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Some highlights from the history of probabilistic 
number theory 

Wolfgang Schwarz 

Abstract. 

In this survey lecture it is intended to sketch some parts [chosen 
according to the author's interests] of the [early] history of Probabilis­
tic Number Theory, beginning with PAUL TURANs proof (1934) of the 
HARDY-RAMANUJAN result on the "normal order" of the additive func­
tion w(n), the ERDOS-WINTNER Theorem, and the ERDOS-KAc The­
orem. Next, mean-value theorems for arithmetical functions, and the 
KUBILIUS model and its application to limit laws for additive functions 
will be described in short. 

Subsuming applications of the theory of almost-periodic functions 
under the concept of "Probabilistic Number Theory", the problem 
of "uniformly-almost-even functions with prescribed values" will be 
sketched, and the KNOPFMACHER - SCHWARZ - SPILKER theory of 
integration of arithmetical functions will be sketched. Next, K.-H. 
INDLEKOFERs elegant theory of integration of functions N --> C of will 
be described. 

Finally, it is tried to scratch the surface of the topic "universality", 
where important contributions came from the university of Vilnius. 

About fifteen years ago the author got interested in the History of 
the Frankfurt Mathematical Seminary, and in the history of number 
theory. Here it is intended to sketch some highlights from the history of 
Probabilistic Number Theory. And this task is not difficult, using, for 
example, the monographs of P. D. T. A. ELLIOTT ([37], [38]) and G. 
TENENBAUM ([228]), a paper of mine from 1994 on the Development of 
Probabilistic Number Theory,\ a paper of J .-1. MAUCLAIRE [180], and 
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a paper of K.-H. INDLEKOFER ([106], from 2002). A survey paper by J. 
KUBILIUS [134], unfortunately in Russian, gives the stage of the theory 
of value-distribution for additive and multiplicative functions until1972 
(with more than 200 references). Great progress in this theory was made 
possible by the mean-value theorems of E. WIRSING and G. HALASZ 
(see section 4). 

§1. Introduction 

1.1. Number Theory without Probability Theory 

Number Theory is an old mathematical discipline; important con­
tributions to number theory in the 19th century were given by C.-F. 
GAUSS, A.-M. LEGENDRE, P. L. TCHEBYCHEFF, B. RIEMANN, LE­
JEUNE G. DIRICHLET, J. HADAMARD, CH. DE LA VALLEE-POUSSIN, 
and in the early 20th century by E. LANDAU, G. H. HARDY, S. RA­
MANUJAN, J. E. LITTLEWOOD, and by many others. 2 

At present, Number Theory uses many methods from other parts of 
mathematics, for example: 

(1.1) 

• Elementary Calculations (partial summation, comparison with 
integrals, inequalities, elementary algebra and combinatorics). 

• Generating functions ~ f(n) , where f: N--> C. For exam­
~ ns 

1 
ple, the mean-value M(f), if it exists, equals 

M(f) [d:;j lim .!_ "f(n)] = lim C 1(0") · ~ f(n) · n-a. 
x-+oo X ~ a-+1+ ~ 

n~x n=l 

• Sieve Methods (see [78], [79], [92], [201]). 
• Complex Analysis (Cauchy's integral theorem, theorem of res­

idues, theory of entire functions, results on zeros of meromor­
phic functions, Weierstraf3 factorization, ... ). 

• Asymptotic Analysis (LAPLACEs method, saddle point method, 
Tauberian theorems, ... ), see [81], [245], [11]. 

• Estimates of Exponential Sums LN<n< 2N exp(27ri·h(n) « ... 
for real-valued functions h ([240], [2431, [93]). 

2We leave aside contributions to algebraic number theory, for example by 
L. DIRICHLET, E. E. KuMMER, R. DEDEKIND, .... 
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• Special functions (Gamma-function, Beta-function, some in­
tegrals, Theta-functions, ... ) and Zeta-functions (see, for ex­
ample, [112], [117], [153], [125]). 

• Modular functions, modular forms, elliptic curves (see, for ex­
ample, [15]). 

• Ideas from Geometry (convex bodies, lattice points, MINKOW-
SKis Geometry of Numbers), see, for example, [12], [54]. 3 

• Compactification, Topology, topological groups, adeles, ideles. 4 

• Algebra, Algebraic Geometry (Diophantine Analysis). 
• Theory of integration, functional analysis ( [204], [205]). 
• Fourier analysis (see, for example [187]), almost periodic func­

tions, approximation arguments, ergodic theory (see, for ex­
ample, [64]). 

3For a survey of recent results in the theory of lattice points see [113]. 
4See, for example, [70] and [13] for the use of TATEs ideas in algebraic 

number theory. [13] also contains TATEs Thesis from 1950. -For a more recent 
example, see [141]. 
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Figure 1. A. !vic, H. Furstenberg, H. L. Montgomery 

• Probability Theory. 

In this article, our interest is mainly in the last three items. 

Returning to the 19th and early 20th century, great progress was 
made possible by using methods from analysis, in particular the theory 
of complex functions of one variable. RIEMANN defined, in R( s) > 1, 
"his" zeta-function (((s) was already known to L. EuLER) 

(1.2) 
00 ( ) -1 ((s) d;j L ~s =IT 1- ~ ' where n-s = e-s·logn, 

n=l p p 

he gave its analytic continuation, proved the functional equation, 5 and 
made ([202], 1859) several deep conjectures showing an intimate connec­
tion of prime number theory and analytic properties of ( ( s); the famous 
Riemann conjecture, that all non-trivial zeros of ((s) are on the line 
R( s) = ~, is still unsettled. 

DIRICHLET ([30], 1837, 1839) showed that there are infinitely many 
primes in the progression n = a mod q, if a is coprime with q: 

1r(x; q, a) := #{p:::; x, p =a mod q}--+ oo, if gcd(a, q) = 1. 

The crucial point was to show that the values of Dirichlet L-functions 
at s = 1 do not vanish, 

L(l, x) =I 0 for any character X =I xo, 

5Concerning the history of the functional equation, see [144]. 
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where X is a character on the group (Z/ qZ) x, and xo is the character 
constant equal to 1 (,Hauptcharakter"). The Dirichlet £~functions are 
given as Dirichlet series 

(1.3) L(s,x) =~X~~)= I] (1- ~::)) -l 

J. HADAMARD ([73], 1893-1896) was able to sharpen the WEIERSTRASS 
factorization theorem considerably, and obtained a product representa­
tion of functions connected with the Riemann zeta function, 

(p runs over the non-trivial zeros of (( s)), and he was able to show that 
there are no zeros of the zeta function in some region 

(1.5) { s E !C, s = 1J +it, 1J ~ 1 - C1 · ltl ~ 2 } . 

This implied the prime number theorem 

(1.6) 

with a reasonably good remainder term. CH. DE LA VALLEE~PoussrN 
proved the prime number theorem at the same time ([239]).6 

G. H. HARDY, in collaboration with S. RAMANUJAN, later with 
J. E. LITTLEWOOD, used the "circle method" in order to obtain deep 
results on the partition function and the Waring problem. This method 
is based on the simple idea that the coefficients of a power series F(z) = 
I: anzn are given by a contour integral 

a - _1 ·f:F(() d 
n - 2ni cn+l (. 

6The [early] development of prime number theory is carefully presented in 
NARKIEWICZs monograph [189]. The remainder term in (1.6) was improved by 
J. E. LITTLEWOOD, ... , finally by N. M. KOROBOV and I. M. VINOGRADOV 
[see [112], p. 347, with a correction by H.-E. RICHERT (see [243], p.226)]. 

A comparison of the behaviour of the function 1r(x; q, a) in different residue 
classes is the object of the "Comparative Prime Number Theory", with impor­
tant contributions of P. TURAN (see [237]), then also by S. KNAPOWSKI, J. 
PINTZ and others. 
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The integral is approximated by highly ingenious ideas; the main terms 
of the asymptotic formula aimed at come from contributions near the 
singularities of the function (on jzj = 1), and the remaining parts of the 
integral can be estimated to be small in comparison with the main term. 

E. LANDAU ([145], 1911) and G. HARDY and S. RAMANUJAN ([82], 
1917; see also [53]) obtained results for the number 7rr(x) of integers 
composed of exactly r prime factors. 7 By induction the estimate 

( ) x (log log x + c2)k-l 
7f X < C1 -- · -=--=-...,.::.----,-,,...:--

r - logx (r -1)! 

was obtained, and it follows that the normal order of w ( n) is log log n: 

If 'lj;(n) is any real-valued function tending to oo as x ---+ oo, then 
the inequality 

(1.7) jw(n) -loglognj::; 'lj;(n) Jloglogn 

is true for "almost all" positive integers n. The same result is true for 
the function 0( n), the total number of prime factors of n. 

"Almost all integers n have property P" means that for any E > 0 
there are at most E • x integers n ::; x for which property P does not 
hold. Speaking of "almost all" integers is a new idea in number theory, 
and it is related to similar concepts in the theory of integration or in the 
theory of probability. 8 

1.2. Beginnings of Probability Theory 

Probability theory was not well developped at the time before 1900 
or 1910, as may be seen from the Introduction of KRENGELs article [126], 

7The problems become difficult and interesting, if one asks for results which 
are uniform with respect tor in some range. See A. HILDEBRANDT [87]. Here 
it is important to apply analytic methods to the function 

= zw(n) 

F(z,s) ="'""' -. L ns 
n=l 

See also [206], [218]. ~ By the way, H.-E. RICHERT ([200] gave asymptotic 
formulae for the number of integers with exactly r prime factors in residue 
classes n =a mod q, with good error terms. 

8 J .-L. MAUCLAIRE [184] mentions that the idea of using Probability Theory 
in Number Theory shows up already in papers by E. CESARO [14] before 1889. 
~Later, formula (1.7) was greatly improved, see section 3, subsection 3.2. 
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p. 458. The sixth problem of D. HILBERT (1900) (in English from F. 
E. BROWDER, [9]) states: 

Investigations of the foundations of geometry suggest the problem: To treat 
in the same manner, by means of axioms, those physical sciences in which 
mathematics plays an important part; first of all, the theory of probability 
and mechanics. 

As to the axioms of the theory of probability, it seems to me desirable that 
their logical investigation should be accompanied by a rigorous and satis­
factory development of the method of mean values in mathematical physics 

There were some starts to deal with this question by BOHLMANN 
(1908) and UGO BROGGI (1907), some ideas came from E. BOREL, 
S. N. BERNSTEIN, LOMNICKI (1923) and STEINHAUS (1923) (see [126], 
p.459ff, see also [208]). Also, RICHARD VON MISES' paper Grundla­
gen der Wahrscheinlichkeitsrechnung, 1919, Math. Zeitschr., should be 
mentioned (see [126], p.461ff). 

HILBERTs desideratum concerning prob­
ability theory was finally [satisfactorily] ful­
filled by A. N. KOLMOGOROV in 1933 when 
his famous monograph "Grundbegriffe der 
Wahrscheinlichkeitsrechnung" [124] appeared 
in print. The concepts of probability, prob­
ability space and events were defined rigor­
ously. PAUL TURAN (see the photo to the left; 
the author is deeply indepted to P. TURAN 
for his helpfulness. A photograph of TuRANs 
grave is given on the next page) had not seen 
KOLMOGOROVs book in 1934, he even did 
not know Tchebycheff's inequality (see [38] II, 
p.18). Nevertheless, TURAN [235] gave a new, 
important, "probabilistic" proof of the result 

of HARDY & RAMANUJAN concerning w(n). He showed that 

:L)w(n) -loglogx) 2 = 0 (x ·loglogx), 
n$x 

and this easily implies the result (1.7) of HARDY & RAMANUJAN.9 

TURANs proof uses elementary calculations from number theory; his 

9The relationship to TCHEBYCHEFFs inequality is obvious: If E is a random 
variable with expectation E(E) = fn E(w)dP(w) and standard deviation D(E) = 
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formula is probabilistic in nature, it may be interpreted as an estimate 
of the variance, the square of w(n) minus its expectation value. 

§2. The Turan-Kubilius Inequality 

2.1. The Results of Turan and Kubilius 

(2.1) 

TURANs method of proof is applicable not 
only to w(n), but also to strongly additive 
functions w : N ----+ C [these satisfy w(n) = 
Lptn w(p)], which are uniformly bounded at 
the primes ([236]). J. KUBILIUS [129] (see 
the photograph on the left) realized that 
TURANs inequality can be extended to a 
much larger class of [strongly] additive func­
tions and so he obtained a considerably more 
general result. For a given strongly additive 
function w : N ----+ C there exists a [positive, 
universal} constant cl with the property 

1""' 2 2 - · L lw(n)- A(x)l :::; C1 · D (x). 
X 

n~x 

Here, the "expectation" A(x) and the "variance" D(x) are defined as 

(2.2) A(x) L w(p)' 

p~x p 

L lw(p)l 2 . 

p~x p 

Some work has been done to give an as­
ymptotic evaluation of the constant cl in (2.1), 
uniformly for all additive functions. This work 
is described in KUBILIUS' paper [138]. 

y'E((~- E(~))2), then 
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Higher analogues of the TURAN-KUBILIUS inequality are due to EL­
LIOTT [39]. Given {3 ;:::: 2, there is a positive constant c2 , so that uni­
formly for x ;:::: 2 and all additive functions 

(2.3) 

~ L iw(n)- A(x)i 13 < 
X { c2D13 (x), if 0 S (3 S 2, 

c2D13 (x)+c2· L p-klw(pk)l 13 , if 2sf3. 
n:5x pk~x 

2.2. Dualization, New Interpretation, Generalizations 

A dual inequality10 is: For a sequence Wn of complex numbers the 
inequality 

(2.4) 
1 

X 

2 

L pk L Wn - p-k L Wn 

p'~x n~x,p'lln n~x 

is true. In ELLIOTTs monograph [47], 
p.18ff, a dual of the high-power-analogue 
of the TURAN-KUBILIUS inequality (2.3) 
is given. In his conference report 
(46], P. D. T. A. ELLIOTT (see the 
photo to the left) described the posi­
tion of the TURAN-KUBILIUS inequality 
in the framework of Elementary Func­
tional Analysis (see also ELLIOTT's sur­
vey article [41], and [47]). ELLIOTTS 
result (2.3) was generalized, for exam­
ple, by K.-H. INDLEKOFER ([101]). If 
¢ : JR.+ --+ JR.+ tends to oo and satisfies 

cp(x + y) ::::; !c (¢(x) + cp(y)), 

for some c > 0, and for all x, y, then 

10The method of dualization (from linear algebra) is explained, for example, 
in ELLIOTT's book [37], pp. 150ff, and the whole monograph [47] is concerned 
with duality. 
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A localized form of the TURAN-KUBILIUS inequality is due toP. D. 
T. A. ELLIOTT [42]. 

The TURAN-KUBILIUS inequality may be looked for in arithmetical 
semigroups A, tooY It is given in MAUCLAIRE ([182]), for example, 
and the method of ELLIOTT (see [37]) leads to a proof of an ERDOS­

WINTNER theorem in arithmetical semigroups. J .-L. MAUCLAIRE [179] 

showed, that a condition L 1 = L · x + o(x) is sufficient for 
aEA,N(a)~x 

the validity of the TURAN-KUBILIUS inequality. In contrast, in [182] 
he stated that any arithmetical semi-group G is contained in another 
arithmetical semi-group g, for which the TURAN -KUBILIUS inequality 
is not valid. 

For more results on the TURAN-KUBILIUS inequality in semigroups 
see the dissertation of REIFENRATH ([195], [162], and the Paderborn 
dissertations [244] and [157] of S. WEHMEIER and of Y.-W. LEE. 

§3. The Theorems of Erdos-Wintner and Erdos-Kac 

3.1. The Erdos-Wintner Theorem 

An important problem, solved more than sixty 
years ago, is the question of the existence of 
a limit law for real-valued additive functions 
w : N ---> JR.; asymptotically, a limit law de­
scribes the distribution of the values of the 
function w, more exactly, it gives (asymptoti­
cally, as n ---> oo) the number of integers n :=; x 
for which w(n) < z. Consider, more generally, 
for subsets E C JR., the expressions 

1 
f..ln(E) =-·#{mEN: m :=; n,w(m) E E}, 

n 

in particular the [finite] "distribution functions" 

(3.1) vn(t) = f..ln(]- oo, t]) =~·#{mEN: m :=; n, w(m) :=; t }· 

Then one asks for conditions ensuring the convergence of the sequence 
of distribution functions vn(t) to some limit distribution K(t), vn(t) ==} 

11For arithmetical semigroups see [121] and [123]. 
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Figure 2. P. Erdos (with A. Schinzel), P. Erdos 

K(t), as n ---> oo ("===}" means convergence at all points of continuity 
of the limit distribution). 

One answer is provided by the famous ERDOS-WINTNER theorem, 
modelled in analogy with the KoLMOGOROV three-series theorem of 
probability theory: 12 An additive real-valued function w has a limit 
distribution if and only if the three series 

(3.2) 
w(p) 1 2: , 

p, lw(p)l>l p 
2: 

p,lw(p)l9 p 
and L 

p 
p,lw(p)l9 

are convergent. 

Historically, P. ERDOS showed in 1938 that the convergence of the 
three series in (3.2) implies the existence of a limit distribution; a new 
proof for this result is due to A. RENYI [196]. Previously, H. DAVEN­

PORT (1933) and I. J. SCHOENBERG ([209], 1936) proved similar results 
for the multiplicative functions n r--+ u(n) and n r--+ <p(n). The other 

n n 
implication (the existence of a distribution function implies the conver-
gence of the three series) was proved by P. ERDOS and A. WINTNER 

[60]. 

The proof of the ERDOS-WINTNER theorem can be achieved by an 
application of the "Continuity Theorem for Characteristic Functions" 
(see, for example, [163], pp. 47ff): Let {Fn(x)} be a sequence of distribu­
tion functions, and denote by {fn(t)} the sequence of the corresponding 
characteristic functions 

(3.3) 

12See A. RENYI [198], p. 420. 
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Then the sequence { Fn ( x)} converges weakly to a distribution function 
F(x) if and only if the sequence Un(t)} converges for every t to a func­
tion f(t), which is continuous at t = 0. 

Characteristic functions of arithmetical functions on the range [1, N] 
are finite sums, and so the problem of convergence of characteristic func­
tions is a question about the existence of mean-values (see later, sub­
section 4.1) for the multiplicative functions n >--+ exp(27ritw(n)). DE­
LANGE's theorem, to be treated later (see 4.1), relates the existence of 
mean-values with the convergence of the series I:~· (1- e27riaw(pl), and 

p 

this helps in proving the convergence of the series (3.2). 

The characterization of real-valued additive functions w with limit 
distributions with finite mean and variance is a result of P. D. T. A. 
ELLIOTT [33]. 

Limit distributions of additive functions "modulo 1" were treated 
by P. D. T. A. ELLIOTT [32]. Denote by {,6} the fractional part ,6- [,6] of 
,6 E ffi., and [[,6[[ is the distance to the nearest integer. If w is additive, then 

~# {m:::; n; {w(j)}:::; x} ====} F(x) 
n 

in 0 :::; x :::; 1, as n ---> oo, if and only if for every positive integer m at 
least one of the following conditions holds: 

(1) Lp ~ llmw(p) - 2~ 11 2 is divergent. 

(2) m · w(2r) E ~N for every integer r > 0 

(3) Both series Lp ~ llmw(p)ll 2 , Lp ~ llmw(p)ll · sgn(~- {mw(p)}) 
are convergent. 

3.2. Around the Erdos-Kac Theorem 

3.2.1. The Erdos-Kac Theorem. The Erdos-Kactheorem was proved 
in 1939 ([55], [56]). 13 

For a real-valued strongly additive function w: N---> lR define A(x) 
and B(x) by (2.2). Then P. ERDOS and M. KAc proved in 1939: 

13A fore-runner is ERDOS' paper [49], where he proved that the number of 
integers n:::; x, for which w(n) > loglogn, is~ x + o(x), using BRUNs sieve and 
an asymptotic estimate of the number of integers n :::; x for which w(n) = k in 
some [small] range of k. 
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Let w be a strongly additive function satisfying lw(p)l < 1 for all 
primes p. Assume that B(x) --+ oo as x--+ oo. Then 

(3.4) 1 { } 1 jz 1 2 - # n::::; x; w(n)- A(x) :::=; zB(x) ==::::} rrc e-2u du. 
x v2n -~ 

In particular, for w(n) = I: 1, 
vln 

1 # { w ( n) - log log x } 1 - n < x· < z ==::::} --
x - ' vlog log X - ...;21r 

These results also can be used (M. KAC [114]) to obtain value--distribu­
tion results for the multiplicative function r(n) = Ldln 1, 

J. KUBILIUS defined a reasonably large "class H" of additive functions, 
to which equation (3.4) can be extended. The additive function w is in 
"class H", if there exists a function r :]0, oo[--+ ]0, oo[ such that 

(3.5) logr(x) --+ O, 
logx 

B(r(x)) 
B(x) --+ 1' 

and B(x) --+ oo, as x --+ oo. 

J. KUBILIUS extended the ERDOS-KAc result as follows: 

Let w : N --+ JR. be a strongly additive function of class H. Then the 
frequencies 

(3.6) ~ #{ n::::; x; w(n)- A(x) ::::; zB(x)} 

converge weakly to a limit distribution as x --+ oo if and only if there 
is a distribution function K ( u), so that almost surely in u 

(3.7) 
1 

B 2 (x) 
p-.5_.-x 

w(p)$_uB(:z:) 

w2(p) --+ K(u)' 
p 

as x--+ oo. 

The characteristic function <I>(t) of the limit law will be given by 

(3.8) 
r~ eitu - 1 - itu 

log<I>(t) = }_~ u2 dK(u), 

and the limit law has mean zero and variance 1. 
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If wE H, and 

(3.9) 

for every E > 0, then the frequencies in (3.7) converge to the Gaussian 
law (as in (3.4)). 

3.2.2. The Elliott~Levin~Timofeev Theorem. More generally, given 
two normalizing functions a(x), (3(x), one can ask if there exists a dis­
tribution function F(z) with the property 

(3.10) vx{n <:::: x, w(n) <:::: z(3(x) + a(x)} ===? F(z), 

as x---> oo. An answer is given by the ELLIOTT~LEVIN~TIMOFEEV The­
orem (see [38], II, Chapter 16): Assume that w is a real~valued additive 
function, and a, (3 are real~valued [measurable} functions, satisfying 

(3.11) (3(x) ---> oo as x ---> oo, I 
(3(xt) I 

sup -(3( ) - 1 ---> 0 as x ---> oo. 
l~t~2 X 

Then ( 3.10) holds if and only if there exists a constant A > 0 such that 

(3.12) P {fxP <: zj3(x) + a(x)- Alogx} = F(z) 

for some distribution function F(z), where Xp are independent random 
variables defined by Xp = f(p)- A logp with probability ~' and= 0 with 

probability 1 - .! . 
p 

3.2.3. Moments. In 1955, H. HALBERSTAM [77] calculated moments 
for additive, real~valued functions w elementarily, 

(3.13) l. L (w(m)- A(n))k 1 !00 k ~lxzd 1m ---· xez x 
n--+oo nD(n)k/2 - f2:rr ~ ' 

m~n V L7l oo 

and he deduced the ERDos~KAc theorem from equation (3.13). A fur­
ther extension of this "method of moments" is due to H. DELANGE [25], 
who also gave a new [analytic] proof for HALBERSTAMs result (3.13). 

3.2.4. Remainder Terms. Asking for good remainder terms in ( (3.4) ), 
A. RENYI and P. TURAN [199] proved, in the special case where w = w, 

equation ((3.4)) with a best~possible remainder term 0 (~),and 
og og n 
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so a conjecture of W. J. LEVEQUE ([158]) was established for the special 
additive function w = w. 

Asymptotic expansions for the frequencies Vn { w(~gn < x} og ogn 
with remainder term were given, for example, by J. KUBILIUS ([131]) 
and H. DELANGE ([27]): 14 

Vn {w(m) -loglogn < x} = G(x). eQn(x). { 1 + O ( lxl + 1 ) } . 
v'log log n v'log log n 

More information on the rate of convergence to the Normal Law can 
be found in ELLIOTTs monograph [38], Chapter 20. 

3.2.5. Composed Functions. ERDOS and POMERANCE [57] proved 
an ERDOS-KAC theorem for the composed function n f-+ D(rp(n)): 

1 { 1 2 1 3} lim -# n::; x; D(rp(n))- -(loglogx) ::; f7> • z (loglogx)2 = G(z). 
x__,oo X 2 y 3 

A similar result ist true for w(rp(n)). 

3.2.6. Brownian Motion. A connection between additive arithmetic 
functions and Brownian motion is given, for example, in KuBILIUS' paper 
[136], and in the survey article [167] of MANSTAVICIUS. 

3.2. 7. Multiplicative Functions. A result of M. KAC for the mul­
tiplicative [divisor-] function T was mentioned earlier. More general 
limit laws for multiplicative arithmetical functions were proved by A. 
BAKSTYS [4], and by J. KUBILIUS & Z. JUSKYS [140]. These authors 
proved for multiplicative real-valued functions g, under suitable assump­
tions on g (g belongs to some class M 0 (c, .\), which will not be defined 
here; log2 n = log log n): 

~ · # { m::; n, g(m) < lxl..\v'log2 n ·log..\ n · sgn(x)} 

= ¢(x) + 0 ( v't:g2n)' 

where ¢(x) is connected with the GAUSS integral. 

14vn{Pm(x)}, for some property Pm(x), is defined as 
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3.3. Generalizations 

The problem of the distribution of the values w(n) of additive func­
tions for n ::; x was generalized to [thin] subsequences of {1, 2, 3, ... }, 
for example to the sequence of shifted primes {p + 1, p prime} or to 
the sequence {Q(n), n = 1, 2, 3, ... } with a monic polynomial Q(x) > 0 
with integer coefficients. 

3.3.1. Moments for thin sequences. H. HALBERSTAM [77] proved: 
if w is a strongly additive function, then (for the definition of AQ, BQ 
see (3.14)): 

L (w(Q(n))- AQ(x))q = /-lq · x · B~(x) + o(x · B~(x)), 
n::;x 

if maxp::;x lw(p)l = o(BQ(x)). When p runs over primes, then 

L (w(Q(p))- AQ(x))q = /-lq · 1r(x) · B~(x) + o(1r(x) · B~(x)), 
p::;x 

if lw(p)l ::; M and log~~Jg(;.}gx ----> oo. 

The definition of AQ(x) and BQ(x) is similar as in (2.2), but a factor 
p(p), the number of solutions of the congruence Q(n) = 0 mod p, has to 
be inserted. So 

(3.14) AQ(x) = L w(p)p(p)' Bb(x) = L p(p). w2(p). 
p::;x p p::;x p 

These results lead to a generalized ERDOS - KAc-theorem, 

1 1 lz 1 2 -# {n::; x; w(IQ(n)l)- AQ(x) ::; zBQ(x)} ===} tn= e-2w dw, 
X y27r -oo 

as x ----> oo, under the assumption 1-lx = max lw(p( ))I ----> 0. A corre­
p::;x BQ X 

sponding result, where n is restricted to primes, is due to BARBAN (see 
[5]). 

In 1988 H. DELANGE proved the result 

l. 1 '"""' (w(n)- A(x))q 1 100 q _.lu2 1m -- · ~ = -- u . e 2 du 
x->oo #(Sx) B(x) v'21f -oo ' 

nES.,. 

where the sets Sx are a family of finite sequences, satisfying 

#(Sx)----> oo, maxn « xc.., ~ 21, 
nES,. 
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and satisfying some condition guaranteeing the possibility of an appli­
cation of the sieve method. 

K.-H. lNDLEKOFER & I. KATAI ([107]) calculated,15 for strongly 
additive functions, "moments over shifted primes". They showed 

if and only if 

1 ""' 1 k lim sup--· L - ·lf(p)l < oo. 
x-+= Bk(x) p:Sx,lf(p)I>B(x) p 

3.3.2. Polynomials. H. HALBERSTAMs result ([77], see§ 3.3.1) was 
already given. M.B.BARBAN, R. V. UZDAVINIS, P. D. T. A. ELLIOTT 
and others gave corresponding results on the frequencies (the definitions 
(3.14) are slightly changed) 

1 
- # {p ~ x, w(IQ(p)l)- A0(x) ~ z · B0(x)} 
X 

An ERDOS-KAc theorem for shifted 
primes similar to KUBILIUS's result is due to 
M. B. BARBAN et al. (1965). See ELLIOTT's 
book (1980), Vol. II, p. 27. E. MANSTAVICIUS 
[165] (see the photo on the right), using a result 
of A. BIKELIS, gave remainder term estimates 
in the ERDOS-KAC theorem (improving results 
of I. N. 0RLOV [192] considerably). P. D. T. 
A. ELLIOTT [43], [45], and K.-H. lNDLEKOFER 
[103] proved ERDOS-KAC theorems in short in­
tervals: x- y < n ~ x, y(x) = xl+o(l). 

Generalizing a result of A. HILDEBRAND [88], P. D. T. A. ELLIOTT 
gave an ERDOS-KAC theorem for pairs ofreal-valued additive functions. 
There exists an 77( x), so that 

1 
[x]·{n ~ x; h(an+b)-h(An+B)-7J(x) ~ z}-+ a distribution function 

15Earlier results of this kind were given by BARBAN et al. [6], and B. V. 
LEVIN & A. S. FAINLEIB [159]. 
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Figure 3. H. Delange, E. Wirsing 

if and only if there exist real o:1 such that the series 

1 "'"' (JJ (p) - a'l log p )2 

2:: , L-
lfi(P)-aj logpl>l p lfi(P)-ai logpl::;t p 

are convergent. 

§4. Arithmetical Functions 

Important for the deduction of the results in § 3 is information on 

the existence of mean-values M(f) = lim ! L f(n) of arithmetical 
X---+cx::) X 

n<C;x 

functions f : N ___... CC. 

4.1. Mean-Value Theorems for Multiplicative Functions 

In number theory, many results on the existence of mean-values and 
on asymptotic formulae for special arithmetical functions (¥?(n), T(n), 
... ) were proved, often with emphasis on good or best-possible remain­
der terms; but there were also rather early general results on mean­
values for certain classes of arithmetical functions (for example AXER 

[1] and WINTNER [247]). The condition LIP- II < oo, much stronger 
p p 

than DELANGEs condition ( 4.2), is crucial in WINTNERs theorem. 

By skilfull methods from number theory H. DELANGE (1961, [26]) 
was able to prove an elegant result on multiplicative arithmetical func­
tions. This theorem- as well as E. WIRSINGs theorems on multiplicative 
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functions [[248], [249]) ~ expressed the heuristic idea that knowledge on 
the values of multiplicative functions at primes has consequences on the 
behaviour of multiplicative functions in general, as may be guessed from 
the Euler product of the generating Dirichlet series, 

( 4.1) 

Iff N ----+ CC is multiplicative, lfl :::; 1, then there is a non-zero 
mean-value M(f) = lim l · L < f(n) if and only if the series 

x----+oo x n_x 

( 4.2) 
"1- f(p) 
~ ---=---"'-'- is [conditionally} convergent, 

p p 

and if, for alle primes p, 

( 4.3) f f(~k) i= 0. 
k=O p 

Condition 4.3 is equivalent with f(2k) i= -1 for some k 2': 1. A DELANGE 
theorem with remainder terms is due to PoSTNIKOV [193], in improved 
form to ELISTRATOV [31]. 

General asymptotic formulae for a large class of non-negative mul­
tiplicative functions are due to EDUARD WIRSING. 

Theorem of E. Wirsing [248]. Iff 2': 0 is multiplicative, T > 0, 

L f(p) logp = (1 + o(1))7 · x, f (pk) :::; /I·~~ 
p$x 

for any k 2': 2, where 0 < 12 < 2, ==} 

(4.4) "f(n) = (1 + o(1)) · ~x~ ·IT (1 + f(p) + f(p 2
) + ... ). 

~ logx p p2 
n$x p$x 

In 1967, WIRSING [249] gave other theorems, weakening the hypothe­
sis on Lp f(p) considerably, and allowing for complex-valued functions. 
In particular, this result contains the prime number theorem as a spe­
cial case. The deepest theorem in this connection was obtained by an 
ingenious variation of classical analytic methods; it is the 

Theorem of G. Halasz, [7 4]. If f : N ----+ CC is multiplicative, and 
if lfl :::; 1, then: 
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If f is real-valued, then 3 M (f), and for complex-valued f, 

( 4.5) 1 """' . - · L..,; f(n) = (c + o(1)) · x•ao · L(logx), 
X 

n:Sx 

where L is a slowly oscillating function, ILl = 1, and ao is a real con­
stant, which can be given explicitly. 

Elementary proofs of the HALASZ theorem are due to DABOUSSI & 
lNDLEKOFER [23]. 

4.1.1. The Elliott-Daboussi-Theorem. The 
condition lfl :::; 1 from DELANGEs theorem was 
removed by ELLIOTT [35], and the result was ex­
tended later by ELLIOTT [40], and by H. DABOUSSI 
[16], [17]. The condition lfl :::; 1 is replaced by 
a condition on the size of the values f(pk) in the 
mean (see (iii) below. 

Elliott-Daboussi's Theorem. If f : N ---+ C is multiplicative, 
if q > 1, and if (see (4.9)) llfllq < oo, then a non-zero mean-value 
M(f) of. 0 exists if and only if 

(i) Delange's series L f(p)- 1 

p p 

(ii) 
1' 

IJ(p)-11< i 

lf(p)- 11 2 
.:_:__;;:__:__-'-- < 00' 

p 

(iii) L L lf(p:)lq < oo, and 
p k'22 p 

is convergent, 

" 1/(p)-ll>i 

f(pk) 
(iv) L -k- of. 0 for any prime p. 

k'2l p 

4.1.2. Mean-value theorems in multiplicative arithmetical semigroups. 
The mean-value theorems mentioned (due to DELANGE, WIRSING, HA­
LASZ) were generalized to multiplicative arithmetical semigroups, start­
ing with the work of J. KNOPFMACHER [121]. Some results are surveyed 
in the paper [162] by L. LUCHT & K. REIFENRATH. More details may 
be found in REIFENRATHs dissertation [195]. There are many results, 
concerning mean-values of additive and of multiplicative functions in 
semigroups, in the Paderborn dissertation [244] of S. WEHMEIER. 
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4.1.3. Mean-value theorems in additive arithmetical semigroups. The 
mean-value theorems mentioned, in particular HALASZ' theorem, were 
generalized to additive arithmetical semigroups; the deepest results are 
due to W. B. ZHANG. We cannot give his results here; the interested 
reader is referred to ZHANGs papers in Math. Z. 229 (1998), 195-233, 
Illinois J. 42 (1988), 189-229, Math. Z. 235 (2000), 747-816, and to 
[250], [252] and [253]. In [252] there is also a generalization of the Elliott­
Daboussi theorem (see later, p.386) to additive arithmetical semigroups. 
Mean-value theorems for q-additive and q-multiplicative functions are 
given in Yr-WEI LEE-STEINKAMPERs dissertation [157]. 

4.2. Using the Turan-Kubilius Inequality 

In 1965, A. RENYI gave a simple proof for the existence of M(f), 
if the Delange series ( 4.2) is convergent. His idea of proof is to use an 
approximation of log f by truncated additive functions, and the TURAN­
KUBILIUS Inequality allows a sufficiently good estimate of the difference. 

4.2.1. The Relationship Theorem. A useful tool for reducing the 
proof to the simplest cases is the "relationship theorem" (E. HEPP­
NER & W. SCHWARZ (1978) [84]; weaker theorems of this kind were 
given previously by H. DELANGE and L. LUCHT). 

Assume that the multiplicative functions f and g are "related", i.e. 

:L lf(p)- g(p)l < CXJ, 

p p 

and that f, g E Q, where 

Q ';! { F multiplicative, 

and that all the factors of the generating Dirichlet series ( 4.1) 

00 f(n) :L ---;;;:;- = II 'Pi (p, s), 
1 p 

f(p) f(P 2 ) 
'PJ(p,s) = 1 +- + - 2 - + ... , pS p S 

do not vanish in ~( s) ~ 1. Then there is a (small} multiplicative function 
h, satisfying 

00 1 
g = f * h, and L -lh(n)l < oo. 

1 n 

Corollary. If M(f) exists, then M(g) exists, too. 
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The proof uses a Wiener type lemma for Dirichlet series, which was 
proved by E. HEWITT & R. WILLIAMSON in 1957. 16 

00 00 

The [absolutely convergent} Dirichlet series L ~:, where L lanl < 
1 

oo, has an [absolutely convergent} inverse 

if and only if there is some lower bound r5 > 0 for I~ ~: I in the half­

plane )R( s) ;:::: 0. 

4.2.2. Sketch of Renyi 's Proof. By relationship arguments one may 
assume that the values f(p) have real part ;:::: ~ and that f is strongly 
multiplicative. Then, approximate the multiplicative function f by a 
"truncated" strongly multiplicative function fk, fk ( n) = II f (p). The 

pin 
p$_K 

mean-value M(fk) is easily calculated. And it can be expected that 
M Uk) is near M (f), if K is large. This is made precise by the estimate 

6.N = ~ L lf(n)- fk(n)l ::::: ~ L lfk(n)l· II f(p)- 1 
n<:;N n<:;N pin, p>K 

Using the TURAN-KUBILIUS inequality for the strongly additive function 

w(n) = L log f(p), one obtains 
pln,p>K 

II f(p) -1 = [ew(n) -11 :S: lw(n)l· (1 + lew(n)l). 
pin, p>K 

By CAUCHYs inequality and the convergence of the Delange series ( 4.2), 
the estimate 6. N ---+ 0 (as N ---+ oo) is obtained. 

16For an elementary proof see [213]. For a relationship theorem for functions 
of several variables see E. HEPPNER [83]. For important generalizations see [161]. 
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4.2.3. Spaces of Arithmetical Functions. Using RENYis method and 
the relationship theorem, DELANGEs theorem can be extended to larger 
classes of multiplicative (and additive) functions (see [216], [104]). 

Denote the set of linear combinations of (the "even" , and so periodic) 
RAMANUJAN sums 

( 4.6) Cr(n) = 2: dp(~) = 2: 
dlgcd(r,n) l:Sa::::r, (a,r)=l 

. a 
exp(2n~ ·- · n) 

r 

resp. exponential functions n f--+ exp(2nian), a rational, resp. a irra­
tional, by B, resp. V, resp. A. The closures of these <C -vector-spaces 
with respect to the ("uniform" or supremum) norm 

(4.7) llfllu =sup lf(n)l 
nEJ\1 

are the spaces 

(4.8) 

of uniformly-even, uniformly-limit-periodic, and uniformly-almost pe­
riodic functions. These vector-spaces are in fact Banach algebras. 

The closures of B, V, A, with respect to the semi-norm 

(4.9) 

1 

llfllq = (lim sup.!_· L lf(nW) 'i, q ~ 1, 
x---+oo X n-:;x 

are denoted by 

(4.10) 

the spaces of q-almost-even, q-limit-periodic, and q-almost-periodic 
functions. 

4.2.4. Properties of these Spaces. These spaces have convenient prop­
erties useful for approximation arguments. 

( 1) B c Bu c Bq c Vq c A q c A 1 , q ~ 1. 
(2) Functions in A 1 do have a mean-value, Fourier coefficients 

}(a) and Ramanujan coefficients ar(f), 

}(a) ~f M(f · e_a), def 1 ( 
ar(f) = ip(r) · M f · Cr). 
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llfllu = sup lf(n)l, 
n=1,2, ... 

Al 

vl/1 

/1 Aq, 
[31 /1 

(q ~ 1) 
au= 11-llu-closureof a, 

I vq 
vu, Au analogously. 

llfllq = 
1 

limsup-· 
X----+00 X 

1 
Bq /I 
I (L lf(nW)" 

nsx 

l3 
Spaces of Arithmetical Functions 

1 1 
(3) au · aq c aq, aq · aq' c a1 , if - + - = 1. 

q q' 
(4) f E aq ~ 'R(f), '25(!), lfl E aq. 
(5) f,g E aq real-valued~ max(f,g) E aq, min(!, g) E aq. 
(6) fEa1 , llfllq<oo~ fEar,if1:s;r<q. 
(7) f 2: 0, a, j3 2: 1 ~ {fa: E A 13 {==} f E Ao:·/3}. (H. Daboussi) 
(8) Additive resp. multiplicative shifts map Aq into itself. 

4.2.5. Indlekofer's Spaces. K.-H. INDLEKOFER defined spaces (see 
[104], [105], [106]) 

( 4.11) 

£* { f : N ---+ C, f uniformly summable}. 

Here, f is called "uniformly summable", if large values of lfl are rare, 
more precisely 

(4.12) f is uniformly summable, if lim sup_!__ 
K-->oo N?_l N 

L lf(n)f = 0. 
n<N 

lf(n)I>K 
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£* is the ll-ll1-closure of 1!00 , the space of bounded arithmetical functions, 
and for q > 1 the inclusions 

hold. Then INDLEKOFER [94] generalized the DELANGE-ELLIOTT-DAB­

OUSSI result for multiplicative functions to 

Theorem. Let q ~ 1, and f: N---+ C is multiplicative. Then: 

(1) Iff E £* n 0, and if M(f) exists and is -1- 0, then the series 

(4.13) 2:: f(p) -1 
p p 

lf(p) -11 2 

p 

(4.14) 

p, lf(p)l~~ 

lf(p)l>. 

p, lf(p)-11~! 
p 

do converge for all>., 1 :::; >.:::; q, and 

00 f( k) L + -1- 0 for every prime p. 
k=O p 

(2) If the four series (4.13) converge, then f E £* n 0, and the 
mean-values M(f>.) exist for any>., 1:::;).:::; q. If (4.14) holds 
in addition, then M(f) -1- 0. 

INDLEKOFER also extended the result of G. HALASZ. Iff: N---+ C 
belongs to £*, and if the series 

L ~ · (1- ~f(p)(lf(p)lpit)- 1 ) diverges for any real t, 
p, llf(p)l-11~! p 

then f possesses a mean-value M(f) = 0. 

For real-valued additive functions w there is a limit distribution F 
(and f~oo lulqdF(y) < oo) if and only if w E 0 and the mean-value 
exists ([98]). 

4.2.6. Characterization of some classes of arithmetical functions in 
Bq. 

1) Multiplicative functions in Bq with mean-value M(f) -/:- 0 are 
characterized exactly by the conditions of the ELLIOTT - DABOUSSI 

theorem (H. DABOUSSI, W. SCHWARZ & J. SPILKER, K.-H. INDLE­

KOFER). 
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1a) A characterization of multiplicative funktions in Vq having at 
least one non-vanishing Fourier coefficient is possible by similar condi­
tions. (DABOUSSI, SCHWARZ & SPILKER). Under suitable conditions, 
multiplicative functions f don't have Fourier-coefficients }(a) "1- 0 for 
irrational a., according to a result of H. DABOUSSI; this was generalized 
by lNDLEKOFER & KATAI [108], and further in [111] to 

If f is a uniformly summable function with a void Fourier­

Bohr spectrum (so limsupx__,oo ~ ILn::;x f(n)e( -na)l = 0 for a E 

IR), and if g is a q-multiplicative functions satisfying Jg(n)l = 1, 
then 

1 L f(n)g(n) __, 0, 
X nSx 

as x __, oo. 

2) Additive funktions in Bq are characterized by similar conditions 
on the convergence of certain infinite series over primes (A. HILDE­

BRANDT & J. SPILKER [90], K.-H. lNDLEKOFER). We quote the the­
orem of A. HILDEBRAND and J. SPILKER (1980), which was proved 
independently by P. D. T. A. ELLIOTT too, and which was improved 
by K.-H. lNDLEKOFER. 

Figure 4. A. Hildebrandt, K.-H. Indlekofer, G. Tenenbaum 

Assume that f : N __, <C is additive, and q ::::: 1. Then the following 
conditions are equivalent: 

(1) f E Bq. 
(2) M(f) exists, llfllq < oo. 
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(3) The following series are convergent: 

'""" f(p) 
~ p 

p,lf(p)l9 p,lf(Pli:S1 
p 

p, k2':1,lf(p')l>1 

If one of these conditions is satisfied, then the RAMANUJAN expansion 
F = Lr arcn ar = <p(r) · M(f · Cr) off is pointwise convergent. This 

expansion is absolutely convergent, if Lp,lf(p)I:S 1 f~) is absolutely con­
vergent. 

3) Another class of functions, investigated for example by J. Co­
QUET, H. DELANGE, M. PETER, J. SPILKER and others, is the class of 
q-additive or q-multiplicative functions, and there are similar results. 

The most complete results on this topic are 
due to YI-WEI LEE-STEINKAMPER [157] in her 
dissertation (Paderborn 2005), supervised by K.­
H. lNDLEKOFER. 

For example, for a q-multiplicative function f the 
following assertions are equivalent: 

(i) 

(ii) 

(iii) 

f is uniformly summable and llfll1 > 0. 

For any a> 0 f E _co. and llflla > 0. 

1 q-1 2 

For any a> 0 the series L- L(lf(aqrW -1) is 
r2':0 q a=1 

convergent, and there are real constants Cj (a) and a 
sequence {Ri} i' oo, so that 

1 q-1 2 

L- L(lf(aqr)la-1) ::; c1(a), 
1 q-1 2 

L- L(lf(aqrW-1) ::=: c2(a). 
r<R q a=1 r<R; q a=1 

In LEEs dissertation there are also results on q-additive functions, 
on the Tunin-Kubilius inequality for these, and a result on the limit­
distribution of such functions. 

4.3. Gelfand's Theory and Almost-Even Functions with 
Prescribed Values 

4.3.1. Interpolation Problem, Gelfand's Theory. The spaces Bu and 
vu are small. Nevertheless, the next result, which is due to J .-CHR. 
SCHLAGE-PUCHTA, J. SPILKER, & W. ScHWARZ (see [207], extending 
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[186]), shows, that there are "many" functions in Bu. The interpolation 
problem is, to give conditions such that for given integers 0 < a 1 < 
a 2 < ... and given bounded complex numbers bb b2 , ••. , there exists a 
function f E Bu satisfying f(an) = bn, for all n EN. 

For the sake of completeness we state elementary facts from GEL­
FANDs Theory (see [204], p. 268fi'). For a commutative Banach-algebra 
X (with unit element e and norm II ·II) denote by 

D.x = { h : X --+ C, h is an algebra-homomorphism } 

the set of algebra-homomorphisms on X. Any h E D.x is continuous, 
and any maximal ideal in D.x is the kernel of some h E D.x. The 
Gelfand-transform x of x E X is 

x: D.x--+ C, x(h) d;) h(x), 

and so A is a map' : X --+ X = {x : D.x ---+ C, x E X}. Under 
the weakest topology, which makes every h continuous, D.x becomes 
a compact topological Hausdorff space. If X is a semi-simple17 B*­
algebra, 18 then the Gelfand-transform A is an isometric isomorphism of 
X onto C(D.x ), the algebra of complex-valued continuous functions on 
D.x with the sup-norm. 

4.3.2. The Maximal Ideal Space of Bu. All the homomorphisms h 
from the "maximal ideal space" D.8 of Bu are given as follows ([127], 
[186]): For any vector K = (eP)pEII'' where ep is an integer from [O,oo[ 
or equal to oo, and any function f E Bu, define a "function value" 

For f E Bu, this limit does exist. 19 Define 

hJC : D.B --+ C by hJC(f) = f(K). 

17The radical of X (the intersection of all maximal ideals) equals (0). 
18there is an involution*: X---+ X satisfying llx · x*ll = llxll 2. 
191f IC has only finitely many entries ep =/= 0, and if none of these is equal to 

oo, then f(IC) = !(TipeP )· 
p 
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Then the maximal ideal space Bu of B is20 the set of all hK., where 
K = (eP)pEIP'" If n = IJpPvp(n) is an integer, then the evaluation­

homomorphismus hn : f f---+ f(n) equals hK.n, where Kn = {vp(n), p E 
lP'}. A subbasis of the topology on ll.B is given by the vectors 

( *, ... , *, ep, *, *, ... ),where ep is fixed and finite, or ep ::::some constant, 
and* are arbitrary integers from [0, oo]. 

The solution of the Interpolation Problem is given by the 

Theorem. Let a strictly increasing sequence {an }nEN of positive inte­
gers and a bounded sequence {bn}nEN of complex numbers be given with 
the following property: 

If { nk}kEN is any strictly increasing sequence of positive integers 
such that for any r EN the sequence {gcd (ank, r !)}kEN is eventu­
ally constant, then lim bn< exists, and, in the case that, with some 

k->CXJ 

integer m [not depending on r], lim gcd (ank, r !) = gcd(am, r !) 
k->CXJ 

for every r, its value is bm. 

Then there is a function f E Bu with values f(an) = bn for all n EN. 

4.3.3. Sketch of the Proof. Define E c ll.B as the [discrete] set of 
evaluation homomorphisms E = {ha,, n = 1, 2, ... }; denote its set of 
accumulation points by H. The union K = E U 1t C ll.B is closed, 
therefore compact. Define F : K ____, CC, for points ha, E E by F ( ha,) = 
bn, and for points 77 = hK. E 1t as follows: choose a sequence { ha,.k} k 

converging to 7], and define F (hK.) = limk_,= bnk. This limit exists, F is 
well-defined and continuous on K. Therefore, by the TIETZE extension 
theorem there is a continuous function F* : 6.5 ____, CC, extending F. By 
GELFANDs theory, F* is the image of some function f E Bu, F* = }, 
and due to 

the function f solves the interpolation problem f(an) = bn. 

A similar result (with a similar proof) is true for the space vu. 

20~8 may be described as the topological product IJ{l,p1,p2, ... ,p00 }, 

p 

where {1, pl, p2 , ... , p00 } is the one-point-compactification of the discrete space 
{l,pl,p2, ... }. 
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§5. Kubilius Model 

For the application of methods of probability theory, for example 
the Berry-Esseen Theorem, 

Let X1 , ... , Xn be independent random variables (with distribution 
functions Fv) with mean zero, variance Dv and third moment 

Lv =I: z3dFv(z), 11 = 1, 2, ... , n; 

then, uniformly for real z, 

( 1 n ) 1 lz 1 2 ( 1 n ) 
P -;; n~l Xv ~ Z = -/2i" -oo e-2w dw + 0 0"3 ~ Lv , 

with an absolute 0-constant, and where cr2 = D1 + · · · + Dn, 

to strongly additive functions f, f(n) = Lvin f(p), one might try to use 
random variables Xv on some suitable space (0, A, P), where 

1 
f(p) with probability -, 

p 
1 

= 0 with probability 1 - -. 
p 

Unfortunately, this approach does not work, because the "events" one 
naturally would like to choose for dealing with additive functions, the 
zero-residue-classes [the set E(pk) of integers n ~ x divisible by a prime 
power pk], are only "nearly" independent. KUBILIUS (see [132]) con­
structed finite probabilistic models to mimic the behaviour of truncated 
additive functions by appropriately defined independent random vari­
ables. A possible construction is described in ELLIOTTs monograph 
[37], Chapt. 3. 

Assume that 2 .~ r ~ x. Define, for any prime p dividing IT p, the 

residue class 

E (p) = { n ~ x, n = 0 mod p}, and E (p) = S \ E (p), 

where s = {n EN, n ~ x}, and, fork I rrp, write 
p<Oor 

Ek = nE(p) n E(p). 

vlk P 1 ((IT,-s,v)/k) 
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Let F be the least O"-algebra containing all the E(p), and define a [finitely 
additive] measure v on F: 

to obtain a finite probability space (S, F, v). 

Now some ideas from number theory are involved. SELBERGs sieve­
method gives 

#(Ek)=(1+0(L))·~· IT (1-~), 
pI ((nPS•·P)/k) 

1 
as long as k:::; xz:, where 

L = exp (-~ logx log (logx)) +x-is. 
8 logr logr 

Define a second measure p, on F by 

Then p, and v are "close", 

vA = p,A + 0 (L), uniformly in F. 

For the "truncated" additive function g(n) = L f(p) we obtain 
vln, p~r 

~#{n::::: x; g(n)::::: u} = P (Lxv:::; u) + 0 (L). 
p~r 

To deduce a result for the original function f, it is necessary to give a 
good estimate for the frequencies 

1 
- #{ n:::; x; lf(n) - A(x) - Ur(n) - A(r))l > E B(x)}, 
X 

which is done by the TURAN-KUBILIUS inequality and the fact that 
f E H (the class H was defined via formula (3.5)). 
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§6. Integration 

This section deals very sketchily with the problem of "integrating" 
arithmetical functions21 and to use these theories in order to obtain 
results on arithmetical functions. 

Since "naturally" defined subsets of N (like arithmetic progressions) 
do not form a o--algebra (in the sense of measure theory), one has to 
proceed in another way; the general idea for these investigations is to 
associate to an arithmetical function f some other function f* defined 
on some suitably chosen compact topological space (or semi-group). 

The first effective theory of integration for arithmetical functions is 
due to E. V. NovosELOV 1962-1964, see [191]. A good description of 
this method can be found in MAUCLAIREs paper [180]. Thetechniques 
of E. V. NOVOSELOV are strong enough to give a proof of DELANGE's 
result (see §4.1). 

6.1. J. Knopfmacher, W. Schwarz, J. Spilker 

A rather simple theory of integration for arithmetical functions was 
developed in papers of SCHWARZ & SPILKER, in 1971 and 1976 ([211], 
[212], [216]). Unfortunately this theory is definitely weaker than Novo­
SELOVs theory. Define countable sets {1,p,p2, ... } with discrete topol­
ogy, and form the ALEXANDROFF-one-point-compactification .NP by 

adding one point p00 • Define a measure f..Lp, f..lp(pk) = p-k . ( 1 - ~), 
f..Lp(p00 ) = 0, on Np. Then the product measure f..L = TIP f..Lp on the 
compact space N* = TIP .Np is the same as the measure coming from 
the mean-value-functional f ~ M(f) [for f E Bu] via the F. RIESZ 
representation theorem (see, e.g. [204]), and 

the algebra of continuous functions on N*. Thus, mean-values may be 
represented as integrals, 

M(f) = 1 fdf..L. 
Ill* 

In 1976, J. KNOPFMACHER ([122]) showed, that the quotient space 
Bq /nullspace is ':::' Lq(.N*, f..L). And, he showed that the whole theory 
can be extended to arithmetical semigroups. 

21There is an interesting survey paper of J.-L. MAUCLAIRE, Integration 
and Number Theory [180], concerning the subject of the first two subsections. 
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A simplification of the approach described above is sketched in MAU­
CLAIREs paper [180]. 

6.2. J .-L. Mauclaire 

It is difficult to sketch the contents of J .-
1. MAUCLAIRE's highly interesting "Integra­
tion et Theorie des Nombres" in short. M_AU­
CLAIRE uses the BoHR-compactification Z of 
the character group Z of the additive group 
Z of integers, and so good knowledge from 
analysis is necessary to read this book. In 
this monograph, the DABOUSSI-ELLIOTT the­
orem is proved (Chapt. III), and the ERDOS­
WINTNER theorem, too. 

In MAUCLAIREs survey paper [180] the 
main ideas of his approach are well readably 
described. See also [183]. 

6.3. K.-H. Indlekofer's Integration Theory 

INDLEKOFERs theory of integration of arith-
metical functions is given in [105] and [106]. We 
follow this presentation. 

Let A be an algebra22 of subsets of N with a 
finitely additive set function 8 : A ----+ [0, oo[ de­
fined for all A E A. 23 

For example, one can use 

00 

k=l 

where f = (/'nk)n,k is a TOEPLITZ matrix: 
00 

(i) sup L "Ynk < oo, 
n k=l 

(ii) "Ynk ----+ 0, if n ----+ oo, k fixed, 

22N E A, A u B and B \ A are in A, if A, B E A. 
23A big advantage of lNDLEKOFERs approach is that [deep] results obtained 

by other methods can be built into the construction. 
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00 

(iii) L "fnk -7 1, as n -7 oo. 24 

k=l 

Then, for simple functions 

s E E(A) = { s; s = ~ a1 lAi, Dj E C, A1 E A} , 
the definition 

leads to the Lebesgue space 

with the [semi]-norm 

11111 = r 111 dJ. 
j{3N 

Figure 5. L. Murata, K.-H. Indlekofer 

There is a norm-preserving vector space isomorphism 

£* 1 (A) (mod null-functions) -7 L1 (J) (mod null-functions), 

where 

£* 1 = ll·llt-closureofE(A), 
1 

and, as in (4.9), llfllq = (limsupx-+oo ~ Ln::;x lf(n)lq)" · 

24Examples of TOEPLITZ-matrices are provided by l'nk = ~, if k ::;; n, 
otherwise l'nk = 0 - this leads to asymptotic density, or by l'nk = };: · Io~ n, if 

k::;; n, otherwise l'nk = 0- this leads to logarithmic density. 
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Figure 6. H. Furstenberg; E. Manstavicius, A. Laurincikas 

Examples. Starting with the algebra A2 generated by the zero 
residue classes { n E N, n::::: 0 mod q }, for q E N, with asymptotic density, 
one obtains the theory of KNOPFMACHER, SCHWARZ & SPILKER. 

Starting with the algebra A 1 generated by all residue classes { n E 
N, n =a mod q}, for a, q EN, with asymptotic density, one obtains the 
integration theory of E. V. NovoSELOV. 

Using a deep ergodic result of FURSTENBERG25 on the shift operator 
S(n) = n + 1 (and with asymptotic density Jon N): lfS(B) > 0, then 
for any k > 1 there exists an integer n of. 0 so that 

then, using the algebra A generated by the translations { sn B, n = 
0, 1, 2, ... }, INDLEKOFERs theory gives: 

If B C N has asymptotic density J(B) > 0, then B contains arbi­
trarily long arithmetic progressions (VANDER WAERDEN, K. F. ROTH 
[203], SzEMEREDI [227]). 

§7. Functional Limit Theorems, Universality 

7.1. Functional Limit Theorems 

There is a far-reaching generalization of the ideas leading to the 
Erdos-Kac and Erdos-Wintner theorem. Important contributions to 
this topic are due to E. MANSTAVICIUS. We refer to the survey paper 

25 [63]; the result is closely connected with SzEMEREDis famous result on 
arithmetical progressions. For a well readable presentation see [64]. 
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[167]. 26 This paper starts from the invariance principle established by P. 
Erdos and M. K ac in the fourties and from more general functional limit 
theorems for partial sum processes for independent random variables. 
Furthermore, the development of a parallel theory dealing with those 
dependent random variables which appear in probabilistic number theory 
is described. 27 This survey paper, dedicated to the memory of PAUL 

ERDOS (with an extensive bibliography of 89 items) deals with 

- partial sum processes for independent random variables, 

- additive functions and functionals on them, 

- additive functions and Brownian motion (see also [136]), 

- models of other processes with independent increments, 

- additive functions on sparse sequences, 

- multiplicative functions, 

- divisors and stochastic processes. 

As one example we give one [technical] result due to MANSTAVICIUS. 

Let h : N --> lR be additive, (3(n) --> oo, and let X be a stable pro­
cess with an explicitly given characteristic function (containing the 
parameters a1, az, a). In order that Gn ==? X it is necessary and 
sufficient that for any u > 0 

and that 

Here 

p'S:_·, 
11(p)<-u.{J(n) 

1 -a 
---> a1 · u , 
p 

p::=;n 
h(p)>uf3(n) 

1 -a 
---> az · u , 
p 

lim lim sup 
r::--+0 n--+oo 

1 L -h(p)=O. 
p<n p 

lh(p)i<:c/~(r!) 

1 
Gn = (3(n) L h(p)- a(n, z(t)), 

vim, p:<;z(t) 

and (in t E [0, 1]) 

z(t) = max{u; B 2 (n,u):::; tB2 (n,n)}, 

26From the review by FILIP SAIDAK in Math. Reviews we quote: "This 
excellent, long overdue survey paper, concerning the theory of general functional 
limit theorems for partial sum processes, fills the gap left by all the existing 
textbooks and expository papers on the subject". 

27From the abstract of [167]. 
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2 (h(p))* 2 1 
B (n, u) = ~ {J(n) p' ( h(p))* 1 

a(n, u) = 2: {J(n) p 
p~u 

The star * ist defined by u* = u, if lui < 1, and u* = sgn(u)[= ±1] 
otherwise. 

7.2. Number Theory in the Symmetric Group 

Starting point of this topic is a paper of E. LANDAU ([143]), repro­
duced in the ,Handbuch von der Lehre der Verteilung der Primzahlen" 
(1909) on the maximal order f(n) of elements of the symmetric group 
Sn with n! elements, so 

E. LANDAU showed 

log f ( n) "" J n · log n , as n ----+ oo. 

The function f ( n) was carefully studied in papers by J. L. NICOLAS 
(Bull. Soc. Math. France 97 (1969), 129-191; Acta Arithm. 14 (1968) 
315-332); see also [173] and [174]); for example, 

log f(n) = Vli- 1 (n) + 0 ( ne-'"Yv'logn) . 

The first limit theorem seems to be due to V. L. GONCAROV [71]. De­
note by g(a) the number of cycle-lengths in the canonical decomposition 
of a E Sn, then 

lim _.!._, ·#{a E Sn; g(a) :<:::: logn + t~} 
n-+oo n. 

= - 1 jt exp (- ~u2) du. 
~ -00 2 

The subject was studied by ERDOS & TURAN (see the series of papers 
[59]); for example, 

1 ·{ 1 2 3 } lim - 1 · # a E Sn log ord(a) :<:::: -log n + t log2 n 
n-+oo n. 2 
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In more recent time, E. MANSTAVICIUS started the study of properties 
of the symmetric group again. 

We cannot explain MANSTAVICIUs' papers here in short, we refer to 
[169], [170], and in particular to his paper [171] in these proceedings. 

7.3. Universality 

This section deals with the value-distribution of zeta-functions, and 
ideas from measure theory and probability theory are important for 
investigations on "universality". The first results are due to H. BOHR 
(see, for example, [8]). Prototype of the results aimed for is S. M. 
VoRONINs result [241] (see also [117]): 

Let 0 < r < ~' and lets f--7 g(s) be a non-vanishing, in lzl ::::; r 
continuous, in lzl < r holomorphic function. For any c > 0 there 

are real values T such that sup I( (s +~+iT) - g(s)l <c. 
!s!:Sr 4 

After VORONINs paper there were several authors dealing with "uni­
versality", for example B. BAGCHI, R. GARUNKSTIS, A. Goon, R. 
KACINSKAITE, A. LAURINCIKAS, K. MATSUMOTO, A. REICH, R. SLE­
ZEVICIENE, J. STEUDING. 

Figure 7. R. Garunkstis, J. Steuding, R. Sleceviciene; K. 
Matsumoto 

Probability comes into the topic through a method of BAGCHI, con­
siderably extended by LAURINCIKAS [152], see also [148]. 28 From STEU­
DINGs habilitation thesis we give an example of a limit theorem for a 

28Certainly, the revived interest in "universality" owes much to A. LAU­

RINCIKAS, who inspired several young mathematicians to work on this subject. 
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subclass S of the SELBERG class S; this class S consists of Dirichlet-
oo 

series L an · n-s, having an Eulerproduct f1P( ... ) and a functional 
1 

equation of the kind of the functional equation of ((s) (with Gamma-
factors), and satisfying an « ne. The subclass S c S is restricted 

1 
by the demand for the existence of lim -( -) L la(p)l 2 and by some 

X-->00 7r X 
PSoX 

restriction on the shape of the factors ( ... ) in the Eulerproduct. 

To any Dirichlet series £ E S attach a probability measure Pr by 

1 . 
Pr(A) = T ·Lebesgue-measure of {7 E [0, T], £(a+ ~7) E A}, 

for Borel-sets A in the space H(V) of functions holomorphic in the strip 

[The "degree" de of £ is defined by data from the functional equation 
of £.] Then ([225], Chapt. 6) the probability measure Pr converges 
weakly to some probability measure P, as T --+ oo , and the measure P 
is explicitly given. 

This limit theorem permits the proof of a universality result for 
Dirichlet-series in the restricted Selberg class S. 29 

Let K be a compact subset of the strip V with connected complement, 
and let g(s) be a non-vanishing function continuous on V, and holo­
morphic in the interior of K. If£ E S, then, for any E > 0 

lim inf 2_ · L-measure of {T E [0, T]; max l£(s +iT) - g(s)l < c} > 0. 
T-->oo T sEIC 

29In the literature there are many universality results, for example for L­
functions, for the Lerch zeta-function, the Matsumoto zeta-function, for zeta­
functions attached to cusp forms, for Heeke L-functions, . . . . See, for example, 
[153], [152], [175], [176], [194], [222], [221], [223], [225], and many others. V. 
GARBALIAUSKIENE, in her Vilnius dissertation [66] gives universality results for 
L-functions attached to elliptic curves. In [69] there are such results for the 
Estermann zeta-function. 

There are also "joint universality results" - that means that tuples of cer­
tain zeta-function can simultaneously approximate given holomorphic function 
(of course, under suitable assumptions). A first prototype of this phenomenon 
for Dirichlet L-functions with non--equivalent charactes is also due to VoRONIN 
[242]. See also [117], more recently [68] or [67]. 
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So, VORONINs result on the zeta~function is extended to a much 
larger class of zeta~ functions, and the assertion "There is some T" is 
made quantitive - these T's with the universality property do have a 
positive lower density. 

There are survey papers on universality, for example [72], [149], 
[177], and [148]. 

§8. Conclusion 

In this survey article only some parts of Probabilistic Number The­
ory could be sketched. The author hopes, that it became clear that 
Probabilistic Number Theory is an active field of mathematical research, 
where methods from number theory, analysis and probability theory 
work together in order to obtain interesting arithmetical results. 

The author enjoyed the conference in Kanazawa very much, it was 
-thanks to the organizers Profs. SUGITA, MATSUMOTO, and MURATA 
- a pleasant stay. He gratefully acknowledges financial support from 
the organization committee. 

Photographs were taken by ULRIKE VORHAUER, Yr~WEI LEE, J. 
PINTZ and the author. Photographs of KAC, KUBILIUS, RENYI, TURAN, 
WINTNER can be found in ELLIOTTs monographs [37], [38]. 
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