DEFINABILITY AND GLOBAL DEGREE THEORY!
S. BARRY COOPER

Godel’s work [G634] on undecidable theories and the subsequent formal-
isations of the notion of a recursive function ([Tu36], [K136] etc.) have led to
an ever deepening understanding of the nature of the non-computable universe
(which as Godel himself showed, includes sets and functions of everyday signif-
icance). The nontrivial aspect of Church’s Thesis (any function not contained
within one of the equivalent definitions of recursive/Turing computable, cannot
be considered to be effectively computable) still provides a basis not only for
classical and generalised recursion theory, but also for contemporary theoretical
computer science. Recent years, in parallel with the massive increase in interest
in the computable universe and the development of much subtler concepts of
‘practically computable,” have seen remarkable progress with some of the most
basic and challenging questions concerning the non-computable universe, results
both of philosophical significance and of potentially wider technical importance.

Relativising Church’s Thesis, Kleene and Post [KP54| proposed the now
standard framework of the degrees of unsolvability D as the appropriate fine
structure theory for w®. A technical basis was found in the various equivalent
notions of relative computability provided by Turing [Tu39], Kleene [K143], Post
[Po43] and others. Within the study of D it has become usual to distinguish
(see [Sh81]) two approaches: that of global degree theory, based more or less on a
number of general questions concerning the structure of the degrees first stated
by Rogers in his book [Ro67]; and that of local degree theory with its emphasis
on degree structure not far removed from the degree 0 of recursive functions (in
particular the recursively enumerable—or r.e.—degrees and the degrees below
0'—the degree of the coded theorems of Peano arithmetic). Of course, there
is an intimate relationship between the two approaches, and the aim here is to
describe some recent results showing how even the most archetypal local degree
theory can be used to resolve interesting and important global questions.

§1. Notation and terminology.

We use standard notation and terminology (see for example [So87]).

For instance, corresponding to the :th Turing machine, ®; denotes the ith
partial recursive (p.r.) functional 2¢ — 2. A set A is Turing reducible to a set B
(A<t B)if and only if A = ®B for some i € w, and A, B are Turing equivalent
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(A =r B) if and only if A <7 B and B <t A. The degree of unsolvability or
Turing degree of A is defined by

deg(A) = {X € 2% | A=1 X}.

We write < for the partial ordering on D, the set of all degrees, 0 for the least
degree, consisting of all recursive sets of numbers, and D for the structure (D, <).

Kleene and Post [KP54] also defined the notion of jump operator on sets and
degrees. Let WA = dom ®{! denote the ith recursively enumerable in A (A-r.e.)
set (W; = W2 being the ith r.e. set). Then the jump (n + 1th jump) of a set
A is defined by A' = AN = {z | 2 € WA} (A("+) = (A(M)'). This induces
a jump operator on degrees defined by a’' = deg(A4'), A € a, with the special
properties that a < a', and a’' is the least upper bound of the degrees of sets
re. in A € a. Post’s Theorem [Po48] that X € AZ,, & X <7 A(™ attaches
special importance to the ascending sequence a,a’,...,a(",.... We define the
standard w-jump of a by a(*) = deg(Dnew4™), A € a. Kleene and Post were
the first to investigate the structure D' = (D, <, '). They speculated ([KP54], p.
384) that the jump operator may not be capable of description within D itself, a
question returned to by many authors since then (for instance, in recent times,
Simpson [Si77], Epstein [Ep79], Shore [Sh81] and Odifreddi [0d89]).

§2. Global degree theory.

How rich a structure is D or D'? To what extent are degrees locally indi-
viduated? Are particular parts of the non-computable universe recognisable by
their context in D or D'? What mathematical concepts are describable within
the degrees of unsolvability? Following Rogers [Ro67] global questions tend to

be grouped under the following headings:

HOMOGENEITY. For which a,b € DisD(> a)=D(>b), orD'(> a) =
D'(>b)?

STRONG HOMOGENEITY. For which a,b € D isD(> a) 2 D(> b), or
D'(>a)=D'(>b)?

The Strong Homogeneity /Homogeneity Conjectures of Rogers [Ro67]/Yates
[Ya70], respectively, refer to the special case when b = 0.

AUTOMORPHISMS. Are there any nontrivial automorphisms of D or D'?

That is, is the non-computable universe rigid?

DEFINABILITY. What can we describe in terms of the structure of D or
D'? In particular:

Is the jump a' of a definable purely in terms of the structure of D(> a)?

Rogers’ [Ro67] chooses invariance under all automorphisms of D (that is,
the notion of being order-theoretic) as an alternative formalisation of the idea of
a relation on degrees being fixed by the structure of D. For instance he asks (see
also Question 5.12 of [Si77] and Q8. of [Ep79)):

Is the jump operator order-theoretic?

We briefly review what was previously known concerning the above ques-
tions. A more detailed discussion can be found in [0d89].
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§3. Definability.

Initial segments and their relativisations provided the first source of ex-
pressive structure within the degrees of unsolvability. Lachlan [La68] used the
embeddability of all countable distributive lattices as initial segments of D to
show the undecidability and non-axiomatisability of Th (D) (the first-order the-
ory of D). The best result in this direction was provided by Simpson [Si77],
following Jockusch and Simpson’s [JSi76] initial work on coding and definability
results for D':

THEOREM 1 (Simpson [Si77]).  The degree of Th(D) = the degree of
Th(N) (the theory of second-order arithmetic).

Theorem 1 was originally proved using an ad hoc coding of Th(N) into
Th (D), but was proved more directly by Nerode and Shore [NS80] using the
countable distributive lattice initial segment embedding result.

In relation to the original question of Kleene and Post concerning the de-
finability of the jump operator, we have:

THEOREM 2 (Shore [Sh82]). Any relation on D (> 01®)) which is definable
in second-order arithmetic is definable in D'.

(The first result of this kind was proved by Simpson [Si77] with 0(“) in place
of 0¥ the improvement to 0(3) emerging via 0(") in Nerode and Shore [NS80],
[NS80a], who also showed how to replace the jump by a parameter such as 0" in
many of these global results. There was already a natural definition of 0(“) in
D', got by combining results of Enderton and Putnam [EP70] and Sacks [Sa71],
as the least double-jump of an upper-bound for the arithmetical degrees.)

Without the jump much less could be said:

THEOREM 3 (Jockusch and Shore [JSh84]). Any relation on the degrees
above all the arithmetical ones is definable in D if and only if it is definable in
second-order arithmetic. In particular, 00+, and hence the w-jump, is definable
inD.

(The first part of Theorem 3 improves Harrington and Shore [HS81] by
replacing ‘hyperarithmetic’ with ‘arithmetical.’)

There are also results concerning the existence of structural characterisa-
tions of the jump related classes of the high/low hierarchy, defined by

High, ={a < 0' | a(® = o(**1)},
Low, ={a < 0' | a™ = 0™},
THEOREM 4 (Shore [Sh88]). High,, Low, are definable in D(< 0') for
eachn > 3.
The above results are all proved using degree-theoretic codings, Theorems 2,
3 and 4 using developments of the Nerode/Shore coding methods. More recently,
all such results have been derived using the simpler coding technique of Slaman
and Woodin (see [SW86] and [OSta]). The three quantifiers intrinsic to codings

involving <7 explain the best possible lower-bound 0(®) in these and other global
results. Another striking definability result using these codings is:
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THEOREM 5 (Slaman and Woodin [SW86]).  The set of r.e. degrees is
definable in D(< 0') using a finite number of parameters.

In another direction, there are a number of results concerning definability
of particular jump ideals in D or D’ (see [HS81], [NS80a] and [Sh81]). Jockusch
and Shore [JSh84] obtain definability results using their theory of pseudo-jumps.
For instance, with no use of codings they get:

THEOREM 6 (Jockusch and Shore [JSh84]). A (= the set of arithmetical
degrees) is definable in D.

84. Homogeneity.

Here again we see a large gap between the situations with and without the
jump. We single out the following from among the strongest previous results
concerning strong homogeneity for D':

THEOREM 7 (Richter [Ri79]). IfD'(>a) = D'(>b) then a® = b®),

This means, for instance, that for each n > 1, D' % D'(> 0(®). Theorem 7
essentially improves [JSol77] by a factor of one jump, and is the culmination of
a sequence of results obtained by various authors, starting with Feiner’s [Fe70]
refutation of the Strong Homogeneity Conjecture for D' (see also [Ya72]). Yates
[Ya70] formulated the Homogeneity Conjecture by replacing isomorphism with
elementary equivalence in Rogers’ original question, and Simpson [Si77] gave a
negative answer. The strongest refutation is due to Shore:

THEOREM 8 (Shore [Sh81]). D' =D'(> a) then a® =00,

Without the jump information is much more difficult to obtain. Combining
Theorem 4.7 from [NS80] concerning automorphisms of D with work of Jockusch
and Soare [JS0a70] and Harrington and Kechris [HK75] on minimal covers, Shore
[Sh79] disproved the Strong Homogeneity Conjecture for D. Shore [Sh82] ex-
tended this result on isomorphisms of cones to one on elementary equivalence:
If the degree of Kleene’s O < a(™ for some n then D # D (> a), so disproving
homogeneity without the jump. Improving Harrington and Shore [HS81] (by
replacing ‘hyperarithmetic’ with ‘arithmetic’) we have:

THEOREM 9 (Jockusch and Shore [JSh84]). 1) IfD(> a) D(> b) then
a and b are arithmetically equivalent.
2) IfD(> a) =D then a is arithmetical.

So in particular, D #D(> 0(“)).
§5. Automorphisms.
Corresponding to Theorem 7 we have:

THEOREM10 (Epstein [Ep79], Richter [Ri79]). Let f be an automorphism
of D'. Then f(a) = a for all a > 0.
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Jockusch and Solovay [JSol77] were the first to prove that jump preserving
automorphisms are the identity on a cone (with 04) instead of 0(3) as the base
of the cone). Nerode and Shore [NS80] show how to replace the jump by the
parameter 0’ in the above result.

Without the jump we have:

THEOREM 11 (Jockusch and Shore [JSh84]). If ¢ is an automorphism of
D then 1(a) = a for all a > 0(v),

Theorem 4.7 of Nerode and Shore [NS80] was the first result of this kind for
D, improvements in the location of the base of the cone appearing in [HS81] and
[Sh81].

Other restrictions on the possible automorphisms of D are provided by the
notion of an automorphism base (see Jockusch and Posner [JP81]).

The situation described so far is one in which much stronger results, and
simpler proofs, are possible for D' than for D. The aim now is to reduce the
theory for D to that for D’.

§6. Pseudo-jump operators.

Jockusch and Shore [JSh83], [JSh84] observe that constructions in recursion
theory relative to a set A produce a set J(A) which is, from a formal point of
view, very similar in definition to the jump A’, or more generally ath jump A(®)
for suitable recursive ordinal «, of A. This leads them to abstract from this the
notion of an a-REA operator, and to mimic (in a nontrivial way) completeness
and cupping theorems of Friedberg [Fr57], MacIntyre [Ma77] and Posner and
Robinson [PR81] for the usual ath jump to produce cones of degrees with inter-
esting structural properties. We need below the Jockusch and Shore pseudo-jump
machinery for « finite (in fact, for o = 2).

DEFINITION. We say that J™ is an n-REA operator if and only if there
exist Jo,J1,...,Jn—1 € w such that J" is defined by

JO(A) = A,
T4 = JHA) @ W P, (k <n).
Natural examples of n-REA operators are given by
(1) Choose jo such that W = {z | 2 € WA}. Then the 1-REA operator J!
defined by J1(A) = A ® Wj‘;1 is Turing equivalent to A’, the usual Turing
jump of A. :
(2) If D = W; — W;j is a d-r.e. set (a difference of two r.e. sets), we can define
a 2-REA operator J? (see p. 1209 of [JSh84] for a detailed verification) by
T(A) = A® (WA - W},
(One can derive n-REA operators from n-r.e. sets in a similar way.)
We will need the following analogues of the Friedberg completeness and
Posner-Robinson cupping theorems:

COMPLETENESS THEOREM FOR n-REA OPERATORS. If J is an n-REA
operator, for each C there is a set XC such that C & 0" =r J(X©).
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(The proof is a simplification of that of Theorem 2.3 of Jockusch and Shore
[JShg4).)

CUPPING THEOREM FOR n-REA OPERATORS. If J is an n-REA operator
derived from an n-r.e. set, then if D >7 §(™ @ X and X £10(*~1, we can find
an A such that

X®A=r D=r J(A)

(The proof is essentially contained in that of Theorem 3.2 of Jockusch and
Shore [JSh84].)

In the next section we apply these theorems to a particular 2-REA operator.

§7. Some local degree theory and the definability of the jump.
We first outline how the construction of a d-r.e. degree with special proper-
ties yields the required 2-REA operator.

DEFINITION. Given a,b,d, we say d is unsplittable over a avoiding b if
and only if a,b < d, b £ a, and for all dg,d; < d, if a < do,d; then either
bSdo ordl,ord#—doudl.

d is relatively unsplittable if and only if d is unsplittable over a avoiding b,
some a, b.

It is important to notice that, by the relativised Sacks Splitting Theorem
(see [So87T], p.124), there is no relatively unsplittable r.e. degree.

THE MAIN THEOREM. There is a relatively unsplittable d-r.e. degree.

That is, there is a d-r.e. set D = W; — W; (say) and sets A, B <7 D such
that deg(D) is unsplittable over deg(A) avoiding deg(B).

Before outlining the construction we list some immediate applications of the
main theorem.

We first notice that we can use the main theorem to get a 2-REA operator
J such that for each B we have J(B) = B @ (W2 — WP) and deg(J(B)) is
unsplittable over some a > deg(B). Then applying the Completeness Theorem
for n-REA Operators to J we get:

THEOREM 12. There is a cone of relatively unsplittable degrees with base
0”. D

Using J with the Cupping Theorem for n-REA Operators we get:

THEOREM 13 (DEFINABILITY OF 0'). 0’ is definable in D as the largest
degree satisfying

(1) =(3a,b)[x U a is unsplittable over a avoiding b).

Proof. As previously remarked, each r.e. degree, including 0, satisfies (})
by the relativised Sacks Splitting Theorem.

On the other hand, say X £70'. Thenif D > §""®X the Cupping Theorem
gives us an A; for which X®A; =7 D =r J(A1), and deg(X @ A4,) is unsplittable
over some degree a > deg(A;) avoiding some b, where deg(X) U deg(4,) =
deg(X)U a. (]
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Relativising, this means that for each a, a’ is definable in D(> a), giving:

THEOREM 14 (DEFINABILITY OF THE JUMP). The Turing jump is defin-
able in D. a

This of course implies that the jump is order-theoretic, answering the ques-
tion of Rogers referred to in section 2 above. Since 0(™) is definable for each n,
we can get Theorem 6 (definability of the set of arithmetical degrees) as another
corollary. And although Theorem 14 adds nothing to the known definability
results below 0, we can complement Theorem 4 above with:

THEOREM 15. All the jump classes High,, and Low,, n > 0, are definable
inD. O

We can use Theorem 14 to translate known results on definability, homo-
geneity and automorphisms for D' into dramatically improved results for D. In
place of Theorem 3 above we can restate Theorem 2:

THEOREM 2+. Any relation on D(> 01®)) which is definable in second-
order arithmetic is definable in D.

Instead of Theorem 9 we get from Theorems 7 and 8:
THEOREM 74. IfD(>a)=D(>b) then a® =b®),
THEOREM 8+4. IfD=D(> a) then a® =00,

And using Theorem 10 we can replace ‘w’ by ‘3’ in Theorem 11:

THEOREM10+. Let f be an automorphism of D. Then f(a) = a for all
a> 00,

§8. Proof of the main theorem.

The following sketch can be used as an introduction to the full proof in
[Cotal].

Let (O, ¥k, ®x,®%), k > 0, be a standard listing of all 4-tuples of p.r.
functionals. We need to construct a d-r.e. set D and sets A, B <t D satisfying
the requirements:

P.: B#60%,

Qi: D=V, (2P,3P)= B=Tx(3P,A4)V B =A(2F,A),
k > 0, where I'x, A; are p.r. functionals to be constructed. We also need an
overall constraint that A = QP, Q@ a p.r. functional to be defined during the
construction. The Q-requirements will ensure that B <t D.

The basic module is closely related to the Lachlan ‘monster construction’
[La75] of a r.e. degree which is relatively non-splitting within the r.e. degrees.
We consider just two requirements P (= P, say) and @ (= Qk, say) in rela-
tion to each other, Q being of higher priority than P. We follow the conven-
tion of writing Ok, Y&, Yk, Tk, Ak etc. for the respective standard use functions of
ek) ka \I’k, Fk, Ak etc.
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The naive P-strategy: Look for an z with ©4(z)| for which we can define
B(z) # ©4(z) and restrain A | 6(z).

The naive Q-strategy: First try to implement the I-strategy: If P requires
us to make a B(z)-change, try to produce a situation such that either
(a) 7(z) > 6(z) (so we can rectify the equation B(z) = I'(®P, 4)(z) following
the B(z)-change with an A-change bigger than 6(z)), or
(b) ¥(z) > ¥(y), some y, and hope to get a P | y(z)-change by using a D(y)-
change to force a ®P | ¥(y)-change.

If it looks like we always get a &P | ¥(y) change in (b), start to implement
the A-strategy.

We consider in detail some of the problems involved in reconciling the strate-
gies for P and Q:

Some problems: Roughly speaking, our strategy for P and @ together is as
follows. If £(D, ¥(®D, &P)) (the standard length of agreement function at stage
s + 1) grows large, we follow the naive Q-strategy in initially implementing the
I-strategy for making B <7 ®P @ A. P will have associated with it followers =
for which we hope to get ©4(z)| # B(z). This may conflict with the I'-strategy
in that changing B(z) to disagree with ©4(z) at stage s + 1 may not result in a
®D | y(z) change. This will require the B(z) change to be signalled through a
changein A | v(z) C A | 6(z), resulting in a possible reassertion of the equation
B(z) = ©4(z) at some later stage.

According to the naive @)-strategy, our first approach to a resolution of this
conflict will be to try to make such a y(z) > 6(z), so that the A-change is
above the use of ©4(z). But in general we can only do this by also injuring
the existing use of ©4(z), in the hope that our new larger v(z) will be greater
than 6(z) when this becomes defined again. This process (basically Harrington’s
‘capricious destruction,” although the capriciousness is only apparent) may be
repeated using A-changes on larger and larger numbers, along with them an
ascending sequence of numbers needed for corresponding D-permissions.

There are various possible outcomes to this. We may succeed in obtaining
a suitable relatively small use for ©4, make our choice of B(z), and satisfy P.
On the other hand, infinite repetition of this process will lead to ©4(z) 1 (P

satisfied again), but (without further analysis) we will also end up with I'®”+4
not total so that the I'-strategy fails. There is another possibility for avoiding
this. Since we are only concerned about Q if ®P is a total function, we may
permit the A-changes needed to move v(z) by the enumeration of an agitator y
into D, but defer actually making those A-changes until at least ®° | v(z) has
become redefined. This leaves open the possibility that we may get a completely
new ®° | 4(z) (that is, not containing as an initial segment any previously
defined ®P | 4(z)) which can be used to permit z \, B (‘z entering B’) via T
without the need for the A-changes to be made. But then, assuming we have
timed our enumeration of y into D to coincide with ©4(z) |= B(z) = 0, we
avoid disturbing A | 6(z). Hence we get ©4(z) = 0 # B(z) following the above
actions, so satisfying P and in the process leaving the I'-strategy intact.
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We can assist this outcome by using A to increase the likelihood of the new
@D | 4(z) being usable to permit z \, B via T. Following the monster con-
struction we might try to ensure that whenever we define y(z) or A(z) previous
to y . D we have ¢(y) |< y(z) or A(z) respectively, so that y \, D will at
least produce some sort of change in either ®° | y(z) or &0 } A(z). This is
attempted via a process similar to Harrington’s ‘honestification,” whereby if v(z)
or A(z) < 9(y) when we require y \, D, we first produce an A | w change, with
w < min {y(z), A(z)}, redefining v(z), A\(z) > 1(y) when ¥(y) is next defined.
In fact honestification is extended by making w < min {7y(z), \(z)} for all such
7(x), A(z) defined since the last occurrence of honestification, thereby ensuring
that previously defined P | y(z) or P | A(z) will not return in tandem
with corresponding A | y(z) or A | A(z) to prevent us ®P- or ®P-permitting
B-changes via I or A respectively following y \, D.

There is a problem here (apart from that of not knowing whether we get
a ®P- or EI;D—change following y \, D), in that honestification will very likely
also involve an A | 6(x) change, so that y \, D will have to wait for 8(z) to
become redefined, by which time the effects of honestification may have worn off,
demanding renewed hones’t:iﬁcation. If this repetition developes into an infinite
outcome, we get F‘I’D'A,Aq’D’A not total. But @ is then satisfied since we must
have min {y(z), A(z)} < ¥(y) infinitely often so that (&P, (SD)(y)T also. And
6(z)7 infinitely often, so P is satisfied through ©4(z)1.

However, honestification as described will still not be sufficient to supply the
ideal conditions for y \, D. This is because of a new complication resulting from
the possibility of returns to strings ®° | y(z) (following y N\, D) which appeared
since the last occurrence of honestification for (P, Q). So before allowing y \, D
we further ask that ®P | ¥(y), 3D | ¥(y) are unchanged at all stages since the
previous occurrence of honestification, and if this condition is not met, we again
honestify (even if ¥(y) < v(z),A(z)). If we never get to act on such a y but
continue to honestify we still get (&2, 32)(y)1, and Q is again satisfied (along
with P since ©4(z)1).

Anticipating any consideration of how all this is to coexist with our actions
on other requirements, we should mention one situation where we do need D to
be d-r.e., and not just r.e. Say we have a P’, of priority intermediate between
that of Q and P, and that we get to enumerate y into D, achieving a suitable
new &P | y(z) which we restrain in order to be able to preserve ©4(z) | #B(z)
following z \, B while maintaining the I-strategy. It may happen at a later stage
that we act on some y' through P’, resulting in a loss of the new &P | ~(z)
(replaced by a new 3D | A(z), presumably). It may not be possible now to
rectify ' by a suitable A-change, as this may conflict with the actions for P’ (for
instance). We then have no alternative but to extract z from B via an extraction
from D. (There is still the possibility of the new ®° | y(z) which permitted
z \, B via I reasserting itself at a later stage, but in defining the corresponding
~(z) we will have been able to have regard for higher priority P' to the extent
that we can avoid having to re-enumerate r into B by making a suitable A [ v(z)

change.)
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It remains to follow through the consequences of infinitely many occurrences
of agitators y \, D for (P, Q) and producing no appropriate new strings oD }
4(z). In this case we utilise the fact that following each y \, D we get a new
3D ¢t A(z) to satisfy P,Q through the A-strategy. In fact, this outcome for
(P, Q) gives us a successful A-strategy for each (P',Q) with P' (= Pg» say) of
lower priority than P, so we will not assume that the infinite set of y’s we act
on necessarily relates to P'.

We now assume that the A-strategy has its own set of followers z > 0 each
with its own set of agitators ¥ > 0, disjoint from any other set of followers or
agitators. We act on each § with the pre-knowledge that we get infinitely many
A | 7(z) changes through capricious destruction, and infinitely many usable
3D A(y) changes (or, more relevant, no usable ®° | 4(y) changes). This
means we only bother to act in the interests of B(z) # O, (z) if xn(2) < v().
Since y(z) goes to infinity, this will still provide sufficient space in which to
satisfy Pgn.

In order to use an agitator §¥ we also need to obtain ¥(y) < ¥(y) and
¥(¥) < A(2), and to then act simultaneously to obtain § \, D and y \, D in the
interests of obtaining a usable 2 | A(z) change to permit z \, B via A without
the need to injure ©f,(z) # D(z) with an A | A(z) change. This requires its
own honestification, which we can time to coincide with the honestification for
(P,Q). Again, the honestification takes the stronger form described previously.

The strategies for the different requirements can be harmonised via a tree
of outcomes, in a (by now) fairly standard 0'”-priority context.

We now give a more formal description of the strategies for (P, Q).
The basic module for P confronted with one higher priority Q.

(All statements in the description below are assumed to relate to stage s+1
of the construction.)

Let
D, ¥(®°,8P)) = pz[D(z) # ¥(27,8P;z)] and
£(B,04) = pz[B(z) # 04(2)] (at stage s +1).

We associate with (P, Q) four disjoint infinite recursive sets £, 7,7 and (.

We have two overall constraints on the construction relative to (P, Q):
(a) If z < s then we must define A(z) = QP(z) at all stages s' +1 > s.
(b) If £(D,(®P,3P)) > z then we must define I'*°4 | z or A%P.A Iz

whenever z is a D-agitator for z with z ¢ D.

And if y, z are D-, D- agitators respectively for z with y,2 ¢ D (at stage
s + 1) we ask that whenever we redefine re’.4 I  or A%P.A | =z we choose
¥(z), \(z) so that y(z) > w(y) or A(z) > ¥(z) respectively. Also, whenever
we redefine I'®” “A(w) or A%® “A(w), w > 0, we define I“I’D’A(w) = B(w) or
A%® “A(w) = B(w), respectively.
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Whenever we redefine values of I'*”4 or of A*°+4 in such a way that
['?°4 ~ B (that is, they agree on all values on which both are defined) or
A®PA o B, we say that we rectify I' or A, respectively.

The basic module consists of the following phases together with the above
overall constraints.

1) We select the least z € £ — B to follow (P, Q).

2) We select the least y € n — D, y > z, as a D-agitator for z.

3) We select the least w € ( — A as an A-agitator for z.

4) We wait for £(D, ¥(®2,3D)) to grow bigger than y and define 7(z) > w.

5) And we wait for £(B,©4) to grow bigger than .

6) We then check if v(z)|> 0(z).

If so, we enumerate z into B, restrain A | 6(z) and rectify T’ with an

A | 4(z) change.

Outcome: P is satisfied and ceases to interfere with Q.

7) (Honestification and capricious destruction combined.)

Otherwise we change A | v(z) using w \, A (and a corresponding D | w(w)

change), and proceed through phases 3), 4), 5) and then 8).

8) We now check if v(z) > ¥(y) and if ®° | ¥(y), &P | ¥(y) are unchanged
at all stages since they became redefined following the latest application of
phase 7).

(a) If so, we enumerate y into D, and go to 9).

(b) If not, return to 3).

9) We wait for £(D, ¥%°2") > y, and then:

10) Check if T*”4(z)1.
(a) If so we define I*"4A(z) = B(z) # 04(z), restrain 82 | y(z) and
A | 0(z).
Outcome: P is satisfied, and I is rectified.

(b) Otherwise we return to 2).

In the case of infinitely many returns to 2) on behalf of (P,Q), we need
to describe the A-strategy. This is an auxiliary strategy that synchronises its
activities with phases 2), 7) and 8) of the I'-strategy. As mentioned before, it
can relate to (P', Q) even if P' # P.

1) We select the least z' € £’ — B to follow (P, Q) with ' > z.

2) (Simultaneous with 2).) We select the least z € f—D, z < y, as a D-agitator
for z' (if such a z exists).

8) (Simultaneous with 8).) We also check if A(z') > ¥(2).

(a) If so and y has entered D, enumerate z into D, and go to 9).

(b) Otherwise we return to 3) as already described.

9) We wait for £(D, ¥%” #°) > 7, and then:

10) Check if y(z) > §'(z') and A% A(2')1.
(a) If so we define A®® A(z') = B(z') # ©'4(z'), and restrain 3D | A(z')
and A | 0'(z").
Outcome: P' is satisfied and A is rectified.
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(b) Otherwise, we return to 2).

When we consider more than two requirements the sequence of events (for
instance the timing of the A-restraints) will need modifying, but the basic frame-
work still holds.

Summary of outcomes of the I'- and A-strategies for (P,Q), (P', Q).

The finite outcomes:

: The strategy halts at 4). Then D # ¥(®P,3PD) and Q is satisfied and
ceases to interfere with P.

: The strategy halts at 5). Then B # ©4 and P is satisfied and ceases to
interfere with Q.

[s1} B(z)# ©4(z), P is satisfied and ceases to interfere with @, due to phase
6) applying.

wi |  The strategy halts at 9). Outcome as for [w; |
ey

[s2]  Strategy halts at 10). B(z) # ©4(z), P is satisfied while maintaining

r*”4=Dviaa ®D_change.

: The strategy halts at 9). Outcome as for and .
: Strategy halts at 10). B(z') # ©'4(z'), P’ is satisfied while maintaining

F3% . =
A%®"4 = D via a ®P-change.

The infinitary outcomes:

: The stategy passes through phase 7) (but not 8)(a)) infinitely often.

Since we infinitely often pass through phases 3) and 4), v(z) goes to infinity.
Since we never halt at 6), (z) > v(z) infinitely often, so ©4(z) T and P is
satisfied.

Since we go through 8)(b) infinitely often, either ¥(y) > v(z) mﬁmtely often,

or ®0 | y(y) or @ I ¥(y) changes infinitely often, s0 in either case ¥2” %7 1T

(possibly with 1(y) bounded but ®°(u) or ®P(u)1, some u < ¥(y)), giving Q
also satisfied.

The strategy passes through phase 10)(b) infinitely often. Outcome: We
implement the A-strategy, P’ is satisfied as in .

: The strategy passes through ﬁ)(b) infinitely often.

As for we get P’ satisfied through ©'4(z') 1, while the A-strategy for
(P',Q) is maintained. This is because, by the conditions of 8)(a) and 8)(a) we
must arrive at 10)(a) with either A%, 4(z') 1 or T*”+4(z) 1. Since 10)(a) does
not apply, we must have A%” “A(z') 1, so we get to rectify A before returning to

2)/ 2).

The diagram shown relates the strategies to the outcomes.
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The following diagram relates the strategies to the outcomes:

1. Select =z € §&-B

4. Wait for i([b)
e D, ¥2°47)>y >
' Define ~(z)>w A
: 10(b).
R No.
E 5. And for
' I(B,04y>c [~
8.
7.No: - ¥()29(y) =
w\A 6. 1(2)>6(=)” etc.?
8(a). .
6. (cont.) (a)\ ;es.
Yes: z\\B y

Restrain A[6(z)
Rectify T

9. Wait for
I(D,w?%#")5,

9. Wait for
I(D,¥%"47)5y

10. T2 A(2)1? >

~+(2)>8'(z')&
A‘i’D"‘(z")T'-’

10(a).
Yes: Define
%24 (2)#04(z)
Restrain ®P [4(z)
& Alo(z)

10(a).
Yes: Define
AP A )20 A(z")
Restrain ®0 [A\(z")
& Al¢'(z')
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§9. Definability of the recursively enumerable degrees.

Slaman and Woodin showed (see Theorem 5 above) that the r.e. degrees
are definable in D(< 0') using a finite number of parameters. The proof used
the powerful Slaman-Woodin coding technique [SW86] to define the two sets of
low degrees from which Welch [We81] showed the set of all r.e. degrees to be
definable below 0'. Specifically, by extending the Sacks low splitting theorem,
Welch obtained the set of r.e. degrees a as joins a = x Uy of r.e. degrees Xx,y,
x < cand y < d, c,d fixed low r.e. degrees joining to 0’. Slaman and Woodin
showed that the set of r.e. degrees below c, say, is definable from appropriate
parameters a, b as the set of minimal solutions x of x # (x Ua) N (xUb).

We now describe how further development of the construction for the main
theorem above leads to a positive answer to the question asked at the end of
[SW86]: Is the set of recursively enumerable degrees definable without parame-
ters inD(L 0')7

From:

THEOREM 16. Ifd < 0 is not r.e., there exist degrees a,b < 0' such that
aUd is unsplittable over a avoiding b.

we immediately get:

THEOREM 5+ (DEFINABILITY OF THE RECURSIVELY ENUMERABLE DE-
GREES). The set of recursively enumerable degrees is definable in D(< 0'), and
hence in D.

Proof. If d < O,
d isr.e. & (Va,b < 0')[aud is not unsplittable over a avoiding b].
Since 0’ is definable in D the result follows. a

Rogers (p. 261 of [Ro67]) asked whether the relation recursively enumerable
in is order-theoretic.

THEOREM 17. The relation “d is b-REA” is definable in D.
Proof. d is b-REA & d € [b,b]&
[Va,c € [b,b'])[aUd is not unsplittable over a avoiding c].
Since the jump is definable in the degrees, the result follows.2 ]

Sketch proof of Theorem 16. Let d < 0' be not r.e., where D € d. We
construct a set A € A, satisfying the requirements:
P.: B#0¢ Vv (3A*cor.e.)(A* =7 D),

-~ A,D A,D
Qi: D=0y (PP, 300) s B=T* "vB=Ap A

b

2Following on from a remark of C. G. Jockusch (August 1991), we note that it is possible
to extend the characterisation of “REA” to one of “r.e. in.” But to do this one needs the
extra information provided by replacing the standard relativisation to an upper-cone of the
statement of Theorem 16 with an appropriate relativisation of the proof of the theorem.
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k > 0, where (@k,wk,m,@k) is a standard list of all quadruples of p.r. func-
tionals and I'x, Ay are partial recursive functionals to be constructed. As before,
we get B <7 A @ D from the satisfaction of the Q-requirements.

Roughly speaking, our strategy is as follows. We consider just two require-
ments P = Py and @ = Qi in relation to each other, Q being of higher priority
than P.

If (dropping reference to k and k' again) £(D, ¥(®4D, :I;A'D)) grows large,
we first attempt to implement the I'-strategy for making B <7 ®4P ¢ A. If
carried through without help from ®4P it may turn out that this leads to
B <r A. Our indication that this is happening will be some lower priority P
producing a witness ©4 = B. We will use £(B,©4) to monitor the extent to
which this is happening. If £(B, ©4) grows large, we will try to prevent this initial
segment of agreement from being disturbed by the enumeration of numbers into
A. This happens when we have to enumerate z-traces into A on behalf of I" (or
A) following z \, B, some z’s.

To avoid this, we select some zg, and periodically try to use enumerations
into A to move (zo) beyond the use of the current £(B,©04). This process (of
capricious destruction) may be successful in freeing larger and larger segments of
agreement from the possibility of injury through some y \, A, but at the expense
of the destruction of the I'-strategy for @ through I“I’A'D'A(zo) T. These initial
segments may still be injured by extractions from A, and this is unavoidable,
but the reason why the extractions are unavoidable is that they are linked to
changes in an identifiable set of members of D through an appropriate B = I‘f.’D

or A;:.’D. At the same time as ¢(B,04) grows large we code D into B up to
¢(B,04). As a result, if we find B = ©4 then we will be able to modify A to a
co-r.e. A* whichis =1 D due to D <7 B = 04 on the one hand, and due to the
linking of extractions from A to D on the other. But then this outcome in which
I“I’A'D’A(a:o)T must be a pseudo-outcome. We are left with a result in which not

only do we get the probability of I'%*”4(29)1 but we also get ©4(z)1 for some
z > z9, so satisfying P.

There is still a way of averting this outcome, the failure of which will provide
a suitable replacement for the lost I'-strategy. This consists in using suitable
®4:D changes to release us from the commitment to enumerate traces into A
in order to A-permit B-changes via I'. Since we are only concerned about @ if
®4.D is total, we may delay A-permissions via I' for B(w) changes (say) until at
least ®4P | y(w) has become redefined. This leaves open the possibility that
we may get a completely new &40 | y(w) (that is, not containing as an initial
segment any previously defined 4P | y(w)) which can be used to permit the
B(w) change via ' without the need for A-changes to be made.

Moreover, we may get ®4L | 7(y) to be new for other numbers y for which
B(y) changes are possible in the future. This will enable us to replace a trace for
y which may need enumerating into A when we get a B(y) change, with a trace
(which can be chosen initially as large as we like) which need only be extracted
from A to A-permit a B(y) change via I'. This indicates the possibility of
ameliorating the effects of capricious destruction and satisfying P by exhibiting
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an A* satisfying P while salvaging the I'-strategy if we can obtain enough of the
above 4D | 4(y) changes, y > 0.

We can assist this outcome by using A to increase the likelihood of our
new &40 | ~4(w) being usable to permit the B(w) change via I', and, more
important, enabling us to choose new traces for numbers y consistent with the
A*-strategy for P.

The main ingredient here is the process of ‘honestification’ whereby we use
A changes to try to ensure that whenever we define y(w), some w > zg, previous
toa D | w' change leading to a B [ w change (where we can assume w > w') we
have ¥(w) | < v(w), A(w), so that the D | w' change must be accompanied by
some sort of change in either ®4:P | y(w) or 3AD | A(w). In fact, we try to en-
sure via our A-changes for capricious destruction that for each y which is not yet
accompanied by a ‘positive trace’ (that is, one € A), we have v(y), A(y) > ¢ (w)
for all w < f(D,\II(@A’D,aAvD)). Then if such a w occurs, its accompanying
4D | ~(w) or 34D I M(w) change is usable by y for positive trace selection.
The honestification has to be stronger than in the monster construction, as we
are not just dealing with r.e. sets. If the honestification is attempted via an
A | u change, say, for the number y, then we ask that v < min {y(y), A(y)} for
all such ¥(y), A(y) defined since the last occurrence of honestification, thereby
ensuring that previously defined ®4:2 | y(y) or 4D | A(y) will not return in
tandem with corresponding A | 4(y) or A | A(y) following a B | w change,
w < #(D,¥(®4D §4D)), to defeat the possibility of a positive trace selection
for y.

There is a problem here (apart from that of not knowing whether we get
a ®4D. or C/I;A’D-change following the A | u change, and of knowing whether
we keep such a change), in that B | w changes may occur while honestification
is in progress, demanding renewed honestification. But this repetition can only
develope into an infinite outcome, giving I’QA'D’A, AF*PA ot total, if we have
some w with min {y(y), AM(y)} < ¥(w) infinitely often. In this case @ is satisfied
since ¥(®4P 4.D)(w) 1. And we still have 8(y) 1 infinitely often, so P is
satisfied through ©4(y)1.

However, honestification as described will still not be sufficient to supply the
ideal conditions for positive trace definition for y. This is because of the possibil-
ity of returns to strings 4 | 4(y) (following a B | w change) which appeared
since the last occurrence of honestification for (P, Q). So before remitting hon-
estification on behalf of y we further require that ®4:0 | (w), 34D } P(w)
are unchanged at all stages since the previous occurrence of honestification, and
if this condition is not met, we again honestify (even if ¥(w) < v(y), A(y))-
If we never get a positive trace for y but continue to honestify we still get
¥(@4P, $4DP)(w)T for some w (by the non-recursiveness of D) and Q is again
satisfied (along with P since ©4(z)1).

There is now the possibility of a continuing successful honestification accom-
panied by infinitely many suitable D | w’ changes, but producing only finitely
many new strings ®4? | y(y), y > 0. In this case we utilise the fact that
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following each suitable D | w' change we get a new ®42 | A(y) to pursue the
A* strategy for P with while satisfying Q via the A-strategy. In fact, this out-
come for (P,Q) gives a successful A-strategy for each (Pgn,Q), k" > k'. The
A-strategy acts with the pre-knowledge that we get infinitely many A | ¥(zo)
changes some zo, through capricious destruction, and infinitely many usable
34D | A(y) changes. This means we pursue the A*-strategy for Py~ related to
A below y(zo). Since y(zo) goes to infinity, this will still provide sufficient space
in which to satisfy Px». The A-strategy links up with the already initiated hones-
tification process, and always gets its positive traces needed for the A*-strategy
for Ppn, without any need for additional A-changes in case the :I;A'D-changes do
not live up to their promise (as they always do). There is still the possibility of
the A*-strategy failing through O£, (w)1, some w, but this is not the concern of
the A-strategy, which is not disrupted, unlike the I'-strategy.

As for the previous construction, one needs a tree of outcomes on which
to reconcile the strategies for different pairs (P’,Q’), and one of the standard
frameworks for discussing 0'’'-injury priority arguments. It is worth mentioning
here some of the special complications arising from the fact that D is not r.e.
(or perhaps even d-r.e.) but A;. An inevitable consequence is a certain amount
of ‘Az-noise’ in the construction, and the need for one or two nontrivial adjust-
ments. The extra unpredictability of D- and hence B-changes does not in itself
cause too many problems for A. With the help of redefinitions of 4 and A, A
can cope with the corresponding demands of the I'- and A-strategies. There are
slightly more problems with the consequent lack of control over ®4:P and 34D,
We relied above, in certain situations, on ®4:2- or ®4:D-changes enabling us to
avoid certain sorts of A-changes (by positive trace selection) in the interests of
the A*-strategy for the P-requirements. When these changes are in doubt, we
will have to fall back on the undesired type of A-changes. However, temporary
vacillations in 42 or &40 can be matched by a corresponding flexibility in the
A-changes, and where ultimate outcomes for ®4-P- or 34D -changes are assured
we will be able to maintain our aims in regard to the A*-strategies. On the other
hand, in reconciling the demands of different P-requirements, the A*-strategies
may demand negative A-changes where the immediate need may seem to be new
positive A-changes. The key factor here is, of course, that the success of the
A*-strategy for P lies in producing B # ©4, not in an infinitary outcome of
D =7 a core. A*.

See [Cota2] for a more formal description of the basic module for (P,Q) and
further discussion of problems in reconciling the strategies.

§10. Questions and further results.

More recently Slaman and Woodin [SWa] (see [S191]) have extended their
earlier results [SW86] to obtain new proofs (not involving the jump) of a num-
ber of global theorems concerning the degrees of unsolvability. In some cases
improvements have been obtained. For instance, in a more general context in-
cluding other common degree structures, they improve Theorem 10+:
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THEOREM10++ (Slaman and Woodin [SWta]). Let f be an automor-
phism of D. Then f(a) = a for all a > 0".

Other results are proved making full use of Theorem 17 above. Their most
dramatic result is:

THEOREM 18 (Slaman and Woodin [SWta]). The recursively enumerable
degrees form an automorphism base for D.

This of course reduces the problem of showing that D is rigid to that of
showing R (the structure of the r.e. degrees) to be rigid. In the other direc-
tion, Slaman [S191] asks whether every automorphism of the r.e. degrees can be
extended to one of D(< 0') or of D. Increasingly, not only does one find the
more intractable and technically interesting questions of degree theory at the
local level, but therein is seen to lie the key to the main outstanding problems
of global degree theory.

We summarise some of the more important remaining open questions.

Homogeneity and automorphisms.

Jockusch [Jo81] has shown that there is a comeager set of degrees which are
bases of elementarily equivalent cones of degrees. But:

QUESTION 1. Do there exist degrees a,b, a# b, withD(> a) =D (> b)?

QUESTION 2. How far can Theorems 2+, 7+, 8+ and 10++ be improved?
For instance, is any automorphism of D the identity above 0'?

UESTION 3. DO t.hele eXISt 1101]t11 vla.} autofl]ol p}EuSI]IS ()1 D < () [0) ()t
R.

Definability.

Shore [Sh88] has shown that all levels of the high/low hierarchy from the
three level onwards are definable in D (< 0'), and Shore and Slaman [SSta] have
succeeded in distinguishing between the high and low degrees within D(< 0').

QUESTION 4. Are High,, Highz, Low; or Low, definable in D(<L 0')?

There are questions concerning the definability of particular degrees. For in-
stance (questions first stated by Slaman and Harrington, respectively, in [Sa85]):

QUESTION 5. Do there exist r.e. degrees other than O or 0’ definable in
D(<L 0') orR? Are there any r.e. degrees not definable in D(< 0') or R?

Two particularly interesting questions concerning the definability of classes
of degrees are:

QUESTION 6. Define the class of n-r.e. degrees in D (< 0') for n > 2.

QUESTION 7. For which r.e. degrees a > 0 can one define the r.e. degrees
below a in D(< a)?
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