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1. Introduction

Generalized linear mixed models (Breslow & Clayton (1993)), GLMMs, provide
a broad range of models for the analysis of grouped data. They extend the idea
of linear mixed models to non-normal data. In recent years, GLMMs have also
been used as a representation of generalized additive models (e.g. Ruppert et al.
(2003)). This increase in flexibility and complexity leads to extended need for
model selection.

The Akaike information criterion, AIC (Akaike (1973)), is a well known infor-
mation based criterion for model selection. There have been several extensions
to the AIC. For example in the case of small sample size or highly overparam-
eterized models Hurvich & Tsai (1989) proposed a corrected criterion called
AICC. In linear mixed models, a natural choice would be to base the AIC on
the marginal model, i.e. the model with the random effects integrated out. This
leads to a biased criterion (Greven & Kneib (2010)). An AIC based on the con-
ditional likelihood was introduced by Vaida & Blanchard (2005) but was derived
assuming the variance parameters of the random effects to be known. Plugging
in estimated variance-covariance matrices induces a bias that leads to a pref-
erence for larger models with more random effects (Greven & Kneib (2010)).
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A correction to avoid that bias was proposed by Liang et al. (2008) by use of
an identity known from Stein (1972).

An extension of the conditional AIC to GLMMs has for example been pro-
posed by Yu & Yau (2012). They suggested an asymptotically unbiased con-
ditional AIC, where the estimation of the variance parameters of the random
effects is based on maximum likelihood and that of the fixed and random effects
on maximizing the joint likelihood. Another conditional AIC was proposed by
Donohue et al. (2011). It is also asymptotically unbiased and in addition requires
that the covariance structure of the random effects is known. In this report, we
suggest a method for deriving unbiased estimates of the conditional Akaike in-
formation for exponential family distributions even if the sample size is finite
and the covariance structure of the random effects is unknown. This unified
framework for the conditional AIC in GLMMs contains the known estimators
for the normal and Poisson distribution as special cases and provides a more gen-
eral derivation for the Poisson case than previously given (Lian (2011)), which
highlights the connection to the normal case. We also extend this idea to the
exponential distribution. In addition to the theoretical results, we illustrate the
performance of the new estimator in a simulation study and in an application
to tree growth data. Proofs of new results are given in the appendix.

2. Bias correction for the conditional AIC in GLMMs

2.1. Generalized linear mixed models

Consider a GLMM with predictor

η = Xβ + Zu

with the full column rank (n×p) and (n×r) design matrices X and Z, the fixed
effects β and random effects u. The random effects are assumed to be normally
distributed, i.e. u ∼ N (0, G(ϑ)), where ϑ contains all q variance parameters in
the covariance matrix G. The responses y1, . . . , yn have conditional expectation

µi = E(yi|u) = h(ηi)

with response function h(·). Moreover the responses conditioned on the random
effects u follow an exponential family distribution, i.e. the conditional density
of yi is given by

log (f(yi|β, u)) =
yiθi − b(θi)

φ
+ c(yi, φ) (2.1)

where b(·) only depends on θ, c(·) only on yi and φ, φ is a scale parameter, and θ
is the canonical parameter of the distribution as in the generalized linear model
context (Nelder & Wedderburn (1972)). In the marginal density, the random
effects are integrated out

f(y|β, ϑ) =

∫
f(y|β, u)f(u|ϑ)du ∝ |G(ϑ)|−

1

2

∫
exp

(
f(y|β, u)−

1

2
utG(ϑ)−1u

)
du
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where f(u|ϑ) is the density of the random effects. In the following, we denote by

β̂, θ̂ and û estimators of β, θ and u, respectively, e.g. the maximum likelihood
estimator, the restricted maximum likelihood estimator and the empirical Bayes
estimator. If we want to emphasize the dependence on the data y, we write β̂(y)
and so forth.

2.2. Akaike information criterion

The Akaike information is defined as twice the expected relative Kullback-
Leibler distance −2Ey(Ez(log f(z|γ̂(y)))), with independent replications z and
y from the underlying model and parameter vector γ̂. In standard regression
settings, if certain regularity conditions are fulfilled, the Akaike information
criterion

AIC = −2 log (f(y|γ̂(y))) + 2ν (2.2)

with ν = dim(γ) is an asymptotically unbiased estimator for the Akaike infor-
mation. A direct extension of the AIC to GLMMs based on the marginal model
would be the marginal AIC,

mAIC = −2 log
(
f(y|β̂, ϑ̂)

)
+ 2(p+ q) (2.3)

where f(y|β̂, ϑ̂) is the maximized marginal likelihood. If the dispersion param-
eter φ is estimated, the bias correction in (2.3) changes to 2(p + q + 1). Using
the marginal model implies that the focus is on the fixed effects and that new
data z does not share the random effects of y. However, the marginal AIC may
be inappropriate for variable selection in linear mixed effect models if the focus
is on clusters rather than on the population, as stated in Vaida & Blanchard
(2005). Even under the marginal model it is not an (asymptotically) unbiased
estimator of the Akaike information as shown for the Gaussian case by Greven
& Kneib (2010).

Use of the conditional model formulation focuses on the random effects and
implies shared random effects between y and z. The conditional Akaike infor-
mation is

cAI = −2Ey,u

[
Ez|u

[
log

(
f(z|β̂(y), û(y))

)]]

= −

∫
2 log

(
f(z|β̂(y), û(y))

)
g(z|u)g(y, u)dz dy du,

where g(y, u) = g(y|u)g(u) is the (true) joint density of y and u (Vaida & Blan-
chard (2005)). For (conditionally) Gaussian responses and known random effects
variance parameters ϑ they show that an asymptotically unbiased estimator of
the conditional Akaike information is

cAIC = −2 log f(y|β̂, û) + 2(ρ+ 1),
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where

ρ = tr

[(
XtX XtZ
ZtX ZtZ + σ2G(ϑ)−1

)−1 (
XtX XtZ
ZtX ZtZ

)]

are the effective degrees of freedom (Hodges & Sargent (2001)). Liang et al.
(2008) introduced a bias correction that takes the estimation uncertainty of ϑ
into account. For known error variance σ2 they replace 2ρ by

2Φ0(y) = 2

n∑

i=1

∂ŷi
∂yi

= 2tr

(
∂ŷ

∂y

)
. (2.4)

They propose a similar but lengthy formula for unknown error variance. Follow-
ing the findings of Greven & Kneib (2010), the estimation uncertainty of the
error variance can be ignored.

2.3. Bias correction

For GLMMs with responses following an exponential family distribution as in
(2.1) and unknown random effects variance parameters ϑ, we derive the following
bias correction.

Proposition 2.1. In GLMMs with responses following an exponential family
distribution and unknown ϑ, the bias correction for −2 log f(y|β̂, û) as an esti-
mator of cAI is

2Ψ = 2

n∑

i=1

Ey,u

[
yi − µi

φ
θ̂i(y)

]

=
2

φ

n∑

i=1

{
Ey,u

[
yiθ̂i(y)

]
− µiEy,u

[
θ̂i(y)

]}
. (2.5)

If φ is estimated, φ in the first expression is replaced by φ̂. A proof for this
result is given in the Technical details section.

3. Stein’s method for exponential families

3.1. Continuous distributions

The proposed bias correction in (2.5) suffers from the use of the true but un-
known mean µ and therefore cannot be applied directly. Liang et al. (2008)
solved this problem by the use of a formula known from Stein (1972) which
turns (2.5) into (2.4). The following result extends the idea of Stein to con-
tinuous exponential family distributions and is a slight modification of Hudson
(1978).
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Theorem 3.1. Let y be continuous and have density given by (2.1). For a
differentiable function m : R → R that vanishes on the limits of the support of y
if the limits of the support are finite and E[|m′(y)|] < ∞ if the limits are infinite
it holds that

E [m′(y)] = E

[
−

(
θ

φ
+

∂

∂y
c(y, φ)

)
m(y)

]
. (3.1)

If y is Gaussian, formula (3.1) simplifies to

E [m′(y)] = E

(
y − µ

σ2
m(y)

)
,

the formula known from Stein. Applied to the bias correction (2.5) this yields
the bias correction 2Φ0 known from Liang et al. (2008). The theorem can also be
applied to obtain bias corrections for other exponential family distributions as
stated in the following. For y exponentially distributed with mean µ, y ∼ E( 1

µ
),

and letting m(y) =
∫ y

0
g(x) dx, equation (3.1) becomes

µE [g(y)] = E

[∫ y

0

g(x)dx

]
. (3.2)

We use this equation to derive an analytically accessible version of (2.5).

Corollary 3.1. Let yi|u ∼ E( 1
µi
). Then an unbiased estimator of the cAI is

cAIC = −2 log f(y|β̂, û) + 2Ψ,

with

Ψ =

n∑

i=1

yiθ̂i(y)−

∫ yi

0

θ̂i(y−i, x)dx (3.3)

where y−i is the vector of observed responses without the i−th observation and
hence θ̂i(y−i, x) is the estimator based on (y1, . . . , yi−1, x, yi+1, . . . , yn).

A proof of this result is outlined in the appendix. In Section 5 numerical
integration is used to evaluate 3.3.

3.2. Discrete distributions

A similar identity to Theorem 3.1 also holds for discrete random variables from
an exponential family distribution. The following Theorem is also due to Hudson
(1978).

Theorem 3.2. Let y be a discrete random variable taking values in N0 =
{0, 1, 2, . . .} and let y have probability function given by (2.1). For m : N → R

with E[|m(y)|] < ∞ it holds that

exp(θ)E (m(y)) = E [t(y)m(y − 1)] (3.4)
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where

t(x) :=

{
0, for x = 0

exp (c(x− 1, φ)− c(x, φ)) , for x = 1, 2, . . .

For y Poisson distributed with parameter λ, y ∼ P(λ), equation (3.4) simpli-
fies to

λE [m(y)] = E [ym(y − 1)] , (3.5)

with ym(y − 1) = 0 if y = 0 by convention. This is an identity due to Chen
(1975). With the help of this identity the bias correction (2.5) can be made
analytically accessible.

Corollary 3.2. Let yi|u ∼ P(λi). Then an unbiased estimator of the cAI is

cAIC = −2 log f(y|β̂, û) + 2Ψ,

with

Ψ =
n∑

i=1

yi

(
θ̂i(y)− θ̂i(y−i, yi − 1)

)
, (3.6)

where y−i is the vector of observed responses without the i−th observation and
yi is the i−th observation with yiθ̂i(y−i, yi − 1) = 0 if yi = 0 by convention.

Corollary 3.2 gives an alternative derivation of the result in Lian (2011),
which highlights the connection to the normal case.

4. Limits of the approach

Theorem 3.1 and Theorem 3.2 can be extended to further distributions. For
instance the generalized SURE formula (Lemma 2) in Shen & Huang (2006)
is a generalisation of Theorem 3.1 and Theorem 3.2 to distributions not neces-
sarily from the exponential family. Although the formula has been obtained in
a different context, it is closely related to the findings in Section 3 and gives
further insight on how identities for further distributions could potentially be
derived. On the other hand, formulas as in Theorems 3.1 and 3.2 do not neces-
sarily lead to bias correction terms computable from observable quantities for
all distributions, as discussed in the following.

4.1. Continuous distributions

For example if y follows a gamma distribution with mean µ and scale parameter
ν, i.e. y ∼ G(µ, ν) identity (3.1) is

E (m′(y)) = E

[(
ν

µ
−

(
ν

y
−

1

y

))
m(y)

]
.

This can be rewritten in terms of µ

µE

[
m′(y) +

(
ν

y
−

1

y

)
m(y)

]
= νE [m(y)] .
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In contrast to the ν = 1 case, this identity cannot be used to remove the true
but unknown parameter µi in the bias correction term (2.5) unless we could
rewrite the estimator of the canonical parameter in (2.5) by

θ̂i(y−i, yi) = m′(yi) +

(
ν

yi
−

1

yi

)
m(yi)

for a function m(·) fulfilling the requirements in Theorem 3.1. Since this seems
to be not possible, Theorem 3.1 cannot be used to rewrite the bias correction
term (2.5) for a gamma distribution with ν 6= 1.

4.2. Discrete distributions

Similarly, applying Theorem 3.2 to the negative binomial distribution where y
has the probability function

f(y|µ, λ) =
Γ(λ+ y)

Γ(λ)y!

µyλλ

(µ+ λ)(λ+y)
,

identity (3.1) becomes

µ

µ+ λ
E (m(y)) = E

(
y

y + λ− 1
m(y − 1)

)

with m(y − 1) = 0 for y = 0. In terms of the mean µ, the identity above is

µ

(
E

(
m(y)−

y

y + λ− 1
m(y − 1)

))
= λE

(
y

y + λ− 1
m(y − 1)

)
.

The second part of the bias correction (2.5), i.e. µiEy,u(θ̂i(y)) could therefore

only be replaced if the estimator for the canonical parameter θ̂i(·) can be written
as

θ̂i(y) = m(y)−
y

y + λ
m(y − 1)

for some arbitrary function m(·) as in Theorem 3.2. This is not possible.
Theorem 3.2 cannot be applied to the binomial distribution B(n, p) since a

binomially distributed random variable only takes values in {0, 1, . . . , n} ⊂ N0.
Extending the distribution by defining P (y = n+ k) = 0 ∀k ∈ N does not yield
an identity which could be applied to the bias correction (2.5), for the same
reason as in the case of the negative binomial distribution.

5. Simulation study

In the first part of this simulation study, we concentrate on random intercept
models. The bias corrections (3.3) and (3.6) are analysed in two different ways.
First we compare the precision and the variability of different bias corrections as
estimators of the correction term obtained by estimating the relative Kullback-
Leibler distance with the log-likelihood. In a second step, the model choice
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behaviour of the bias correction for exponential responses (3.3) and Poisson
distributed responses (3.6) is assessed.

The second part of the simulation study is concerned with the model choice
behaviour of the proposed estimators for smoothing spline models. We therefore
use a common link between mixed-effects models and smoothing spline models.

5.1. Random intercept model

5.1.1. Exponential distribution

First we will focus on the precision and the variability of the proposed bias
correction (3.3). We therefore consider a model with an exponentially distributed
response yij and a random intercept ui with

µij = exp(β0 + β1xj + ui); i = 1, . . . ,m; j = 1, . . . , ni, (5.1)

where ui ∼ N (0, τ2), β0 = 0.1, β1 = 0.2 and xj = j. Different numbers of clus-
ters, cluster sizes and random effect variances are considered: m = 5, 10, ni =
5, 10 for i = 1, . . . ,m and the random effect variances are τ2 = 0, 0.5, 1. For
each of the settings, 1,000 data sets are generated and the mean and the stan-
dard deviations of the different bias correction terms are calculated. The model
is fitted by the PQL method as introduced by Breslow & Clayton (1993). We
use an implementation in R based on Wood (2006).

We compare the proposed estimator for the bias correction Ψ obtained from
refitting the model for each i with the true bias BC defined by (2.5), the asymp-
totically unbiased estimator ρ̂ml proposed by Yu & Yau (2012) and the estimator
ρ̂Don of Donohue et al. (2011). The true bias correction BC is derived by av-
eraging 30,000 samples of (2.5) based on model (5.1). This criterion used as a
benchmark is not available in practice since for its calculation the true mean µ
has to be known.

For the proposed bias correction Ψ as in (3.3), an integral needs to be eval-
uated. Since this can not be done analytically it is approximated by adaptive
quadrature. The resulting bias correction is used to obtain the proposed cAIC.

The cAIC suggested by Yu & Yau (2012) is included to assess the performance
of an asymptotically unbiased estimator of the cAI in finite sample settings.
Similarly to the cAIC suggested by Vaida & Blanchard (2005) for Gaussian
responses, the cAIC proposed by Donohue et al. (2011) requires known random
effects variance parameters. For known random effects variance parameters, the
criterion is consistent. In our simulated random intercept model, τ2 would need
to be known. Since in many applications this will not be the case, we use the
proposed bias correction of Donohue et al. (2011) with the estimated variance
parameter τ̂2 taken as truth.

In the calculation of ρ̂ml, the bias correction proposed by Yu & Yau (2012),
numerical difficulties occurred. We therefore excluded all results in which the
bias correction exceeded a threshold of 200. This excluded between 0 and 5
observations per setting.
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Table 1

Mean estimated values of four different estimators of the bias correction (2.5) and the
corresponding standard deviations (indicated by σ with corresponding index) of model (5.1)
for different cluster sizes (ni), number of clusters (m) and variances of random effects (τ2).
The true bias correction BC is derived by (2.5), the estimator Ψ is directly calculated by

(3.3), ρ̂ml is the estimator proposed by Yu & Yau (2012) and ρ̂Don is the estimator
proposed by Donohue et al. (2011)

m ni τ2 BC Ψ ρ̂ml ρ̂Don σΨ σρ̂ml
σρ̂Don

5 5 0 3.66 3.54 3.72 2.54 1.64 9.08 0.93

5 5 0.5 5.21 5.24 5.03 3.55 2.01 9.28 1.31

5 5 1 6.72 6.77 5.44 4.73 1.81 3.59 1.19

5 10 0 3.08 3.10 3.36 2.45 1.38 7.05 0.83

5 10 0.5 5.30 5.32 5.04 4.08 1.56 4.74 1.24

5 10 1 6.21 6.27 5.65 5.22 1.17 1.13 0.85

10 5 0 4.12 4.22 4.47 3.19 2.62 8.22 1.86

10 5 0.5 8.24 8.38 7.60 6.20 3.03 6.55 2.54

10 5 1 11.58 11.80 9.59 9.09 2.06 7.43 1.51

10 10 0 3.51 3.46 4.21 2.80 2.03 12.28 1.47

10 10 0.5 9.12 9.09 8.50 7.62 2.05 1.76 2.01

10 10 1 11.18 11.28 10.16 9.87 1.25 0.68 0.85

Table 1 shows the results. They suggest, that the proposed estimator per-
forms well although numerical integration was used. The estimator ρ̂ml has the
tendency to underestimate the true bias correction for positive true τ2 and to
overestimate it for true τ2 = 0. This may be due to the fact that a non-canonical
link function was used, while the authors derive their estimator only for canon-
ical links. Furthermore the authors do not use PQL as fitting method, see 5.3
for a short remark.

The estimator ρ̂Don consistently underestimates BC, as it ignores variability
due to the estimation of the variance components. The last four columns give the
standard deviations of each estimator. The standard deviation of the proposed
estimator is low, which also speaks in favour of the estimator. The standard
deviation of ρ̂ml is very high especially for low random effects variance, despite
the exclusion of extreme values.

We now consider the behaviour of the proposed bias correction (3.3) when
selecting random effects. Therefore consider the same settings as in model (5.1)
but with the random effect variances as τ2 = 0, 0.1, 0.2, . . . , 1.8, respectively.
For each of the settings, 1000 data sets are generated and one model containing
a random intercept (τ2 ≥ 0) and another (generalized linear) model without
random effects are fitted to each data set. The random effects model is fitted by
PQL, see Breslow & Clayton (1993) and Wood (2006).

We compute the frequency of selecting the model including the random in-
tercept (τ2 > 0), which is chosen whenever the proposed AIC is smaller than an
AIC, derived from the model without a random intercept (τ2 = 0). As reference
AICs for the model without random intercept we use (2.2) for the marginal AIC,
Donohue’s cAIC and Yu & Yau’s cAIC. For the proposed cAIC we use formula
(3.3) with a generalized linear model as reference. Thus, for each AIC we use as
a reference the AIC it reduces to in the null model without intercept.
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Proposed cAIC
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Fig 1. Results for the random intercept model with exponentially distributed responses. The
y-axis shows the number of simulation replications out of 1000 where the more complex model
was favoured by the different AICs.

The marginal AIC as defined in (2.3) requires the marginal log-likelihood,
which is obtained by Laplace approximation. The results for different settings
and AICs are displayed in Figure 1.

The mAIC behaves similarly to the mAIC with Gaussian responses as investi-
gated in Greven & Kneib (2010). For small τ2 the mAIC never chooses the model
including the random effects. When the sample size increases, a preference for
the smaller model remains. The other AICs select the more complex model in a
higher proportion of cases. Both the proposed AIC and Yu and Yau’s proposal
exhibit increasing sensitivity as well as specificity as sample size increases, with
the asymptotic criterion showing a stronger preference for larger models when
the variance is zero or small. The estimator suggested by Donohue et al. (2011)
shows a behaviour similar to the cAIC of Vaida & Blanchard (2005), observed
by Greven & Kneib (2010): It chooses the model including the random effects
far more often than the other criteria do. This might have been expected, since
similarly to the cAIC by Vaida & Blanchard (2005), this criterion needs the
variance-covariance matrices of the random effects to be known and using a
plug-in estimator introduces a bias.

5.1.2. Poisson distribution

Investigating the precision and variability of the bias correction (3.6), we con-
sider a random intercept model with Poisson distributed responses and subject
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Table 2

Mean estimated values of four different estimators of the bias correction (2.5) and the
corresponding standard deviations (indicated by σ with corresponding index) of model (5.2)
for different cluster sizes (ni), number of clusters (m) and variances of random effects (τ2).
The true bias correction BC is derived by (2.5), the estimator Ψ is directly calculated by

(3.6), ρ̂ml is the estimator proposed by Yu & Yau (2012) and ρ̂Don is the estimator
proposed by Donohue et al. (2011)

m ni τ2 BC Ψ ρ̂ml ρ̂Don σΨ σρ̂ml
σρ̂Don

5 5 0 3.07 2.99 3.61 2.47 1.28 6.74 0.81

5 5 0.3 3.98 4.12 4.54 3.35 1.43 9.39 1.18

5 5 0.6 5.17 5.12 5.44 4.51 0.99 5.83 1.06

5 10 0 2.79 2.88 3.30 2.41 1.24 6.67 0.72

5 10 0.3 5.10 4.92 5.11 4.30 1.11 2.15 1.16

5 10 0.6 5.80 5.65 5.74 5.37 0.44 1.18 0.65

10 5 0 3.63 3.62 3.91 3.04 2.15 8.01 1.67

10 5 0.3 6.35 6.39 6.50 5.52 2.36 5.76 2.30

10 5 0.6 8.87 8.87 9.22 8.45 1.20 1.77 1.45

10 10 0 3.17 3.42 3.94 2.85 1.93 7.41 1.39

10 10 0.3 8.47 8.79 8.89 8.24 1.28 1.24 1.55

10 10 0.6 10.26 10.21 10.33 10.09 0.41 0.43 0.52

specific random intercept, yij |ui ∼ P(λij). A logarithmic link function is used

log (λij) = β0 + β1xj + ui; i = 1, . . . ,m; j = 1, . . . , ni, (5.2)

where ui ∼ N (0, τ2), β0 = 0.1, β1 = 0.2 and xj = j. Different numbers of clus-
ters, cluster sizes and random effect variances are considered: m = 5, 10, ni =
5, 10 for i = 1, . . . ,m and the random effect variances are τ2 = 0, 0.3, 0.6,
respectively. The differing values of τ2, compared to the model with exponen-
tially distributed responses, are chosen due to the changed signal-to-noise ratio.
We generate 1,000 data sets for each setting and calculate the mean and the
standard deviations of the different bias corrections. The true bias correction is
derived the same way as for the exponential responses.

The results are shown in Table 2. The proposed estimator Ψ combines high
precision with low variance. Compared to the estimates with exponentially dis-
tributed responses, ρ̂ml performs well although it shows a tendency towards
overestimation and has high variances especially for a larger number of small
clusters. The estimator ρ̂Don underestimates the true bias correction as it did
in the previous setting.

As for the simulation study with exponentially distributed responses, we also
assess the model choice behaviour of bias correction (3.6). The settings are the
same as in model (5.2) except the random effects variance, that is τ2 = 0, . . . , 0.8.
Then 1000 data sets for each setting are generated. Two models are fit to the
data, one model containing a random intercept (τ2 ≥ 0) and another model
without random effects (τ2 = 0). The frequency of selecting the more complex
model, including the random effects is computed for different AICs. Just as for
the exponential responses, PQL was used as model fitting method. The different
proposed AICs are the same as in the exponential model (5.1): 1) the proposed
bias correction Ψ as in (3.6); 2) the cAIC suggested by Yu & Yau (2012); 3) the
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Fig 2. Results for the random intercept model with Poisson distributed responses. The y-axis
shows the number of simulation replications out of 1000 where the more complex model was
favoured by the different AICs.

cAIC proposed by Donohue et al. (2011), with the estimated variance parameter
τ̂2 plugged in as true τ2; 4) the marginal AIC as defined in (2.3), which is
obtained by Laplace approximation.

The results are displayed in Figure 2. They are similar to the results observed
for exponential responses. The marginal AIC chooses the model including the
random effects only very rarely even for random effects variances larger than
zero. On the other hand, the AIC proposed by Donohue et al. (2011) chooses
to include random effects very often, even if the model was simulated without
random effects. The proposed criterion and Yu and Yau’s asymptotic critierion
behave similar, with a stronger preference for the larger model when the variance
is zero or small for Yu and Yau’s AIC. The asymptotically unbiased criterion
proposed by Yu & Yau (2012) behaves as expected. For larger cluster sizes and
increasing number of clusters the model choice behaviour gets better.

5.2. Penalized spline smoothing

It is well known that penalized spline models have a mixed model representa-
tion, see for example Wood (2006) and Ruppert et al. (2003). In this part of
the simulation study, we assess the performance of different criteria for model
selection in penalized spline models using the mixed model representation.

We investigate models where the mean µ is linked to a smooth function m(·):

g(µi) = m(xi), i = 1, . . . , n.
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In this setting, we choose the smooth function to be

m(x) = 1 + x+ d

(
1

3
− x

)2

.

The xi are chosen equidistantly from the interval [0, 1]. The sample sizes are
n = 25, 50, 75, 100.

The parameter d controls the nonlinearity of the function m. For increasing
d the nonlinearity increases and a higher signal-to-noise ratio is obtained. For
d = 0 the function m(·) is linear.

The smooth function is estimated by a penalized spline

m̂(x) =
J∑

j=1

bj(x)βj

with associated smoothness penalty λβtSβ, where S is a positive semi-definite
matrix and λ is a smoothing parameter, which is estimated via the mixed model
representation. The mixed model is fitted by PQL, see Breslow & Clayton (1993)
and Wood (2006). In the mixed model framework, the smoothing parameter λ
is associated with the inverse random effects variance parameter 1/τ2. The key
idea of the mixed model representation is to separate β into a penalized and
an unpenalized part, which are estimated as fixed and random effects, respec-
tively. We choose the basis functions bj(x) from the B-Spline basis with 10 inner
knots, see Eilers & Marx (1996). The penalty matrix S is a second-order dif-
ference penalty matrix. In this setting the null space of S is two-dimensional,
corresponding to the coefficients describing a linear function that remains un-
penalized by the penalty matrix S.

5.2.1. Exponential distribution

The model for exponentially distributed responses yi ∼ E(µi), with logarithmic
link function, is

log(µi) = 1 + xi + d

(
1

3
− xi

)2

, i = 1, . . . , n. (5.3)

For nonlinearity parameters d = 0, 0.5, 1 the averaged estimated bias corrections
and corresponding standard deviations are derived from 1000 data sets simulated
from model (5.3).

The results in Table 3 indicate that the bias correction Ψ in (3.3) and BC
in (2.5) have the same expected value, as was shown analytically in Corollary
(3.1). The high variance σρ̂ml

of the estimator proposed by Yu & Yau (2012) is
due to outliers that occur, caused by numerical instability. The estimator ρ̂Don

does not change a lot for differing levels of nonlinearity and underestimates the
bias correction term.

The model choice behaviour of the same criteria as in (5.1) is assessed in the
same way as in the random intercept model. For each setting and each value of
nonlinearity d = 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5 and 4, 1000 datasets
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Table 3

Mean estimated values of four different estimators of the bias correction (2.5) and the
corresponding standard deviations (indicated by σ with corresponding index) of model (5.3)

for different sample sizes n and different degrees of nonlinearity d. The estimator Ψ is
directly calculated by (3.3), BC is derived by (2.5), ρ̂ml is the estimator proposed by Yu &

Yau (2012) and ρ̂Don is the estimator proposed by Donohue et al. (2011)

n d BC Ψ ρ̂ml ρ̂Don σΨ σρ̂ml
σρ̂Don

25 0 3.00 2.97 2.76 2.21 1.18 4.41 0.44

25 0.5 3.02 3.15 2.83 2.21 1.25 2.81 0.41

25 1 3.30 3.28 3.02 2.31 1.33 2.06 0.50

50 0 2.68 2.66 2.76 2.16 0.97 7.95 0.38

50 0.5 2.77 2.80 3.13 2.21 1.04 8.35 0.42

50 1 3.09 3.11 3.39 2.34 1.05 5.78 0.48

75 0 2.55 2.63 2.81 2.14 0.84 7.23 0.32

75 0.5 2.77 2.80 2.90 2.21 0.98 4.57 0.39

75 1 3.09 3.17 3.09 2.40 1.00 4.87 0.48

100 0 2.49 2.62 2.87 2.14 0.87 7.95 0.34

100 0.5 2.68 2.80 2.65 2.21 0.89 13.46 0.39

100 1 3.25 3.29 3.55 2.49 0.99 8.83 0.51

are generated, and a linear and a nonlinear model are fitted to the data. The
frequency of selecting the more complex, nonlinear model for each criterion is
computed.

Figure 3 shows the results. The marginal AIC behaves as expected and
chooses the nonlinear model only very rarely. The proposed cAIC based on the
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Fig 3. Results for the spline smoothing model with exponentially distributed responses. The
y-axis shows the number of simulation replications where out of 1000 the more complex model
was favoured by the different AICs.
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Table 4

Mean estimated values of four different estimators of the bias correction (2.5) and the
corresponding standard deviations (indicated by σ with corresponding index) of model (5.3)

with Poisson distributed responses for different sample sizes n and different degrees of
nonlinearity d. The estimator Ψ is directly calculated by (3.6), BC is derived by (2.5), ρ̂ml

is the estimator proposed by Yu & Yau (2012) and ρ̂Don is the estimator proposed by
Donohue et al. (2011)

n d BC Ψ ρ̂ml ρ̂Don σΨ σρ̂ml
σρ̂Don

25 0 2.47 2.61 2.78 2.20 1.07 1.88 0.44

25 0.8 3.11 3.33 3.31 2.61 1.01 3.90 0.59

25 1.6 4.18 3.93 3.77 3.33 0.49 1.62 0.45

50 0 2.29 2.66 3.09 2.18 1.21 7.80 0.37

50 0.8 3.55 3.53 3.30 2.77 0.98 3.01 0.55

50 1.6 4.06 3.99 3.86 3.63 0.63 0.36 0.30

75 0 2.25 2.48 2.87 2.14 1.05 5.01 0.34

75 0.8 3.95 3.63 3.52 2.94 0.65 3.33 0.49

75 1.6 4.62 4.05 3.96 3.77 0.31 0.29 0.24

100 0 2.37 2.45 2.87 2.13 0.90 8.60 0.32

100 0.8 3.78 3.68 3.55 3.05 0.71 1.51 0.47

100 1.6 3.73 4.13 4.06 3.90 0.30 0.27 0.20

bias correction (3.3) shows similar behaviour to the other settings. For increas-
ing sample size, Yu & Yau (2012) show an unexpected behaviour. The cAIC by
Yu & Yau (2012) selects the nonlinear model with a proportion increasing with
sample size, even for zero or small variances τ2, and for the largest sample size
more often than the cAIC proposed by Donohue et al. (2011). Since this be-
haviour seems to contradict the findings of Yu & Yau (2012), a short discussion
is given in 5.3.

5.2.2. Poisson distribution

For Poisson distributed responses yi ∼ P(µi), model (5.3) stays the same but,
due to a different signal-to-noise ratio, we choose a different sequence of non-
linearity parameters. In order to compare the precision and variability of the
different bias corrections, we choose the nonlinearity parameter d = 0, 0.8, 1.6.
For each level of nonlinearity and for the sample sizes n = 25, 50, 75, 100 the esti-
mated bias corrections are listed in Table 4. The results show, that the proposed
estimator Ψ is close to the bias correction BC derived by 30,000 times reesti-
mating model (5.3) with Poisson distributed responses and calculating 2.5. The
BC bias correction is not applicable in practice since the true unknown mean
µ has to be known for its calculation. The high variance of the estimator ρ̂ml,
proposed by Yu & Yau (2012) indicates some very large values which seem to
be due to numerical instabilities.

The selection frequencies are derived for nonlinearity levels d = 0, 0.1, 0.2,
0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6. They are shown in Figure 4. They behave similar to
the ones observed for the smoothing spline model with exponentially distributed
responses. The unexpected behaviour of the cAICs proposed by Yu & Yau (2012)
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Fig 4. Results for the spline smoothing model with Poisson distributed responses. The y-axis
shows the number of simulation replications out of 1000 where the more complex model was
favoured by the different AICs.

and Donohue et al. (2011) are not as pronounced as for exponentially distributed
responses. Nevertheless the bias correction of Yu & Yau (2012) is occasionally
smaller than the one proposed by Donohue et al. (2011) in this setting as well.

5.3. General remarks

The cAIC proposed by Yu & Yau (2012) is used here as an ad-hoc criterion
since it is one of the few available benchmarks for model selection in generalized
linear mixed models. The criterion was derived for ML estimation of the variance
parameters based on McGilchrist (1994), while our models were fitted using the
REML based PQL method proposed by Breslow & Clayton (1993). Despite
the difference between REML and ML, the two approaches are similar to each
other in maximizing the joint likelihood of y and u as mentioned by McGilchrist
(1994). However the main objection to the application of the cAIC proposed by
Yu & Yau (2012) may be that the models (5.3) and (5.1) have a non-canonical
link although the criterion of Yu & Yau (2012) requires canonical link functions.

Nevertheless the results of our simulation study do not reflect the findings
of Yu & Yau (2012), even for Poisson distributed responses with canonical link,
since in their simulation study the proposed cAIC can distinguish between
τ2 = 0 and τ2 > 0 very well, i. e. the proportion of selecting a model with
τ2 > 0, although τ2 = 0 is the true model, is zero, see Figure 1, p. 637 in Yu
& Yau (2012). In our simulation, on the other hand, in at least a quarter of the
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cases the more complex model (τ2 > 0) was chosen, independent of the specific
settings.

Furthermore in our simulations the bias correction of Yu & Yau (2012) some-
times was smaller than the bias correction proposed by Donohue et al. (2011).
This contradicts Remark 3 in Yu & Yau (2012) that says, that their bias cor-
rection is equal to the one proposed by Donohue et al. (2011) plus the trace
of a positive semi-definite matrix. However in our simulation the matrix which,
following Remark 3 in Yu & Yau (2012), is positive semi-definite sometimes has
negative eigenvalues. This seems to be due to a boundary issue. When deriving
the criterion, the derivative with respect to τ2 needs to be calculated when τ̂2

lies on the boundary of the parameter space. In these cases the trace of the
matrix is sometimes negative.

The implementation of the cAIC by Yu & Yau (2012) was adapted from
the MATLAB code the authors provided, but simulations were carried out in
statistical programming language R. The code of the simulation study can be
found in the supplementary material (Saefken et al. (2014)).

A disadvantage regarding the proposed estimator (3.3) when using numeric
integration is, that for each datum the integral needs to be calculated. Therefore
if for one i in (3.3) the integral can not be calculated the bias correction can
not be obtained. This may be a problem particularly in large data sets and for
instance, if there is collinearity in the data.

The implementation of the proposed method to derive (3.3) based on numer-
ical integration takes 330 s for model (5.1) with random-effects variance 1 and
five clusters with five observations each on a 2.80-GHz personal computer. The
computational cost depends on how precise the numerical integration is and on
the size of the data set.

For data from model (5.2) with random-effects variance 1 and five clusters
with five observations each it takes about 3 s to compute (3.6) on a 2.80-GHz
personal computer. This leave-one-out implementation is increasingly time con-
suming for larger data sets and less time consuming if there are many zeros in
the observed responses.

6. Example: Modelling tree growth with water availability

Tree growth is of high economic importance as it determines the amount of
available timber per time. As the trend is turning to a more sustainable silvicul-
ture, it becomes even more important to understand the underlying processes
under close to natural conditions.

In this case study, we show how the proposed estimator of the Kullback-
Leibler distance for exponential responses influences the selection of models
for tree growth. The study is based on a sub-sample of 2655 trees, from a
28.5 ha large area that is located in the core zone of the Hainich National Park,
Thuringia, Germany. The National Park is part of Germany’s largest contin-
uous broad-leaved forest. To estimate tree growth, in 1999 and 2007 for each
tree within the study area the Diameter at Breast Height (DBH), i.e. at about
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1.30 m, was mapped, see Butler-Manning (2008). The difference in diameter
is the dependent variable growth. We only consider beech, which accounted for
90 % of the recorded trees. We included only trees with 10–30 cm DBH, because
they can be reasonably assumed to have completed the phase of highest mor-
tality due to competition (self-thinning), without reproducing yet themselves.
Furthermore, we excluded trees for which no positive growth was recorded as
these measurements seem to be erroneous.

Growth performance is highly influenced by competition for light. Thus, we
assumed that neighbours that potentially overshadow the individuals are crucial
for predicting growth. Neighbour-processes are included as KRAFT-class (ki),
nearest- and second nearest-neighbour distances (nnd1i and nnd2i).

Water availability is a good proxy for abiotic resource availability on rich soils,
because water availability, apart from light, mainly limits tree-growth, influenc-
ing the predominance of beech. To estimate spatial variation in water availability
due to soil properties, we use the soil depth (sdi) as covariate. A second available
covariate, the Topographic Wetness Index (twii), is calculated from a Digital
Elevation Model and measures water availability determined by topography, see
Boehner et al. (2006).

Our aim is to find a model that best describes the tree growth with the help
of the given covariates. Hence we choose the model with the lowest estimated
Kullback-Leibler distance from a set of candidate models. We concentrate on the
selection of linear versus nonlinear modelling of the continuous covariates. This
corresponds to the selection of random effects in the mixed model framework.We
model the DBH difference using an exponential distribution, as using a gamma
distribution resulted in a dispersion parameter estimate of 0.98 for model 6.1
that is very close to one.

6.1. Univariate smooth function

In order to investigate the model choice behaviour of the mAIC and the proposed
AIC with bias correction (3.3) in a simple model, we consider a univariate
smoothing example, based on the tree growth data. We estimate the effect of soil
depth on the tree growth and include the KRAFT-class to account for differing
growth potentials due to light availability. For the mean of the tree growth µ,
we obtain the following model:

log (µi) = β0 + β1ki +m (sdi) , i = 1, . . . , 2655, (6.1)

where µi = E(yi) and yi is the difference in DBH measurements between 2007
and 1999.

We distinguish between a linear model (M1) in which the function m(·) is
a linear function and a semiparametric model (M2) with nonlinear function
m(·). The semiparametric model is fit by PQL. Both estimated functions are
plotted in Figure 5. The mAIC for the linear model (M1) is 6258 and for the
semiparametric model (M2) the mAIC is 6276. The conditional AIC based on
(3.3) for the linear model (M1) is 6257 and for the semiparametric model (M2)
it is 6235. Therefore the mAIC chooses the model (M1) with m(·) as linear
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Fig 5. The linear effect (dotted line) and the nonlinear effect (solid line) with confidence
interval (dashed lines) of the soil depth on the tree growth. The pointwise confidence intervals
are defined using twice the standard deviation of the estimator.

function and the proposed conditional AIC chooses the model (M2) with m(·)
as nonlinear function.

The model captures the positive effect of increasing soil depth for water
availability. This effect levels off in very deep soils when fine root density is very
low. The negative trend in very deep soils is a joint effect of soil depth and
change of grain size to silt perceived as dry soils.

6.2. Generalized additive model

In a more sophisticated approach, we consider a model incorporating possibly
nonlinear effects of three covariates and one linear effect of the KRAFT-class k.
Accordingly we extend model (6.1) to a generalized additive model, see Wood
(2006):

log (µi) = β0 + β1ki +m1 (sdi) +m2 (twii) +m3 (nnd1i) (6.2)

or
log (µi) = β0 + β1ki +m1 (sdi) +m2 (twii) +m3 (nnd2i) , (6.3)

for i = 1, . . . , 2655, depending on whether the first- or second nearest-neighbour
distance is included. We only consider one of the two nearest-neighbour dis-
tances, since the two variables are collinear. Thus we use the AICs to decide
which of the nearest-neighbour distances to include into the model.

The functions m1, . . . ,m3 may either be linear or nonlinear functions. In
the model selection process, we choose between the two possibilities for each
of the three functions in the two models. In consequence we can choose from
a set of 16 candidate models. We expect all covariates to have an effect on
growth and therefore do not include models into the model selection process
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Table 5

Estimated Kullback-Leibler distance for 16 models fitted to the tree growth data. The first
four columns indicate if the effects of the covariates are modelled by linear (−) or nonlinear
(∼) functions, corresponding to the absence and presence of random effects. Two different
estimators of the Kullback-Leibler distance are listed in the table: The AIC based on the bias

correction 3.3 (cAIC) and the AIC proposed by Donohue et al. (2011) (dAIC)

m1 (sd) m2 (twi) m3 (nnd1) m3 (nnd2) cAIC dAIC

∼ ∼ ∼ 6189.461 6185.855

∼ ∼ − 6191.001 6189.359

∼ − ∼ 6200.224 6197.756

∼ − − 6201.596 6201.107

− ∼ ∼ 6199.270 6197.488

− ∼ − 6203.715 6202.995

− − ∼ 6213.788 6212.881

− − − 6218.176 6218.333

∼ ∼ ∼ 6180.980 6177.974

∼ ∼ − 6189.084 6187.287

∼ − ∼ 6190.039 6188.696

∼ − − 6198.649 6198.123

− ∼ ∼ 6190.120 6188.629

− ∼ − 6201.498 6200.599

− − ∼ 6202.958 6202.775

− − − 6214.723 6214.844

that completely omit one of the covariates, except nnd1 and nnd2 respectively.
All possible models and the corresponding AIC values can be found in Table 5.

The model selection process is based on two criteria, the proposed conditional
AIC with associated bias correction (3.3) and the conditional AIC proposed
by Donohue et al. (2011). The marginal AIC is omitted because we can not
extract the design matrices Zi, i = 1, 2, 3 corresponding to the random effects
parametrization of the smoothing splines, that are needed to derive the Laplace
approximation. This problem does not occur in univariate smoothing models
since there is no need to split up the design matrix Z corresponding to the
random effect. The conditional AIC proposed by Yu & Yau (2012) could not be
calculated due to the need for inverting matrices that are singular.

The two criteria both choose the model including the second nearest-neighbour
distance with all three effects modelled as nonlinear functions. Comparing each
specific model whether to include the second or the first nearest-neighbour dis-
tance, both criteria in each case favour the model with the second nearest-
neighbour distance. For all models, except the two models only containing lin-
ear effects, the proposed conditional AIC is larger and therefore penalizes more
than the conditional AIC proposed by Donohue et al. (2011). This confirms the
behaviour observed in the simulation study, that the criterion by Donohue et al.
(2011) underestimates the bias correction.

This example additionally highlights that the various criteria for the estima-
tion of the Kullback-Leibler distance can lead to different model choices. For
instance, in the comparison of the two models

log (µi) = β0 + β1ki +m1 (sdi) + β2twii +m3 (nnd1i) (6.4)
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and

log (µi) = β0 + β1ki + β2sdi +m2 (twii) +m3 (nnd2i) , (6.5)

our proposed estimator chooses the first model (6.4), while the estimator pro-
posed by Donohue et al. (2011) chooses the latter (6.5).

7. Discussion

The proposed class of estimators of the conditional Akaike information is un-
biased for finite samples, does not require a particular estimation method for
GLMMs and does not assume known variance-covariance matrices for the ran-
dom effects. Therefore it improves on available asymptotic results in terms of
bias, variability as well as model selection. The formulation of penalized regres-
sion as mixed models allows the model choice techniques considered in this paper
to be used for penalized regression models as well. All of these characteristics
make these conditional Akaike information criteria appealing to use. For the
theoretical derivation, the working model has to be correctly specified in equa-
tions (3.1) and (3.4). The behaviour of the proposed methods for misspecified
models needs to be investigated in future work.

For other exponential family distributions than the ones discussed above, like
the gamma and the binomial distribution, the Stein type formulas do not seem to
yield criteria that are computable from observable quantities. It may also be of
interest to investigate extensions to distributions beyond the exponential family
using the generalized SURE formula of Shen & Huang (2006). The behaviour
of other information based criteria like the Bayesian information criterion, BIC,
for the selection of random effects in GLMMs needs further investigation.

Appendix: Technical details

Here we give outlines of proofs of the main results. The proofs of the essential
Theorem 3.1 and Theorem 3.2 can be done by integration by parts; see Hudson
(1978) with small modifications.

Proof of Proposition 2.1. The conditional log-likelihood is then as

log f(y|β, u) =
n∑

i=1

yiθi − b(θi)

φ
+ c(yi, φ),

where φ is the known scaling parameter. Then the conditional Akaike Informa-
tion becomes

cAI = −2Ey,uEz|u

[
log f(z|β̂(y), û(y))

]

= −2Ey,u

[
n∑

i=1

µiθ̂i − b(θ̂i)

φ
+ Ez|uc(zi, φ)

]
.
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Now the bias correction can be calculated by

2Ψ = cAI − Ey,u

[
−2 log f(y|β̂(y), û(y))

]

= 2Ey,u

[
n∑

i=1

yiθ̂i(y)− b(θ̂i(y))

φ
+ c(yi, φ)

]

− 2Ey,u

[
n∑

i=1

µiθ̂i(y)− b(θ̂i(y))

φ
+ Ez,uc(zi, φ)

]

= 2Ey,u

[
n∑

i=1

yi − µi

φ
θ̂i(y)

]
+ 2Ey,u

[
n∑

i=1

c(yi, φ)

]
− 2Ez,u

[
n∑

i=1

c(zi, φ)

]

= 2

n∑

i=1

Ey,u

[
yi − µi

φ
θ̂i(y)

]
.

Proof of Corollary 3.1. Let yi|u ∼ E( 1
µi

), then we can rewrite the bias correc-

tion (2.5) with the help of equation (3.2):

2Ψ = 2

n∑

i=1

Ey,u

[
yi − µi

φ
θ̂i(y)

]

= 2

n∑

i=1

Ey,u

[
(yi − µi)θ̂i(y)

]

= 2

[
n∑

i=1

Ey,u

[
yiθ̂i(y)

]
−

n∑

i=1

Ey,u

[
µiθ̂i(y)

]]

= 2

[
n∑

i=1

Ey,u

[
yiθ̂i(y)

]
−

n∑

i=1

Ey,u

[
µiθ̂i(y−i, yi)

]]

= 2

[
n∑

i=1

Ey,u

[
yiθ̂i(y)

]
−

n∑

i=1

Ey,u

[∫ yi

0

θ̂i(y−i, x)dx

]]

= 2Ey,u

[
n∑

i=1

yiθ̂i(y)−

∫ yi

0

θ̂i(y−i, x)dx

]

Where y−i is the vector of observed responses without the i−th observation.

Proof of Corollary 3.2. If yi|u ∼ P(λi) then equation (2.5) becomes with the
help of equation (3.5):

2Ψ = 2

n∑

i=1

Ey,u

[
yi − µi

φ
θ̂i(y)

]

= 2

n∑

i=1

Ey,u

[
(yi − λi)θ̂i(y)

]
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= 2

[
n∑

i=1

Ey,u

[
yiθ̂i(y)

]
−

n∑

i=1

Ey,u

[
λiθ̂i(y)

]]

= 2

[
n∑

i=1

Ey,u

[
yiθ̂i(y)

]
−

n∑

i=1

Ey,u

[
λiθ̂i(y−i, yi)

]]

= 2

[
n∑

i=1

Ey,u

[
yiθ̂i(y)

]
−

n∑

i=1

Ey,u

[
yiθ̂i(y−i, yi − 1)

]]

= 2Ey,u

[
n∑

i=1

yi

(
θ̂i(y)− θ̂i(y−i, yi − 1)

)]

Here y−i is the vector of observed responses without the i−th observation and
yi is the i−th observation with yiθ̂i(y−i, yi− 1) = 0 if yi = 0 by convention.
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