
3. The Invariants

We introduce complete structural invariants that classify finite relational
structures up to Ck- and Inequivalence, respectively. These invariants are
based on the definable pre-orderings with respect to Ck- and L*-types ob-
tained in the analysis of the games in the preceding chapter. The invariants
are PTIME computable and inherit specific definability properties from the
pre-orderings with respect to types. These definability properties and a close
relationship with the fixed-point logics make the invariants extremely useful
in investigations concerning fixed-point logics and complexity issues. This ap-
proach has been initiated and lead to success in the seminal work of Abiteboul
and Vianu. They first introduced a kind of ordered invariants with respect
to their model of relational computation and with this technique derived
important results concerning the relationship between FP and PFP.

• In the introductory Section 3.1 we relate the concept of the proposed
invariants to the abstract notion of complete invariants.

• Section 3.2 provides the definition of our Ck-invariants and states their
fundamental definability properties.

• Section 3.3 similarly treats the invariants for Lk.

• In Section 3.4 we consider applications of the invariants to the analysis
of fixed-point logics. A main point is the discussion of the Abiteboul-Vianu
Theorem on the relation between FP and PFP. As far as the Ck-invariants are
concerned, the corresponding considerations are of a preliminary nature here.
This analysis will be pursued further in Chapter 4 where it becomes possible
to link the Cfc-invariants directly with fixed-point logic with counting. We
include here a comparison between the Ck- and the Lk-invariants.

• In Section 3.5 it is indicated that — up to interpretability in powers —
our invariants essentially reduce to the two-dimensional ones, i.e. to those for
C2 and L2.
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3.1 Complete Invariants for Lk and Ck

Recall from Definition 1.58 the notion of a complete invariant for an equiva-
lence relation ~: / is a complete invariant for ~ if / classifies objects exactly
up to ~: x ~ x' if and only if I(x) — I(x'). We apply this notion to the equiv-
alence relations Ξ£, C = C^ω or L^ω. These may be regarded as equivalence
relations on fin[τ] as well as on the fin[τ; r] for r ^ k. Accordingly we actually
get two notions of complete invariants in each case.

Definition 3.1. Let £ be a logic. A functor I on fin[τ] is a complete £-
invariant if

V21V21' 21 Ξ£ 21' <=> 7(21) = 7(21').

Similarly, I is a complete invariant for C on fin[τ;r] if for (21, a) and (21', α')
in fin[r;r]: (21, α) =c (21', α') & 7(21, α) = 7(21', a').

A computable complete invariant / is a corresponding mapping from fin[τ]
or fin[τ; k] to some set 5 of objects with a standard encoding realized by an
algorithm A: stan[τ] -» SΌr A: stan[τ; A:] -> 5. Compare Definition 1.61. The
Ck- and Lfc-invariants considered in the following are PTIME computable and
take as their values linearly ordered structures (or structures over standard
domains n). One of the goals of this chapter is the following theorem.

Theorem 3.2. There are PTIME computable complete C-invariants for C —

The backbones of the invariants are the ordered representations of the
Ak I =c derived in the preceding chapter. On fin[τ] we shall have

where ^ is the linear ordering of the quotient that is interpreted by the
corresponding pre-ordering with respect to types over Ak. (*) encodes addi-
tional combinatorial information so that exactly the structural information
for £-games over 21 is retrievable from //:(2l). This ensures that /£(2l) com-
prises a complete description of the £-theory of 21 as required of a complete
^-invariant over fin[τ].

By definition the role of the invariants over fin[τ] is comparable to that of
Scott sentences — they provide concise abstractions of the complete theories
of structures. While Scott sentences may be regarded as the syntactic cor-
relate of the games, the proposed invariants are structural correlates of the
games. This structural aspect of the invariants has particular advantages in
the further model theoretic applications: these invariants are adapted to sim-
ulate fixed-point processes over the original structures in a natural manner
as we shall see in Section 3.4.
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3.2 The ^-Invariants

We introduce and discuss the Ck-invariants on fin[τ]. Complete invariants for
Ck-equivalence on fin[τ; r] for r ^ A: are easily derived as extensions of those

on fin[τ]. The invariants are built upon the ordered quotients (Ak/ =° , ̂ ),
where ^ is the ordering induced by the pre-ordering =<( with respect to Ck-
types, compare Theorem 2.28. In order to put the full information about
the C^-game over 21 — or about the complete C^-theory of 21 — into the
invariant, this ordered quotient is expanded with the following:

(i) Atomic components of types:
for each atomic type θ G Atp(τ; fc) the unary predicate PΘ is introduced

on Ak/ =°k. For α G Ak / =°k put α G PΘ if atp2l(ά) = θ for a G α.
(ii) Accessibility:

for each j the binary predicate Ej, which encodes accessibility in moves

concerning the j-ih component, is transferred to Ak / =c as follows.

For 0:1,0:2 G Ak/ =° put (αι,α2) G Ej if for α G c*ι there is some
b G A with a^ G α2

(iii) Symmetries:
for each permutation p in the symmetric group Sk acting on {1,..., k}

a binary predicate Sp is defined on Ak / =° by:
(0:1,0:2) G Sp if p(a) G Q:2 for α G a\.

(iv) Multiplicities:

for each j a weight function Vj from Ak / =° to natural numbers is
introduced which sends α to \{b G A \ a- G α}|, for a G α.

It has to be checked that the given definitions are independent of choices of

representatives for the =ck-classes on Ak. Recall that Ak/ =°k = Tpc (21; k).
Clearly for the P#, α G PΘ if OL \= θ. For the others choose for each C^-type
a a C^ω-formula φa(x) that isolates a (cf. Lemma 1.33). Consider now

the EJ. For any two Cfc-types a,β G Tpcfc(2t;fc), either α (= 3xjψβ(x) or
a \= -^3xjψβ(x). Accessibility of a position of type β in the j-ih component
is thus determined by the type a of the given position. Similarly for the
multiplicities Vj. For each a there must be some natural number m such
that a \= 3=mXjφa(x)', this m is the value of z/j(α). The operation of p G Sk
preserves Ck -equivalence so that the representation of p as a binary predicate
on the quotient is also sound. Alternatively the operations p may actually
be defined syntactically on Ck -types through an operation on the variable
symbols.

Note that the information about atomic types, accessibility and permu-
tations are encoded by relations over Ak/ =c whereas for the multiplicities
we have to resort to external weight functions. The values of the Vj over

Ak/ =°k are bounded by \A\.
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Definition 3.3. Let for each k and each fixed finite relational vocabulary τ,
the Ck -invariant ICk be the functor which sends a finite r -structure 21 to the
weighted linearly ordered structure

where θ ranges over Atp(τ; fc), j over {!,..., A;}, and p over Sk The inter-
pretations of ^ , the PΘ , Ej , Sp and Vj are. as defined above.

Obviously I^k is a PTIME computable functor. Formally we regard the
relational part of

as a relational structure on the standard universe of size \Ak / =° \ ̂  \A\k

with its natural ordering. The weight functions Vj take values in {l, . . . , \A\}.
/Cfc(2l) as a whole may therefore in some canonical way be encoded as a
relational structure over the standard universe of size |A|, if fc-tuples are

used to encode the elements of Ak / =° .

Remark 3.4. We regard Iςk as a PTIME functor that takes standard objects
— namely canonical relational encodings of the weighted ordered structures
ICk(%L) over standard domains of size \A\ — as its values. The size of /cfc ^s

taken to be \A\.1

The data encoded in /cfc(2l) are redundant in several respects. In the
presence of the p £ Sk it would in particular suffice to keep only one of the
Ej and only one of the ι/j . For instance Vj1 = ι/j2 op where p is the permutation
exchanging jΊ and fa. We keep this redundancy because the highly symmetric
format is easier to handle in some applications.

It is slightly less obvious that also the Sp are PTIME computable (and
hence FP-definable) from the complete set of the Ej and Vj. To see this
observe that the quotients Ak / «ί? that occur in the inductive generation

of «, are all naturally interpreted over Ak / =°k : the equivalence classes

of the «j are unions of =° -classes, as =° is a refinement of the «. At
«o-level, the classes are just the PΘ over Ak/ =° . The operation of Sk on
Atp(2t; k) = Ak / «0 is trivially definable in this interpretation, p £ Sk sends
PΘ to Pp(θ], where ρ(θ) is obtained by operating with p~l on the variables in
θ. Inductively, in each refinement step, the operation of Sk on Ak / «»+i is
determined by that on Ak/ «<. The refinement is governed by the values of
the functions vf(a) = \{b £ A / a^ £ α}| for a £ Ak/ «<. And for these we
obviously have

1 The value |Λ|, rather than for instance \A\k or Σ Σα^'ί0) *s a ma^er °̂
convention. The size of ICk (21) is naturally only determined up to polynomial
transformations. The point is that the size of /Cfc(2t), with weights taken into
account, is polynomially related to the size of 21, and not to \Ak/=c \.



3.2 The Ck -Invariants 83

"*(δ) = ̂ S)(Xδ)) for all p 6 5*.

Furthermore, even the ordering ^ is PTIME computable form the remain-

ing data on Ak / =° , since the entire refinement process in the generation

of the ^i can also be simulated over (Ak / =c , (P#), (Ej); (ι/j)).
These facts are stated for future reference in the following remark.

Remark 3.5. The ordering < and the interpretations of the Sp in /cfc(2l)
are PTIME computable from the reduct of the I^k to vocabulary consisting
only of the Ej and the PQ together with the weight functions Vj .

The relational part of the ICk gets naturally interpreted over the original
structures as a quotient over the fc-th power. By definition it is the quotient
of the fc-th power of the universe with respect to =c . More precisely, we
get the following. Recall that FP(QR) is fixed-point logic with the Rescher
quantifier.

Proposition 3.6. The relational part 0//£fc(Sl), i.e. the relational structure

(Ak I Ξcfc,sζ, (P0), (Ej), (Sp)) is FP(Qn)'interpretable as a quotient over
the k-th power of 21. Moreover, the weights Vj are the cardinalities of atomi-
cally definable predicates in this interpretation.

Sketch of Proof. The intended interpretation is straightforward since ICk is
defined as a quotient on the fc-th power. FP(<3R)-definability of the relational

part is also obvious. FP(QR) is needed to define the equivalence relation =°
for the quotient and for the linear ordering ^ on this quotient; this is just
FP(<2R)-definability of the pre-ordering ^ as stated in Theorem 2.28. The
P0, EJ and Sp are in fact first-order interpretable relative to the interpreted

(Ak I =c , ̂ ). The Vj finally are defined in terms of this interpretation over

Ak according to Vj(ά) = \{b £ α|J5;ά6}| for any α € a. D

It remains to establish the ICk as complete invariants for Ck on fin[τ].

Theorem 3.7. The functor Ic* is a complete C^ω -invariant on fin[τ]. It
classifies finite r- structures exactly up to equivalence in Ck :

V21V21' 7cfc(2t) = ICfc(a') <=» 21 =°k 21'.

Proof. By Lemma 1.34 21 =°k 21' if and only if 21 and 21' realize exactly the
same Ck -types. This is used in the proof.
i) Assume first that 21 =ck 21', so that 21 and 21' realize exactly the same
C^-types. The crucial fact for the proof that Ic*(a) = /c^W is that these
types get ordered in exactly the same way by ^ over 21 and 21'. This follows
from the global view of ^ on fin[τ; k] as expressed in Lemma 2.29 and Corol-
lary 2.30. It follows that the natural isomorphism between (Ak / «,^) and
(Alk I w, <) as ordered structures is the identity function on C*-types. Thus
/Cfc(2l) = 7^(21') follows directly from the definitions, since we have seen
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above that all the extra information encoded in the invariants is determined
by the constituent types.
ii) For the converse implication it suffices to prove that the C^-type corre-
sponding to an element a G /c fcW can be recovered from the invariant.

Recall that the universe Ak / =°k of /c*(2l) is the set Ύp°k(^k) of Ck-
types realized over 21. The claim is clear at the atomic level because of the
unary predicates Pg. Inductively assume that for each formula φ(x) G C^ω

of quantifier rank at most i the subset <£ := {α G Ak / =° \ φ G a} has
been determined as a subset of ICk(%). Without loss of generality consider
a formula ^mXjψ(x) with φ of quantifier rank at most i for the inductive
step. It follows from the definition of the Ej and Vj that (3>mXjψ) G a if
and only if

Therefore ICk (21) fully determines the set of Ck -types realized in 21, and
thus the complete Ck -theory of 21. D

The proof also shows that classification up to =° naturally extends from
structures in fin[τ] to structures with parameters, in particular to the classi-

fication of fin[τ; k] up to =° . This is expressed in the following corollary.

Corollary 3.8. The following extension of the ICk to fin[τ; k] provides a
complete invariant for Ck on fin[τ; k] :

where [a] is that element of ICk (21) representing tp§ (α) . In terms of the
interpretation of the relational part oflcι*(yi) over 21 it is just the equivalence
class of a as induced by =4. The extended invariants share all the above-
mentioned definability and interpretability properties with the standard ones.

Embedding Ar into Ak and Tp£(2l;r) into Tp£(2l;fc) for r ^ k via
(aι , . . . , αr) H> (oi , . . . , αi , αi , . . . , αr), with k — r additional entries of a\
as usual, we similarly obtain complete invariants for Ck on fin[τ; r] for all
r € { l , . ..,*}.

Corollary 3.9. Ck -equivalence on fin[r] as well as on fin[τ;fc] is in PTIME.
For any finite relational r there are PTIME algorithms that decide for 2t and
21' in finjr] whether 21 =°k 21' and for (21, a) and (21', α') in fin[r; k] whether

These algorithms need merely evaluate the corresponding invariants and
check for equality. Ck -equivalence of finite relational structures can also be
shown to be definable in the extension of fixed-point logic by the Hartig
quantifier — when suitably formalized as a query (7fc-EQ.
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Let to this end r' consist of τ together with two new unary predicate
symbols U\ and C/2- Pairs of structures in finfr] are naturally encoded as r'-
structures in which the Ui separate the universe into two disjoint subsets for
the universes of the individual r-structures. Correspondingly put

Ck-EQ =

{(<B,t/ι,t72) eta[τV{Uι,U2}] B = Uι\JU2,*B \ t/i ΞΞC" <B \U2}.

It is obvious that this class is definable in FP(QR), fixed-point logic with
the Rescher quantifier. FP(QR) interprets the relational parts of the ICk of
the individual structures over the pair structure. Whether two interpreted
linearly ordered relational structures are isomorphic is even FP-definable.
For agreement also in the weight functions it suffices to check equalities of
the cardinalities that define their values, and this can be done in a fixed-
point process that uses the Rescher quantifier for the individual cardinality
comparisons.

Now this can be strengthened to definability in the weaker extension of FP
by the Hartig quantifier, for cardinality equality (compare Definition 1.53).
In fact the invariants themselves as ordered structures need not actually be
evaluated. We may instead directly consider the inductive generation of the
stages «j in the generation of « = =c over positions in 21 and 21'.

Checks for cardinality equality suffice for a fixed-point process whose
stages are the «»in restriction to 21 and 21'. Compare Proposition 2.15 where
the refinement step in the inductive definition of the «; is formalized in terms
of cardinality equalities. (Formally one should use the complements of the «;
to make the inductive process increasing.)

21 =° 21' if the restriction of w to Ak x Ark induces an isomor-
phism between (A"/ *,(Pβ), (£,-);(">)) and (A'k/ «,(Pβ),(^);(^)). As
these quotients and the candidate isomorphism between them are FP(£?H)-
interpretable, FP(QH) also suffices to check the isomorphism property: QH is
here used again for equality checks on the weights. We thus get the following.

Proposition 3.10. Ck-equivalence of structures is definable in FP(QH)?
fixed-point logic with the Hartig quantifier, in the sense that the above class
Ck-EQ of encodings of pairs of Ck-equivalent structures is definable in

3.3 The l^-Invariants

We sketch the introduction of the corresponding complete invariants ILk for
the Lk. These are based on the pre-orderings with respect to Lfe-type as char-
acterized in Theorem 2.31 of the preceding chapter. The ordered quotients
(AkI =Lk, ̂ ) are augmented by exactly the same relational expansions as in
the case of ICk. There are, of course, no numerical weights to be kept here.
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Definition 3.11. For each k and each fixed finite relational vocabulary τ,
the Lk-invariant ILk is the following PTIME computable functor which sends
a finite r-structure 21 to the linearly ordered structure

where θ ranges over Atp(r; fc), j over {!,..., &}, and p over Sk-
^ is the linear ordering induced by the pre-ordering with respect to Lk-

types (Theorem 2.31), the PQ, Ej and Sp are defined exactly as for ICk:

- Pβ contains those a G Ak/ =Lk= TpLfc(2l; fc), for which a \= θ;
- (αi, 0:2) G EJ if for a G αi there is some b G A such that a- G a^;

— (0:1,0^2) G Sp if for α G αi the permuted tuple p(a) is in OL<I.

Formally ILk (21) is regarded as a relational structure on the standard universe

of size \AkI =L I with its natural ordering.

As with the Ic* above it would suffice to keep one of the Ej because the
others are definable from any particular one with the help of the Sp. And
again, in the presence of all the Ej, the Sp and the ordering ^ are PTIME
computable from the remaining data in ILk (compare Remark 3.5).

In analogy with Proposition 3.6 for the I^k we here obtain the following.

Proposition 3.12. /L*(2l) is FP-interpretable as a quotient over the k-th
power o/2t.

And of course the I^k are complete invariants for Lk.

Theorem 3.13. The functor ILk is a complete invariant for L1^3θω on ίm[τ].
It classifies finite τ-structures exactly up to equivalence in Lk:

V21V21' /ι,fc(2t) = /Lfc(2t') <—> 21 =Lk 2t;.

The proof can be given along exactly the same lines as that for Theo-
rem 3.7 with the obvious simplifications. Extensions of the ILk to complete
invariants on the fin[τ; r] for r ^ k are obtained as in Corollary 3.8.

Corollary 3.14. Lk-equivalence over fin[τ] as well as over fin[τ;fc] can be
checked through evaluation of the corresponding invariants and hence is in
PTIME.

We get more, namely FP-definability of Z^-equivalence as a query on pair
structures, a result due to Kolaitis and Vardi [KVa92b]. Putting

Gfin[rU{C/ι,C/2}]

we obtain the following corollary.

\ ί/i =
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Corollary 3.15 (Kolaitis, Vardi). Lk-equivalence is FP-definable in the
sense that the class Lk-EQ is definable in FP. In particular Lk-equivalence
is in PTIME.

Sketch of Proof. The invariants ILk are FP-interpretable and isomorphism of
embedded linearly ordered structures is obviously in FP. The claim follows
with closure of FP under generalized interpretations. D

3.4 Some Applications

3.4.1 Fixed-Points and the Invariants

From Lemma 1.29 we know that the fixed-point logics FP and PFP are
sublogics of L^X)ω. For any fixed-point process there is some k such that this
fixed-point process and its stages are all L^ω-definable. But this implies in
particular that this fixed-point process does not distinguish between L^-
equivalent tuples. In other words, the generation of the fixed point on St

can faithfully be represented on the quotient Ak / =L . This observation is
the key to important insights into the nature of FP and PFP in relation to
computational complexity that are due to Abiteboul and Vianu. In this first
part we present the technical basis.

Let φ(Zι,..., Z^x) £ ^^[T] be free in the indicated variables. Assume
that the arity of the Zi is at most k and that x is a tuple of (at most k)
distinct variables. We want show that there is a first-order formula φ that

captures the semantics of φ over the quotients Ak / =L , more precisely over
the /Lfc(2l). To make this precise we introduce some ad-hoc conventions.
Predicates of arity k are naturally representable over Ak as unary predicates.
For predicates of arity 1 ̂  r < k we adopt a representation via the passage
from R C Ar to R1 := ί(αι,... ,αι,αι,... ,αr) I Ra\.. .ar} C Ak.

^̂ ^̂ ™^̂ .̂  ™^ ̂
k-r

Since R is first-order definable from R' and vice versa, we may in partic-
ular restrict second-order parameters Zi as in φ above to arity k rather than
Ti ^ k. The same convention is applied to global relations. In our consider-
ations about L^-definable queries we may here restrict attention to global
relations of arity k. Boolean queries can be represented by these as well if we
identify 0 with 0 C Ak and 1 with the full predicate Ak. This translation,
too, is sound up to first-order interdefinability.

For 21 £ fin[τ], call R C Ak Lk-admissible if it is a union of =L -classes
over Ak. Thus by Lemma 1.33, R C Ak is Lfc-admissible if R is L^ω- (and
hence also L^ω-) definable over St. Note that we are here talking about defin-
ability over an individual structure, not about definability of global relations.

Any Lk-admissible R C Ak is faithfully represented over Ak / =L by a unary
predicate



88 3. The Invariants

R = {a G Akl =Lk I ά G α =» α G #}.

With this translation for admissible interpretations of free second-order
variables we obtain a uniform translation from L*-formulae over fin[τ] to
L^-formulae over the ILk as follows. Recall that if ψ(Z\,. . . , Z/,z) is in free
variables Z; and x as indicated we write </?[2l, WΊ, . . . , W{\ for the predicate
defined by φ in variables x over 21 if the Z; are interpreted by predicates Wi
over 21.

Lemma 3.16. Lei </?(Zι , . . . , Z/, xi , . . . , #&) G ^/^[r] with second-order vari-
ables Z{ of arity k. Then there is an L^ω-formula φ(Z.\, . . . ,Z/,#) in the
language of the I^k and with unary second-order variables Z^ that uniformly
captures φ over the ILk in the following sense. For all 2t G fin[τ] and all
Lk -admissible interpretations Wi for the Zi over *&:

Proof. The proof is a straightforward induction over formulae φ. Assume
without loss of generality that there is just one second-order variable Z and
that each Z-atom in φ is in a tuple of mutually distinct variables (otherwise
pass for instance from Zx\x\ ... to 3x2(#2 = #ι Λ Zx\x<ι ...))•
i) Consider atomic φ. Let φ be a Z-atom of the admitted kind. Then φ =
Zxp(i) . . . x p ( k ) for some p G 5*. The formula φ(Z_,x) = 3y(Spxy Λ Zy)
is as desired. If φ is an atom not involving Z then it is equivalent with a
finite disjunction over atomic τ-types. These translate into a disjunction over
formulae PQX for the corresponding θ G Atp(τ; k).
ii) Boolean operations carry over trivially.
iii) It remains to consider existential quantification. Let φ = ^Xjψ and assume
that ^(Z,x) is as desired for ψ. Let ^(Z,?/) be the result of exchanging x

and y throughout ψ. Then the formula φ(Z_,x) = 3y(Ejxy Λ ̂ (Z,ί/)) is an
adequate translation of φ. D

It follows immediately that fixed-point processes over fin[τ] translate into
corresponding fixed-point processes over the I^ .

Lemma 3.17. Let φ(Zι,. . . , Z/,z) G PFP[r]. Then for sufficiently large k
there is a PFP -formula <£(Z1? . . . , Zj,x) in the language of the ILk and with
unary second-order variables Z_i that uniformly captures φ over the ILk . For
all 21 G fin[r] and all admissible interpretations Wi for the Zi over %:

The same holds o/FP in place o/PFP.

Sketch of Proof. The proof is obvious on the basis of the last lemma. Formally
it is by induction on PFP-formulae. The PFP-step is as follows. Assume
φ = [PFPx^Jx and disregard for convenience second-order parameters.
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By the inductive hypothesis there is a PFP-formula ^(2Γ, x) such that for
appropriate k: ψ[%, X] = ψ_[lLk(W),X\ for all Lk -admissible X.

It follows inductively that the stages Xι in any fixed-point generation
based on ψ are Lk -admissible predicates: the empty predicate is Lk -admissible
and 7/j[2t, X] is /^-admissible for Inadmissible X as it admits a representa-

tion over Akl =L" through £[JLfc(a),X].
Let the 2Q be the representations of the Xi. It is obvious that the X_i

are the stages of a partial fixed-point process over ILk that is induced by
ψ. It follows that the partial fixed-point of the stages 2Q over ILk is the
representation of PFPχίΈψ: [PFPχ^φ] = [PFP^xΨ]- Π

The Ck -invariants behave much like the Lfc-invariants. All the information
expressed in the //^-invariant about Ak / =L is expressed by the CMnvariant

about the finer representation Ak/ =° . It is immediate therefore that the
statement of the last lemma carries over to ICk in place of ILk . We state
it without (C*-admissible) second-order parameters, merely for notational
convenience.

Corollary 3.18. Let φ € PFP[r], respectively FP[r]. Then for sufficiently
large k there is a PFP-formula, respectively FP-formula φ(x) in the language
of the Ick that uniformly captures φ over the ICk in the sense that for all

ICk contains numerical information encoded in the weight functions t/j.
In an extension of the statement of the last corollary we thus get that for
instance the Hartig quantifier can also be captured. This will become useful
later. Recall that the Hartig quantifier QH expresses cardinality equality of
two definable unary predicates, cf. Definition 1.53.

Lemma 3.19. Let φ £ PFP(QH)[τ]. Then for sufficiently large k there is a
PFP-formula φ(x) in the language of the ICk that captures φ over the ICk in

the sense thaΓfor all 21 € fin[r]: φ[9L] = φ[!Ck (&)] .2

The same holds ofFP(QH) and FP in place ofPFP(QH) andPFP.

Sketch of Proof. Above the proofs of Lemma 3.16 and 3.17 we only need to
show that an application of the Hartig quantifier carries over to the repre-
sentation on ICk. Let φ = QH((xj-,ψι)] (x.,-/;^)). Semantically this formula

says that [{xjl^i}) = K^j'lV^}!- Assume that there are PFP-formulae ψi(x)
satisfying the claim of the lemma for appropriate k. Then

is a number whose value is PTIME computable from the unary predicate φ_
over the ordered domain of ICk . Hence this value is fixed-point definable over
ICk , and so is equality of two such values. D

2 Compare Definition 3.3 and Remark 3.4. It is essential that we consider the
relational encoding of the full invariants, the weights ι/j inclusive.
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3.4.2 The Abiteboul-Vianu Theorem

For the Lk we can already demonstrate the power of the invariants in the
analysis of FP and PFP in relation to computational complexity. This leads
to a theorem of Abiteboul and Vianu which is one of the major results in the
field.

Definition 3.20. Let PτiME(/Lfc), respectively PsPACE(/Lfc), stand for the
class of all queries that are PTIME, respectively PSPACE computable in terms
of the ILk. More precisely for instance for PTIME(!Lk) :

(i) a boolean query Q on fin[τ] is in PTIME(/Lfc) */ membership 0/21 in Q
is a PTIME property of ILk (21).

(ii) an r-ary query R on fin[τ] for r ^ k is in PτiME(/Lfc) if membership
of a in R* is a PTIME property of ILk($L,a). Here ILk stands for the
extension to an invariant on fin[r;r].

Equivalently, a query is in PTIME(/χ,fc) OΓ PSPACE(/Lfc) if it is L^ω-
definable (and therefore its values R* will in particular be Inadmissible over

21) and if the natural representations β51 of R* over Ak/ =L are PTIME or
PSPACE computable over the ILk($i).

Note that these classes are recursively presentable. The PTIME or PSPACE
algorithms featuring in the definition are not subject to any semantic con-
straints: unlike the original input structures 21, the ILk (21) are objects with
standard encodings.

PTIME(/Lfc) and PSPACE (/Lfc) a-1"6 natural classes under the following
view. Consider the case of boolean queries Q C fin[τ]. We identify Q with its
characteristic functor χ:fin[τ] -4 {0,1} which is subject to the condition of
invariance under isomorphism. Q is L^ω-definable if and only if χ is in fact

=L -invariant. This is equivalent with the existence of a presentation of χ as
χ = χ* o ILk for a boolean valued mapping χ*. Note that χ* is defined on a
set of objects with standard encodings and is not subject to any additional
constraints. The same considerations apply to fc-ary queries, which we may
identify with isomorphism invariant boolean functors on fin[τ; k]. PTIME(/Lfc)
and PSPACE (/L*) consist exactly of those queries which are presentable by
X = x* o ILk with PTIME or PSPACE computable functions χ*.

It follows from the Theorems of Immerman and Vardi (Theorem 1.24)
and of Abiteboul, Vardi and Vianu (Theorem 1.25) that these classes are
semantically equivalent with logical systems based on FP and PFP:

PTIME(/Lfc) ΞΞ FP(/Lfc),

PSPACE (ILk) = PFP(/L*).

The logics on the right-hand side consist of those formulae that are ob-
tained as FP- or PFP-formulae applied to the FP-definable interpretations
of ILk as a quotient over the fc-th power. Using the fact that ILk itself is
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FP-interpretable and the closure properties of FP and PFP with respect to
interpretations, Lemma 1.49, FP(/Lfc) and PFP(lLk) are seen to be frag-
ments of FP and PFP, respectively. They could obviously be characterized
in purely syntactic terms if one so wishes.

Lemma 3.21. The following semantic equivalences hold on the class of all
finite relational structures:

FP = UFP(/Lfc) = U*PTIME(/L*),

PFP ΞΞ U*PFP(/Lfc) = U* PSPACE (7Lfc)

Proof. The inclusions FP(/L*) C FP and PFP(/Lfc) C PFP follow from the
closure of FP and PFP under definable interpretations, Lemma 1.49. For FP-
interpretability of ILk (21) over 21 see Proposition 3.12. The converse inclusions
FP C \Jk FP(lLk) and PFP C (Jfc PFP(/Ln) follow from Lemma 3.17. D

As a corollary to these equivalences we finally obtain the following.

Theorem 3.22 (Abiteboul, Vianu). FP = PFP on the class of all finite
relational structures if and only i/PTIME = PSPACE.

Proof. FP = PFP => PTIME = PSPACE follows by considering the class of
ordered structures and applying the theorems of Immerman, Vardi and of
Abiteboul, Vardi, Vianu that equate FP with PTIME and PFP with PSPACE
over these.

The real content of the theorem is the converse: if PTIME = PSPACE
then FP = PFP over the class of all finite relational structures. Lemma 3.21
yields the necessary reduction of the general case to the ordered case. If
PTIME = PSPACE then FP = \Jk PTIME(JLfc) = (J* PSPACE(/Lfc) = PFP.

D

3.4.3 Comparison of I^k and I^k

There is an obvious formal difference between the Lk- and the Ck-invariants.
ILk (21) is interpretable as a purely relational structure over the given struc-
tures 21. For ICk (21) this applies only to the relational part to which weight
functions have to be added to obtain an invariant that characterizes up to
=c . A complete relational representation of Ic* (21) has size |A|, the same as
21 itself. Setting aside our particular encoding convention, its size is at least
polynomially related to the size of the original structure. The size of ILk (21)

on the other hand is | Ak/ =L \. Below, an example is reviewed of a theory
in L^oω which forces the size of ILk (21) to be logarithmically small in terms
of \A\ in all its finite models. We have seen in the case of L^3Qω in the last
sections that the size of the invariants is directly related to the expressive
power of FP. Lemma 3.21 implies that FP-evaluations over 21 close within
polynomially many steps — not in the size of 21 but in the size of ILk (21)
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for some sufficiently large k. A similar dependence of fixed-point logic with
counting on the size of the ICk will be derived in the next chapter. That this
distinction is a logical phenomenon (and not just an artifact of the partic-
ular formalizations of the invariants) follows even in the very trivial case of
pure sets, i.e. for τ = 0. Note that in this case the size of //,* is bounded
by a constant, namely the number of equality types in k variables. Corre-
spondingly, FP and all of L^ collapse to first-order logic over pure sets,
see Corollary 1.32. The C^ω on the other hand define arbitrarily complex
classes of pure sets, and any reasonable formalization of fixed-point logic with
counting has to render definable all PTIME arithmetical properties of the size
of pure sets.

We review Example 1.16 concerning L^ω -definability of the class of full
binary trees. It serves to show that even three variables suffice to force a loga-
rithmic collapse in the size of ILk. The example is presented and discussed in
this context by Dawar, Lindell and Weinstein in [DLW95]. The formalization
in just three variables indicated in Example 1.16 is interesting because we
shall see in the last chapter that no L^^-theory can force a similar collapse:
k = 3 in fact delineates the border-line for this phenomenon.

Example 3.23. By Example 1.16 there is a sentence φ in L^^E] defining
the class of full finite binary trees. Obviously the size of full binary trees is
exponential in their height. The number of I/J^-types, however, is bounded
by a polynomial in the height, since even the number of isomorphism types
of fc-tuples is bounded by a polynomial. The isomorphism type of a fc-tuple
(vι, . . , V f c ) within a given full binary tree is completely characterized by
the heights of the vertices Vij, 1 ^ i ^ j ^ fc, where % is that vertex
in which the paths from Vi and Vj to the root meet. It follows that the
number of L^^-types in models 211= φ and therefore the sizes of all ILk (21)
are polylogarithmic in the size of these models. For suitable polynomials p^:

|IL*(a)| = |TpLfc(2t;A;)| <pfc(log(|A|)) for all 211= φ.

Dawar, Lindell and Weinstein also employ tree structures with this log-
arithmic collapse in a padding argument to prove the second main result of
Abiteboul and Vianu about the relationship between FP and PFP stated
below. For the proof we refer to [DLW95]. The statement of this result is im-
portant here because we shall find the opposite for the counting extensions
— the reason for this fundamental difference is that the ILk may collapse the
size of structures while the ICk do not.

Let PFP|poly stand for the subclass of PFP which admits PFP-applications
only where the limit is reached in a poly normally bounded number of steps. In
particular FP C PFP|poly. Intuitively FP captures PTIME relational recursion,
PFP captures PSPACE relational recursion. It would be tempting therefore
to conjecture that PFP|poly = FP.

Theorem 3.24 (Abiteboul, Vianu).
// PFP|poly C FP then PTIME = PSPACE.
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Note that the converse implication holds as a consequence of the first
theorem of Abiteboul-Vianu, Theorem 3.22.

3.5 A Partial Reduction to Two Variables

The invariants ICk and ILk have as their backbones pre-orderings defined
as the stable colourings of certain graphs interpretable over the fc-th power
of the given structures. In the standard setting these pre-orderings them-
selves can be defined in C^ω and Lj^,, respectively, as shown in Section 2.2.
Pursuing this connection further one can show that ICk and ILk are in fact
FP-interpretable over the two-variable invariants of the game fc-graphs of the
underlying structures. These results later play a role in potential reductions
for canonization problems.

Recall from Definition 2.26 that the game fc-graph a(fc) associated with
a G fin[τ] is the structure with universe Ak and with binary predicates Ej
for the accessibility relations in each component and unary predicates PΘ for
the identification of atomic types θ £ Atp(τ fc). The vocabulary of 2l(fc) is
denoted τ( fc). For the technical notion of interpretability of functors compare
the remarks made in connection with Example 1.47.

Proposition 3.25. /z,fc(a) is uniformly FP-interpretable in /L2(2t(fc)).
/cfc(a) is uniformly FP-interpretable in /£2(a(fc)).

The mere functional dependencies expressed in these interpretability
statements imply in particular that

a(fc) =°2 a/(fc) =» a =°k a',
a(fc) =L* 2l'(fc) => a =L* a'.

The claim of the proposition goes beyond these implications, since it requires
FP-interpretability or PTIME computability of one invariant in terms of the
other.

Sketch of Proof. The proof is somewhat technical though not difficult. We
indicate the proof for the interpretability of /cfc(2l) m ^c2(2t(fc)) Since we
are dealing with ordered structures it suffices to show that I^k (a) is PTIME
computable from /c2(^(fc))> compare Example 1.47.

Consider the generation of the ̂  with limit =^, where ^ is the quotient

interpretation over Ak of the ordering (Akj =c , <) underlying JCfc(a). For
each i let (Ak/ «;, ̂ $) be the ordered quotient induced by =&.

We first show inductively how (Ak/ «i,^t) is interpretable in the re-
lational part of /£2(a(fc)). For this interpretation we use those elements of
7C'2(a(fc)) that represent types of singletons over a(fc), i.e. that have x\ —XΊ
in their atomic τ(fc)-type. We denote this subset of the universe of /c»2(a(fc))

by Δ and identify it with Tpc2(a(fc); 1). Recall that singletons over a(fc) are
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fc-tuples over 21. The desired interpretation is such that the W -class of α G Ak

is represented by the set of all tp£2

fc) (6) for 6 «< α. It can be described by
the mapping

Ak/&i —+ P(Δ)
a h— > α:= {tpg(

2

fc)(&) I 6 G α } ,

where P(Δ) stands for the power set of Δ.
(Ak / «o,^o) = (Atp(2l;fc),^o) is quantifier free interpretable over Δ

since each atomic type θ G Atp(2l; k) corresponds to those elements of Δ
whose atomic τ(fc)-type contains

Now for the inductive step from (Ak / «*, ̂ ) to (Ak / «»+ι, ^i+i). Recall
that =^i+ι is determined in terms of the numbers

for a G Ak and α G A*/ «$. By the inductive hypothesis any such α is
interpreted by a subset a of Zi in 7C2(2l(fc)). Obviously ι/j*(α) is represented
over 2l(fc) as , ,

ι/?(S) = | { δ G A fe I J5, α 6 Λ & € α } .

This shows that these numbers can only depend on tp^(fc) (α) and therefore

are directly computable on ICi(Wk)} from tp^(fc) (α) and α. Thus the desired

interpretation of (Ak/ «i-|-ι, ^i-f-i) over 7<72(2lίfc)) is PTIME computable from
that of (Ak/ w<,^i).

This refinement process terminates after polynomially many many steps

and its limit is the interpretation of the ordered quotient (Ak/ =° , ̂ ) needed
for ICk (21). The other data in ICk (21) are easily definable and computable in
terms of this interpretation as follows.

The PΘ are trivially represented by atomic formulae over 2l(fc).
The EJ are also atomically represented in 2t(fc) and can be transferred

to the interpreted TO* (21) as follows: α and a' are Ej-related in /c*(20 if
they are realized by some α and α' that are ^-related in 2l(fc). Therefore
(α, a') e EJ in ICk (21) if there is some

β e Tpc2(2ί(fc); 2) such that β \= Ejxlx2 , β\Xl G a and β\x2 G a'.

Here β\Xi denotes the restriction of the 2-type β to the z'-th component, which

is an element of Δ = Tρc2(2l(fc); 1).
The weights Vj of ICk (21) reduce to numerical data that are available on

/C2(2t(fc)) in the manner exhibited for the ι/?(ά) above.
The 5̂  are PTIME computable from the remaining data anyway according

to Remark 3.5. Π
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Sources, attributions and remarks. As pointed out above the impor-
tant concept of an ordered invariant is due to Abiteboul and Vianu [AV91].
Their invariants were abstracted from a model of relational computation and
employed in an analysis FP, PFP|poly and PFP over arbitrary relational struc-
tures in terms of complexities of computations over ordered structures. The
major results are the theorems of Abiteboul and Vianu, Theorems 3.22 and
3.24 above. The systematic formalization of this approach in terms of the L^>oω

is due to Dawar [Daw93] and Dawar, Lindell and Weinstein [DLW95]. The
extension and logical formulation for the C^Qω is presented in [GO93, Ott96a].
The corresponding applications to fixed-point logics with counting will form
a main topic of the following chapter.






