensively cited. In a more general setup,
nonparametric regression functionals have been formulated wherein the linearity of
regression or a specific nonlinear form are not assumed to hold.

In the context of testing monotonicity of nonparametric regression, without as-
suming a linear or any specific nonlinear form, Ghosal et al. [5] considered suitable
U -processes based on a locally smoothed Kendall’s tau statistic. They provided gen-
eral asymptotics for such locally smoothed Kendall’s tau processes when both the
independent and dependent variates are stochastic, and illustrated their effective
use in the postulated hypothesis testing problem. Such local versions of Kendall’s
tau statistics have simple statistical interpretation, albeit, in view of possibly slower
rate of convergence, the impact of large sample size is apparent in their analysis.
In the contemplated bioinformatics area, as we shall see, the HDLSS scenario calls
for alternative approaches, and some of these will be explored in this study.

In a simple regression setup, the Theil-Sen (point as well as interval) estimates of
the regression slope based on the Kendall tau statistic [15], have simple forms, and
are computationally tractable and statistically robust. Another advantage of the
Kendall tau statistic is its adaptability for count data as well as latent-effect models.
Further, a test for the null hypothesis of no regression based on the Kendall tau
statistic (being distribution-free under the null hypothesis of invariance) remains
valid and efficient for such complex models. Our contemplated models, unlike [5],
entail a high dimensional data with relatively (and often inadequately) smaller
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sample size, i.e., the HDLSS (K � n) environment. As we shall see in the next
section, there may not be a genuine temporal pattern. In addition, there may be
other complications arising from lack of spatial-compactness, spatial homogeneity
and other spatial dependence patterns.

For better motivation, in Section 2, an illustration is made with a microarray data
model where HDLSS models typically arise. Section 3 deals with the appropriateness
of statistical modeling and analysis based on a pseudo-marginal approach incorpo-
rating coordinatewise construction of the Kendall tau statistic, in such K � n
environments. Section 4 is devoted to the dimensional asymptotics for the Kendall
tau process in such HDLSS models where there are two basic problems : (i) group
divergence, and (ii) classification of genes into disease and nondisease types. For
the first problem, a pseudo-marginal approach based on the Hamming distance
has been explored in [18] while in the latter context, multiple hypotheses testing
(MHT) problems in HDLSS setups arise in a different perspective and call for some
alternative novel tools for valid and efficient statistical appraisals. Motivated by
these perspectives in such HDLSS models, some applications of the Chen–Stein
[3] theorem in such K � n environments are presented in the last section. These
generalizations cover both the MHT and the gene-environment interaction testing
problems.

2. An illustrative data model

We consider a genomic model arising in microarray data analysis as an illustration.
The microarray technology allows simultaneous studies of thousands of genes, K,
possibly differentially expressed under diverse biological/experimental setups, with
only a few, n, arrays. We may refer to Lobenhofer et al. [11] where for a set of 1900
genes, arranged in rows, the gene expressions were recorded at 6 time points, with
8 observations at each time point. Thus 1900 = K � n = 48. The gene-expression
levels are measured by their color intensity (or luminosity) as a quantitative (non-
negative) variable, either on the (0, 1) or 0–100 per cent scale, or (based on the
log-scale) on the real line �. A gene associated (causally or statistically) with a tar-
get disease is known as a disease gene, DG, while the others as nondisease genes,
NDG. Gene expression levels under different environments cast light on plausible
gene-environment interactions (or associations) so that if the arrays are properly
designed, mapping disease genes may be facilitated with such microarray studies.
One of the main issues is identifying differentially expressed genes among thousands
of genes, tested simultaneously, across experimental conditions. Typically, for a tar-
get disease, there are only a few DG while the NDG comprise the vast majority.
A NDG is expected to have a low gene expression level while a DG is expected to
have generally higher expression levels. Thus, a natural stochastic ordering of gene
expression levels of the DG with varying disease severity is plausible while the NDG
expression levels are expected to be stochastically unaffected by such disease level
differentials.

Microarray data go thorough a lot of standardization and normalization so that
conventional simple models, such as the classical MANOVA models, may rarely be
totally adaptable. If the arrays are indexed by an explanatory or design variate
(t) that possesses an ordering (not necessarily linear), then the stochastic ordering
could be exploited through suitable nonparametric techniques. The main difficulty
in modeling and statistically analyzing microarray data stems from the high di-
mensionality of the genes compared to the number of arrays. While the different
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arrays may sometimes be taken to be at least statistically independent, the genes
may not. Moreover, not much is known about the spatial topology of the genes
or their genetic distances. There is another factor that merits our attention. The
gene expression levels for the different genes in an array are neither expected to
be stochastically independent nor (marginally) identically distributed. Sans such
an i.i.d. clause, standard parametrics typically adaptable for fMRI models (albeit
mostly done in a Bayesian coating) may encounter roadblocks for fruitful adapta-
tion in microarray data models. Thus, structurally, such data models are different
from those usually encountered in nonparametric functional regression models. For
this reason, a pseudo-marginal approach is highlighted here. This approach exploits
the marginal nonparametrics fully and renders some useful modeling and analysis
convenience.

3. Some HDLSS formulations

Motivated by microarray data models introduced in Section 2, we consider here a
set of n arrays (sample observations) where there is a design variate ti associated
with the ith array, for i = 1, . . . , n. Without loss of generality, we assume the ti are
ordered, i.e.,

(3.1) t1 ≤ t2 ≤ · · · ≤ tn,

with at least one strict inequality. We do not, however, impose any linear or spe-
cific parametric ordering of these design variates. The multisample (ordered alter-
native) model is a particular case where n can be partitioned into I subsets of
sizes n1, . . . , nI such that within each subgroup, the ti are the same while they
are ordered over the I different subsets. For the ith array, corresponding to the K
genes (positions), we have a gene expression level denoted by Xik, k = 1, . . . , K,
so that we have K-vectors Xi = (Xi1, . . . , XiK)′, for i = 1, . . . , n. The joint distri-
bution function of Xi is denoted by Fi(x), x ∈ �K . Further, for the kth gene in
the ith array, i.e., Xik, the marginal distribution is denoted by Fik(x), x ∈ �, for
k = 1, . . . , K; i = 1, . . . , n. For a given i, the Fik, k = 1, . . . ,K may not be gener-
ally the same, and moreover, the Xik, k = 1, . . . , K may not be all stochastically
independent.

If a gene k is NDG and the ti reflect the variability of the disease level, then the
Fik, i = 1, . . . , n should be the same. On the other hand, for a DG k, for i < i′, Xik

should be stochastically smaller than Xi′k in the sense that the Fik, i = 1, . . . , n
should have the ordering

(3.2) F1k(x) ≥ F2k(x) ≥ · · · ≥ Fnk(x),∀ x ∈ �.

Therefore, we could force a characteriation of DG and NDG based on the following
stochastic ordering: For a NDG k, the Fik, i = 1, . . . , n are all the same, this being
denoted by the null hypothesis H0k, while for a DG k, the stochastic ordering in (3.2)
holds which we denote by H1k, for k = 1, . . . ,K. In this marginal formulation, we
have a set of K hypotheses corresponding to the K genes, and whatever appropriate
test statistic (say Tnk) we use for testing H0k vs. H1k, these statistics may not
be, generally, stochastically independent. The basic problem is therefore to test
simultaneously for

(3.3) H0 =
K⋂

k=1

H0k vs H1 =
K⋃

k=1

H1k,
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without ignoring possible dependence of the test statistics for the component hy-
potheses testing H0k vs H1k, for k = 1, . . . , K. This makes it appealing to follow
the general guidelines of the Roy [13] union-intersection principle (UIP), albeit in
a marginalization (i.e., adapting a finite union and finite intersection scheme), and
thus permitting a more general framework so as to allow simultaneous testing and
classification into DG / NDG groups. In a very parametric setup, some order re-
stricted inference problems have been considered by [12]. However, in our setup,
such normality based parametric models may not be very appropriate.

Our approach is based on the classical Kendall tau statistics for each of the K
genes and the incorporation of these (possibly dependent) marginal statistics in a
composite scheme for classification. For the kth gene, based on the n observations
Xik, i = 1, . . . , n, and the tagging variables t1, . . . , tn, we define the Kendall tau
statistic as

(3.4) Tnk =
(

n

2

)−1 ∑
1≤i<i′≤n

sign(Xi′k − Xik)sign(ti′ − ti),

for k = 1, . . . , K. Conventionally, we take sign(0) = 0. Note that Tnk is a (gen-
eralised) U -statistic of degree 2 [7]. Further, note that by (3.1), we may set S =
{(i, i′) : ti < ti′ ; 1 ≤ i < i′ ≤ n} and let N be the cardinality of the set S. Then by
(3.1), n − 1 ≤ N ≤

(
n
2

)
. Moreover, we may rewrite Tnk as

(3.5) Tnk =
(

n

2

)−1 ∑
S

sign(Xi′k − Xik), k = 1, . . . , K,

where S depends on the ordering of the tj and therefore remains the same for every
k = 1, . . . ,K. Note further that whenever N <

(
n
2

)
, the range of variation of Tnk is

( −N/
(
n
2

)
, N/

(
n
2

)
) which is contained in the interval (−1, 1). That is why we shall

find it convenient to take the modified or rescaled Kendall tau as

(3.6) T o
nk = N−1

∑
S

sign(Xi′k − Xik),

whose range is exactly (−1, 1), albeit the distribution being still discrete.
Note that for any k = 1, . . . , K, under H0k, for every i �= i′, the difference Xi′k −

Xik is symmetrically distributed around 0, and hence, E0k{sign(Xi′k − Xik)} = 0
so that

(3.7) E0k{Tnk} = E0k{T o
nk} = 0, ∀ k = 1, . . . ,K.

Further, the marginal distribution of Tnk under H0k is generated by the n! equally
likely permutations of the Xik among themselves. Therefore when all the Fik are
continuous, ties among the observations being negligible with probability 1, Tnk

(or T o
nk) is distribution-free under H0k. This distribution may depend on the set S

but that being the same for all k, we conclude that under H0 in (3.3), marginally
each T o

nk is distribution-free and these K statistics all have the same marginal
distribution. If all the ti were stochastic and continuous then N =

(
n
2

)
and we will

have

(3.8) Var0{Tnk} = 2(2n + 5)/{9n(n − 1)}.

On the other hand, in general for N ≤
(
n
2

)
, the ti are not distinct and may be even

nonstochastic, and hence, the variance is equal to

(3.9) Var0{T o
nk} = N−2{(2/3)(N1 − N2) + N} = ν2

n, say,
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where N1 is the cardinality of the set {(i, i′), (i, i′′) : ti < ti′ , ti < ti′′ , ti′ �= ti′′}
and N2 is the cardinality of the set {(i, i′), (i′′, i) : ti > ti′′ �= ti′}. For small values
of n and given (3.1), one can enumerate S and obtain the exact distribution of
T o

nk under H0k. If n is large, the standardized form of the statistic, i.e., T o
nk/νn has

closely a standard normal distribution. In our setup, perhaps the exact permutation
distribution plays a greater role and this will be illustrated later on.

The behavior of T o
nk under alternatives would naturally depend on the stochastic

ordering in (3.2) and these statistics will not be exact distribution-free nor possibly
have identical marginal laws. Nevertheless, under (3.2), for every i < i′, Xi′k −Xik

has a distribution tilted to the right, so that

(3.10) E{T o
nk | H1k } ≥ 0, ∀ k = 1, . . . , K.

This motivates us to use tests based on the marginal statistics T o
nk using the right

hand side critical region, or equivalently the right-hand sided p-values. Recall that
the distribution of each T o

nk, at least for n not too large, is discrete, but that is not
going to be of any particular concern. A greater concern is to incorporate possible
stochastic dependence among the K statistics T o

nk, k = 1, . . . , K (even under the
null hypothesis) and their possible heterogeneity when some of the H1k are true.
A basic problem is to formulate suitable multiple hypothesis testing procedures to
assess which hypotheses are to be rejected subject to a suitably defined Type I error
rate. This is elaborated in the next section.

4. Dimensional asymptotics and the union intersection test

Although independence across microarrays may be assumed, their i.d. structure
may be vitiated if the arrays relate to different biological or experimental setups.
Moreover, for different genes, the gene expression (marginal) distributions are likely
to be different when there is gene-environment interaction. Taking into account such
plausible inter-gene stochastic dependence and heterogeneity, we need to prescribe
statistical modeling and analysis tools. This will be accomplished through dimen-
sional asymptotics where K is made to increase indefinitely while n, being small
compared to K, may or may not be adequately large.

In view of (3.3), it is tempting to appeal to the union-intersection principle [13],
or UIP, to construct suitable test statistics which will cover the genome-wise picture
in a reasonable way. Towards this, we may note that as under H0 (i.e., H0k,∀k),
marginally each T o

nk has the same distribution (which does not depend on the
underlying Fik ). Thus, corresponding to any c : −1 ≤ c ≤ 1, the tail probability
P0{T o

nk > c} is the same for all k and this can be evaluated by using the exact
permutation distribution generated by the n! permutations of the Xik, 1 ≤ i ≤ n.
The UIP then leads to the following union-intersection test, UIT, statistic:

(4.1) T ∗o
n = max{T o

nk : 1 ≤ k ≤ K},

where the test function is given by φ(T ∗0
n ) = 1, γ, or 0, accordingly as T ∗o

n is >, =
or < c and γ : (0 ≤ γ ≤ 1) is so chosen that E0{φ(T ∗o

n )} = α, the preassigned level
of significance. Note that for n not adequately large, the null distribution of T o

nk

is essentially discrete and hence this usual randomization test function is aimed to
take care of this problem.

The crux of the problem is therefore to determine such a critical level cα. The
joint distribution of the T o

nk, 1 ≤ k ≤ K, even under the null hypothesis H0, depends
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on the underlying K-dimensional distribution Fi, and hence, in general will not be
distribution-free. Thus, the usual technique of finding out the critical level of T ∗o

n

from this joint distribution may be intractable.
One possibility is to incorporate the fact that under H0, the K-vectors Xi, i =

1, . . . , n, are i.i.d. and hence their joint distribution remains invariant under any per-
mutation of these vectors among themselves. Thereby we can evaluate such critical
values by an to appeal to the permutation distribution generated by the n! equally
likely permutations of the K-vectors {Xi} among themselves. This permutation
law generates the (unconditional null) marginal laws of the T o

nk, and provides some
conditional versions of their joint distributions of various orders. Since this per-
mutation law is a conditional law (given the collection of all these K-vectors), the
critical values obtained in this manner are themselves stochastic, thus introducing
another layer of variation. Nevertheless, it provides a conditionally distribution-free
test. One discouraging feature of this permutation approach is that the permuta-
tion invariance does not hold under the alternative hypothesis, and hence critical
levels computed from the permutation law involving an observed set of {Xi} may
be sensitive to the data conformity to the null situation.

If we assume that all the T o
nk are stochastically independent, then we have for

any c, −1 ≤ c ≤ 1, under H0,

(4.2) P0{T ∗o
n ≤ c} = [P0{T o

n1 ≤ c}]K ,

so that the distribution-free nature of the Tnk under the null hypothesis provides the
access to the computation of the test function and the critical level. If n is at least
moderately large, in view of the asymptotic normality of T o

nk/νn, the randomization
test function may be replaced by a conventional normal theory test function, where
for the individual tests, a significance level α∗ is so chosen that

(4.3) α = 1 − (1 − α∗)K .

Generally, if we let α∗ = (α/K), then the size of the UIT is ≤ α no matter whether
the T o

nk are stochastically independent or not. There is, therefore, a certain amount
of conservativeness in this specification.

In passing, we may remark that by the classical asymptotics on Hoeffding’s
U -statistics, any pair (T o

nk, T o
nq), with k �= q, is a bivariate U -statistic, for α∗ suf-

ficiently small, so using the bivariate extreme statistics results (viz., [19]), we can
claim that the events {T o

nk > cα∗} and {T o
nq > cα∗} will be asymptotically (as

K → ∞) independent so that P0{T o
nk > cα∗ , T o

nq > cα∗} can be well approximated
by [P0{T o

nk > cα∗}]2. In a similar manner, the third order probability terms can
be handled, and the Bonferroni bound retaining the second and third order proba-
bilities provide a good approximation : α = Kα∗ −

(
K
2

)
α∗2 +

(
K
3

)
α∗3 + o(α∗3). As

a result, α∗ = (α/K) provides a good approximation to the level of significance.
Therefore, for the UIT, when K is large, even when the genes are not stochastically
independent, letting α∗ = (α/K) we may consider the following multiple hypothesis
testing scheme:

For a chosen α∗ = K−1α, obtain the marginal distributional critical level cα∗ ,
and reject those H0k; k ∈ {1, . . . , K} for which the corresponding T o

nk exceeds
cα∗ .

A randomization test function can be prescribed when n is not adequately large.
Thus, the UIT provides a bound on the family wise error rate, FWER. If we take
α∗ ∼ α/K and K is large, we need to make sure that n is so large that ν−1

n cα∗ <
1; this will imply that if we are to use the permutation null distribution of any



258 P. K. Sen

T o
nk, being attracted by the permutational central limit theorem, it has a nonzero

mass point beyond cα∗/νn. If ν2
n = O(n−1), as is typically the case, then cα∗ =

O(n−1/2
√
−2 log α∗) so that log K = O(n) and this does not appear to be a serious

concern in real life applications. For example, if we have three groups of arrays,
say within each group there are 5 arrays, the total number of partitioning 15 units
into 3 subsets of 5 each is equal to (15)!/(5!)3 and this is so large (756,756) that
even if K is as large as 30,000, it would not be a problem. However, for large K,
the UIT, like the classical likelihood ratio test, will have little power, and hence
alternative test procedures need to be explored. This illustrates the important role
of the design of the study and the number of arrays required in trying to include a
very large K.

Roy’s UIT can be adapted by exploring the information contained in the ordered
p-values. If the T o

nk are all stochastically independent (and as they are identically
distributed under the null hypothesis H0) then one can adapt Simes’ [20] theorem
(which is a restatement of the classical Ballot theorem (viz., [9]) introduced some
twenty years earlier). If P1, . . . , PK are the p-values for the K marginal tests and
PK:1 ≤ · · · ≤ PK:K are the corresponding order statistics, then assuming that under
H0 the Pk have a uniform (0, 1) distribution (i.e., tacitly assuming that the T o

nk/νn

have a continuous distribution under H0), Simes’ theorem asserts that for every
α : 0 < α < 1,

(4.4) P{PK:k > kα/K, ∀ k = 1, . . . ,K |H0} = 1 − α.

Suppose now we define the anti-ranks S1, . . . , SK by letting

(4.5) PK:k = PSk
, k = 1, . . . , K,

where again ties among the ranks are neglected under the assumption of continuity
of the distribution of the Pk. Whereas Simes’ theorem provides a test of the overall
hypothesis, Hochberg [6] derived a step-up procedure for multiple hypotheses testing
based on the following : For every α ∈ (0, 1),

(4.6) P{PK:k ≥ α/(K − k + 1), ∀ k = 1, . . . ,K |H0} = 1 − α.

Benjamini and Hochberg [2] considered a step-up procedure based on the Simes
theorem. Their multiple hypothesis testing procedure is the following:

Reject those null hypotheses {H0Sk
} for which PSk

≤ kα/K, k = 1, . . . , K, and
accept those null hypotheses in the complementary set.
For some related developments in a parametric setup, we refer to [2], [4], [10], [14]
and [21], among others.

These developments paved the way for other measures of error rates which are
more adaptable in the K � n environment. Some of these will be discussed later
on. There are two basic concerns that can be voiced in this respect. The whole setup
is based on the assumed uniform distribution of the Pk under the null hypothesis.
However, if we look into the statistics T o

nk in our setup, we may note that though
they have a specified distribution, the latter is a discrete one defined over the in-
terval (−1, 1). Noting that there are a set of discrete mass points, ties among the
T o

nk/νn (and hence Pk) can not be neglected with probability one, and moreover,
the Pk will have a set of probability mass points on [0, 1] with non-zero masses.
Thus, technically the above probability results are not strictly usable (unless n is
indefinitely large, contradicting the K � n environment). Secondly, as was stressed
earlier, the T o

nk across the set of genes are generally not stochastically independent.
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Controlling the FWER when K is very large may generally entail undue conserv-
ativeness of multiple hypotheses testing schemes. On the other hand, using a level
of significance for each marginal hypothesis testing problem may lead to a large
FWER.

In the context of microarrays suppose that there are K1 disease genes (DG) and
K0 = K−K1 NDG; thus, we have a set of K0 null hypotheses which are true and a
complementary set of K1 hypotheses which are not true. Suppose that based on our
multiple hypotheses testing procedure, we accept m0 out of K0 true null hypothesis
so that the remaining K0 − m0 = m1 true null hypotheses are rejected. Similarly,
among the K1 not true null hypotheses, l0 are accepted as true and l1 accepted in
favor of the alternative. Thus, a totality of R = m1 + l1 hypotheses are rejected
while K − R are accepted. Mind that though we observe R, through our chosen
multiple hypotheses testing procedure, individually m1, l1 are not observable; all
these (R, l1, m1) are stochastic in nature. A natural modification of the FWER, to
suit such K � n environments, is the per-comparison error rate (PCER) defined
as

(4.7) PCER = E(m1)/K,

which is the expected proportion of Type I errors among the K hypotheses. A
related measure is the per-family error rate (PFER), defined as

(4.8) PFER = E(m1),

which is the expected total number of Type I errors among the K hypotheses.
Obviously, PFER = K.PCER, and is generally large when K is large (unless the
PCER is very small). Moreover,

(4.9) PFER = E(m1) =
∑
r≥1

rP{m1 = r} ≥ P{m1 > 0},

so that PFER ≥ FWER.
If our observed R = 0 then no true null hypothesis is rejected and hence there

is no false discovery. For R ≥ 1, the proportion of false discovery is given by
Q = m1/R; conventionally, it is taken Q = 0 when R = 0, so that Q is properly
defined for every nonnegative R and m1. However, Q is not observable. Hence, the
false discovery rate (FDR) is defined as

(4.10) FDR = E{Q} =
∑
r≥1

P{R = r}E{m1/R|R = r}.

Since, conventionally, we have forced Q = 0 for R = 0, this definition of FDR may
produce a negative bias. An alternative definition, known as the pFDR, is defined
as

(4.11) pFDR = E{Q|R > 0} = FDR/P{R ≥ 1}.

Naturally, pFDR ≥ FDR.
In the formulation of FDR and pFDR it is not necessary to assume that all

of the test statistics have continuous distributions under the null hypothesis. If
these distributions are all continuous then of course the p-values have a uniform
(0, 1) distribution under the null hypothesis, and hence, the multiple hypotheses
testing schemes discussed earlier can be conveniently adapted. In our setup, each
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Fig 1. Comparison of the null distribution with the alternative distribution.

test statistic has marginally the same null distribution, albeit that is discrete. So,
it might be necessary, especially when n is not large, to make use of this otherwise
completely specified, discrete distribution without assuming a uniform distribution
for the associated p-values under the null hypothesis.

We may simulate the permutation distribution of any marginal test statistics and
thereby take into account possible dependence among the gene expressions without
assuming any specific pattern. Of course, marginally, each test statistic has the
same null distribution. So, if we consider the set {T o

nk : k = 1, . . . ,K} and define
the empirical distribution

(4.12) GK(t) = K−1
K∑

k=1

I(T o
nk ≤ t), t ∈ (−1, 1),

then E0{GK(t)} = G(t),∀t ∈ (−1, 1) where G(t) is the common marginal distribu-
tion of the T o

nk under the null hypothesis. The summands in GK(t) are all bounded
variables, nondecreasing in t ∈ (−1, 1) and G(t) is also nondecreasing and assumes
values on (0, 1). Thus, whenever GK(t) stochastically converges pointwise to G(t), it
does so uniformly in t ∈ (−1, 1). Further GK(t)−G(t) is a bounded r.v., and hence,
if it converges in probability, it converges in the rth mean for every r > 0. Therefore
it might suffice to assume that the dependence pattern satisfies the condition:

(4.13) Var(GK(t)) → 0, as K → ∞.

Then we conclude that ‖GK(.) − G(.)‖ = sup{|GK(t) − G(t)| : t ∈ (−1, 1)} sto-
chastically converges to 0. Further, (4.13) holds under quite general dependence
patterns.

It is naturally tempting to explore weak convergence (invariance principles) re-
sults for

√
K(GK(.) − G(.)) wherein K is taken indefinitely large but not n. Since

G(t), t ∈ (−1, 1) is a discrete distribution function with mass points over (−1, 1),
the jump-discontinuities of G(.) may vitiate the usual compactness (or tightness)
properties possessed in the continuous case, albeit by strengthening (4.13) to

(4.14) lim supK KVar(GK(t)) < ∞,∀ t ∈ (−1, 1),
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pointwise, the asymptotic normality (as K → ∞) follows under quite general de-
pendency conditions. If we have some linear functional of GK(.) as a test statistic,
this weak convergence would have been quite useful in deriving the asymptotic (in
K) normality of the test statistic under the null hypothesis; (4.14) would have been
sufficient in that context. However, in our case, we have some functional of GK(.),
of extremal order statistic type, namely, the extreme quantiles of a set of depen-
dent r.v.s, and hence we may need somewhat different regularity conditions. This
perspective is appraised more elaborately in the next section.

5. Dimensional asymptotics and Chen–Stein theorem

In the previous section we have briefly discussed the plausibility of some Ko NDG
and K1 DG with Ko + K1 = K, the total number of genes. Neither K1 nor the
DG positions are known and hence we have a dual problem of estimating K1 as
well as identifying the positions of these K1 DG’s. It is conceivable that the NDG
having stochastically smaller expression levels (than the DG) and the stochastic
dependence among the DG may not be insignificant. We intend to incorporate this
stochastic dependence structure among the gene expressions in a suitable model.
Unfortunately, sans any positional ordering of the K genes, it might be difficult to
assume suitable mixing conditions under which central limit theorems may apply.
As for considering alternative limit theorems for dependent sequences, we intend
to incorporate the Chen–Stein theorem [3] and its ramifications wherein Poisson
approximations for more general dependent sequences are advocated. For our con-
venience, let us state the Chen–Stein Theorem in a slightly updated version [1].

Theorem 1. (Chen–Stein): Let I be an index set with elements i ∈ I and let K be
the cardinality of the set I. For each i ∈ I let Yi be an indicator random variable
and let

(5.1) P{Yi = 1} = 1 − P{Yi = 0} = pKi, i ∈ I.

Let W =
∑

i∈I Yi the total number of occurrence of the events {Yi = 1}, i ∈
I, and let λK =

∑
i∈I pKi = E(W ). For each i ∈ I, we define a set Ji ∈ I

and its complement J c
i as the set of dependence of i and its complement, set of

independence of i. Thus, it is tacitly assumed that Yi is independent of {Yj , j ∈ J c
i },

for every i ∈ I. Further, let

b1 =
∑
i∈I

∑
j∈Ji

E(Yi)E(Yj);

=
∑
i∈I

∑
j∈Ji

pKipKj ,(5.2)

(5.3) b2 =
∑
i∈I

∑
j( �=i)∈Ji

E(YiYj),

and

(5.4) b3 =
∑
i∈I

E|{E(Yi − E(Yi)|{Yj ,∀j ∈ J c
i })|.
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Finally, let Z be a random variable having Poisson distribution with parameter
E(Z) = λK . Then

‖L(W ) − L(Z)‖ ≤ 2(b1 + b2 + b3)
1 − e−λK

λK

≤ 2(b1 + b2 + b3)min{1, λ−1
K }.(5.5)

A direct corollary to Theorem 1 is the following:

(5.6) |P{W = 0} − e−λK | ≤ 2(b1 + b2 + b3)min{1, λ−1
K }.

An interesting feature of this Theorem is the dual control of λK , the expectation and
b1, b2, and b3, the dependence functions. In line with our intended application we
consider a natural extension of this result. With the same notation as in Theorem
1, we replace the Yi, i ∈ I, by a sequence of processes Yi(t), i ∈ I, t ∈ T, where
T = (0, a), for some a > 0, and assume that for each i, Yi(t) is nondecreasing in t
and yet a zero-one valued random variable. Further assume that the sets Ji do not
depend on t ∈ T . For every i ∈ I, t ∈ T , we denote by pKi(t) = E(Yi(t)), and the
corresponding parameters by λK(t), b1(t), b2(t) and b3(t). Let WK = {WK(t), t ∈
T} be the sum process and corresponding to Z, we introduce a Poisson process
ZK = {ZK(t), t ∈ T} whose expectation process is {λK = {λK(t), t ∈ T}. Then

‖L(WK) − L(ZK)‖ ≤ 2 sup{(b1(t) + b2(t) + b3(t))
1 − e−λK(t)

λK(t)
: t ∈ T}.

The proof of this extension is along the lines of Theorem 1 and hence we omit the
details.

In our study, unless n is large, we may not have a continuous time parameter
(t ∈ T ). Thus, we consider an intermediate result that remains applicable for small
n as well.

Theorem 2. Consider a set of M discrete time points −1 ≤ τ1 < · · · < τM ≤ 1
with respective probability masses ηn1, . . . , ηnM where M may depend on n. Also,
let νnj =

∑
i≤j ηni, j = 1, . . . ,M . Further, let Yi(τj), i = 1, . . .K, j = 1, . . . , M

be an array of zero-one valued random variables where Yi(τj) is nondecreasing in
τj and E(Yi(τj)) = νnj , j = 1, . . . ,M . Define WK = {WK(τj), j = 1, . . . , M}
where WK(τj) =

∑K
i=1 Yi(τj) for j = 1, . . . , M . Similarly, let ZK = {ZK(τj), j =

1, . . . ,M} be a discrete time parameter Poisson process with the drift function νK =
{νnj , j = 1, . . . , M}. Define the parameters bK1(τj), bK2(τj), bK3(τj), j = 1, . . . , M
as in (5.2), (5.3), and (5.4); assume that as K → ∞,

(5.7) max{(bK1(τj) + bK2(τj) + bK3(τj))
1 − e−νnj

νnj
: j ≤ M} → 0.

Then, as K increases indefinitely,

(5.8) ‖L(WK) − L(ZK)‖ → 0.

Again, being a finite-dimensional version of Theorem 1, this does not need an
elaborate proof.

In the present context, under the null hypothesis, all the T o
nk have a common

distribution over (−1, 1); this is discrete but symmetric about 0, and is completely
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known (though could be computationally intensive if n is not too small). Let us
denote the distinct mass points for T o

nk by −1 = a1 < a2 < · · · , aL = 1 and let

(5.9) τj = P0{T o
nk ≥ aL−j+1}, j = 1, . . . , L.

Then 0 ≤ τ1 < τ2 < · · · < τL ≤ 1. Also, let us write

(5.10) Yk(τj) = I(T o
nk ≥ aL−j+1), j = 1, . . . , L, k = 1, . . . , K.

Further, let

(5.11) WK(τj) =
K∑

k=1

Yk(τj), j = 1, . . . , L.

Also, let J = max{j : 1 ≤ j ≤ L; τj ≤ η} for some pre-assigned η > 0. Basically, we
would like to pursue the distributional features of the partial sequence {WK(τj), j ≤
J}, and incorporate Theorem 2. Note that in this way, we avoid the conventional
assumption of a continuous null distribution of the coordinate-wise test statistics.
Of course, if n is adequately large, the assumption of a uniform distribution of the
p-values (under the null hypothesis) would be reasonable. For example, if we have
a three sample situation with n1 = n2 = n3 = 4 then L = (12)!/(4!)3 = 34, 650 so
that we could choose J = 1 and use the Poisson approximation. It is also possible
to choose J = 2 with an appropriate cut-off point and still stick to a FWER around
0.05. In any case, under alternatives (of stochastic ordering) the distribution of the
T o

nk will be tilted towards the right, still confined to the interval (−1, 1), and hence,
their centering would be shifted to the right of the origin with a negatively skewed
distribution.

Corresponding to the known points τ1 < · · · < τJ , let us consider the partial
process WK(τj), j = 1, . . . , J , as defined above. Also, let us choose a set of nonneg-
ative integers r1 ≤ · · · ≤ rJ in such a way that

(5.12) P0{WK(τj) > rj , for some j ≤ J} = α,

where α may not be exactly equal to a specified level (such as 0.05) but can be
approximated very well through the above Poisson process result. If we let

(5.13) Aj = [ WK(τj) > rj ], j = 1, . . . , J,

then (5.12) can be written as P{
⋃

j≤J Aj }, so that by the Bonferroni inequality,

P{
⋃
j≤J

Aj} =
∑
j≤J

P{Aj} −
∑

1≤j<j′≤J

P{AjAj′}

+
∑

1≤j<k<l≤J

P{AjAkAl} + · · · + (−1)KP{A1 · · ·AK}.(5.14)

Next, we use the Poisson approximation to each P{Aj} wherein we use the follow-
ing:

(5.15) P{Aj} ∼ e−νnj{
∑
r>rj

νr
nj/r!}, j ≥ 1.

Further, note that WK(τj) is a nondecreasing (step) function in j so that using the
Markov property and Theorem 2 we may evaluate P{AjAj′}. Actually, we write
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P{AjAk} = P{Aj} · P{Ak|Aj}, for k > j, and use Theorem 2 to approximate
the conditional probability by P{Zk > rk|Zj > rj} where rk ≥ rj ,∀j < k. Also,
typically terms involving more than 2 events (Aj) will be small and can usually be
neglected. Nevertheless, even if they are not small, the Markov property embedded
in Theorem 2 can be used to provide a good approximation. Alternatively, we may
write P{

⋃
j≤J Aj} = 1− P{

⋂
j≤J Ac

j} and using Theorem 2, write P{
⋂

j≤J Ac
j} as

a J-tuple sum over Poisson distributional probabilities. For small rj , j ≤ J , as is
typically the case, this computation does not appear to be a formidable task.

Led by these findings, let us now consider the following testing procedure:
Compute the WK(τj), j ≤ J as above. If WK(τj) ≤ mj , ∀j ≤ J , accept the null

hypothesis that there is no DG. On the other hand, if WK(τj) is greater than mj

for at least one j ≤ J , then reject the null hypothesis that all the genes are NDG,
and proceed to detect those genes k ∈ K as DG where

(5.16) K = {k ∈ {1, . . . ,K} : Yk(τj) = 1, for some j ≤ J}.

Note that if for some k, Yk(τj) = 1 for some j ≤ J , then Yk(τj′) = 1, ∀ j′ ≥ j.
Further, note that K is a stochastic subset of {1, . . . ,K}, and R = cardinality of K
is a (nonnegative) integer valued random variable. The overall significance level of
this testing procedure is well approximated by the preassigned level α.

Let us denote the following exclusive events by

(5.17) B1 = A1; Bj = Ac
1 · · ·Ac

j−1Aj , j ≤ J.

Then, by definition, Aj =
⋂

j≤J Bj . With the same notation as in (4.7)—(4.11), we
study the other measures (viz., PCER, PFER, FDR and pFDR). Towards this, we
consider the nonnull situation where K0 are NDG and K1 = K − K0 are DG. To
handle the distribution of R, the total number of rejections, we let

(5.18) τ∗
j = (K0τj + K1βj)/K = τj + (K1/K)(βj − τj), j ≥ 1,

where

(5.19) βj = K−1
1

∑
k∈DG

P{T o
nk ≥ aL−j+1|k ∈ {1, . . . , K} − K0},

for j = 1, . . . , J . Note by arguments similar to those in Sections 3 and 4, βj �
τj ,∀j ≤ J . We may write

(5.20) E(m1) =
∑
j≤J

E(m1I(Bj)).

Next note that the events Bj , j ≤ J, depend on the partial process WK(τj), j ≤ J
and are thereby governed by Theorem 2 with νnj = Kt∗j , j ≤ J . On the other hand,
the distribution of m1 is governed by the process W o

K(τj), j ≤ J , where the drift
function for W o

K(τj)) is νo
nj = K0τj , j ≤ J . Using Theorem 2 and the reproductive

property of the Poisson distribution, we may well approximate the (conditional)
distribution of m1, given R, by a binomial law with parameters (R, K0τj/(K0τj +
K1βj)) whenever Bj holds. Thus, we are able to provide a good approximation to
the PFER by writing

(5.21) E(m1) =
∑
j≤J

E{E(m1/R | R, Bj)RI(Bj)}.
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If J = 1, the conditional binomial law directly applies and we have the approxima-
tion

(5.22)
K0t1

K0t1 + K1t∗1
.E(RI(R > r1)) = K0t1P{R ≥ r1},

where the last step follows from the fact that for a Poisson variable X with parame-
ter np, E(XI(X > r)) = npP{X ≥ r}. For J ≥ 2, we have to apply the conditional
binomial law under the sets Bj , followed by the distribution of R over the sets Bj ,
and this can be done by repeated quadrature procedures. Numerical studies have
thereby good scope.

By construction, rejection of the null hypothesis H0 entails that R > r1 and may
even be greater than r1 if Bj pertains for some j ≥ 1. As such, we do not have any
problem in applying the original definition of FDR (in (4.10)). We write

(5.23) FDR = E(Q) =
∑
j≤J

E(QI(Bj)) =
∑
j≤J

E{E(Q|R ∈ Bj)I(Bj)}

and use the conditional binomial law for each term in the right hand side. Detailed
numerical study is planned for a future communication.

We conclude this section with some pertinent remarks and observations. First,
the use of the Chen–Stein theorem in a multi-state context can be done under fairly
mild regularity conditions regarding the dependence of the genes. Secondly, by our
choice of the rj , j ≤ J and allowing possibly J ≥ 1, we are not only in a position to
allow more flexibility in the choice of statistical inference procedures but also to en-
force the rejection of null hypothesis under a more structured setup. This allows us
to study the FDR, etc., under more diverse setups. Further, using Kendall’s tau sta-
tistic for each gene separately, we are in a position to allow heterogeneity of the gene
expressions across the K genes in a completely arbitrary manner, while under the
null hypothesis, the distribution of the T o

nk, k = 1, . . . ,K being completely known
provides an easy access to the incorporation of the Chen–Stein theorem. Finally,
instead of using Kendall’s tau statistic (coordinate-wise), it might be attractive
to use more general rank statistics [17]. Though the distribution-free aspect holds
under the null hypothesis, such distributions are more complex to evaluate and
the associated Poisson processes have more complex drift functions. Further, such
linear rank statistics involve some design variables which assume more structure on
the Fik, k = 1, . . . ,K, not necessary with the use of Kendall’s tau.
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