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Homological stability of Aut(Fn) revisited

Mladen Bestvina

Abstract.

We give another proof of a theorem of Hatcher and Vogtmann stat-
ing that the sequence Aut(Fn) satisfies integral homological stability.
The paper is for the most part expository, and we also explain Quillen’s
method for proving homological stability.

§1. Introduction

Let G1 ⊂ G2 ⊂ G3 ⊂ · · · be a sequence of groups. For example,
Gn could be any of the following: the permutation group Sn, or the
signed permutation group S±

n , braid group Bn, SLn(Z), Aut(Fn), and
many other groups, with all inclusions standard. The sequence satisfies
homological stability if for every r there is n(r) such that for n ≥ n(r)
inclusion induced Hr(Gn) → Hr(Gn+1) is an isomorphism. All of the
above sequences satisfy homological stability.

Homological stability of Aut(Fn) over Q was proved by Hatcher
and Vogtmann by a very elegant argument [5], as follows. First, they
show that Aut(Fn) acts properly on an r-connected simplicial complex
SAn,r+1, and second, that for n > 2r the quotient spaces Qn,r+1 =
SAn,r+1/Aut(Fn) and Qn+1,r+1 are canonically homeomorphic. Since

Hr(Aut(Fn);Q) = Hr(Qn,r+1;Q)

= Hr(Qn+1,r+1;Q) = Hr(Aut(Fn+1;Q))

stability follows.
This is a very transparent reason for stability, and I am not aware

of any other example where stability can be proved in this way.

Question 1. Can one prove rational homological stability for braid
groups or mapping class groups in the same way?
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Integral stability of Aut(Fn) is more subtle. It was first established
by Hatcher and Vogtmann in [5] by studying a spectral sequence asso-
ciated to the action of Aut(Fn) on the complex of “split factorizations”
of Fn. Further, it is known, by the work of Hatcher, Vogtmann and
Wahl, that Aut(Fn) → Out(Fn) induces an isomorphism in Hr when
n ≥ 2r + 4, see [4, 5, 6, 7, 3]. The proof is based on Quillen’s method
and requires a rather delicate spectral sequence argument.

In this note we give a proof of integral stability in the same spirit
as Hatcher-Vogtmann’s proof of rational stability. We view the quotient
spaces Qn,r+1 as orbi spaces and observe that for n >> r and canonical
identification Qn,r+1 = Qn+1,r+1 of underlying topological spaces, the
groups Γn,r+1(x),Γn+1,r+1(x) associated to a point x (i.e. stabilizers
of corresponding points in SAn,r+1, SAn+1,r+1) themselves belong to a
sequence of finite groups satisfying homological stability. More precisely,
Γn,r(x) = Gr(x)× S±

n−2r where Gr(x) does not depend on n, and S±
i is

the signed permutation group on i symbols. Integral stability of Aut(Fn)
easily follows.

We emphasize here that we will use spectral sequences only to prove
homological stability for signed permutation groups. The rest of the
argument is geometric, in the spirit of Hatcher-Vogtmann [5].

The price we must pay for conceptual transparency is that our sta-
bility range is far from optimal. The argument seems to require n > 4r
(while the best known estimate is n ≥ 2r + 2), although it is possible
that this may be improved with further effort.

We note that Galatius [2] computed stable homology groups. For
a more systematic approach to homological stability of automorphism
groups see [17].

Outline. In Section 2 we recall Quillen’s method for proving stabil-
ity. We will only need the simple form where the group acts on a highly
connected space with one orbit of cells in a dimension range. We then
prove homological stability for permutation groups, following an argu-
ment of Maazen, and we give a variant for signed permutation groups.
The latter groups naturally appear as subgroups of Aut(Fn) that act as
symmetry groups of a rose. The final section elaborates on the outline
given above. Instead of working with orbi spaces X/G, we use the Borel
construction and consider X ×G EG = (X ×EG)/G where G acts diag-
onally on X × EG. This is technically more expedient, but the reader
should keep the orbi space picture in mind.

Acknowledgments. I thank the referee for useful comments. I
also thank the organizers of MSJ-SI for giving me a nudge. I gave talks
on this proof some years ago but didn’t get around to writing it up until
now.
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§2. Quillen’s method

Here we describe a method, due to Quillen (unpublished), to prove
homological stability. For published accounts of Quillen’s method see
e.g. [16, 15].

We will say that X is r-connected if H̃i(X) = 0 for i ≤ r.
Fix a sequence G0 ⊂ G1 ⊂ G2 ⊂ · · · of groups. Suppose that

Hi(Gs−1) → Hi(Gs) is an isomorphism when the following hold:

• i = r − 1 and s ≥ n− 2, or
• i < r − 1 and s ≥ n+ i− r − 2.

Also assume that the group Gn acts on a Δ-complex X = X(n) of
dimension ≤ n− 1 with the following properties.

(i) Action is without inversions, i.e. any element that leaves a simplex
invariant fixes it pointwise.

(ii) X is r-connected.
(iii) in each dimension 0, 1, · · · , r there is one orbit of simplices.
(iv) There is a flag of simplices

σ0 < σ1 < · · · < σr

in X such that Stab(σi) = Gn−i−1 ⊂ Gn.
(v) If τ i1 and τ i2 are two i-simplices in X contained in ρi+1 as faces

(i = 0, 1, · · · , r − 1) then there exists g ∈ G such that:
• g(τ1) = τ2, and
• g commutes with all elements of Stab(ρ).

Remark 2. In view of (iii) and (iv), we have that the stabilizer of
every i-simplex is a conjugate of Gn−i−1. Note that conjugation induces
identity in the homology of a group. So we have a canonical isomorphism
H∗(Stab(τ i)) ∼= H∗(Stab(σi)) = H∗(Gn−i−1) for any i-simplex τ (by
choosing any g ∈ G with g(τ) = σ and passing to the isomorphism in
homology induced by conjugation g∗ : Stab(τ) → Stab(σ), h �→ ghg−1;
this isomorphism is independent of the choice of g).

Property (v) guarantees that stabilizer inclusions Stab(ρ) ↪→ Stab(τj),
j = 1, 2, induce the same homomorphism H∗(Gn−i−2) → H∗(Gn−i−1)
in homology, after the identifications in the previous paragraph. This
follows by considering the diagram

Stab(ρ) Stab(τ1)

Stab(τ2)

g∗
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which commutes (by the assumption that g∗ fixes Stab(ρ)) and passing
to homology. By (iv) this is the homomorphism induced by inclusion
Gn−i−2 ↪→ Gn−i−1.

Proposition 3. Under the above assumptions Hr(Gn−1) → Hr(Gn)
is an isomorphism.

Proof. Consider the “equivariant homology spectral sequence”. This
is the spectral sequence associated to the filtration of Y = X ×Gn EGn

coming from the skeleta ofX: Yp = Xp×GnEGn. SinceX is r-connected
we have Hr(Y ) = Hr(Gn). The first page is

E1
p,q = Hp+q(Yp, Yp−1) = Hq(Stab(σ

p)) = Hq(Gn−p−1)

with equalities legal since identifications are up to inner automorphisms,
which induce identity in homology. When p is even the differential
E1

p+1,q → E1
p,q is 0 by (v) (a (p + 1)-simplex has an even number of

p-faces, stabilizer inclusions are all standard, half come with positive
and half with negative sign). In particular, E1

0,q = Hq(Gn−1) survives

to E2. Likewise, when p is odd the differential E1
p+1,q → E1

p,q is the
inclusion induced Hq(Gn−p−2) → Hq(Gn−p−1). A portion of the first
page is pictured below. The leftmost column corresponds to p = 0 and
the top row to q = r.

Hr(Gn−1)
0← Hr(Gn−2) ← Hr(Gn−3)

Hr−1(Gn−1)
0←
�

�

�

�
Hr−1(Gn−2)

∼=←
�

�

�

�
Hr−1(Gn−3)

0←

Hr−2(Gn−1)
0← Hr−2(Gn−2)

∼=←
�

�

�

�
Hr−2(Gn−3)

0←
�

�

�

�
Hr−2(Gn−4)

∼=←

Hr−2(Gn−5)

The circled terms are E1
p,r−p and E1

p,r−p+1 with p > 0 and q < r,

and they die thanks to our assumption that the differential d1 : E1
p+1,q →

E1
p,q is an isomorphism when p is odd and it involves at least one of the

circled terms. It now follows that the E2 page has E2
0,r = Hr(Gn−1) and

all terms on the diagonals p+ q = r and p+ q = r+1 with q < r vanish.
Thus the same holds for the E∞ page, and since the spectral sequence
converges to Hp+q(Y ) we have that Hr(Gn−1) = E∞

0,r → Hr(Y ) =
Hr(Gn) is an isomorphism, thus proving the Proposition. Q.E.D.
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2.1. Stability for (signed) permutation groups

Stability for symmetric groups was established by Nakaoka [13, 14].
We will follow Maazen’s proof [11]. See also [10]. We start with a couple
of elementary lemmas.

Call a nonempty polyhedron X n-spherical if H̃i(X) = 0 for i 
= n.

Lemma 4. Let X be a polyhedron and Xi ⊂ X a finite collection
of m subpolyhedra covering X, and let n ≥ 0 be an integer. Suppose
that for every k = 1, 2, · · · ,m any k-fold intersection Xi1 ∩ · · · ∩Xik is
(n− k+1)-spherical (empty for k ≥ n+2) whenever i1 < i2 < · · · < ik.
Then X is n-spherical.

Proof. Induction on m. If m = 1 there is nothing to prove, and if
m = 2 the statement follows from Mayer-Vietoris. Assume m > 2. Let
Y = X2 ∪X3 ∪ · · · ∪Xm. By induction Y is n-spherical and

X1 ∩ Y = (X1 ∩X2) ∪ (X1 ∩X3) ∪ · · · ∪ (X1 ∩Xm)

is (n−1)-spherical (again by induction). Thus the claim follows. Q.E.D.

Lemma 5. If X is n-spherical and F is a nonempty finite set then
the join X ∗ F is (n+ 1)-spherical.

Proof. By induction on the cardinality of F . If |F | = 1 then X ∗F
is contractible. If |F | = 2 thenX∗F is the suspension and H̃i+1(X∗F ) =

H̃i(X) so the claim follows. When |F | > 2 write X ∗ F as the union of
two sets whose intersection is X, with one set contractible and the other
(n + 1)-spherical by induction (join of X and the set F without one of
the points). Then use Mayer-Vietoris. Q.E.D.

Proposition 6. The sequence of symmetric groups Sn satisfies ho-
mological stability:

Hr(Sn−1) → Hr(Sn)

is an isomorphism for n > 2r.

Proof. We argue by induction on r, starting with the obvious r = 0.
We will apply Proposition 3 with Gn = Sn. Note that the fact that
Hi(Ss−1) → Hi(Ss) is an isomorphism when i = r− 1 and s ≥ n− 2, or
when i < r− 1 and s ≥ n+ i− r− 2 follows by induction (for the latter
case the calculation is s ≥ n+ i− r−2 > 2r+ i− r−2 = r+ i−2 ≥ 2i).
Consider the Δ-complex X = X(n) whose vertices are 1, 2, · · · , n and
there is an (ordered) simplex for every ordered subset of the vertex set.
So e.g. there are n(n− 1) edges etc.

Claim. X(n) is (n− 1)-spherical.
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Proof of Claim. Let Xi be the union of (closed) simplices in X
whose first vertex is i. Thus Xi contains all simplices whose vertices
don’t include i (and it is the cone on this subcomplex). More generally,
the k-fold intersection of the Xi’s can be identified with the subcomplex
(the “base”) consisting of simplices that don’t involve k particular ver-
tices, with k cones attached to it. Since the base is a copy of X(n− k)
it is (n − k − 1)-spherical by induction. It follows from Lemma 5 that
k-fold intersections are (n − k)-spherical. Now Lemma 4 implies that
X = X(n) is (n− 1)-spherical.

The verification of (i)-(v) is left to the reader. Thus stability follows.
Q.E.D.

There is an identical proof for the signed permutation group S±
n (or

the hyperoctahedral group), i.e. the Coxeter group of type Bn. Recall
that S±

n is the semi-direct product Sn �Zn
2 and it can be viewed as the

group of permutations π of the set {−n,−(n−1), · · · ,−1, 1, · · · , n−1, n}
such that π(−x) = −π(x) for all x.

Proposition 7 ([8]). The signed permutation groups satisfy homo-
logical stability:

Hr(S
±
n−1) → Hr(S

±
n )

is an isomorphism for n > 2r.

Proof. Now let X = X(n) be the Δ-complex with vertex set −n,
− (n − 1), · · · ,−1, 1, 2, · · · , n and a simplex is an ordered subset with
distinct absolute values. The proof that X is (n − 1)-spherical is the
same: take Xi to consist of simplices that start with i or −i. Q.E.D.

Remark 8. There is one more infinite sequence of Weyl groups,
namely of type Dn. This is the group of signed permutations with
an even number of negative signs, and it has index 2 in S±

n . One can
prove homological stability as above, by considering the action on the
same complex as for S±

n (there are now two orbits of simplices in the
top dimension). For a generalization of this method to other sequences
of Coxeter groups see [9].

§3. Integral homological stability of Aut(Fn)

The following is well-known.

Proposition 9. Let f : X → Y be a map between spaces equipped
with filtrations

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm = X
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and
∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y

such that f(Xi) ⊂ Yi for all i. If f∗ : Hj(Xi,Xi−1) → Hj(Yi, Yi−1) is
an isomorphism for all i = 0, · · · ,m and j ≤ k + 1, then f∗ : Hj(X) →
Hj(Y ) is an isomorphism for j ≤ k.

Proof. This can be easily proved via spectral sequences, but we
will give an elementary proof. By induction on p = 1, · · · ,m+1 we will
prove that

f∗ : Hj(Xi,Xi−p) → Hj(Yi, Yi−p)

is an isomorphism for p − 1 ≤ i ≤ m and j ≤ k. For p = 1 this
is a hypothesis. For p > 1 we consider the long exact sequences of
triples (Xi,Xi−1,Xi−p) and (Yi, Yi−1, Yi−p), and the map between them
induced by f .

Hj+1(Xi,Xi−1)→ Hj(Xi−1,Xi−p) →Hj(Xi,Xi−p)→
↓ ↓ ↓

Hj+1(Yi, Yi−1) → Hj(Yi−1, Yi−p) → Hj(Yi, Yi−p) →

→ Hj(Xi,Xi−1) →Hj−1(Xi−1,Xi−p)
↓ ↓

→ Hj(Yi, Yi−1) → Hj−1(Yi−1, Yi−p)

The inductive step now follows from the 5-lemma, and the Proposition
from the case p = m+ 1. Q.E.D.

Proposition 10. Let (X ′,X) be a finite dimensional simplicial pair,
G′ a group and G < G′ a subgroup. Suppose that

(i) G′ acts on X ′ without inversions,
(ii) G < G′ leaves X invariant,
(iii) both X,X ′ are k-connected,
(iv) every G′-orbit intersects X,
(v) if two simplices of X are in the same G′-orbit, then they are in

the same G-orbit,
(vi) for every simplex σ ∈ X the inclusion StabG(σ) ↪→ StabG′(σ)

induces an isomorphism Hj(StabG(σ)) → Hj(StabG′(σ)) for j ≤
k − dimσ.

Then inclusion G ↪→ G′ induces an isomorphism Hj(G) → Hj(G
′) for

j ≤ k.

Note that (iv) and (v) say that the induced map X/G → X ′/G′ is
a homeomorphism, and (vi) says that groups associated to the “same”
point in the orbi spaces X/G and X ′/G′ have the same homology in a
range.
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Proof. By (iii) we have Hj(G) = Hj(X ×G EG) and similarly for
G′, so it suffices to argue that the map

X ×G EG → X ′ ×G′ EG′

induced by f is an isomorphism in Hj for j ≤ k. We will apply Propo-
sition 9 to this map and the filtrations induced by the skeleta; thus
(X ×G EG)i = Xi ×G EG and similarly for the target space. We have

Hj((X ×G EG)i, (X ×G EG)i−1) = Hj((X
i,Xi−1)×G EG)

=
⊕

σi∈X/G

Hj−i(StabG(σ
i))

with the similar calculation for X ′. By (iv) and (v) both sums are over
the same set of i-simplices in X/G = X ′/G′, and by (vi) homology
groups are equal. Q.E.D.

3.1. Review of the Degree Theorem

Here we review the Hatcher-Vogtmann Degree Theorem [5]. For
a simpler proof of this theorem see [12]. Let SAn denote the spine
of reduced Auter space in rank n. This is a simplicial complex whose
vertices are basepointed marked graphs (Γ, v0, φ) where:

• Γ is a finite connected graph (i.e. a 1-dimensional cell complex)
without separating edges,

• v0 ∈ Γ is a base vertex, it has valence > 1, and all other vertices
have valence > 2,

• φ : Fn → π1(Γ, v0) is an isomorphism (called a marking).

Two triples (Γ, v0, φ) and (Γ′, v′0, φ
′) represent the same vertex of

SAn if there is a basepoint-preserving graph isomorphism I : Γ → Γ′

with φ′ = I∗φ.
We write (Γ, v0, φ) > (Γ′, v′0, φ

′) if there is a forest (subgraph with
contractible components) F ⊂ Γ so that (Γ′, v′0, φ

′) is equivalent to the
graph obtained from Γ by collapsing all components of F , with the
induced base vertex and marking.

The simplicial complex SAn is the poset of this order relation, i.e.
a simplex is an ordered chain. It is contractible [1]. The group Aut(Fn)
acts on SAn by precomposing the marking and the action is proper
without inversions. The stabilizer of a vertex is equal to the symmetry
group of the underlying basepointed graph.

The degree of a basepointed graph (Γ, v0) is the sum

deg(Γ) =
∑

v �=v0

|v| − 2
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where |v| denotes the valence of v and the sum runs over all vertices of
Γ distinct from v0. Denote by SAn,k+1 the subcomplex of SAn spanned
by graphs with degree ≤ k + 1. This subcomplex is Aut(Fn)-invariant.
Note also that collapsing a forest cannot increase the degree.

Theorem 11 ([5]). SAn,k+1 is k-connected.

Lemma 12 ([5]). (a) If n > 2k + 2 then every (Γ, v0) of degree
≤ k + 1 has a loop at v0.

(b) If n −m + 1 > 2k + 2 then every (Γ, v0) of degree ≤ k + 1 has m
loops at v0.

(c) If n > 4k then every (Γ, v0) of degree ≤ k + 1 has 2k − 1 loops at
v0.

3.2. The stability theorem

Theorem 13. Hk(Aut(Fn)) → Hk(Aut(Fn+1)) is an isomorphism
for n > 4k.

Proof. We will use Proposition 10. Let X = SAn,k+1, X ′ =
SAn+1,k+1 with the standard actions ofG = Aut(Fn) andG′ = Aut(Fn+1).
We define a natural equivariant embedding X ↪→ X ′ as follows. Write
Fn+1 = Fn ∗ 〈t〉 so that Aut(Fn) is identified with the subgroup of
Aut(Fn+1) that preserves Fn and t. A vertex of SAn,k+1 is a triple
(Γ, v0, φ) and we map it to the vertex of SAn+1,k+1 given by (Γ ∨
S1, v0, φ

′). The wedge here is at the basepoint v0, and φ′ : Fn ∗ 〈t〉 →
π1(Γ

′, v0) = π1(Γ, v0) ∗ π1(S
1, v0) is φ on the first factor and an iso-

morphism on the second, and we simply write φ′ = φ ∗ id (there are two
possible isomorphisms on the second factor, but either choice defines the
same point in SAn+1,k+1).

This map on the vertices extends to a simplicial equivariant embed-
ding

SAn,k+1 ↪→ SAn+1,k+1

The first three properties from Proposition 10 are clear. Property (iv)
follows from Lemma 12. E.g. start with a vertex (Γ′, v0, φ′) ∈ SAn+1,k+1.
Since n + 1 > 2k + 2 the graph Γ′ has the form Γ′ = Γ ∨ S1, and after
precomposing the marking, φ′ has the form φ ∗ id, so the Aut(Fn+1)-
orbit of every vertex intersects SAn,k+1. A similar argument works for
any simplex in SAn+1,k+1. Say the simplex is obtained from (Γ′, v0, φ′)
by collapsing a sequence of forests. We can again write Γ′ = Γ ∨ S1,
change the marking, and observe that all the forests are contained in Γ.
Property (v) is easy.

Finally, we argue (vi). We start with a vertex (Γ, v0, φ) ∈ SAn,k+1.
Write Γ as Γ = Γ0 ∨ Rm where Rm denotes the wedge of m circles,
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and m is maximal possible. According to Lemma 12, m ≥ 2k − 1. The
key point is that the symmetry group of (Γ, v0) is the direct product
of symmetry groups of (Γ0, v0) and (Rm, v0), and the latter one is the
signed permutation group S±

m. Thus we have

StabAut(Fn)(Γ, v0, φ)
∼= D × S±

m

and
StabAut(Fn+1)(Γ ∨ S1, v0, φ ∗ id) ∼= D × S±

m+1

where D is the symmetry group of (Γ0, v0). So we need to argue that

D × S±
m ↪→ D × S±

m+1

induces an isomorphism in H≤k. This holds for S
±
m ↪→ S±

m+1 by Propo-
sition 7, and in general by the Künneth formula.

The argument for a simplex is similar. Q.E.D.

Question 14. Can the stability range be improved using the same
method? E.g. investigate what happens when theta graphs are wedged at
the basepoint, as in [5].
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