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Abstract: A popular approach to smooth models for longitudinal data is
to express the model as a mixed model, since this often leads to immediate
model fitting with standard procedures. This approach is particularly ap-
pealing when truncated polynomials are used as a basis for the smoothing,
as the mixed model representation is almost immediate. We show that this
approach can lead to a severely biased estimate of the overall population
effect and to confidence intervals with undesirable properties. We use pe-
nalization to investigate an alternative approach with either B-spline or
truncated polynomial bases and show that this new approach does not suf-
fer from the same defects. Our models are defined in terms of B-splines or
truncated polynomials with appropriate penalties, but can be expressed as
mixed models; this also gives access to fitting with standard procedures. We
illustrate our methods with an analysis of two data sets: (a) a balanced data
set on Canadian weather and (b) an unbalanced data set on the growth of
children.
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1. Introduction

Mixed effects models are a powerful tool for analyzing longitudinal or more
generally grouped data. In its general form, a mixed model consists of expressing
some linear predictor as a sum of two components: (a) the fixed effect, originally
interpreted as the population/overall effect; and (b) the random effects, which
result from the units drawn at random from the population. Searle et al. [20]
investigate the basic concepts and theoretical aspects of mixed models, while
Pinheiro & Bates [13] mainly look at computational issues. A key assumption
for a mixed model is the structure of the covariance matrix of the random effects
since its specification has important fitting and inferential consequences.

Smoothing methods are known for their flexibility in describing complex pat-
terns, and their connection with mixed models has been of interest to many
authors. As a result, modelling longitudinal data with smooth curves has gained
much attention and become an area of intensive research. Early work in this area
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is based on the mixed model representation of smoothing splines (see Brumback
& Rice [1], Verbyla et al. [22] among others); however, smoothing splines can
be computationally intensive. Alternatively, low rank smoothing methods have
been expressed as mixed models. With truncated polynomial bases, a mixed
model representation is almost immediate from the form of the basis and the
penalty function; Ruppert et al. [18] is a comprehensive reference for this ap-
proach. Eilers [7], in the discussion to the Verbyla et al. [22] paper, pointed out
that the P -splines system (Eilers & Marx [8]) with B-spline bases could also be
expressed in the mixed model framework. Wood (p191) [24] used the singular
value decomposition of the penalty matrix to express a smoothing model in a
Bayesian way; Currie et al. [3] also used the singular value decomposition to
give a mixed model representation of P -splines.

Nonetheless, the representation of smoothing models as mixed models is not
without controversy. Green [9] commented on the Verbyla et al. [22] paper as
follows: “Formulating spline smoothing as a mixed model is simply a mathemat-
ical device; the suggested logical distinction between the fixed linear trend and
the random smooth variation is artificial”. Green’s point is that the random-
ness in the mixed model representation of smoothers is not assigned to units
in a clear way as in the mixed models described in Searle et al. (chap 1) [20].
Thus, smoothers usually have a “mixed model representation” but not a “mixed
model interpretation” in the original sense. Nowadays, one motivation behind
the insertion of smoothing into the mixed model framework is the availability
of computer packages for mixed models; two typical examples are the libraries
lme and nlme in the software package R (R Development Core Team [15]) which
are designed to fit and compare Gaussian linear and nonlinear mixed models;
Pinheiro et al. [14].

In practice, however, the real effect of the bases and the covariance structure
on the estimated effects in low rank smoothing methods for longitudinal data
has received very little attention. In this paper we will consider two commonly
used bases: the truncated polynomial bases (Ruppert et al. [18]) and the B-
spline bases (Eilers & Marx [8]). We discuss first the unfortunate consequences
that can occur when we use the standard mixed model with truncated lines
for longitudinal data; and second, we discuss the resolution of these problems
with appropriate penalties, whether truncated polynomial or B-spline bases are
used. Our aim is to present a smooth mixed model for longitudinal data with a
natural, ie, non arbitrary, covariance structure and an immediately interpretable
fixed effect; this covariance structure is derived from the penalties used to design
the model.

The plan of the paper is as follows. Section 2 presents the standard mixed
model approach to longitudinal data using truncated lines for balanced data,
by which we mean that the same number of observations are made on each
unit at the same time points. We encounter some difficulties with this approach
and use this to motivate a penalty approach which we examine in section 3.
Section 4 presents two ways of fitting the model: (a) with the penalized resid-
ual sum of squares, and (b) with the mixed model representation of the model.
Confidence band calculation is described in section 5 and an extension to un-
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balanced data is presented in section 6. We close with some concluding remarks
in section 7.

2. Standard penalized splines mixed model for longitudinal data

In this section, we describe some aspects of a standard penalized spline mixed
model for longitudinal data, and motivate the need for an alternative approach.
For simplicity, we start with balanced data and so assume that we have longi-
tudinal data Y = (Yi,j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, stored in the form of a matrix
in such a way that columns are classified by subjects (j) and rows by time (ti);
that is, the column data Y•,j are repeated measurements of the response vari-
able Y on the j th unit during time periods, t = (t1, . . . , tn1

)′. A typical example
is the well-known pig.weights data set available in the library SemiPar in the
R package. This data set presents the weight measurements on n2 = 48 pigs
(subjects) over a period of n1 = 9 weeks (time); an overview of these data is
shown in the left panel in Figure 1. The global effect looks linear even though
the individual subject lines are quite variable, and so it makes sense to consider
models of the form

Yi,j = {δ0 + δ1ti}+ {δ̆j,0 + δ̆j,1ti}+ εi,j , (2.1)

where δ0+δ1t describes the linear population/overall effect, δ̆j,0+ δ̆j,1t measures
the deviations/departures of the j th subject/pig from the overall effect, and εi,j
represents the noise.

Clearly, we are not interested only in the specific 48 pigs involved in this
study. The main motivation of mixed models is to enable our inference from (2.1)
to apply to some population of pigs, and mixed models provide an attractive
solution to this problem. We suppose that our sample of pigs is drawn at random
from some population of pigs and that the impact of this randomness on model
(2.1) is that the subject effects uj = (δ̆j,0, δ̆j,1)

′ are themselves random. A
common specification of this randomness is that the uj are generated from two-
dimensional normal distributions with zero means. An important point is that
this normal assumption solves the problem of non-identifiability of model (2.1);
this same point will arise in section 3, when we will see that penalties provide
an alternative solution to the identifiability problem. Under the assumption of
normality and homoskedasticity, model (2.1) can be written

Y•,j |uj ∼ N
(

X1δ +Z1uj , σ
2In1

)

, uj ∼ N (0, Ψ ) ,

where X1 = Z1 = [1n1
: t], δ = (δ0, δ1)

′, uj = (δ̆j,0, δ̆j,1)
′, In is the n × n

identity matrix, 1n is the vector of ones of length n, and Ψ is a 2×2 symmetric,
positive definite matrix. This leads to the standard mixed model representation

Y |u ∼ N
(

Xδ + Zu, σ2In1n2

)

, u ∼ N (0, Φ) ,

with

Y = vec(Y ), X = 1n2
⊗X1, Z = In2

⊗Z1, u = vec(u1, . . . ,un2
), Φ = In2

⊗Ψ .



V.A.B. Djeundje and I.D. Currie/Smooth mixed models for longitudinal data 1205

2 4 6 8

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Time (weeks)

W
e

ig
h

t 
(k

g
)

2 4 6 8

Time (weeks)

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Fig 1. Left: repeated measurements of the weight of 48 pigs over a period of 9 successive weeks
(each continuous line refers to observations on the same pig). Right: fitted overall/population
effect (red line) together with the observed average per week (black dashed line).

Here, ⊗ represents the Kronecker product and vec(·) is the operator which
stacks the elements of matrices/vectors into a single vector. In the literature, δ is
known as the fixed effect and u as the random effect. The right panel in Figure 1
illustrates the estimated overall line fitted with the R function lme. Sub-models
of (2.1) for the pig.weights data have been investigated by many authors;

Ruppert et al. [18] among others implemented the case δ̆j,1 = 0, meaning that
the subject departures from the overall effect are parallel. Such sub-models can
be tested against model (2.1) to investigate the significance of this parallelism.
However, this sort of test needs to be treated with care since the null hypothesis,
H0 : Ψ1,2 = Ψ2,2 = 0, specifies that the non-negative Ψ2,2 is zero, and so
sits on the boundary of the parameter space; see Self & Liang [21], Ruppert
et al. (chap 4) [18].

We have assumed that both the overall and the subject effects can be captured
linearly; this assumption suits the pigs data well. However, this assumption is
not tenable in general. Consider for example the left panel in Figure 2, which
shows the daily average temperature (the averages are taken over the period
1960-1994) in 35 Canadian cities/subjects; these data can be found in the list
CanadianWeather available in the library fda in R. Clearly, the linear assump-
tion (at least for the overall effect) fails and more flexibility is required to model
the observed effects. In order to account for flexibility in such situations, both
linear components in (2.1), ie, the population and the subject effects, are often
extended using truncated lines as follows:

Yi,j =

{

δ0 + δ1ti +

q
∑

r=1

ξr(ti − τr)+

}

+

{

δ̆j,0 + δ̆j,1ti +

q̆
∑

k=1

ξ̆j,k(ti − τ̆k)+

}

+εi,j ,

(2.2)
where x+ = max{x, 0}, and τ = {τ1, . . . , τq} and τ̆ = {τ̆1, . . . , τ̆q̆} are sets of
equally spaced internal knots at the population and subject levels respectively.
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To be precise, let ∆ = (tn1
−t1)/(q+1) and ∆̆ = (tn1

−t1)/(q̆+1) be the distance
between the knots at the population and subject levels, then the τr and the τ̆k
are defined by τr = t1 + r∆, r = 1, . . . , q, and τ̆k = t1 + k∆̆, k = 1, . . . , q̆.

Ruppert et al. (sect 9.3) [18] is an early reference to such subject-specific
curves, although these authors reported there that “more work needs to be
done on implementation”. Model (2.2) can be expressed compactly as

Y•,j = [1n1
: t] δ + T1ξ + [1n1

: t] δ̆j + T̆1ξ̆j + ε•,j (2.3)

where T1 and T̆1 are the matrices of truncated lines at the population and
subject levels. Within this setting, the smoothness of the estimates, as well as the
identifiability of model (2.2), is frequently achieved by imposing the following
normal constraints on the coefficients (Coull et al. [2], Ruppert et al. (sect
9.3) [18], Durban et al. [5], etc):

ξ ∼ N
(

0, σ2
P Iq

)

, δ̆j ∼ N (0,Σ) , ξ̆j ∼ N
(

0, σ2
SIq̆

)

. (2.4)

In (2.4), σ2
P is the variance parameter driving the smoothness of the overall

effect, Σ is a 2 × 2 symmetric, positive definite matrix, and σ2
S is the variance

parameter driving the smoothness/randomness at the subject level.
The investigation of the covariance structure (2.4) in terms of modelling ef-

fects has not been of great concern. When we are dealing with smoothing at
a single level, truncated lines with a ridge penalty produce satisfactory results;
with smoothing at two levels, (ie, population and subject levels), the standard
covariance specification (2.4) is problematic. Here we illustrate some of its un-
fortunate consequences.

We use the lme function as described in Durban et al. [5] to fit this model
to CanadianWeather. The output of the lme function not only gives the esti-
mates for the population and subjects effects, but also provides estimates for
the variance parameters in (2.4), which we use to compute the bias corrected
confidence intervals (see Ruppert et al. (sect 6.4) [18]) for the population and
subjects effects. To illustrate our point, we first consider two knot-scenarios at
the subject level. Guided by Ruppert [17], we use q = 39 equi-spaced knots τ

at the population level in both scenarios.

• Scenario 1: we use q̆ = 19 equi-spaced knots τ̆ at the subject level; in this
case, τ̆ ⊂ τ .

• Scenario 2: we use q̆ = 21 equi-spaced knots τ̆ at the subject level.

The right panel in Figure 2 shows the fitted cities (obtained by adding the
estimated population effect to the city effects) for both scenarios. As we can
see from this graphic, the fits from both scenarios are almost identical and they
look very satisfactory with regard to the data. One may be tempted to argue
that this goodness of fit at the subject level induces a satisfactory fit at the
population level. However, Figure 3 shows the fitted population effect for the
two scenarios; we confirm the two observations of Heckman et al. [10]:

• the fitted population effect is very sensitive to the knot locations at the
subject level, and
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Fig 2. Left: daily averages of temperature in 35 Canadian cities (each continuous line refers
to observations on the same city). Right: the wiggly black lines are the observed values for
selected cities; the red (smooth) lines are model (2.4) fitted with lme under scenario 1; the
green (dashed) lines are model (2.4) fitted with lme under scenario 2 (largely hidden under
the red lines).

• the confidence bands exhibit a widening fan effect as we move from left to
right.

Further, for a third scenario (not shown) with q̆ = 20, we observe upward
bias, the opposite of that observed with q̆ = 21; for a fourth scenario, with
q = q̆ = 39, we observe both severe bias and widening of the confidence interval.
In all these scenarios, the behaviour (of the fitted population effect) is balanced
by similar behaviour of the subject effects, in such a way that the global effect
is recovered appropriately, as illustrated in the right panel of Figure 2. The
reason for such behaviour is the mis-specification of the covariance structure.
There are two main reasons for the choice in (2.4): first, the ridge penalty on a
truncated lines basis works well when smoothing is at a single level and second,
the simplicity of (2.4) is attractive; however, it does not appear capable of
capturing appropriately the overall effect observed in the left panel in Figure 2.
We also remark that if the truncated lines run from right-to-left, ie, with slope
−1, as opposed to left-to-right, ie, with slope 1 as in (2.2), then the bias and the
fanning effect in Figure 3 are reversed. We refer to these bases as the forward
(slope 1) and backward (slope −1) bases.

One possibility is to use a full covariance matrix in (2.4) in place of σ2
SIq̆.

This approach is not attractive since it has no obvious interpretation; it is also
computationally very intensive. Thus, we are faced with one of the common chal-
lenges in mixed models: the appropriate specification of the covariance structure
of the random effect.

In the remainder of this paper, we do not rely on specifying the covariance
structure directly; our plan is to work with appropriate penalties. The advantage
of this approach is that we can discuss the modelling effects which we wish the
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Fig 3. Illustration of the sensitivity of the estimates of the population effect to the knot
locations for the standard model (2.4). Left: scenario 1, ie, 39 and 19 inner knots at the
population and subject levels respectively. Right: scenario 2, ie, 39 and 21 inner knots at the
population and subject levels respectively. On both graphics, the black line is the observed mean
effect with the associated empirical confidence band, while the red line is the fitted population
effect.

penalties to have; furthermore, we show how the penalty framework can be re-
formulated as a mixed model, and then the covariance structure follows naturally
from the penalty structure and the bases. The supplementary materials contain
R-code to reproduce Figures 2 and 3.

3. Penalty approach

We consider the general structure

Yi,j = S(ti) + Sj(ti) + εi,j , εi,j ∼ N (0, σ2), (3.1)

for some functions S(·) and Sj(·) which quantify the population/overall effect
and the deviations/departures of the j th unit from the population effect respec-
tively. We view S(·) as a smooth function (assigned to the population effect)
and the Sj(·) as random smooth functions (assigned to the cities). At this stage,
we do not make any distributional assumptions as in (2.4); these will come nat-
urally out of our approach. In this section, we present different approaches for
modelling S(·) and Sj(·) and propose associated penalties for appropriate iden-
tification of these two components.

3.1. Penalties on B-spline bases

Here, we use B-spline bases to construct S(·) and Sj(·); we start with B-
spline bases because our approach with B-splines will motivate our solution
with truncated polynomials. In brief, with B-splines, we will place separate



V.A.B. Djeundje and I.D. Currie/Smooth mixed models for longitudinal data 1209

penalties directly on the B-spline coefficients at the subject level, one to bring
about smoothness (a difference penalty) and another to achieve identifiability by
shrinkage (a ridge penalty). With truncated polynomials, it seems more difficult
to achieve identifiability by direct shrinkage of the coefficients, as we have seen
with the results of (2.2) in Figure 3. Indeed, with truncated polynomial bases
we shall see in the next subsection that one way to achieve both smoothness and
identifiability is to introduce a second penalty, as we do with B-spline bases.
Two additional reasons for starting with B-splines are: first, the degree of the
B-splines and the order of the penalty can be chosen independently; this gives
additional flexibility to the modeller. Second, B-splines have good numerical
properties. Hence, if we denote by S(t) the element-wise action of S(·) on the
time vector t = (t1, . . . , tn1

)′, with a similar meaning for Sj(t), then we write

S(t) = Ba and Sj(t) = B̆ăj , (3.2)

where B, n1 × c, and B̆, n1 × c̆, are regression matrices of B-splines evaluated
along t, a is a vector of coefficients specifying the population effect, and the ăj

are random vectors of coefficients related to the subjects. We will refer to (3.1)
and (3.2) as model M1 = M1(B, B̆).

Note that M1 is not identifiable; indeed, if we add (for example) a constant to
S(·) and subtract the same constant from the Sj(·), then the predictor S(·) +
Sj(·) remains unchanged. Thus, two issues need to be clarified in M1: smoothness
and identifiability. In the context of nested curves, Brumback & Rice [1] achieved
the smoothness via the smoothing spline approach (which can be very time
consuming, specifically in the presence of a large data set); from the mixed model
representation, they suggested using ANOVA-like identifiability constraints by
requiring that the fixed effects sum to zero at each level except the topmost level.
Here we address smoothness and identifiability simultaneously via penalties as
follows.

Let us first consider the overall effect S(t). For this component we take a
sufficiently “rich” set of B-splines as a basis and we apply a roughness penalty
(Eilers & Marx, [8]) to the wiggliness of the components of a to achieve the
smoothness. Thus the estimation of a will be subject to the constraint

‖∆da‖
2 < z,

where ∆d represents the difference matrix operator of order d, and z quantifies
the amount of smoothness applied to a. If d = 3 for example, ∆d has the
four-diagonal structure

∆3 =















−1 3 −3 1 0 0 · · · 0
0 −1 3 −3 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 3 −3 1 0
0 · · · 0 0 −1 3 −3 1















.

Given the above specification on the overall effect, we solve the identifiability
problem by shrinking the coefficients ăj towards 0. It seems reasonable to apply
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the same amount of shrinkage, z̆2, to each of the city effects. Thus, we submit
the ăj to the constraint

‖ăj‖
2 < z̆2, j = 1, . . . , n2.

The problem of smoothness of the city effects remains. Two possibilities are
available:

(a) work with fewer B-splines (for the city effects) and only the ridge penalty,
or

(b) take a rich set of B-splines as a basis (as for the overall effect) and apply
a roughness penalty (together with the ridge penalty) on the ăj ; hence we
further penalize the roughness of the ăj, ie,

‖∆2ăj‖
2 < z̆1, j = 1, . . . , n2.

Clearly, (b) is computationally more intensive than (a) since each city has its
own (large) set of coefficients, while in comparison with (b), (a) is economical;
however, (a) is open to the criticism that the selection of the number of B-
splines is manual and artificial. Nonetheless, both approaches produce similar
results (at least for CanadianWeather), provided that a judicious choice of the
number of B-splines is made at the subject level under (a). From now on, we
will consider approach (b) only.

We remark that we have used a d-order penalty for smoothing at the pop-
ulation level since we may wish to have a specific fixed effect at this level; for
instance, the CanadianWeather data in Figure 2 suggest a quadratic fixed effect
at the population level, in which case we take d = 3. We have no particular
form in mind for the city effects, and so we simply use a second order (d = 2)
penalty to smooth these effects.

In summary for M1, (i) smoothing of the population effect is achieved by d-
order penalization of the population coefficients, (ii) smoothing of the city effects
is achieved by second order penalization of the city coefficients and (iii) identifi-
ability is achieved by a ridge penalty on the city coefficients. These three points
are summarized as follows:

C1 : ‖∆da‖
2 < z, ‖∆2ăj‖

2 < z̆1, ‖ăj‖
2 < z̆2; (3.3)

these constraints apply to the model M1 and we refer to (3.3) as the con-
straints C1.

3.2. Penalties on truncated polynomial bases

Here we express S(·) and Sj(·) in terms of a truncated polynomial and a trun-
cated line basis respectively; ie, we set

S(t) = [1n1
: t : · · · : tp]δ + Tpξ = Xpδ + Tpξ = Lpb, (3.4)

Sj(t) = [1n1
: t]δ̆j + T̆1ξ̆j = X1δ̆j + T̆1ξ̆j = L̆1b̆j , (3.5)
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say, where Tr and T̆r are matrices of truncated polynomials of degree r at the
population and subject levels respectively. We will refer to (3.1), (3.4) and (3.5)
as M2 = M2(T , T̆ ).

With a roughness penalty on B-splines bases, a polynomial fixed effect of
degree (d − 1) at the population level was captured by choosing a difference
penalty of order d. Here, we achieve the same thing in (3.4) by choosing the
corresponding degree p = d−1 of the polynomial basis. Since the subject effects
are likely (at least for CanadianWeather) to be quite different from one another,
we simply capture them with truncated lines.

With a B-spline basis as in the previous section, the behaviour of B̆ăj is very
similar to that of ăj in the sense that smoothness on ăj implies the smoothness

of B̆ăj , and shrinkage on ăj implies shrinkage of B̆ăj . This is not entirely clear
with truncated polynomial bases of degree p. For the latter, the coefficient vector
ξ̆j reflects the jumps in the derivatives of order p at the corresponding knots
and so the smoothness of the population and subject effects is usually obtained
by applying a ridge penalty on ξ and ξ̆j , ie,

‖ξ‖2 < z and ‖ξ̆j‖ < z̆1, j = 1, . . . , n2.

With B-splines, we have two penalties at the subject level, one for smoothness
and one for identifiability. With this in mind, we achieve identifiability by the
introduction of a second penalty in M2 at the subject level which shrinks each
subject effect Sj(t) = L̆1b̆j towards 0:

‖L̆1b̆j‖
2 < z̆2, j = 1, . . . , n2.

In summary for M2, smoothness at the population and subject level is ob-
tained by applying a ridge penalty on the truncated polynomial coefficients,
and identifiability is achieved by shrinking all the subject effects towards 0. We
summarize these constraints in

C2 : ‖ξ‖2 < z, ‖ξ̆j‖ < z̆1, ‖L̆1b̆j‖
2 < z̆2. (3.6)

3.3. Penalties on a mixture of B-spline and truncated polynomial

bases

Here we consider a mixture of B-splines and truncated polynomials. We start
with

S(t) = Ba and Sj(t) = L̆1b̆j = X1δ̆j + T̆1ξ̆j , (3.7)

say, where the components are defined in previous subsections. We refer to (3.1)
and (3.7) as M3 = M3(B, T̆ ); for the same reasons detailed previously, smoothness
and identifiability constraints on M3 are

C3 : ‖∆da‖
2 < z, ‖ξ̆j‖ < z̆1, ‖L̆1b̆j‖

2 < z̆2. (3.8)

Similarly, we consider the representation

S(t) = Lpb = Xpδ + Tpξ and Sj(t) = B̆ăj ; (3.9)
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we refer to (3.1) and (3.9) as M4 = M4(T , B̆); smoothness and identifiability
constraints on M4 are as follows:

C4 : ‖ξ‖2 < z, ‖∆2ăj‖
2 < z̆1, ‖ăj‖

2 < z̆2. (3.10)

3.4. Further possibilities

Models M1, M2, M3 and M4 with the associated constraints C1, C2, C3 and C4

are the main models that we investigate here. In all of these cases, we achieve
smoothness either by a roughness (difference) penalty on the B-spline coeffi-
cients or a ridge penalty on the truncated polynomial coefficients. An alternative
might be to smooth by applying a roughness (difference) penalty directly on the
estimates, ie, on S(t) and Sj(t), (whether a B-spline or a truncated polynomial
basis is used). Note also that solving the identifiability problem by shrinking
the subject effects Sj(t) is also applicable with a B-spline basis at the subject
level. Furthermore, instead of applying shrinkage to Sj(t), one can solve the
identifiability problem by applying the shrinkage at the knots only, ie, a ridge
penalty to Sj(τ̆ ). These are topics for further research.

4. Inference and applications

In the previous section, we presented four formulations of model (3.1) with
penalized splines. Each of these formulations has the form

Y•,j = Gα+ Ğᾰj + ε•,j, ε•,j ∼ N (0, σ2In1
) (4.1)

which can be expressed compactly as

Y = Ωθ + vec(ε), vec(ε) ∼ N (0, σ2In1n2
) (4.2)

where θ = vec(α, ᾰ), ᾰ = vec(ᾰ1, . . . , ᾰn2
), is the joint vector of coefficients,

Ω = [1n2
⊗G : In2

⊗Ğ] is the full regression matrix, andG, n1×c, and Ğ, n1×c̆,
are regression matrices at the population and subject levels; specifically, we have:

(G,α) =

{

(B,a) under M1 or M3
(Lp, b) under M2 or M4

(4.3)

(Ğ, ᾰj) =

{

(B̆, ăj) under M1 or M4

(L̆1, b̆j) under M2 or M3.
(4.4)

We will present two ways of fitting model (4.2) (with reference to the data
CanadianWeather) under the associated constraints C1, C2, C3 or C4. The first
approach will be based on the penalized residual sum of squares, while the
second approach will use the mixed model representation of the model.

4.1. Inference with penalized residual sum of squares

Using Lagrange arguments, the penalized residual sum of squares (PRSS) of
(4.2), ie, the residual sum of squares (RSS) under constraints C1, C2, C3 or C4,
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can be expressed as

PRSS = RSS+ θ′Pθ, with RSS = (Y −Ωθ)
′

(Y −Ωθ) , (4.5)

where
P = blockdiag(Pα, In2

⊗ Pᾰ) (4.6)

is the block diagonal penalty matrix, with

Pα =

{

λ∆′

d∆d for M1(B, B̆) under C1 or M3(B, T̆ ) under C3

λJd for M2(T , T̆ ) under C2 or M4(T , B̆) under C4
(4.7)

Pᾰ =

{

λ̆1∆
′

2∆2 + λ̆2Ic̆ for M1(B, B̆) under C1 or M4(T , B̆) under C4

λ̆1J2 + λ̆2L̆
′

1L̆1 for M2(T , T̆ ) under C2 or M3(B, T̆ ) under C3.
(4.8)

Here, Jr is the identity matrix (of appropriate size) where the upper r diagonal

elements have been replaced by 0’s, while λ and λ̆1 are the smoothing param-
eters at the population and subject level respectively, and λ̆2 is the shrinkage
parameter of the subject effects; (λ, λ̆1, λ̆2) plays (inversely) the equivalent role
as (z, z̆1, z̆2) used throughout section 3. More precisely, increasing values of λ

and λ̆1, (ie, decreasing the values of z and z̆1) induces more smoothness on the

population and subject effects, while increasing the values of λ̆2, (ie, decreasing
values of z̆2) corresponds to heavier shrinkage on the subject effects. At the

limit, ie, λ̆2 → ∞ (or equivalently z̆2 → 0), we have Sj(·) → 0; this reduces
the linear predictor of the model to the population effect. Given values of these
parameters, we obtain

θ̂ = (Ω′Ω+ P )
−1

Ω′Y

on minimizing the PRSS in (4.5). For illustration we choose the smoothing/shrink-
age parameters by minimizing the Bayesian Information Criterion (BIC)
Schwarz [19]

BIC(λ, λ̆1, λ̆2) = n1n2 × log(RSS) + tr(H)× log(n1n2); (4.9)

in (4.9), tr(H), the trace of the hat matrix H , is the effective dimension of

the fitted model, where H = Ω (Ω′Ω+ P )
−1

Ω′ maps the observations to the
fitted values. Nonetheless, since the BIC mostly addresses model choice at the
global level, a more formal criterion for the selection of the shrinkage parameter
may be derived by some partition of the BIC into a population and a subject
component. Alternatively, one may prefer to choose a certain fixed amount of
shrinkage, or to study (as a function of the shrinkage parameter) the departure
of the fitted population effect from the observed mean, and then choose the
amount of shrinkage that minimizes this departure.

Finally, in line with the familiar unbiased estimate of variance in linear re-
gression (Wood (p171) [24]), we estimate σ2 by

σ̂2 =
RSS

n1n2 − tr(H)
,

although with penalization this estimate is only approximately unbiased.
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Table 1

Summary table for four models applied to Canadian weather data

M1(B, B̆) M2(T , T̆ ) M3(B, T̆ ) M4(T , B̆)

(λ, λ̆1, λ̆2) (0.035, 20, 0.023) (250, 1097, 7× 10−4) (0.083, 1097, 5× 10−4) (250, 20, 0.023)
RSS 6902 6624 6635 6902
tr(H) 450 514 513 450
BIC 117179 117261 117267 117182
σ2 0.56 0.54 0.54 0.56
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Fig 4. Data and fitted population effect for our four models. The wiggly (black) line is the
data (average) with the associated empirical pointwise confidence interval. Left: M1 (brown)
and M4 (blue). Right: M2 (red) and M3 (green).

We now apply this procedure to CanadianWeather. For all our applications,
we will use cubic B-splines. For each of our four models, we follow Ruppert
et al. [18] and so use 39 equi-spaced internal knots at the population and subject
levels respectively. The results are summarized in Table 1. Figure 4 illustrates the
fitted population effect with the associated confidence intervals for our four mod-
els; the confidence intervals have been computed using the Bayesian argument
described in section 5. M1 and M4 are the best models (for CanadianWeather)
both in terms of BIC and parsimony. Note that the confidence bands for models
M1 and M4, the two models with B̆ as regression matrix at the subject level, are
narrower than those of M2 and M3. The right panel in Figure 5 displays the city
effects as estimated under model M1; these city effects are essentially identical
for all four models. The supplementary materials contain R-code to reproduce
Figure 4 and Table 1.

In summary, our four models all return essentially identical estimates of both
the population and city effects; the width of the confidence intervals appears to
depend on the basis used at the subject level. We will return to this point in
our concluding remarks.

We have also considered using different knots scenarios at the subject level
from that at the population level. While this generally produces consistent es-
timates of the population and subject effects, this may adversely affect the
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confidence intervals at both levels for all four models, if the number of knots at
the subject level is “too small” relative to that at the population level. Again,
we will return to this point in our closing discussion.

Going back to the data in Figure 2, we see that the overall effect looks
quadratic with some noise, mostly at the boundaries. Furthermore, our data
present a mixed model structure; by this we mean that it is natural to suppose
that our cities are a random selection from the population of Canadian cities.
We discuss a mixed model approach for (3.1) or (4.1) in the next section.

4.2. Mixed model representation and interpretation

In the representation (4.1), it is natural to think of the coefficients ᾰj as ran-
dom, since the subjects which they represent are randomly chosen from the
population. The question is the following: from the smoothness and identifiabil-
ity assumptions made so far, can we “naturally” derive the distributions which
have generated these coefficients/subjects?

4.2.1. Mixed model representation for M2 and M4

Recall that under M2 or M4, we have a truncated polynomial basis at the pop-
ulation level, ie, G = Lp = [Xp : Tp] and α = b = vec(δ, ξ). Here, the mixed
model representation is straightforward; this follows from the structure of the
truncated polynomial basis at the population level. Indeed, the minimization of
PRSS under M2 or M4 (with the associated constraints) is equivalent to the maxi-
mization of the log-likelihood which arises from the triplet (Y, ξ, ᾰ), where ξ and
ᾰ are treated as a pair of independent random vectors under the distributional
assumptions

Y•,j | ξ, ᾰj ∼ N
(

Xpδ + Tpξ + Ğᾰj , σ2 In1

)

,

ξ ∼ N
(

0, σ2

λ Ic−d

)

, ᾰj ∼ N
(

0, σ2P−1

ᾰ

)
(4.10)

where Pᾰ, defined in (4.8), depends on λ̆1 and λ̆2. We comment on this repre-
sentation in subsection 4.2.3.

4.2.2. Mixed model representation for M1 and M3

Under both M1 and M3, we have a B-spline basis at the population level and so
G = B and α = a. In this case, the minimization of PRSS (with the associated
constraints) is equivalent to maximizing the log-likelihood which arises from the
triplet (Y,a, ᾰ), where a and ᾰ are treated as a pair of independent random
vectors under the (improper for a) distributional assumptions

Y•,j |a, ᾰj ∼ N
(

Ba + Ğᾰj , σ2 In1

)

,

a ∼ N
(

0, σ2(λ∆′

d∆d)
−
)

, ᾰj ∼ N
(

0, σ2P−1

ᾰ

)

.
(4.11)
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The roughness matrix ∆′

d∆d, which gives rise to the improper prior dis-
tribution for a in (4.11), is singular, symmetric and has rank c − d. Now the
singular value decomposition of ∆′

d∆d is of the form ∆′

d∆d = UΛU ′ where
Λ = diag(ρ1, . . . , ρc−d, 0, . . . , 0) is the c × c diagonal matrix of eigenvalues ar-
ranged in non-increasing order; and U is the matrix with columns given by
the eigenvectors of ∆′

d∆d. We will denote diag(ρ1, . . . , ρc−d) by Λ+. With this
notation, the smoother Ba can be expressed as

Ba = Xpa1 +Ra2, with R = BU+Λ
−1/2
+ , a2 = Λ

1/2
+ U ′

+a· (4.12)

In (4.12), U+ is the sub-matrix of U which corresponds to the positive eigenval-
ues of ∆′

d∆d. The (improper) normal assumption about a in (4.11) reduces to

a2 ∼ N
(

0, σ2

λ Ic−d

)

. Finally, minimizing the PRSS of M1 or M3 yields the mixed

model representation

Y•,j |a2, ᾰj ∼ N
(

Xpa1 +Ra2 + Ğᾰj , σ
2 In1

)

,

a2 ∼ N
(

0, σ2

λ Ic−d

)

, ᾰj ∼ N
(

0, σ2P−1

ᾰ

)

;
(4.13)

we comment on this representation in the next subsection.

4.2.3. Interpretation of the components

Clearly from (4.10) and (4.13), the mixed model representation of (4.1) for our
four models M1, M2, M3 and M4 with the associated constraints has the form

Y•,j |γ, ᾰj ∼ N
(

Xpβ +Zpγ + Ğᾰj , σ
2 In1

)

,

γ ∼ N
(

0, σ
2

λ Ic−d

)

, ᾰj ∼ N
(

0, σ2P−1

ᾰ

)

,
(4.14)

for appropriate β, Zp, and γ. Hence, the model predictor is made up of three
components:

• The first component, Xpβ, represents the fixed overall effect. Motivated
by the overview of the data in Figure 2, we require this component to be
quadratic for CanadianWeather; this justifies the use of the third order
difference penalty in M1 and M3. An illustration of this first component
under M1 is shown by the continuous line in the left panel of Figure 5.

• The second component, Zpγ, which is shrunk towards 0, accounts for
the flexibility of the population effect, and smoothly captures the devi-
ation of the population effect from a simple quadratic curve. We do not
view the normal constraint on this component as random behaviour, but
just as a smoothing device. This component is illustrated (under M1) for
CanadianWeather by the dashed line in the left panel in Figure 5.

• The third/random component, Ğᾰj , measures the random departure of
the subjects from the overall effect. The normal constraint on this compo-
nent incorporates the random behaviour of the cities (controlled by λ̆2) as

well as the smoothness of the city effects (as measured by λ̆1); these are
shown for CanadianWeather (under M1) on the right panel in Figure 5.
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Fig 5. The three components of model M1 applied to the data CanadianWeather. Left: decom-
position of the fitted population effect into the fixed (quadratic) component (continuous line)
and the random component (dashed line). Right: fitted subject effects.

4.2.4. Mixed model fitting

Since the smoothness/shrinkage constraints on the second component, Zpγ in
(4.14), are expressed in terms of a distribution, it may also be treated as some
fictive part of the random component; this will then allow the full insertion of
the model into the mixed model framework, where we can take advantage of
the estimation methodology of restricted maximum likelihood. In line with this
motivation, setting

X = 1n2
⊗Xp, Z =

[

1n2
⊗Zp : In2

⊗ Ğ
]

, u = vec (γ, ᾰ1, . . . , ᾰn2
) ,

Φ = Φσ2,λ,λ̆1,λ̆2

= σ2 × blockdiag
(

λ−1Ic−d, In2
⊗ P−1

ᾰ

)

(4.15)
reduces (4.14) to

Y |u ∼ N
(

Xβ +Zu, σ2 In1n2

)

, u ∼ N (0, Φ) . (4.16)

Hence, model (3.1), together with the smoothness and identifiability of the
model achieved via the penalties in section 3, is now expressed as a mixed model
with fixed effects β, random effects u and covariance matrix Φ. The larger the
smoothing/shrinkage parameters are, the flatter the random component Zu is,
and the closer the predictor Xβ + Zu approaches the fixed component Xβ.
With a truncated polynomial basis at the population level, the mixed model
representation was straightforward, because of the form of the basis; with a B-
spline basis however, additional effort was required; in this case, the structure of
the resulting regression matrixR (as defined in (4.12)) is far from obvious, but it
does arise naturally as a function of the positive eigenvalues and corresponding
eigenvectors of ∆′

d∆d, and the B-spline basis.
A standard approach (Searle et al. [20]) for fitting (4.16) consists of maximiz-

ing the joint distribution of (Y,u) over (β,u). This leads to a set of equations
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that simultaneously yields an estimate for the fixed effect (β) and a predictor
for the random effect (u):

β̃ =
(

X ′V −1X
)

−1
X ′V −1Y

ũ = ΦZ ′V −1

(

Y −Xβ̃
)

.
(4.17)

These are the Best Linear Unbiased Estimator/Predictor (BLUE/BLUP) of β
and u respectively (Robinson, [16]). In (4.17), V = var(Y) = ZΦZ′ + σ2In1n2

,

where Φ = Φσ2,λ,λ̆1,λ̆2

is specified in (4.15) and so, (σ2, λ, λ̆1, λ̆2) are all viewed
here as variance parameters.

Clearly, β̃ and ũ are numerically known (only) upon specification of the
variance parameters. There is a variety of literature for estimating these pa-
rameters. One possibility is to maximize the unconditional likelihood of Y,
Y ∼ N (Xβ, V ). However, one unsatisfactory property of maximum likelihood
in estimating the variance components is that it discards the information on the
degrees of freedom involved in the estimation of the fixed effect. As a result, the
maximum likelihood estimator of the variance parameters tends to be biased.
This problem with maximum likelihood is corrected by the so-called restricted
likelihood (Patterson & Thompson [12]), one justification of which consists in
assuming a uniform prior distribution for the fixed effects, then integrating them
out of the likelihood (Laird & Ware [11], Pinheiro & Bates [13]). After substi-
tuting β by β̃, minus twice the restricted log-likelihood of model (4.16) is given
(up to an additive constant) by

− 2ℓ
(

σ, λ, λ̆1, λ̆2

)

= log(|V |) + log
(

|X ′V −1X|
)

+ Y ′

(

V −1 − V −1X
(

X ′V −1X
)−1

X ′V −1
)

Y. (4.18)

The estimation machine then consists of estimating the variance parameters
from maximization of ℓ in (4.18) and substituting them into (4.17) to derive
estimates for the BLUE/BLUP. An interesting point is that the standard mixed
model approach in (2.4) involves six variance parameters, while our penalty
approach (4.16) involves only four such parameters; hence, besides producing
satisfactory results, the penalty approach is computationally more economical
compared to (2.4), when searching for optimal values of the smoothing/variance
parameters.

5. Variability bands

So far, we have presented two approaches for fitting and interpreting model
(3.1). Inference in this context is a delicate issue because it depends on whether
the mixed model formulation is being used or not. We first hide the mixed
model formulation, and we discuss inference from the Bayesian perspective by
relying on the posterior distribution of the parameters. The main motivation for
working in the Bayesian framework here stems from the fact that the estimator
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of the parameter vector θ, defined in (4.2), is usually biased (unless the pa-
rameter vector itself vanishes). As a result, the central limit theorem cannot be
used directly to compute approximate confidence intervals. In addition to that,
there is evidence that the posterior confidence bands derived from the Bayesian
perspective have good sampling properties; Wood (chap 4) [24].

We are motivated by the smoothness/identifiability criteria C1, C2, C3, or C4
on the joint vector θ and so assume the following (improper) prior distribution
about θ: θ ∼ N (0, P−), where P is defined in (4.6); we then combine this
prior information with the conditional distribution Y|θ in (4.14) to yield the
posterior distribution

θ | Y ∼ N
(

θ̂, σ2(Ω′Ω+ P )−1
)

. (5.1)

The posterior distribution of the population coefficient α (defined in (4.1)) fol-
lows immediately from the upper left c×c block of var(θ | Y); it is this posterior
distribution that we have used to compute the confidence band of the popula-
tion effect shown in Figure 4. The computation of the confidence bands for the
city effects follows similarly. One interesting point here is that the confidence
bands obtained from (5.1) are identical to those provided by the bias adjusted
confidence bands derived from the mixed model representation (provided the
same values of the variance parameters are used in the two perspectives); see
Ruppert et al. (chap 6) [18].

6. Extensions

For the data CanadianWeather, we have assumed that the 35 cities are similar
in the sense that model (3.1) is expressed in terms of a common mean (smooth)
curve and the subject/city departures. These cities can be classified into four
regions: Arctic, Atlantic, Continental and Pacific, and plotting the data by re-
gion shows that the observed means (average) are different in shape and level
from one region to the other. Model (3.1) can be extended to account for the
region effects. Once again, the estimated mean effect per region is very sensitive
to the knot locations if fitted with the standard approach similar to (2.2)–(2.4).
In contrast, any of our models (similar to) M1, M2, M3 or M4 with the associated
smoothness and identifiability constraints (similar to) C1, C2, C3 or C4 does not
suffer from this defect; the results are not presented here.

For simplicity, we have presented our work so far in the special case of bal-
anced data where measurements are made on the subjects at the same time.
The extension to different timings for subjects as well as to unbalanced data is
straightforward. For illustration, we consider the simulated data based on the
model in Durban et al. [5] related to the heights of 197 children suffering from
acute lymphoblastic leukaemia, and receiving three different treatments; these
data are displayed in Figure 6. If we denote by Yi,j,k the i th measurement of
the height of the j th child receiving treatment k, then its linear predictor can
be expressed as

E [Yi,j,k] = Sk(ti,j,k) + Sj,k(ti,j,k), (6.1)
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Fig 6. Heights of 197 children suffering from acute lymphoblastic leukaemia, and receiving
three different treatments.

where Sk(·) and Sj,k(·) are smooth functions which quantify the treatment effect
and the children deviations respectively. We can express (6.1) in matrix form as

E [Y•,j,k] = Sk(t•,j,k) + Sj,k(t•,j,k), (6.2)

where t•,j,k is the time vector for the j th child receiving treatment k. Details on
the components of this model with truncated lines can be found in Coull et al. [2]
and Durban et al. [5], among others; these authors referred to this model as a
factor by curve interaction model. Even though the number of observations per
child is very small (it varies from 1 to 21), the estimated treatments effects are
biased if fitted with the standard approach similar to (2.4); this is shown in the
left panel of Figure 7. Indeed, for the same knot locations (40 and 10 inner knots
at the population and child levels respectively as used by Durban et al. [5]), this
graphic illustrates a clear difference between the estimates derived from the two
equivalent bases: (a) the forward truncated lines bases and (b) the backward
truncated lines bases. The fanning effect seen on the right of the left panel of
Figure 7 arises partly from data thinning. In addition, however, we observe the
same fanning effects as seen in Figure 3.

Alternatively, each of our four formulations M1, M2, M3 or M4 is extendable to
such unbalanced situations. More precisely, we set

Sk(t•,j,k) = Gt•,j,k
αk and Sj,k(t•,j,k) = Ğt•,j,k

ᾰj,k, (6.3)

where αk and ᾰj,k are vectors of coefficients quantifying the treatment and

children effects respectively; Gt•,j,k
and Ğt•,j,k

are matrices (of B-splines or
truncated polynomials as the case may be) at the treatment and child level,
constructed along the time vector t•,j,k. Unlike the data CanadianWeather,
there is no strong motivation to use the third order penalty or a second order
truncated polynomial for these growth data (see Figure 6). Model (6.3) can
be expressed compactly as in (4.2) with appropriate components, and then the
coefficients can be estimated either by the penalized residual sum of squares
(with appropriate penalty matrix) or by re-parameterization as a mixed model,
as described in section 4.2. The fitted mean effects for the three treatments are
shown on the right panel in Figure 7; this approach does not suffer from the
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Fig 7. Left: estimated mean height for children receiving treatment 3, using forward (blue)
and backward (red) truncated lines bases respectively, with ridge penalties. Right: estimated
mean height for the three treatments using B-splines with penalties at the treatment and child
levels. The dashed lines represent the corresponding confidence bands.
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Fig 8. Fitted model together with the data. Here we have used B-spline bases with associated
penalties both at the treatment and children levels.

instability illustrated in the left panel. Adding the fitted child effects to these
treatment effects yields the child curves presented in Figure 8. More generally,
the penalty approach is easily adapted to model multilevel nested hierarchical
curves. The supplementary materials contain R-code to reproduce Figure 7.

7. Concluding remarks

In this work we first illustrated some consequences of the mis-specification of
the standard covariance structure (2.4) in a mixed model (for longitudinal data)
defined using truncated line bases. One simple way of demonstrating the problem
is to fit only the population effect. Here, truncated lines with a ridge penalty
and B-splines with a roughness penalty give almost identical answers, and both
capture the population effect correctly with appropriate confidence intervals.
However, when we add the city effects, the estimates of the population effect
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and its associated confidence intervals are distorted when truncated lines with
the covariance structure (2.4) are used, as shown in Figure 3. No such distortion
occurs with the penalty approach presented in this paper; the estimates of the
population effect are identical whether city effects are included or not.

For the penalty approach, we first specify the bases, and then we design the
components of the model (population, subject, etc, effects). With the compo-
nents in place, we use penalties to bring about the model effects we wish to
achieve. One unlooked for bonus with the penalty approach is the reduction
in the number of variance parameters to be estimated, from six with (2.4) to
four with (4.16). Even though the B-spline and truncated polynomial bases pro-
duced satisfactory results in the applications presented in this paper, we have
a preference for B-splines bases, because of the direct connection between the
regression coefficients and the penalty which is applied to these coefficients; for
instance, with the B-spline basis, we can easily adjust the penalty to link the
start and end of the year via a circular penalty, or to account for a periodic effect
(for example if we are interested in modelling the temperatures collected over
many years) by using a harmonic penalty. In the case of the CanadianWeather

data we have used neither a circular nor a harmonic penalty since we used these
data to illustrate some general points of fitting nested smooth curves.

One obvious advantage that truncated polynomial bases appear to have over
B-spline bases (at the population level) is that a mixed model representation
is immediate; this allows simple fitting with standard methodology (restricted
likelihood) upon model specification. With B-splines (at the population level) we
must work a little harder to achieve a mixed model representation and so gain
access to the standard methodology of restricted likelihood; the transformed
bases are not intuitive but can be arrived at via a penalty argument. Of course,
the B-spline approach can be expressed in terms of truncated polynomials, but
the resulting covariance structure would again be all but impossible to guess
without penalties; some details on transformations from B-splines to truncated
polynomials can be found in de Boor [6] and Welham et al. [23].

We return to two issues which we raised at the end of section 4.1. First,
our methods appear to be successful in recovering population and subject ef-
fects, and in solving the problem of the widening fan effect found with (2.4).
However, the width of the associated confidence intervals arising from the use
of BIC depends on whether a B-spline or a truncated lines basis is used at
the subject level. Nonetheless, it is possible to “play” with the values of the
smoothing/shrinkage parameters when truncated lines are used and to produce
the confidence intervals obtained with B-splines. A second difficulty arises when
selecting the smoothing/shrinkage parameters by optimizing a deviance-type
criterion like BIC. We found that, for balanced data such as CanadianWeather,
if the number of knots at the subject level is “too small” relative to the num-
ber at the population level, ie, q̆ ≪ q, (for instance, q = 39 and q̆ < 10, for
CanadianWeather), then the optimal values of the shrinkage/smoothing param-
eters as selected by BIC fall on the boundary of the parameters space; this can
lead to unexpectedly wide confidence intervals at the population and subject
levels. Hence, in practice, attention must be given to the choice of q and q̆ (for
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example by following Ruppert [17] both at the population and subject levels)
as well as to the optimization criterion.
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